説明

ヒートポンプシステム、その制御方法及びプログラム

【課題】2熱源型ヒートポンプシステムの運転を、より高いエネルギー消費効率が達成されるように管理することにより、当該ヒートポンプシステムの経済的な運転や省エネルギー化を図ることができる技術を提供する。
【解決手段】地中熱源を利用する地中熱ヒートポンプ3と、空気熱源を利用する空気熱ヒートポンプ2とを備えるヒートポンプシステム1であって、向こう所定期間におけるヒートポンプシステムのトータルシステム効率を最大化する地中熱ヒートポンプ及び空気熱ヒートポンプのそれぞれの運転スケジュールをモデル計算によって求める運転モデル設定装置10と、地中熱ヒートポンプ及び空気熱ヒートポンプの運転を、運転モデル設定装置により求められたそれぞれの運転スケジュールに基づいて制御する制御装置11とを備えるヒートポンプシステムである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施の形態は、地中熱源を利用する地中熱ヒートポンプを備えるヒートポンプシステム、その制御方法及びプログラムに係る技術に関する。
【背景技術】
【0002】
地中を熱源とし、地中との熱交換により放熱及び採熱を行う地中熱ヒートポンプ(特許文献1、2)及び大気を熱源とし、大気と熱交換により放熱及び採熱を行う空気熱ヒートポンプ(特許文献3)の両設備を備える、故に地中熱源と空気熱源の二つの熱源を備える、ヒートポンプシステム(2熱源型ヒートポンプシステム)が知られている(特許文献4乃至6)。
【0003】
2熱源型ヒートポンプシステムは、大別して、地中熱ヒートポンプ又は空気熱ヒートポンプのみを運転する方式(単独運転方式;特許文献4乃至6)と両方を運転する方式(併用運転方式)方式に分けられ、更に単独運転方式と併用運転方式とを切り換える例も知られている(特許文献7、8)。
【0004】
2熱源型ヒートポンプシステムにおいては、例えば、地中温度又はそれと相関する温度(特許文献4、5)、地中熱熱交換器の冷媒温度(特許文献8)、外気温度(特許文献6、8)などを検出して、その検出結果に基づき運転方式を選択する。熱負荷側熱交換器の冷媒温度(特許文献7)に代表される熱負荷の変動と相関するパラメータ(特許文献8)を検出して、その検出に基づき運転方式を選択する。このようにして、選択された運転方式により運転すれば、積極的又は結果的に熱源設備全体の総合効率(システムCOP)を高めることができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平11−281203号公報
【特許文献2】特開2009−36415号公報
【特許文献3】特開平8−49877号公報
【特許文献4】特開2006−349332号公報
【特許文献5】特開2009−250555号公報
【特許文献6】特開昭60−86336号公報
【特許文献7】特開2002−333232号公報
【特許文献8】特開2006−258407号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、上記従来の2熱源型ヒートポンプシステムにおける運転は、地中熱熱交換器の能力、熱負荷の大小などに相関するパラメータの検出結果に基づき運転方式を選択して行うに止まり、地中熱ヒートポンプと空気熱ヒートポンプの二つの熱源の負荷割合を制御することによりシステム全体のエネルギー効率をより高めるというものではない。
【0007】
また、従来の2熱源型ヒートポンプシステムにおける運転は、外気温の高低(特許文献6、8参照)、夏季と冬季(特許文献5参照)、昼間と夜間(特許文献7参照)などといった違いにより運転方式を選択して行うものに止まり、将来の任意の所定期間(評価期間)において、システム全体のエネルギー効率をより高めるというものではない。
【0008】
本発明は、上記の問題に鑑みてなされたものであり、2熱源型ヒートポンプシステムの運転を、より高いエネルギー消費効率が達成されるように管理することにより、当該ヒートポンプシステムの経済的な運転や省エネルギー化を図ることができる技術を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するための本発明の実施の形態によれば、地中熱源を利用する地中熱ヒートポンプと、空気熱源を利用する空気熱ヒートポンプとを備えるヒートポンプシステムであって、向こう所定期間における前記ヒートポンプシステムのトータルシステム効率を最大化する前記地中熱ヒートポンプ及び前記空気熱ヒートポンプのそれぞれの運転スケジュールをモデル計算によって求める運転モデル設定装置と、前記地中熱ヒートポンプ及び前記空気熱ヒートポンプの運転を、前記運転モデル設定装置により求められたそれぞれの運転スケジュールに基づいて制御する制御装置と、を備えるヒートポンプシステムが提供される。
【発明の効果】
【0010】
本発明においては、ヒューリスティック手法、つまり遺伝的アルゴリズムによるモデル計算により、ヒートポンプシステムが備える地中熱ヒートポンプ及び空気熱ヒートポンプのそれぞれの運転スケジュールを求め、求められた運転スケジュールに基づいて、当該地中熱ヒートポンプ及び当該空気熱ヒートポンプの運転を制御する。それ故、本発明によれば、ヒートポンプシステムのトータルシステム効率を最大化するための比較的優れた運転スケジュールを、実用時間内で、且つ、比較的短時間に求めることができ、ヒートポンプシステムの運転を、より高いエネルギー消費効率が達成されるように管理することができ、ヒートポンプシステムの経済的な運転や省エネルギー化を図ることができる技術を実現することができる。
【図面の簡単な説明】
【0011】
【図1】第1の実施の形態におけるヒートポンプ空調システムの構成を示す図。
【図2】第1の実施の形態における運転モデル設定装置の詳細の構成と信号の流れを示す図。
【図3A】第1の実施の形態において使用する各パラメータの変数名及びその定義式を示す図。
【図3B】第1の実施の形態において使用する各パラメータの変数名及びその定義式を示す図。
【図3C】第1の実施の形態において使用する各パラメータの変数名及びその定義式を示す図。
【図4】第1の実施の形態における地中熱交換器出口熱媒温度と地中熱ヒートポンプ効率の関係を示す図。
【図5】第1の実施の形態における外気温度と空気熱ヒートポンプ効率の関係を示す図。
【図6】第1の実施の形態における過去の外気温度の実績値時間推移を示す図。
【図7】第1の実施の形態における外気温度の予測方法を説明する図。
【図8】第1の実施の形態における過去の空調負荷の時間推移を示す図。
【図9】第1の実施の形態における空調負荷の予測方法を説明する図。
【図10】第1の実施の形態における効率演算部が実行する演算式を示す図。
【図11】第1の実施の形態におけるGAの処理手順を示すフロー図。
