説明

プラント運転訓練用シミュレータ

【課題】長時間に渡る事象と短時間で終了する事象とが混在して再現されたプラント運転訓練用シミュレータであっても、CPU負荷を高めることなく、長時間に渡る事象のシミュレーションを効率よく行うことのできるプラント運転訓練用シミュレータを提供する。
【解決手段】シミュレーション速度指令部330からの指令に基づいて、プラント設備モデル演算処理部300が各部分プラント設備モデルの演算周期を所定倍して挙動を模擬する際に、一部の部分プラント設備モデルに対する演算周期の倍数1/Mとその他の部分プラント設備モデルに対する演算周期の倍数1/Nとを異なるように設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラントの状態を模擬して得られる情報に基づいて運転員、技術スタッフなどを訓練する際に使用するプラントの運転訓練用シミュレータに関し、特に実機プラント内に短時間で終了する事象と長時間に渡る事象とが混在する場合に、これらを再現した場合であっても効率よい訓練を可能とする運転訓練用シミュレータに関する。
【背景技術】
【0002】
発電プラントにおいては運転員等に対するプラント運転のための教育および訓練が不可欠である。近年、運転訓練を効率よく行うために、運転訓練用シミュレータがよく用いられる。運転訓練用シミュレータでは、発電プラントにおいて発生が予想される複数の事象を再現できるように設計されている。
例えば特許文献1には、原子力発電プラントの運転訓練用シミュレータが記載されている。このシミュレータにおいて再現する苛酷事故等のモデルの中には、長時間に渡る事象と短時間で終了する事象とが混在している。長時間に渡る事象については実際の数倍の速度で模擬するように設定できるので、事象を効率的に再現して学習効率を高めることができる。また、短時間で終了する事象についてはゆっくりと時間を掛けて模擬するように設定できるので、訓練者が事象の理解を深めることができる。
上述のような運転訓練用シミュレータを利用することにより、運転員等は再現された事象に対する適切な対応方法を短時間で学習することができる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−338854(第6欄)
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1のシミュレータでは、再現対象となっているプラント設備モデルに対する演算を一律に加速或いは減速している。ここで、従来のシミュレータにおける演算の加減速について図6を用いて説明する。図6は、従来のプラント運転訓練用シミュレータにおけるモデル演算速度変更処理を示した概念図である。
発電プラントのような巨大規模設備のシミュレータにおいては、プラント設備モデルを複数の部分設備モデルに分割して取り扱うのが一般的である。すなわち、図示するように、プラント設備モデル演算処理部400は、n個に分割されたプラント設備モデル410−1、410−2、・・・、410−nを有し、各プラント設備モデル間ではシミュレーション結果に関するデータの受け渡しが行われている。
【0005】
また、プラント設備モデル410は、シミュレーションの効果を高めるために実機設備と同等の反応を示すことが要求される。この要求を満たすために、シミュレータは、プラント設備モデル410の実時間応答性を実現するために、各プラント設備モデル410同士の同期を確保するように設計される。
即ち、複数のプラント設備モデル410が一体となって動く状態が実機設備と同等となるように、プラント設備モデル演算処理部400は、全てのプラント設備モデル410の演算周期を制御している。ここで、演算周期とは、1回の演算にかかる時間のことである。図6においては、各プラント設備モデル410の通常時における1演算周期をT1、T2、・・・、Tnで示している。ここに、シミュレーション速度制御部430から、シミュレーション速度をN倍に変更する指令が入力されたとき、プラント設備モデル演算処理部400は、夫々の1演算周期T1、T2、・・・、Tnを一律に1/N倍することにより、シミュレーション速度を変更していた。ここで実時間応答性とは、機器操作や事故発生に対するプラントと同様に変化する応答性をいう。また、同期とは、各部分設備モデルの作動状態を時間的に一致させることである。
しかしながら、全てのプラント設備モデル410の演算周期を一律に変化させると、シミュレータのCPU負荷が上昇するため、例えば火力発電プラントのような膨大な規模のモデルにおける加速上限は10倍程度が限界であるとされていた。
【0006】