【図12】図11に示すフロー図の各ステップの処理内容を解説する図。
【図13】第1の実施の形態におけるGAを用いた最適スケジュール解の探索方法を説明するための図。
【図14】第1の実施の形態における地中熱ヒートポンプ電力投入量を求める手順を示すフロー図。
【図15】第1の実施の形態における過去の地中熱交換器出口熱媒温度の実績値の時間推移を示す図。
【図16】第1の実施の形態における過去の地中放出熱量の実績値の時間推移を示す図。
【図17】地中放出熱量と地中熱交換器出口熱媒温度との関係を示す図。
【発明を実施するための形態】
【0012】
[第1の実施の形態]
以下、本発明のヒートポンプシステムの実施の形態として、建築物の空調を行うヒートポンプ空調システム1を例として説明する。
【0013】
図1は、第1の実施の形態におけるヒートポンプ空調システムの構成を示す図である。
ヒートポンプ空調システム1は、空気熱ヒートポンプ2、地中熱ヒートポンプ3、運転管理装置4を備えている。そして、地中熱ヒートポンプ3には、循環水ポンプ5と循環水流量計6とを有する地中埋設管7が接続されている。また、運転管理装置4は、運転モデル設定装置10、制御装置11を備えている。
【0014】
空気熱ヒートポンプ2は、大気との熱交換によって放熱及び採熱を行なう。即ち、空気の熱エネルギーをポンプ(コンプレッサ)の働きによって対象領域(たとえば建築物の室内)を冷却又は加熱するエネルギーに変換する。地中熱ヒートポンプ3は、地中との熱交換によって放熱及び採熱を行なう。即ち、地中埋設管7を介して地中の熱エネルギーを取り出してポンプ(コンプレッサ)の働きによって対象領域を冷却又は加熱するエネルギーに変換する。
【0015】
運転モデル設定装置10は、空気熱ヒートポンプ2と地中熱ヒートポンプ3のそれぞれの出力割合をどのように設定すればヒートポンプ空調システム1の総合効率(COP)を最適とできるかを計算する。制御装置11は、運転モデル設定装置10が求めたそれぞれの出力割合を指定する信号(出力制限率信号)又は当該信号に基づく制御信号を空気熱ヒートポンプ2と地中熱ヒートポンプ3に出力する。空気熱ヒートポンプ2と地中熱ヒートポンプ3の運転は、それぞれに対して出力された信号に基づき実行され、これにより管理される。
【0016】
図1に示すようにヒートポンプ空調システム1には電源8から電力が供給されている。また、ヒートポンプ空調システム1には、モデル計算に用いるパラメータを取得するための、外気温度計9a、地中熱交換器入口熱媒温度計9b、地中熱交換器出口熱媒温度計9cが設けられている。
【0017】
図2は、第1の実施の形態における運転モデル設定装置10の詳細の構成と信号の流れを示す図である。
運転モデル設定装置10は、パラメータ計測装置20、パラメータ演算装置30、実績記録装置40、外気温度予測装置41、空調負荷予測装置42、負荷割合最適化装置50を備えている。
【0018】
パラメータ計測装置20は、運転モデル設定に必要な種々のパラメータを計測する。パラメータ演算装置30は、計測されたパラメータを組み合わせて演算を行い空調負荷を求める。パラメータ演算装置30が演算した結果は、以下では演算値として扱われる。ここで、空調負荷とは、ヒートポンプ空調システム1の空調機が必要とするエネルギー(見方を変えれば電力)のことである。
【0019】
実績記録装置40は、パラメータ計測装置20の種々の計測値とパラメータ演算装置30の種々の演算値とを履歴情報として保存し、データベース化する機能を有する装置である。実績記録装置40が保存した値は、以下では実績値として扱われる。実績記録装置40は、そこに保存されている実績値を用いて他の構成ブロックが演算して得られた演算値を履歴情報として更に保存し、データベース化する機能を有していてもよい。
【0020】
外気温度予測装置41は、上述の計測値及び実績値に基づいて将来の外気温度の推移を予測する。空調負荷予測装置42は、上述の計測値、演算値及び実績値に基づいて将来の空調負荷の推移を予測する。
【0021】
負荷割合最適化装置50は、上述の実績値及び予測値に基づいて、空気熱ヒートポンプ2と地中熱ヒートポンプ3の最適な運転スケジュールをモデル計算により求める。制御装置11は、負荷割合最適化装置50が求めた運転スケジュールに従って、空気熱ヒートポンプ2と地中熱ヒートポンプ3のそれぞれに出力制限率信号又はその出力制限率信号に基づく制御信号を与える。
【0022】
その他の構成ブロックについては、引き続くヒートポンプ空調システム1の運転管理装置4の動作説明において併せて説明する。
【0023】
続いて、ヒートポンプ空調システム1の運転管理装置4の動作について説明する。
【0024】
図3A、図3B、図3Cは、第1の実施の形態において使用する各パラメータの変数名及びその定義式を示す図である。以下、これらの変数名及び定義式を参照しつつ動作を説明する。
【0025】
まず、パラメータ計測装置20の動作について説明する。
外気温度計測装置21は、外気温度計9aを用いて空気熱ヒートポンプ2の周囲の外気温度を計測する。計測された外気温度Toutは、計測値として外気温度予測装置41及び空調負荷演算装置31に送られる。トータル電力投入量計測装置22は、電源8からヒートポンプ空調システム1に供給されるトータル電力WTotalを計測する。トータル電力WTotalは、式(7)に示すように、システム待機電力投入量W、循環ポンプ電力量W、空気熱ヒートポンプ電力投入量W、地中熱ヒートポンプ電力投入量Wの和に等しい。計測されたトータル電力WTotalは、パラメータ演算装置30の空調負荷演算装置31に送られる。なお、システム待機電力投入量W、循環ポンプ電力量Wは、本運転管理装置以外の設備に使用される電力であり、既知の固定値である。
Total=W+W+W+W ・・・式(7)
地中熱交換器出口熱媒温度計測装置23は、地中熱交換器出口熱媒温度計9cを用いて地中から取り出された熱媒(循環水、不凍液など)の温度を計測する。計測された地中熱交換器出口熱媒温度TG_outは、計測値として空調負荷演算装置31及び地中放熱量演算装置32に送られる。地中熱交換器入口熱媒温度計測装置24は、地中熱交換器入口熱媒温度計9bを用いて地中に送り出される熱媒の温度を計測する。計測された地中熱交換器入口熱媒温度TG_inは、計測値として地中放熱量演算装置32に送られる。
【0026】
熱媒循環流量計測装置25は、循環水流量計6を用いて地中埋設管内を循環する熱媒循環流量Mを計測する。計測された熱媒循環流量Mは、計測値として地中放熱量演算装置32に送られる。
パラメータ計測装置20の各部が計測した値は、実績記録装置40にも送られて履歴情報として記録される。
【0027】
続いて、パラメータ演算装置30の動作について説明する。