ところで、火力発電プラントには数日間かけて進行する現象が存在する。例えば、3日間程度かかる事象のシミュレーション速度を10倍にまで加速しても、シミュレーションが終了するまでに7時間以上を要する。従って、従来のシミュレーション装置では、このような事象については限られた訓練時間の中で、全ての反応を順次確認することができず、事象の理解を深めることが困難であるという問題がある。また、仮に全ての反応を確認しようとした場合には、効率的に訓練できないという問題がある。
本発明は、上述の事情に鑑みてなされたものであり、長時間に渡る事象と短時間で終了する事象とが混在して再現されたプラント運転訓練用シミュレータであっても、CPU負荷を高めることなく、長時間に渡る事象のシミュレーションを効率よく行うことのできるプラント運転訓練用シミュレータを提供することを目的とする。
【課題を解決するための手段】
【0007】
上記の課題を解決するために、請求項1に記載の発明は、一定の演算周期の下でプラントの挙動を模擬する複数の部分プラント設備モデルと、該複数の部分プラント設備モデルを備え、各部分プラント設備モデルの同期制御を司るプラント設備モデル演算処理部と、該複数のプラント設備モデル演算処理部のシミュレーション速度を指令するシミュレーション速度指令部と、を備えたプラント操作訓練用シミュレータであって、前記シミュレーション速度指令部からの指令に基づいて、前記プラント設備モデル演算処理部が前記各部分プラント設備モデルの前記演算周期を所定倍して挙動を模擬する際に、前記一部の部分プラント設備モデルに対する演算周期の倍数1/Mとその他の部分プラント設備モデルに対する演算周期の倍数1/Nとを異なるように設定するプラント運転訓練用シミュレータを特徴とする。
請求項1のプラント運転訓練用シミュレータにおいては、一部の部分プラント設備モデルとその他の部分プラント設備モデルの演算周期が異なる。即ち、一つのプラント設備モデル演算処理部内に、シミュレーション速度が異なる複数の部分プラント設備モデルが含まれる。
請求項2に記載の発明は、前記一部の部分プラント設備モデルが、長時間反応部モデルであって、前記倍数Mが、前記倍数Nよりも大きい請求項1記載のプラント運転訓練用シミュレータを特徴とする。
請求項2のプラント運転訓練用シミュレータにおいては、長時間反応部モデルの演算周期が一部の部分プラント設備モデルの演算周期よりも短くなるので、長時間反応部モデルのシミュレーションが一部の部分プラント設備モデルのシミュレーションよりも高速化される。
【0008】
請求項3に記載の発明は、前記長時間反応部モデル部分のみをまとめてサブモデル化した請求項2記載のプラント運転訓練用シミュレータを特徴とする。
請求項3のプラント運転訓練用シミュレータにおいては、長時間反応部モデル部分のシミュレーションのみを高速化する。
請求項4に記載の発明は、前記プラント運転訓練用シミュレータが火力発電プラントの脱硫装置に関する運転訓練用シミュレータであり、前記長時間反応部モデルが吸収系プラント設備モデルである請求項2又は3記載のプラント運転訓練用シミュレータを特徴とする。
請求項4のプラント運転訓練用シミュレータにおいては、火力発電プラントの脱硫装置に関する運転訓練シミュレータにおいて、吸収系プラント設備モデルのみを高速再現する。
【発明の効果】
【0009】
本発明によれば、一部の部分プラント設備モデルとその他の部分プラント設備モデルの演算周期を異ならせたので、シミュレータに用いるCPUの負荷を押さえつつ、一部の部分プラント設備モデルのみを高速模擬することができるので、運転訓練を効率よく行うことができる。
【図面の簡単な説明】
【0010】
【図1】排煙脱硫装置の模式図である。
【図2】運転訓練用シミュレータの操作画面例を示す図である。
【図3】失活現象をサブモデル化して示した図である。
【図4】モデル演算速度変更処理を示した概念図である。
【図5】モデル演算速度変更処理の一例を示したフローチャートである。
【図6】従来のプラント運転訓練用シミュレータにおけるモデル演算速度変更処理を示した概念図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態を火力発電プラントにおける排煙脱硫装置の運転訓練用シミュレータの例により詳細に説明する。なお、本発明は、排煙脱硫装置の運転訓練用シミュレータに限定されず、他のプラントに運転訓練用シミュレータにも適用可能である。
【0012】
〔排煙脱硫装置〕
初めに、本発明の運転訓練用シミュレータが模擬する排煙脱硫装置について図1に基づいて説明する。図1は排煙脱硫装置の模式図である。排煙脱硫装置は、火力発電プラントの運転に伴って発生した石炭燃焼ガス(排煙)からSOxを除去する装置である。吸収剤スラリを排煙と気液接触させることにより、排煙中の硫黄分を石膏として取り出す。なおSOxとは、二酸化硫黄(SO2)と三酸化硫黄(SO3)等の総称である。
排煙脱硫装置10は、吸収剤スラリ(例えば、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリ)が供給されるタンク60と、導入側吸収塔(接触処理塔)70と、導出側吸収塔80とを備えている。
導入側吸収塔70は、タンク60の一側部から上方に向かって延設されるとともに、未処理排煙Aを導入するための排煙導入部71がその上端部に形成されており、排煙が下方に向って流れるようになっている。
導出側吸収塔80は、タンク60の他側部(図では右側)から上方に向かって延設されるとともに、処理済排煙Bを導出するための排煙導出部81がその上端部に形成されており、導入側吸収塔70を通過しタンク60内上部を経由した排煙が上方に向って流れるようになっている。
【0013】
また、導入側吸収塔70には、吸収剤スラリを上方に向って液柱状に噴射するための複数のスプレーノズル73が形成されたスプレーパイプ72が設けられている。また、タンク60には、タンク60内の吸収剤スラリを吹上げる循環ポンプ74が連通接続されており、供給ヘッダ75を介して吸収剤スラリがスプレーパイプ72に送り込まれ、各スプレーノズル73から噴射されるようになっている。
さらに、導出側吸収塔80の後方部には、同伴ミストを捕集除去するためのミストエリミネータ82が設けられている。なお、このミストエリミネータ82で捕集されたミストは、例えば導出側吸収塔80内を滴下することにより直接タンク60内に戻るようになっている。
【0014】
また、タンク60内には、空気供給手段61が設けられており、スプレーノズル73から吹上げられた吸収剤スラリは亜硫酸ガスを吸収しながら流下して、空気供給手段61を用いて吹込んだ空気により酸化し、石膏を生成するようになっている。
そして、タンク60内のスラリ(石膏と吸収剤である少量の石灰石が懸濁または溶存したもの)は、抜出ポンプ20により吸出されて脱水機30に送出され、この脱水機30により濾過されて、水分含有量の少ない石膏(例えば、水分含有率10%程度)として取り出される。一方、脱水機30からの濾液は、スラリ槽40に送出されて、補給水とともに石灰石が加えられ、再び吸収剤スラリとしてスラリポンプ50によりタンク60内に供給される。
【0015】
〔シミュレータ操作画面〕
上述の排煙脱硫装置を模擬する本発明の運転訓練用シミュレータについて説明する。図2は、運転訓練用シミュレータの操作画面例を示す図である。操作画面100には、シミュレーション状態を示すステータスバー110と、系統図やトレンドグラフ等を表示するメイン画面120と、メイン画面120に表示する系統を選択する系統選択ボタン130と、各種ツールを表示するツールバー140と、が表示されている。
排煙脱硫装置の運転訓練用シミュレータは、系統毎に分割した複数の部分プラント設備モデルから構成される。例えば、排煙脱硫装置全体を制御する制御系プラント設備モデル、原料となる石灰石から吸収剤スラリを生成する原料系プラント設備モデル、排煙中のSOxを吸収剤スラリに吸収させて石膏を含むスラリを生成する吸収系プラント設備モデル等から構成される。各プラント設備モデルの情報は、画面下部に示された系統選択ボタン130を選択して、各系統の情報をメイン画面120に表示させて確認できる。
プラント設備モデルには、短時間で終了する事象と長時間に渡る事象とが混在している。例えば、制御系プラント設備モデルからバルブの拡開操作をした場合、その応答は比較的短時間のうちに得られる。しかし、吸収系プラント設備モデルで取り扱う失活現象(反応阻害現象)は、3日間程度と長時間に渡る事象であり、シミュレーションを8倍程度に高速化したとしても1時間程度の訓練時間内では疑似体験することができない。そこで、本発明においては、吸収系プラント設備モデルの失活現象を長時間反応部モデルとしてサブモデル化し、単独のプラント設備モデルとして取り扱うとともに、サブモデル部分のみを高速再現することによって1時間程度の訓練時間内においても疑似体験できるようにした。
【0016】
〔吸収塔内における化学反応〕
ここで、排煙脱硫装置の吸収塔内における化学反応について説明し、続いて失活現象、及び失活現象のサブモデルについて説明する。なお、排煙中の硫黄成分は殆どがSO2として存在しているため、以下の説明において主な反応を示すにはSO2を用いる。