地中放熱量演算装置32は、地中熱交換器入口熱媒温度TG_in、地中熱交換器出口熱媒温度TG_out、熱媒循環流量M、及び熱媒比熱Cを用いて式(5)により地中放出熱量QG_outを計算する。そして、地中放出熱量QG_outを演算値として空調負荷演算装置31に出力する。なお、地中放出熱量QG_outが負の値となるときは、地中から熱を吸熱していることを表す。
G_out=M×C×(TG_in−TG_out) ・・・式(5)
空調負荷演算装置31は、ヒートポンプ空調システム1の空調機が必要とする全エネルギー(空調負荷総量)を求める。空調負荷総量Qは、式(1)に示されるように、空気熱ヒートポンプ2に求められる空調負荷Qと、地中熱ヒートポンプ3に求められる空調負荷QG_inとの和で表される。
Q=Q+QG_in ・・・式(1)
ここで式(1)に示す、地中熱ヒートポンプの空調負荷QG_inは、式(5)に示す地中放出熱量QG_outと地中熱ヒートポンプ効率COPとを用いて式(2)または式(3)で表される。式(2)は、冷房時の地中熱ヒートポンプの空調負荷QG_inであり、式(3)は、暖房時の地中熱ヒートポンプの空調負荷QG_inである。
[冷房時]QG_in=[COP/(COP+1)]×QG_out ・・・式(2)
[暖房時]QG_in=[COP/(COP−1)]×QG_out ・・・式(3)
なお、式(2)または式(3)は、式(6)に示す定義式、及び式(6−1)の関係から導かれる。
COP=QG_in/W ・・・式(6)
G_in=QG_out±W ・・・式(6−1)
さらに、地中熱ヒートポンプ効率COPは、地中熱交換器出口熱媒温度TG_outの関数として式(8)または式(9)で表すことができる。ここで、式(8)は、冷房時の地中熱ヒートポンプ効率COPであり、式(9)は、暖房時の地中熱ヒートポンプ効率COPである。なお、fG1、fG2は地中熱ヒートポンプ固有の関数である。図4は、第1の実施の形態における地中熱交換器出口熱媒温度と地中熱ヒートポンプ効率の関係を示す図である。
[冷房時]COP=fG1(TG_out) ・・・式(8)
[暖房時]COP=fG2(TG_out) ・・・式(9)
式(1)に示す空気熱ヒートポンプの空調負荷Qは、式(4)に示す空気熱ヒートポンプ効率COPと空気熱ヒートポンプ電力投入量Wとの積として求められる。
=COP×W ・・・式(4)
ここで、空気熱ヒートポンプ電力投入量Wは、式(7)を変形した式(7−1)によって求めることができる。
=WTotal−W−W−W ・・・式(7−1)
さらに、空気熱ヒートポンプ効率COPは、外気温度Toutの関数として式(10)または式(11)で表すことができる。ここで、式(10)は、冷房時の空気熱ヒートポンプ効率COPであり、式(11)は、暖房時の空気熱ヒートポンプ効率COPである。なお、fA1、fA2は空気熱ヒートポンプ固有の関数である。図5は、第1の実施の形態における外気温度と空気熱ヒートポンプ効率の関係を示す図である。
〔冷房時〕COP = fA1(Tout) ・・・式(10)
〔暖房時〕COP = fA2(Tout) ・・・式(11)
パラメータ演算装置30は、空調負荷演算装置31が求めた空調負荷総量Qを空調負荷予測装置42に出力すると共に、空調負荷演算装置31及び地中放熱量演算装置32が求めた空調負荷総量Q及びその他の演算値を実績記録装置40に出力する。実績記録装置40は、入力した演算値を履歴情報として保存する。
【0028】
次に、外気温度予測装置41の動作について説明する。
外気温度予測装置41は、実績記録装置40においてデータベース化されて保存されている過去の外気温度の実績値から、当日の外気温度の予測値を求める。
【0029】
図6は、過去の外気温度の実績値の時間推移<DB>Toutを示す図である。<DB>Toutは、実績記録装置40に保存されている過去の外気温度の実績値から一定の基準に従って得られる。たとえば、任意の時間kを基点(横軸の0点)として向こう一定時間(たとえば24時間)にわたり、任意の単位時間帯(たとえば1時間)に入るデータを、実績記録装置40に保存されている過去の外気温度の実績値から取得し、取得されたデータから当該単位時間帯における平均値を演算する。より具体的には、たとえば、実績記録装置40に保存されている過去7日分の外気温度の実績値の中から、時間kから向こう24時間において、たとえば5時00分から5時59分までの1時間の時間帯に入るものを取得して、取得した実績値の平均値(+27.0度)を演算する。こうして得られる複数個の時間帯における複数個の平均値から近似曲線(たとえば最小自乗近似曲線)を演算し、演算された近似曲線を過去の外気温度の実績値の時間推移<DB>Toutとする。
【0030】
外気温度予測装置41は、当日の時間kにおける外気温度Tout、kから向こう一定時間(たとえば一日に相当する24時間分)の将来の外気温度の時間推移(<予測>Tout)を次のようにして予測する。
図7は、第1の実施の形態における外気温度の予測方法を説明する図である。外気温度予測装置41は、当日の時間kにおける外気温度Tout、k(図7中の「当日外気温度」に相当する)を外気温度計測装置21から取得する。次に、過去の同時間kにおける外気温度PTout、kを、時間kを基点とする向こう一定時間にわたる過去の外気温度の実績値の時間推移<DB>Toutに照らして取得する。当日の時間kにおける外気温度Tout、kを過去の同時間kにおける外気温度PTout、kと比較して温度差ΔTを求める。そして、式(13)により、当日の時間kにおける予測外気温度の時間推移(<予測>Tout)を求める。即ち、時間kを基点とする向こう一定時間にわたる過去の外気温度の実績値の時間推移<DB>Toutに温度差ΔTをバイアス値として加算して<予測>Toutを求める。
<予測>Tout = <DB>Tout+ΔT
= <DB>Tout+Tout、k−PTout、k ・・・式(13)
たとえば、任意の時間kを基点(横軸の0点)としたときの向こう24時間において、当日の時間kの外気温度Tout、kが26.0度であり、過去の時間kにおける<DB>Tout、すなわち過去の外気温度PTout、kが+24.0度であったとすると、温度差ΔTは+2.0度となるので、時間kにおける <予測>Toutは、<DB>Toutに+2.0度だけ加算されたものとなる。
【0031】
上述のように求められる<予測>Toutは、必要時に取り出せるように保存し、データベース化しておく。その保存場所は、実績記憶装置40であってもよいし、外気温度予測装置41が記録部を備える場合には、その記録部であってもよい。
【0032】
次に、空調負荷予測装置42の動作について説明する。
空調負荷予測装置42は、実績記録装置40においてデータベース化されて保存されている過去の空調負荷の実績値から、当日の空調負荷の予測値を求める。
【0033】
図8は、過去の空調負荷の実績値の時間推移<DB>Qを示す図である。<DB>Qは、実績記録装置40に保存されている過去の空調負荷の実績値から一定の基準に従って得られる。たとえば、任意の時間kを基点(横軸の0点)として向こう一定時間(たとえば24時間)にわたり、任意の単位時間帯(たとえば1時間)に入るデータを、実績記録装置40に保存されている過去の空調負荷の実績値から取得し、取得されたデータから当該単位時間帯における平均値を演算する。より具体的には、たとえば、実績記録装置40に保存されている過去7日分の空調負荷の実績値の中から、時間kから向こう24時間において、たとえば5時00分から5時59分までの1時間の時間帯に入るものを取得して、取得した実績値の平均値(36.0W)を演算する。こうして得られる複数個の時間帯における複数個の平均値から近似曲線(たとえば最小自乗近似曲線)を演算し、演算された近似曲線を過去の外気温度の実績値の時間推移<DB>Qとする。
【0034】
空調負荷予測装置42は、時間kにおける当日の空調負荷Qから向こう一定時間(たとえば一日に相当する24時間分)の将来の外気温度の時間推移(<予測>Q)を次のようにして予測する。
図9は、第1の実施の形態における空調負荷の予測方法を説明する図である。空調負荷予測装置42は、当日の時間kにおける空調負荷Q(図7中の「当日空調負荷」に相当する)を空調負荷演算装置31から取得する。次に、過去の同時間kにおける外気温度PQを、時間kを基点とする向こう一定時間にわたる過去の空調負荷の実績値の時間推移<DB>Qに照らして取得する。時間kにおける空調負荷Qkiを同時間kにおける過去の空調負荷PQと比較して負荷差ΔQを求める。そして、式(13)により、当日の時間kにおける予測空調負荷の時間推移(<予測>Tout)を求める。即ち、時間kを基点とする向こう一定時間にわたる過去の空調負荷の実績値の時間推移<DB>Qに負荷差ΔQをバイアス値として加算して<予測>Qを求める。
<予測>Q = <DB>Q+ΔQ
= <DB>Q+Q−PQ ・・・式(14)
たとえば、任意の時間kを基点(横軸の0点)としたときの向こう24時間において、当日の時間kの空調負荷Qが39Wであり、過去の時間kにおける<DB>Q、すなわち過去の外気温度PQが36Wであったとすると、負荷差ΔQは+3Wとなるので、時間kにおける <予測>Qは、<DB>Qに+3Wだけ加算されたものとなる。
【0035】
上述のように求められる<予測>Qは、必要時に取り出せるように保存し、データベース化しておく。その保存場所は、実績記憶装置40であってもよいし、空調負荷予測装置42が記録部を備える場合には、その記録部であってもよい。
【0036】
続いて、負荷割合最適化装置50の動作について説明する。
負荷割合最適化装置50は、地中熱交換器出口熱媒温度予測装置51とエネルギーフローモデル演算装置52とを備えている。エネルギーフローモデル演算装置52には、モデル生成部53と効率演算部54とが設けられている。負荷割合最適化装置50は、将来の任意の所定期間(評価期間)、たとえば将来の24時間におけるシステムCOP(SCOP)が最大となるような、空気熱ヒートポンプ2と地中熱ヒートポンプ3との運転スケジュールを決定する。
【0037】
エネルギーフローモデル演算装置52は、空気熱ヒートポンプ2と地中熱ヒートポンプ3との運転スケジュールの種々のパターンについてシステムCOPを繰り返して演算して最適なシステムCOPを求める。地中熱交換器出口熱媒温度予測装置51は、エネルギーフローモデル演算装置52における演算に使用する地中熱交換器出口熱媒温度の予測値を計算する。このように、地中熱交換器出口熱媒温度予測装置51とエネルギーフローモデル演算装置52とが協働して、空気熱ヒートポンプ2の運転と地中熱ヒートポンプ3の運転との最適な負荷割合を計算する。以下、その詳細な内容について説明する。
【0038】
効率演算部54は、向こう24時間のシステムCOP(SCOP24h)を、例えば、式(19)で定義される演算式に従って計算する。
SCOP24h=Σ〔(QG_in,i+QA,i)/(WG,i+WA,i+WP,i+WS,i)〕
・・・式(19)
G_in,i:任意時間iの地中熱ヒートポンプの空調負荷
A,i:任意時間iの空気熱ヒートポンプの空調負荷
G,i:任意時間iの地中熱ヒートポンプの電力投入量
A,i:任意時間iの空気熱ヒートポンプの電力投入量
o,i:任意時間iのその他の電力量の固定値
なお、任意時間iは、向こう24時間内の任意の時間であり、式(20)は常に成立しているものとする。また、Wo,iの典型例は、任意時間iの循環ポンプの電力量(WP,i)や任意時間iのシステム待機電力投入量(WS,i)であり、多くの場合、Wo,i=WP,i+WS,iとしてよい。
=QA,i+QG_in,i ・・・式(20)
:任意時間iの空調負荷総量
図10は、第1の実施の形態における効率演算部54が実行する演算式を示す図である。
【0039】
モデル生成部53は、式(19)で示すSCOP24hが最大となるQG_in,i、QA,iの向こう24時間のスケジュールパターンを遺伝的アルゴリズム(以下、GAという。)を用いて検索する。
【0040】
図11は、第1の実施の形態におけるGAの処理手順を示すフロー図である。このフロー図は、一般的なGAの処理を表している。図12は、このフロー図の各ステップの処理内容を解説する図である。従って、図11の各処理についての一般的な説明は省略する。
【0041】
図13は、第1の実施の形態におけるGAを用いた最適スケジュール解の探索方法を説明するための図である。
図13に示されるそれぞれの2次元座標系では、横軸が将来の時間iを示し、縦軸が空調負荷総量Qと地中熱ヒートポンプ3の空調負荷QG_in,iを示しており、従って図13中の各図は、時間ごとのQとQG_in,iの推移を表している。ここで、空調負荷総量Qは、これまでの実績値から求められる予測値、すなわち先述の<予測>Qの時間iにおける値に相当し、地中熱ヒートポンプ3の空調負荷QG_in,iは、GAの処理の開始時に初期世代として無作為に設定される設定値である場合には、時間iにおける<設定>QG_INの値、GAの処理の終了時に、最終的に最適なものとして選択される最適値である場合には、時間iにおける<結果>QG_INの値、GAの処理の開始後、終了前の途中において選択される選択値である場合には、時間iにおける<選択>QG_IN(図示せず)の値、に相当する。
【0042】
時間iにおける空気熱ヒートポンプ2の空調負荷QA,iは、式(20)により、QとQG_in,iとの差として定まる。
【0043】
無作為に設定された初期化母集団のスケジュール群(初期世代)を基点に、GAの処理フローに基づき選択→交配→交叉→突然変異→評価を繰り返し、最終世代である最適スケジュール解を導出する。
【0044】