脱硫方式の一つである石灰石−石膏法においては、水と混ぜた石灰石スラリ(吸収剤スラリ)と排煙中のSOxとを反応させ、硫黄分を石膏(CaSO4・2H2O)として回収する。総括反応は以下の通りである。
CaCO3+SO2+0.5O2+2H2O→CaSO4・2H2O+CO2
排煙中のSOxは、排煙脱硫装置10のスプレーノズル73から噴霧された吸収剤スラリと反応して、亜硫酸水素イオン(HSO3)となって吸収される。SO2を吸収した液は、タンク60に集められ、供給される吸収剤スラリにより、亜硫酸カルシウム(CaSO3・0.5H2O)に転化する。この液を空気によって酸化して石膏を得る。
【0017】
SOxは環境に重大な影響を及ぼすため、排煙脱硫装置を安定して稼働することは重要な責務となっている。吸収塔において吸収剤の熔解が阻害されて硫黄酸化物の吸収濃度が低下することを吸収塔失活と称する。例えば、石炭焚ボイラの場合には、特に排煙中に含まれるダスト(フライアッシュ)が多くなる。このダストの主成分はシリカやアルミナであり、また排煙中に塩素分(HCL)、フッ素分(HF)等を含んでいるため、これらの物質が吸収塔において吸収剤スラリ中に混入すると、吸収剤の主成分である炭酸カルシウム(CaCO3)の溶解が阻害され、排煙中に含まれるSO2の吸収速度を低下させて、失活現象(pH低下)が発生する。失活現象は数日間、例えば3日間程度掛けて進行し、副生成物や不純物の蓄積などが、実際の数値として認識できるまでに時間を要する。
【0018】
図3は、失活現象をサブモデル化して示した図である。図3においては、排煙に含まれる金属イオン等を総括的に失活原因物質Xとして示した。
二酸化硫黄と炭酸カルシウムの量データが吸収塔を模擬した吸収系プラント設備モデル200に入力されると、シミュレータは吸収系プラント設備モデル200内における各物質の反応を計算し、二水石膏を生成した旨のデータを出力する。しかし、入力値に失活原因物質Xが混入していると、蓄積した失活原因物質Xの量(Xの時間積分値)をパラメータとする失活係数に応じて炭酸カルシウムと二酸化硫黄との反応率fが低下し、最終的に得られる二水石膏の量が減少する。ここで、失活要因Xは、非常に長い時間をかけて蓄積されるので、失活係数はゆっくりと変化する。
【0019】
〔運転訓練用シミュレータ〕
上述の失活現象に関するサブモデルを長時間反応部モデルとして組み込んだ運転訓練用シミュレータについて図4、図5に基づいて説明する。図4は、本発明のプラント運転訓練用シミュレータにおけるモデル演算速度変更処理を示した概念図である。図5は、本発明のプラント運転訓練用シミュレータにおけるモデル演算速度変更処理の一例を示したフローチャート図である。
図4に示すように、本発明の運転訓練用シミュレータは、夫々一定の演算周期(T1、T2、…、Tn)の元でプラントの挙動を演算して模擬するn個の部分プラント設備モデル310−1、310−2、・・・、310−nと、演算周期Txの元でプラントの挙動を演算して模擬する長時間反応部モデル320と、を備えたプラント設備モデル演算処理部300と、プラント設備モデル演算処理部300に対してシミュレーション速度(N倍、M倍)の変更指令を発するシミュレーション速度指令部330と、を備えた計算機である。また、運転訓練用シミュレータに対し所定の操作命令を入力する入力手段と、シミュレーション結果等を表示する表示画面と(いずれも不図示)を備えている。なお、シミュレーション速度(N倍、M倍)は、予め外部入力手段(不図示)を介して入力される値であり、プラント設備モデル演算処理部300は、プラント設備モデル310と長時間反応部モデル320との同期制御を司っている。
【0020】
各プラント設備モデル310間及び長時間反応部モデル320との間ではシミュレーション結果データを記憶するメモリ(不図示)を介して演算結果データの受け渡しが行われており、この演算結果データが次回演算の制御量として各プラント設備モデル310間及び長時間反応部モデル320に入力されて、シミュレーションされる。
図示するように、各プラント設備モデル310の通常時における1演算周期をT1、T2、・・・、Tnと仮定し、長時間反応部モデル320の通常時における1演算周期をTxと仮定する。プラント設備モデル310に対するシミュレーション速度の設定がN倍(例えば1〜8倍)であり、長時間反応部モデル320に対するシミュレーション速度の設定がM倍(例えば1〜200倍)のとき、シミュレーション速度指令部330は、演算周期T1、T2、・・・、Tnを1/N倍にし、演算周期Txを1/M倍にするよう指令する。ただし、N≦Mである。
【0021】