具体的には、図11のステップS06の処理において、式(19)に示すSCOP24hの値を計算し、その結果で効率の高いスケジュールを複数選択する。そして選択したスケジュールを更に交配→交叉→突然変異→評価を行なって、より効率の高いスケジュールを複数選択する。この処理を所定回数繰り返すことで、SCOP24hの値の高い地中熱ヒートポンプ3の空調負荷QG_in,iを得ることができる。ステップS07に示す終了条件を充足したときは、例えば、上述の処理を1000回繰り返したときは、得られた複数のスケジュールのうち最も効率の高いスケジュールを最適スケジュールとする。
【0045】
図13の下図における<結果>QG_INは、上述のGAの処理により求まったQG_in,iの最適スケジュールである。
【0046】
ところで、式(19)に示すSCOP24hの値を計算するためには、任意の時間iにおける地中熱ヒートポンプ電力投入量WG,iと空気熱ヒートポンプ電力投入量WA,iとを求める必要がある。
図14は、第1の実施の形態における地中熱ヒートポンプ電力投入量WG,iを求める手順を示すフロー図である。
【0047】
ステップS11において、エネルギーフローモデル演算装置52は、上述のGAの処理を実行する際に用いられた地中熱ヒートポンプ3の空調負荷QG_in,i(任意の時間iにおける、<設定>QG_INの値と<選択>QG_INの値)を取り出す。そしてこの空調負荷QG_in,iのそれぞれの値に対応する地中熱ヒートポンプ電力投入量WG,iを以下の繰り返し処理によって計算し求める。
【0048】
まず地中熱ヒートポンプ電力投入量WG,iの初期値を設定する。この初期値は、任意の値で良いが、前回の計算で得られたWG,iの値を採用しても良い。
【0049】
ステップS12において、任意の時間iにおける地中放出熱量QG_out,iを次の式によって算出する。
G_out,i=QG_in,i+WG,i
そして、ステップS13において、算出されたQG_out,iを地中熱交換器出口熱媒温度予測装置51に渡して、地中熱交換器出口熱媒温度TG_out,iの予測値を計算させる。
【0050】
図15は、過去の地中熱交換器出口熱媒温度の実績値の時間推移<DB>TG_outを示す図である。<DB>TG_outは、実績記録装置40に保存されている過去の地中熱交換器出口熱媒温度の実績値から一定の基準に従って得られる。たとえば、任意の時間kを基点(横軸の0点)として向こう一定時間(たとえば24時間)にわたり、任意の単位時間帯(たとえば1時間)に入るデータを、実績記録装置40に保存されている過去の地中熱交換器出口熱媒温度の実績値から取得し、取得されたデータから当該単位時間帯における平均値を演算する。より具体的には、たとえば、実績記録装置40に保存されている過去14日分の地中熱交換器出口熱媒温度の実績値の中から、時間kから向こう24時間において、たとえば7時00分から7時59分までの1時間の時間帯に入るものを取得して、取得した実績値の平均値を演算する。こうして得られる複数個の時間帯における複数個の平均値から近似曲線(たとえば最小自乗近似曲線)を演算し、演算された近似曲線を過去の地中熱交換器出口熱媒温度の実績値の時間推移<DB>TG_outとする。
【0051】
図16は、過去の地中放出熱量の実績値の時間推移<DB>QG_outを示す図である。<DB>QG_outは、実績記録装置40に保存されている過去の地中放出熱量の実績値から一定の基準に従って得られる。たとえば、任意の時間kを基点(横軸の0点)として向こう一定時間(たとえば24時間)にわたり、任意の単位時間帯(たとえば1時間)に入るデータを、実績記録装置40に保存されている過去の地中放出熱量の実績値から取得し、取得されたデータから当該単位時間帯における平均値を演算する。より具体的には、たとえば、実績記録装置40に保存されている過去14日分の地中放出熱量の実績値の中から、時間kから向こう24時間において、たとえば7時00分から7時59分までの1時間の時間帯に入るものを取得して、取得した実績値の平均値を演算する。こうして得られる複数個の時間帯における複数個の平均値から近似曲線(たとえば最小自乗近似曲線)を演算し、演算された近似曲線を過去の地中放出熱量の実績値の時間推移<DB>QG_outとする。
【0052】
すると、<DB>TG_out及び<DB>Q_outはそれぞれ式(16)及び式(17)として表すことができる。
G_out,i=f(i) ・・・式(16)
G_out,i=f(i) ・・・式(17)
ここで、任意の時間iは、時間kを基点とする向こう一定時間(たとえば24時間)内の任意の時間である。
【0053】
そして、式(16)及び式(17)を用いると、地中放出熱量QG_outと地中熱交換器出口熱媒温度TG_outとの関係式(18)を得ることができる。図17は、この式(18)に相当する、地中放出熱量と地中熱交換器出口熱媒温度との関係を示す図である。
【0054】
G_out,t=f(QG_out,t) ・・・式(18)
従って、ステップS13において、式(18)に示す関数fを用いれば、算出されたQG_out,iから地中熱交換器出口熱媒温度TG_out,iの予測値を求めることができる。
【0055】
なお、上述のように求められる関係式(18)並びに、必要に応じて<DB>TG_out及び<DB>Q_out(または式(16)及び式(17))は、必要時に取り出せるように保存し、データベース化しておく。その保存場所は、実績記憶装置40であってもよいし、地中熱交換器出口熱媒温度予測装置51が記録部を備える場合には、その記録部であってもよい。
【0056】
図14のステップS14において、エネルギーフローモデル演算装置52は、地中熱交換器出口熱媒温度予測装置51が計算した地中熱交換器出口熱媒温度TG_out,iから、式(8)または式(9)を用いて地中熱ヒートポンプ効率COPG,iを求める。
[冷房時]COPG,i=fG1(TG_out,i
[暖房時]COPG,i=fG2(TG_out,i
ステップS15において、次の式を用いて地中熱ヒートポンプ電力投入量WG,iを計算する。この式は、WG,i演算値を求める式である。
G,i=QG_in,i/COPG,i
そして、ステップS16において、ステップS15で求めたWG,iの演算値とWG,iの初期値との差が許容範囲内かどうか、即ち、演算が収束したかどうかを調べる。
例えば、指標I=|(WG,iの初期値−WG,iの演算値)/WG,iの初期値|を求める。そして、指標I≧0.00001ならば、WG,iの初期値にWG,iの演算値を代入してステップS12からの処理を実行する。一方、指標I<0.00001ならば、ステップS17において、地中熱交換器出口熱媒温度TG_out,i及び地中熱ヒートポンプ電力投入量WG,iを決定する。
【0057】
以上の手順によって、GAによりQG_in,iを決定することができる。QG_in,iが決定すると、式(20)よりQA,iを求めることができるので、下記式(23)が成立することにより、WA,iを求めることができる。
A,i=QA,i/COPA,i・・・ 式(23)
ここで、COPA,iは上述の式(10)または式(11)を用いて求められる。
[冷房時]COPA,i=fA1(Tout,i
[暖房時]COPA,i=fA2(Tout,i
このようにして求めた、地中熱ヒートポンプ電力投入量WG,iと空気熱ヒートポンプ電力投入量WA,iとを用いてSCOP24hを式(19)に従って計算することができる。
【0058】
負荷割合最適化装置50は、GAの処理によって求めたSCOP24hが最大になるQG_in,iの向こう24時間のスケジュールパターンとQA,iの向こう24時間のスケジュールパターンとから地中熱ヒートポンプの出力制限率αG_in,iと空気熱ヒートポンプの出力制限率αA、iとを求める。
【0059】
地中熱ヒートポンプの定格出力をQG_in,MAXと置くと、出力制限率αG_in,iの24hスケジュールパターンは、式(21)より求まる。
αG_in,i=QG_in,i/QG_in,MAX ・・・ 式(21)
また、空気熱ヒートポンプの定格出力をQA,MAXと置くと出力制限率αA、iの向こう24時間のスケジュールパターンは、式(22)より求まる。
αA、i= QA,i/QA,MAX ・・・ 式(22)
制御装置11は、出力制限率αG_in,i及び出力制限率αA、iから地中熱ヒートポンプ3と空気熱ヒートポンプ2のそれぞれの出力割合を指定する信号(出力制限率信号)又は当該信号に基づく制御信号を出力する。空気熱ヒートポンプ2と地中熱ヒートポンプ3の運転は、それぞれに対して出力された信号に基づき実行され、これにより管理される。
【0060】
以上、説明した実施の形態によれば、将来の任意期間における全エネルギー(空調負荷総量)が最適な値になるように2熱源型ヒートポンプの運転を制御することができるため、ハイブリッド式ヒートポンプ空調システムの経済的な運転や省エネルギー化を図ることができる。
【0061】
なお、上述の実施の形態では、評価期間を24時間として将来の24時間におけるシステム効率SCOP24hを最大化するように運転スケジュールを作成したが、本発明はこの形態に限定されず、将来の適宜の期間における効率を最大化するように運転スケジュールを作成することができる。
【0062】
なお、このように将来の適宜の期間における効率を最大化するように運転スケジュールの設定を可能としているのは、上述のようにモデル計算によるスケジューリング手法を適用しているからである。但し、モデル計算に適用する手法は、遺伝的アルゴリズムに限定されず、数理計画法、焼きなまし法、局所探索法を用いることができる。
【0063】
また、図6に示された<DB>Toutや図9に示された<DB>Qの近似曲線を求める際に、実績記録装置40に保存されている過去7日分の実績値の中から、時間iから向こう24時間において、たとえば5時00分から5時59分までの1時間の時間帯に入るものを取得して、取得した実績値の平均値を演算するという説明をした。図15に示された<DB>TG_outや図16に示された<DB>QG_outの近似曲線を求める際には、実績記録装置40に保存されている過去14日分の地中放出熱量の実績値の中から、時間kから向こう24時間において、たとえば7時00分から7時59分までの1時間の時間帯に入るものを取得して、取得した実績値の平均値を演算するという説明をした。しかし、本発明はこれらのような形態に限定されず、本発明においては、<DB>Tout、<DB>Q、<DB>TG_out及び<DB>QG_outの少なくとも一つを求める際、過去何日分の実績値から平均値を求めるか、どの程度の長さの時間帯にするかなどは、状況や必要に応じて任意に選択できる。
【0064】
また、上述の実施の形態では、式(20)に示す関係、すなわち任意の時間iにおける空調負荷総量Qと、地中熱ヒートポンプの空調負荷QG_in,iと、空気熱ヒートポンプの空調負荷QA,iとの関係から地中熱ヒートポンプの運転スケジュールのみを求めたが、地中熱ヒートポンプと空気熱ヒートポンプとの両方の運転スケジュールをGAの処理を用いて求めても良い。
【0065】
[第2の実施の形態]
第2の実施の形態のヒートポンプシステムは、第1の実施の形態のヒートポンプシステムと概ね同一の構成であるが、運転スケジュールを向こう1ヶ月未満(望ましくは24時間)で決定するという構成上の特徴を備えている。
【0066】
[技術分野]
本発明の第2の実施の形態は、地中熱源を利用する地中熱ヒートポンプを備えるヒートポンプシステム及びその運転方法に係る技術に関する。
【0067】
[背景技術]
地中熱利用ヒートポンプ装置として、地盤の熱的状況を測定する測定手段と、測定した地盤の熱的状況に基づいて採放熱の限界値を設定する限界値設定手段と、設定した採放熱の限界値を超えないようにヒートポンプ本体の運転を制御する運転制御手段とを備えるものが知られている(特許文献2−1)。
【0068】
この技術では、限界値設定手段は、運転開始から数年間、前年との地中温度の差が小さくなり安定するまでの期間において、当該測定手段にて測定した前年の測定結果に基づく地盤の熱的状況から、地盤の年間における熱的状況の基準変動値を毎年再設定し、設定した基準変動値に基づいて当該限界値を再設定するように構成されている。これによれば、地盤の熱的状況に適応し長期間にわたって安定した運転が実現できる地中熱利用ヒートポンプ装置やその制御方法を実現することができる。
【0069】
また、地中熱利用ヒートポンプシステムの設計方法として、地中熱利用ヒートポンプシステムの運転のシミュレーションにより熱収支を解析し、熱源側の温度の時系列変化を求める工程と、暖房期間開始時と次年の冷房期間終了時、及び、冷房期間開始時と次年の暖房期間終了時のうち少なくともいずれかにおいて、当該シミュレーションの結果である熱源側の温度が略一致するように当該ヒートポンプシステムで処理する熱負荷及び当該ヒートポンプシステムの仕様のうち少なくともいずれかを変更しながら当該シミュレーションを繰り返して当該ヒートポンプシステムで処理する熱負荷及び当該ヒートポンプシステムの仕様を決める工程と、を有する技術が知られている(特許文献2−2)。
【0070】
この技術によれば、夏期の地中への放熱量、冬期の地中からの採熱量、及び周辺地盤との熱収支をバランスさせ、地中熱交換器周囲温度を安定させた設計が可能となり、地中熱利用ヒートポンプシステムの長期的な運転を実現させることができる。
【0071】
[先行技術文献]
[特許文献]
[特許文献2−1] 特許第4782462号公報
[特許文献2−2] 特許第4694932号公報
[発明の概要]
[発明が解決しようとする課題]