この処理は、例えば図5に示すフローにより各プラント設備モデルと長時間反応部モデルとの同期を確保しつつ実現できる。図5は、各プラント設備モデル310の演算処理を1回行うときのフローを示している。
まず、不図示のメモリに記憶された初期値、例えばシミュレーション速度の設定値や前回の演算結果データを読み込む(ステップS1)。
次に、通常のプラント設備モデル310−1について1回演算し(ステップS2)、演算結果データをメモリに保存する(ステップS3)。通常のプラント設備モデル310の全てについて演算が終了しているか判断し(ステップS4)、終了していなければ(ステップS4でNo)、ステップS2にもどり、プラント設備モデル310−2乃至310−nについて同様に処理する。
すべてのプラント設備モデル310の演算が終了したら(ステップS4でYes)、長時間反応部モデル320の演算をM/N回行い(ステップS5)、演算結果データをメモリに保存する(ステップS6)。ここでNはMの約数であり、M/Nは自然数である。
例えば、Mを200に設定すれば、3日かかる失活現象を20分程度で再現することができる。このとき、プラント設備モデル310についてのシミュレーション速度は一律にN倍(例えば8倍)に設定されているので、プラント設備モデル310同士の同期を確保できる。
【0022】
以上のように、本発明によれば、長時間反応部モデルのみをサブモデル化して高速演算可能としたので、長時間反応部モデルを連続的に短時間で再現することができる。また、長時間反応部モデルのみを高速演算し、それ以外のプラント設備モデルについては従来通りの演算を行うようにしたので、模擬モデルの実時間応答性と、模擬対象設備全体に渡る動作の同期を確保できる。また、長時間反応部モデルのみを高速演算するようにしたので、シミュレータに用いるCPUの負荷を押さえることができる。
【符号の説明】
【0023】
10…排煙脱硫装置、20…抜出ポンプ、30…脱水機、40…スラリ槽、50…スラリポンプ、60…タンク、70…導入側吸収塔、80…導出側吸収塔、100…操作画面、110…ステータスバー、120…メイン画面、130…系統選択ボタン、140…ツールバー、200…吸収系プラント設備モデル、300…プラント設備モデル演算処理部、310…プラント設備モデル、320…長時間反応部モデル、330…シミュレーション速度指令部、400…プラント設備モデル演算処理部、410…プラント設備モデル、430…シミュレーション速度制御部

【特許請求の範囲】
【請求項1】
一定の演算周期の下でプラントの挙動を模擬する複数の部分プラント設備モデルと、該複数の部分プラント設備モデルを備え各部分プラント設備モデルの同期制御を司るプラント設備モデル演算処理部と、該複数のプラント設備モデル演算処理部のシミュレーション速度を指令するシミュレーション速度指令部と、を備えたプラント操作訓練用シミュレータであって、
前記シミュレーション速度指令部からの指令に基づいて、前記プラント設備モデル演算処理部が前記各部分プラント設備モデルの前記演算周期を所定倍して挙動を模擬する際に、前記一部の部分プラント設備モデルに対する演算周期の倍数1/Mとその他の部分プラント設備モデルに対する演算周期の倍数1/Nとを異なるように設定することを特徴とするプラント運転訓練用シミュレータ。
【請求項2】
前記一部の部分プラント設備モデルが、長時間反応部モデルであって、前記倍数Mが、前記倍数Nよりも大きいことを特徴とする請求項1記載のプラント運転訓練用シミュレータ。
【請求項3】
前記長時間反応部モデル部分のみをまとめてサブモデル化したことを特徴とする請求項2記載のプラント運転訓練用シミュレータ。
【請求項4】
前記プラント運転訓練用シミュレータが火力発電プラントの脱硫装置に関する運転訓練用シミュレータであり、前記長時間反応部モデルが吸収系プラント設備モデルであることを特徴とする請求項2又は3記載のプラント運転訓練用シミュレータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−75672(P2011−75672A)
【公開日】平成23年4月14日(2011.4.14)
【国際特許分類】
【出願番号】特願2009−224975(P2009−224975)
【出願日】平成21年9月29日(2009.9.29)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 刊行物名: 電気新聞 平成21年4月3日付朝刊 発行日: 平成21年4月3日 発行所: 社団法人日本電気協会新聞部
【出願人】(595095629)中電環境テクノス株式会社 (44)
【Fターム(参考)】