しかしながら、特許文献2−1に記載の技術では、運転開始から数年間、前年との地中温度の差が小さくなり安定するまでの期間において、前年の測定結果に基づく地盤の熱的状況から、地盤の年間における熱的状況の基準変動値を毎年再設定し、設定した基準変動値に基づいて採放熱の限界値を再設定する。従って、この方法に従えば、ヒートポンプシステムの運転が長期(たとえば数年間)にわたり安定しない場合が考えられる。この点で、地中熱利用ヒートポンプ装置のより早期の安定的な運転を期待する使用者にとって望ましいものとはいえない。
【0072】
また、特許文献2−2に記載の技術では、暖房期間開始時と次年の冷房期間終了時、及び、冷房期間開始時と次年の暖房期間終了時のうち少なくともいずれかにおいて、シミュレーションの結果である熱源側の温度が略一致するように地中熱利用ヒートポンプシステムの仕様が決められる。従って、この方法では、少なくとも1年間は地中熱利用ヒートポンプシステムの仕様が決まらないことになる。この点で、特許文献2−1に記載の技術と同様に、地中熱利用ヒートポンプ装置のより早期の安定的な運転を期待する使用者にとって望ましいものとはいえない。
【0073】
第2の実施の形態に係る発明は、上記の問題に鑑みてなされたものであり、短期間で運転や制御の安定化を実現することのできる地中熱利用ヒートポンプシステム及びその制御方法を提供することを目的とする。
【0074】
[課題を解決するための手段]
上記目的を達成するための、第2の実施の形態に係る発明の第1の態様に係るヒートポンプシステムは、地中熱源を利用する地中熱ヒートポンプと、空気熱源を利用する空気熱ヒートポンプとを備えるヒートポンプシステムであって、向こう1ヶ月未満の所定期間における前記ヒートポンプシステムのトータルシステム効率を最大化する前記地中熱ヒートポンプ及び前記空気熱ヒートポンプのそれぞれの運転スケジュールをモデル計算によって求める運転モデル設定装置と、前記地中熱ヒートポンプ及び前記空気熱ヒートポンプの運転を、前記運転モデル設定装置により求められたそれぞれの運転スケジュールに基づいて制御する制御装置と、を備えることを特徴とする。
【0075】
第2の実施の形態に係る発明の第2の態様に係るヒートポンプシステムは、第1の態様に係るヒートポンプシステムであって、前記向こう1ヶ月未満の所定期間は、向こう24時間であることを特徴とする。
【0076】
第2の実施の形態に係る発明の第3の態様に係るヒートポンプシステムは、第1又は第2の態様に係るヒートポンプシステムであって、前記運転モデル設定装置は、前記地中熱ヒートポンプ及び前記空気熱ヒートポンプのそれぞれの運転スケジュールを遺伝的アルゴリズムを用いるモデル計算によって求める装置であることを特徴とする。
【0077】
第2の実施の形態に係る発明の第4の態様に係るヒートポンプシステムの制御方法は、地中熱源を利用する地中熱ヒートポンプを備えるヒートポンプシステムの制御方法であって、向こう1ヶ月未満の所定期間における前記ヒートポンプシステムのトータルシステム効率を最大化する前記地中熱ヒートポンプ及び前記空調ヒートポンプのそれぞれの運転スケジュールをモデル計算によって求める第1の工程と、前記地中熱ヒートポンプ及び前記空気熱ヒートポンプの運転を、第1の工程において求められたそれぞれの運転スケジュールに基づいて制御する第2の工程と、を有することを特徴とする。
【0078】
第2の実施の形態に係る発明の第5の態様に係るヒートポンプシステムの制御方法は、第4の態様に係る制御方法であって、前記所定期間は、24時間であることを特徴とする。
【0079】
第2の実施の形態に係る発明の第6の態様に係るヒートポンプシステムの制御方法は、第4又は第5の態様に係る制御方法であって、前記第1の工程は、前記地中熱ヒートポンプ及び前記空気熱ヒートポンプのそれぞれの運転スケジュールを遺伝的アルゴリズムを用いるモデル計算によって求める工程である、ことを特徴とする。
【0080】
[発明の効果]
第2の実施の形態に係る発明(特に第2の実施の形態に係る発明の第1及び第4の態様)によれば、向こう1ヶ月未満の所定期間という短期間におけるヒートポンプシステムのトータルシステム効率を最大化するように、そのヒートポンプシステムが備える地中熱ヒートポンプ及び空気熱ヒートポンプのそれぞれの運転スケジュールをモデル計算によって求め、求められたそれぞれの運転スケジュールに基づいて地中熱ヒートポンプ及び空気熱ヒートポンプの運転を制御するので、長期間(少なくとも1年間)にもわたりヒートポンプステムの運転が安定しない、或いはヒートポンプシステムの設計が決まらない、というような事態は避けることができ、従って地中熱利用ヒートポンプ装置のより早期の安定的な運転を望む使用者にとってより望ましい、地中熱利用ヒートポンプシステム及びその制御方法を実現することができる。
【0081】
特に、第2の実施の形態に係る発明の第2及び第5の態様によれば、ヒートポンプシステムのトータルシステム効率を最大化するための比較的優れた運転スケジュールを、向こう24時間という実用時間としてかなり短い期間で決定するので、ヒートポンプシステム運転や制御の安定化に長期間を要しない、従ってヒートポンプシステムのより早期の安定的な運転を望む使用者にとってより望ましい、ヒートポンプシステム及びその制御方法を実現することができる。
【0082】
第2の実施の形態に係る発明が奏する作用効果は、地中熱ヒートポンプ及び空気熱ヒートポンプのそれぞれの運転スケジュールを遺伝的アルゴリズムを用いるモデル計算によって求める場合が特に顕著である(第2の実施の形態に係る発明の第2及び第5の態様参照)。遺伝的アルゴリズムというヒューリスティック手法によるモデル計算を用いれば、ヒートポンプシステムのトータルシステム効率を最大化するための比較的優れた運転スケジュールを、実用時間内で、且つ、比較的短時間で求めることができるからである。
【0083】
第2の実施の形態におけるヒートポンプシステムの構成及び動作は、図1乃至図17を参照して説明した第1の実施の形態の同一であるためその詳細の説明は省略する。
【0084】
第2の実施の形態のヒートポンプシステムでは、例えば、将来の1ヶ月未満の所定期間におけるシステム効率SCOP24hを最大化するように運転スケジュールを作成することができる。この所定期間として1ヶ月未満の値を設定することで、長期間(少なくとも1年間)にもわたりヒートポンプステムの運転が安定しない、或いはヒートポンプシステムの設計が決まらない、というような事態は避けることができ、地中熱利用ヒートポンプ装置のより早期の安定的な運転を望む使用者にとってより望ましい、地中熱利用ヒートポンプシステム及びその制御方法を実現することができる。
【0085】
ここで、将来の運転スケジュールとして1ヶ月未満の所定期間を設定したが、この値は実際のヒートポンプシステムの運転において、使用者がより早期の安定的な運転を達成するために望ましいと考えている値である。
【0086】
以上、各実施の形態に係る、地中熱源を利用する地中熱ヒートポンプを備えるヒートポンプシステム及びその運転方法に係る技術について説明した。ここで、地中熱ヒートポンプに加えて、空気熱源を利用する空気熱ヒートポンプを備える2熱源型ヒートポンプシステムも、地中熱ヒートポンプを備えるヒートポンプシステムに該当するので、当該2熱源型ヒートポンプシステム及びその制御方法も、本発明の技術的範囲に含まれる。
【0087】
更に、上述の各実施の形態で説明した機能は、ハードウェアを用いて構成するに留まらず、ソフトウェアを用いて各機能を記載したプログラムをコンピュータに読み込ませて実現することもできる。また、各機能は、適宜ソフトウェア、ハードウェアのいずれかを選択して構成するものであっても良い。
【0088】
本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。
上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよく、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
【符号の説明】
【0089】
1…ヒートポンプ空調システム、2…空気熱ヒートポンプ、3…地中熱ヒートポンプ、4…運転管理装置、5…循環水ポンプ、7…地中埋設管、8…電源、10…運転モデル設定装置、11…制御装置、20…パラメータ計測装置、21…外気温度計測装置、22…トータル電力投入量計測装置、23…地中熱交換器出口熱媒温度計測装置、24…地中熱交換器入口熱媒温度計測装置、25…熱媒循環流量計測装置、30…パラメータ演算装置、31…空調負荷演算装置、32…地中放熱量演算装置、40…実績記録装置、41…外気温度予測装置、42…空調負荷予測装置、50…負荷割合最適化装置、51…地中熱交換器出口熱媒温度予測装置、52…エネルギーフローモデル演算装置、53…モデル生成部、54…効率演算部。

【特許請求の範囲】
【請求項1】
地中熱源を利用する地中熱ヒートポンプと、空気熱源を利用する空気熱ヒートポンプとを備えるヒートポンプシステムであって、
向こう所定期間における前記ヒートポンプシステムのトータルシステム効率を最大化する前記地中熱ヒートポンプ及び前記空気熱ヒートポンプのそれぞれの運転スケジュールをモデル計算によって求める運転モデル設定装置と、
前記地中熱ヒートポンプ及び前記空気熱ヒートポンプの運転を、前記運転モデル設定装置により求められたそれぞれの運転スケジュールに基づいて制御する制御装置と、
を備える、
ことを特徴とするヒートポンプシステム。
【請求項2】
前記モデル計算は、遺伝的アルゴリズムを用いることを特徴とする請求項1に記載のヒートポンプシステム。
【請求項3】
前記ヒートポンプシステムは、建築物の空調を行うヒートポンプ空調システムであり、
前記トータルシステム効率SCOPは、任意時間iのシステム効率COPを前記所定期間について合計した値であり、
前記システム効率COPは、前記任意時間iにおける地中熱ヒートポンプの空調負荷QG_in,i、空気熱ヒートポンプの空調負荷QA,i、地中熱ヒートポンプの電力投入量WG,i、空気熱ヒートポンプの電力投入量WA,i及びその他の電力量固定値Wo,iを用いて下記式で表されることを特徴とする請求項2に記載のヒートポンプシステム。
COP=(QG_in,i+QA,i)/(WG,i+WA,i+Wo,i
【請求項4】
前記運転モデル設定装置は、
前記任意時間iにおける地中熱ヒートポンプの空調負荷QG_in,iと空気熱ヒートポンプの空調負荷QA,iとの合計値Qを、過去の運転実績値に基づいて定め、
前記地中熱ヒートポンプの空調負荷QG_in,iの最適な運転スケジュールを前記遺伝的アルゴリズムによって求め、
前記空気熱ヒートポンプの空調負荷QA,iの最適な運転スケジュールを、下記式から演算によって求めることを特徴とする請求項3に記載のヒートポンプシステム。
A,i=Q−QG_in,i
【請求項5】
前記運転モデル設定装置は、
前記任意時間iにおける地中熱ヒートポンプの空調負荷QG_in,iと地中熱ヒートポンプの効率COPG,iとの間で下記式を近似的に成立させる前記任意時間iにおける地中熱ヒートポンプの電力投入量WG,iを求めることを特徴とする請求項4に記載のヒートポンプシステム。
G,i=QG_in,i/COPG,i
【請求項6】
前記運転モデル設定装置は、
前記任意時間iにおける空気熱ヒートポンプの効率COPA,iを外気温度Toutに対応する実績値から求め、
前記任意時間iにおける空気熱ヒートポンプの電力投入量WA,iを下記式から求めることを特徴とする請求項5に記載のヒートポンプシステム。
A,i=QA,i/COPA,i
【請求項7】
前記向こう所定期間は、向こう1ヶ月未満の所定期間であることを特徴とする請求項1に記載のヒートポンプシステム。
【請求項8】
前記向こう1ヶ月未満の所定期間は、向こう24時間であることを特徴とする請求項7に記載のヒートポンプシステム。
【請求項9】
前記運転モデル設定装置は、前記地中熱ヒートポンプ及び前記空気熱ヒートポンプのそれぞれの運転スケジュールを遺伝的アルゴリズムを用いるモデル計算によって求める装置であることを特徴とする請求項7又は8に記載のヒートポンプシステム。
【請求項10】
コンピュータを請求項1乃至9のいずれか1項に記載のヒートポンプシステムの運転モデル設定装置として機能させることを特徴とするプログラム。
【請求項11】
地中熱源を利用する地中熱ヒートポンプと、空気熱源を利用する空気熱ヒートポンプとを備えるヒートポンプシステムの制御方法であって、
向こう所定期間における前記ヒートポンプシステムのトータルシステム効率を最大化する前記地中熱ヒートポンプ及び前記空調ヒートポンプのそれぞれの運転スケジュールをモデル計算によって求める第1の工程と、
前記地中熱ヒートポンプ及び前記空気熱ヒートポンプの運転を、第1の工程において求められたそれぞれの運転スケジュールに基づいて制御する第2の工程と、
を有することを特徴とするヒートポンプシステムの制御方法。
【請求項12】
前記モデル計算は、遺伝的アルゴリズムを用いることを特徴とする請求項11に記載のヒートポンプシステムの制御方法。
【請求項13】
前記向こう所定期間は、向こう1ヶ月未満の所定期間であることを特徴とする請求項11に記載のヒートポンプシステムの制御方法。
【請求項14】
前記所定期間は、24時間であることを特徴とする請求項13に記載のヒートポンプシステムの制御方法。
【請求項15】
前記第1の工程は、前記地中熱ヒートポンプ及び前記空気熱ヒートポンプのそれぞれの運転スケジュールを遺伝的アルゴリズムを用いるモデル計算によって求める工程である、
ことを特徴とする請求項13又は14に記載のヒートポンプシステムの制御方法。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate