説明

プローブアレイ用基体ならびにプローブアレイおよびその製造方法

【課題】集積度が高く、十分な量のプローブ分子を保持できる、プローブアレイを構成するために適し、隣り合うプローブ溶液の液滴同士が接触するといった不都合が生じにくく、さらに、このような不都合が生じた場合には、それを簡単かつ確実に検出できる、プローブアレイ用基体を提供する。
【解決手段】配列される複数のプローブ保持部102の各々に、親水性を示す突起103を設けるとともに、各プローブ保持部102を取り囲むように疎水性領域104を形成する。さらに、複数のプローブ保持部102間でのプローブ溶液の混じり合いの有無を検査するため、親水性を示す検査用領域106を、複数のプローブ保持部102の隣り合うものの間において、各プローブ保持部102に対して疎水性領域104を隔てて位置するように形成する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、化学または生物化学の分野で用いるプローブアレイ用基体、ならびにプローブアレイ用基体を用いて構成されるプローブアレイおよびその製造方法に関するものである。
【背景技術】
【0002】
遺伝子診断を同時に多項目に関して行なう場合、あるいは多種類のmRNAに関してその発現量を同時に調査する場合、またあるいは多項目のSNPs(single nucleotide polymorphisms:一塩基多型)の調査を同時に行なう場合等のツールとして、DNAチップが注目されている。DNAチップは、DNAマイクロアレイとも呼ばれるもので、標的とするDNA分子やRNA分子とハイブリダイゼーションを起こす既知のDNAをプローブとし、周期的に配列された複数のプローブ保持部に複数種類のプローブを保持したプローブアレイである。
【0003】
また、多種類の抗体や抗原に関してその有無を同時に調査する場合に用いられるツールとして、抗原チップや抗体チップが注目を集めている。抗原チップは、標的とする抗体分子と結合する既知の抗原をプローブとし、周期的に配列された複数のプローブ保持部に複数種類のプローブを保持したプローブアレイである。抗体チップは、標的とする抗原と結合する既知の抗体分子をプローブとし、周期的に配列された複数のプローブ保持部に複数種類のプローブを保持したプローブアレイである。
【0004】
プローブアレイを製造するための一般的な方法として、スライドグラスなどの基板上にプローブ溶液(プローブ分子を含む溶液)をドット状に付着させ(以下、「スポッティング」と呼ぶ。)、基板表面にプローブ分子を化学的に結合させることで、基板表面上にプローブのスポットを配列していく方法が知られている。スポッティングの具体的な方法としては、注射針、マイクロピペット、インクジェットなどでプローブ溶液を基板上に吐出する方法や、針先に付着させたプローブ溶液を基板に接触させる方法が知られている。
【0005】
上記のスポッティングによる方法を実施する場合において、微小体積の液滴を高密度に整列させるために使用されるマイクロピペットがたとえば特開2004−45055号公報(特許文献1)に開示されている。また、マイクロピペットから供給される液滴を効率良くアレイ基板上に配列し、かつ液滴の混入を防ぐような構造を有するアレイ基板の製造方法がたとえば特開2004−4076号公報(特許文献2)に開示されている。
【0006】
スポッティング工程においては、前述したように、複数種類のプローブ溶液を基板上に配列する必要がある。そのため、注射針、マイクロピペット、インクジェットなどを用いると、1点の塗布を行なう度に溶液交換が必要となり、コストや生産スピードが犠牲になる。そのため、1回のスポッティング工程で複数種類のプローブ溶液を付着させ得ることが要望される。
【0007】
また、スポッティングの際に、隣り合うプローブ溶液の液滴同士が接触すると、両者が混じり合い、プローブアレイとしては不良品となる。したがって、このような不良品を生じさせにくくすることが要望される。さらに、このような不良品が生じた場合には、それを簡単かつ確実に検出できることが望まれる。
【特許文献1】特開2004−45055号公報
【特許文献2】特開2004−4076号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
そこで、この発明の目的は、上述した要望を満たし得る、プローブアレイ用基体、ならびにプローブアレイ用基体を用いて構成されるプローブアレイおよびその製造方法を提供しようとすることである。
【課題を解決するための手段】
【0009】
この発明は、主面を有し、かつ主面に沿って複数のプローブ保持部が配列されているプローブアレイ用基体にまず向けられるものであって、上述した技術的課題を解決するため、各プローブ保持部には、プローブ溶液に対して比較的高い濡れ性を示す突起が設けられ、また、プローブ溶液に対して比較的低い濡れ性を示す低濡れ性領域が各プローブ保持部の周囲を実質的に取り囲むように形成されていることを特徴としている。
【0010】
なお、「比較的高い濡れ性」とは、液体の自由表面が、その接触する固体表面となす角度、すなわち接触角(濡れ角)が90度以下の場合の濡れ性を言い、「比較的低い濡れ性」とは、接触角(濡れ角)が90度を超える場合の濡れ性を言う。したがって、プローブ溶液が水溶液である場合、「比較的高い濡れ性」は親水性を意味し、「比較的低い濡れ性」は疎水性を意味する。
【0011】
上記突起は、低濡れ性領域から立ち上がるように設けられていて、プローブ保持部は、突起のみによって与えられてもよいが、好ましくは、主面上であって、突起の周囲の領域に、プローブ溶液に対して比較的高い濡れ性を示す高濡れ性領域が形成され、プローブ保持部は、突起および高濡れ性領域によって与えられる。
【0012】
各プローブ保持部には、主面から陥凹した形状が付与されていてもよい。
【0013】
この発明に係るプローブアレイ用基体において、複数のプローブ保持部間でのプローブ溶液の混じり合いの有無を検査するため、プローブ溶液に対して比較的高い濡れ性を示す検査用領域が、複数のプローブ保持部の隣り合うものの間において、各プローブ保持部に対して低濡れ性領域を隔てて位置するように形成されていることが好ましい。
【0014】
この発明に係るプローブアレイ用基体において、突起には、プローブ保持部へのプローブ溶液の導入を円滑にするための案内溝が形成されていることが好ましい。
【0015】
この発明に係るプローブアレイ用基体は、他の局面では、突起を備えず、各プローブ保持部は、プローブ溶液に対して比較的高い濡れ性を示す領域によって与えられる。また、プローブ溶液に対して比較的低い濡れ性を示す低濡れ性領域が各プローブ保持部の周囲を実質的に取り囲むように形成され、複数のプローブ保持部間でのプローブ溶液の混じり合いの有無を検査するため、プローブ溶液に対して比較的高い濡れ性を示す検査用領域が、複数のプローブ保持部の隣り合うものの間において、各プローブ保持部に対して低濡れ性領域を隔てて位置するように形成される。
【0016】
プローブ溶液が水溶液であるとき、比較的高い濡れ性は親水性であり、比較的低い濡れ性は疎水性であるということになるため、当該プローブアレイ用基体は親水性を有する材料からなり、前述した低濡れ性領域はプローブアレイ用基体の表面にフォトリソグラフィー技術を用いてパターニングされて形成された感光性樹脂膜によって与えられることが好ましい。
【0017】
また、プローブ溶液が水溶液であるとき、当該プローブアレイ用基体は親水性を有する材料からなり、プローブアレイ用基体の主面には樹脂膜が形成され、前述したプローブ保持部は、この樹脂膜を形成した後、樹脂膜をプラズマアッシングによって除去した部分に形成され、前述した低濡れ性領域は、プラズマアッシングによって除去した後に残った上記樹脂膜によって与えられることが好ましい。
【0018】
また、複数のプローブ保持部の各々において、突起を取り囲むように隔壁が形成され、隣り合う隔壁間には溝部分が形成され、溝部分には樹脂が付与され、低濡れ性領域は、溝部分内の樹脂がなくならない程度にプラズマアッシングされた後に残された樹脂の表面によって与えられ、高濡れ性領域の少なくとも一部は、プラズマアッシングされて余分な樹脂が除去された部分によって与えられてもよい。
【0019】
この発明は、また、前述したこの発明に係るプローブアレイ用基体と、プローブアレイ用基体の各プローブ保持部に保持されたプローブ分子とを備える、プローブアレイにも向けられる。
【0020】
この発明は、さらに、この発明に係るプローブアレイ用基体を用いて実施される、プローブアレイの製造方法にも向けられる。
【0021】
この発明に係るプローブアレイの製造方法は、この発明に係るプローブアレイ用基体を用意する工程と、複数の突起に対応するように配列され、かつ各々にプローブ溶液が充填されたノズルを有する、供給器を用意する工程と、プローブアレイ用基体の突起に、供給器のノズルを近接させて、プローブ溶液と突起とを接触させることによって、プローブ溶液をプローブ保持部に導く工程とを備えることを特徴としている。
【0022】
上述のプローブアレイの製造方法において、
突起の中心から低濡れ性領域までの距離をI、および、
ノズルの外径をDとしたとき、
I≦D/2の関係が成立することが好ましい。
【0023】
あるいは、上述のプローブアレイの製造方法において、さらに、
前記ノズルの長さをN、および、
ノズルの外周面とプローブ溶液との間の濡れ角をθ3とし、かつ、
ψを、ψ=arcsinh (tan θ3)で定義したとき、
I>D/2のときに、
N>D×[arccosh {(2I/D)×cosh (ψ)}−ψ]/[2×cosh (ψ)]
の関係が成立することが好ましい。
【0024】
この発明に係るプローブアレイの製造方法を実施するにあたり、前述したように、主面上であって、突起の周囲の領域に、プローブ溶液に対して比較的高い濡れ性を示す高濡れ性領域が形成され、プローブ保持部は、突起および高濡れ性領域によって与えられる、そのようなプローブアレイ用基体が用意される場合、
ノズルの外径をD、
突起の中心から低濡れ性領域までの距離をI、
プローブアレイ用基体におけるプローブ保持部周辺の高濡れ性領域とプローブ溶液との間の濡れ角をθ2、および、
ノズルの外周面とプローブ溶液との間の濡れ角をθ3としたとき、
I<[D×cosh {arcsinh (1/tan θ2)}]/[2×cosh {arcsinh (tan θ3)}]
の関係が成立することが好ましい。
【0025】
この発明に係るプローブアレイの製造方法を実施するにあたり、前述したように、検査用領域が形成されたプローブアレイ用基体が用意される場合、プローブ溶液をプローブ保持部に導く工程の後、検査用領域にプローブ溶液が付着していないことを確認する工程を実施することが好ましい。
【発明の効果】
【0026】
この発明に係るプローブアレイ用基体によれば、プローブ保持部において比較的高い濡れ性が与えられるとともに、比較的低い濡れ性を示す低濡れ性領域が各プローブ保持部の周囲を実質的に取り囲むように形成されているので、プローブ保持部へのプローブ溶液の導入を円滑に行なうことができるとともに、プローブ保持部に導入されるべきプローブ溶液の主面上での濡れ広がりを低濡れ性領域によって確実に防止することができる。そのため、プローブアレイにおけるプローブの集積度を高めることができる。
【0027】
また、この発明に係るプローブアレイ用基体において、プローブ保持部に比較的高い濡れ性を示す突起が設けられていると、プローブ溶液と突起との間に働く濡れ力により、プローブ保持部へのプローブ溶液の導入をより円滑に行なうことができる。
【0028】
また、この発明に係るプローブアレイ用基体に検査用領域が形成されていると、プローブアレイ用基体のプローブ保持部にプローブ溶液を導入した後、検査用領域が濡れていないか、あるいは濡れた後に乾いた形跡がないかなどを検査することにより、隣り合うプローブ溶液の液滴同士の混じり合い(クロスコンタミネーション)による不良の発生を確実に検出することができる。
【0029】
この発明に係るプローブアレイの製造方法によれば、一度に多くの種類のプローブ溶液を供給器からプローブアレイ用基体へ供給することができるため、プローブアレイの製造を能率的かつ低コストで実施することができる。なお、供給器にある複数のノズルにプローブ溶液を充填するときには、異なる種類のプローブ溶液を複数のノズルの各々に充填する必要があるため、比較的時間およびコストを要する作業となるが、一旦充填の完了した供給器を使って、多数のプローブアレイ用基体に対してプローブ溶液の供給を行なうことができるため、1つのプローブアレイについて見たときの作業時間およびコストはそれほどかかるものではない。
【0030】
また、この発明に係るプローブアレイの製造方法によれば、プローブ保持部に設けられている比較的高い濡れ性を示す突起とプローブ溶液が充填されたノズルとを近接させ、突起とプローブ溶液とを接触させることによって、プローブ溶液をプローブ保持部に導くようにしているので、プローブ溶液と突起との間に働く毛細管現象や濡れ力により、プローブ保持部へのプローブ溶液の導入を円滑かつ確実に進めることができる。
【発明を実施するための最良の形態】
【0031】
図1に、この発明の第1の実施形態によるプローブアレイ用基体100の一部が斜視図で示されている。図2は、図1に示したプローブアレイ用基体100の一部を示す上面図である。
【0032】
図1および図2を参照して、プローブアレイ用基体100は、主面101を有し、全体として板状をなしている。プローブアレイ用基体100には、主面101に沿って複数のプローブ保持部102が行および列をなすように配列されている。
【0033】
各プローブ保持部102には、親水性を示す突起103が設けられる。なお、「親水性」および「疎水性」の用語は、通常、水に対する濡れ性(親和性)の有無を示す用語として用いられるが、以下の説明においては、プローブ溶液が水溶液であるか否かに関わらず、プローブ溶液に対する濡れ性が高い場合に「親水性」を有すると表現し、濡れ性が低い場合に「疎水性」を有すると表現する。
【0034】
また、プローブアレイ用基体100の主面上には、疎水性領域104が各プローブ保持部102の周囲を取り囲むように形成されている。この実施形態では、主面101であって、親水性を有する突起103の周囲の領域に、方形状の親水性領域105が形成されている。したがって、プローブ保持部102は、前述した突起103および親水性領域105によって与えられることになる。このことから、各プローブ保持部102において保持され得るプローブ溶液の量を十分に確保することができ、また、このことは、各プローブ保持部102に保持されるプローブ溶液の量のばらつきを減じることにもつながる。
【0035】
さらに、プローブアレイ用基体100の主面101上には、複数のプローブ保持部102間でのプローブ溶液の混じり合い(クロスコンタミネーション)の有無を検査するため、親水性を示す検査用領域106が設けられている。検査用領域106は、複数のプローブ保持部102の隣り合うものの間において、各プローブ保持部102に対して疎水性領域104を隔てて位置するように、たとえば格子状に形成されている。このように検査用領域106が形成されていると、プローブ保持部102にプローブ溶液を導入した後、検査用領域106が濡れていないか、あるいは濡れた後に乾いた形跡がないかなどを検査することにより、隣り合うプローブ溶液の液滴同士の混じり合いによる不良の発生を確実に検出することができる。
【0036】
前述した突起103は、2本の正四角柱を、各々の1つの稜線が接するように配置しながら、対角線方向に並べた形状を有している。上記正四角柱の断面を規定する正方形の辺の長さは、図2に表示されるように、たとえば5μmとされる。また、突起103と疎水性領域104との間隔は、たとえば10μmとされる。また、検査用領域106の幅は、たとえば10μmとされる。さらに、突起103の高さは、たとえば100μmとされ、隣り合う突起103間の配列ピッチは、たとえば60μmとされる。
【0037】
上述のような形状を有する突起103には、面107および108によって規定される断面L字状の案内溝109と、面110および111によって規定される断面L字状の案内溝112とが互いに対角線方向に対向して形成されることになる。これら突起103および案内溝109および112のそれぞれの機能については後述する。
【0038】
次に、プローブアレイ用基体100の製造方法について説明する。図3には、プローブアレイ用基体100を製造するために実施される典型的な工程が示されている。
【0039】
まず、図3(1)に示すように、プローブアレイ用基体100となるべき板状の材料基板120が用意される。材料基板120は、たとえば、厚み500μmの単結晶シリコン基板から構成される。
【0040】
次に、同じく図3(1)に示すように、フォトリソグラフィーを用いて、材料基板120の表面にレジストパターン121が形成される。図2に示したプローブアレイ用基体100との関連で説明すると、レジストパターン121は、突起103となるべき部分を被覆するように形成される。
【0041】
次に、図3(2)に示すように、レジストパターン121をマスクとして、材料基板120が、たとえば100μmの深さをもってドライエッチングされる。このドライエッチングのため、たとえば、ICP−RIE(Inductive Coupling Plasma - Reactive Ion Etching)技術が有利に適用され、CFやSFなどのフッ素原子を含むガスのプラズマによるエッチングが実施される。この工程を終えたとき、材料基板120に、突起103の形状が付与される。
【0042】
次に、図3(3)に示すように、硫酸と過酸化水素水との混合液での洗浄が行なわれ、レジストパターン121が除去されるとともに、表面の有機汚染が除去される。
【0043】
次に、図3(4)に示すように、前述した疎水性領域104を与えるようにパターニングされた感光性樹脂膜122が形成される。感光性樹脂膜122は、図3(4)において、その厚みが誇張されて図示されているが、パターニングされた感光性樹脂膜122を形成するため、次のような工程が実施される。
【0044】
まず、図3(3)に示す構造物が得られた後、たとえば感光性ポリイミドのような感光性樹脂がその全面に塗布される。
【0045】
次に、適当なフォトマスクを使用して、ステッパーなどにより紫外線照射が行なわれる。感光性樹脂がネガ型の場合であれば、フォトマスクは、疎水性領域104となるべき部分以外の部分、すなわち、突起103、親水性領域105および検査用領域106の部分を遮光し、疎水性領域104となるべき部分を透光するパターンとなっている。
【0046】
紫外線照射の後に、現像処理を行なうと、感光性樹脂がパターニングされて、図3(4)に示すように、疎水性領域104を与える感光性樹脂膜122が形成される。
【0047】
その後、感光性樹脂膜122が消滅しない程度にプラズマアッシングが実施される。これによって、突起103、親水性領域105および検査用領域106といった感光性樹脂膜122を形成したくない部分に少量付着した樹脂が除去される。また、材料基板120が前述したようにシリコンから構成される場合、プラズマアッシングにおいて酸素プラズマが用いられるので、シリコンの最表面が酸化され、それによって、突起103、親水性領域105および検査用領域106に良好な親水性が与えられる。
【0048】
このようにして、プローブアレイ用基体100が得られる。
【0049】
なお、疎水性領域104は、上述したようにフォトリソグラフィー技術を用いてパターニングされて形成された感光性樹脂膜122によって与えられるのではなく、単なる樹脂膜によって与えられ、この樹脂膜をプラズマアッシングによって除去することによって、プローブ保持部102となる突起103および親水性領域105を露出させるとともに、検査用領域106を露出させるようにしてもよい。
【0050】
また、上述したプローブアレイ用基体100の製造方法では、単結晶シリコンからなる材料基板120をドライエッチングすることによって、突起103を形成した。この方法を用いれば、微細かつ高アスペクトの突起103を、一度のエッチング工程で形成することができる。ここで、高アスペクトというのは、開口部の幅に対して、エッチングする深さが大きいことを意味している。単結晶シリコンからなる材料基板120のドライエッチングでは、アスペクト比(エッチングする深さを開口部の幅で割った値)が20を超えるような加工が可能である。なお、このようなドライエッチングによる方法に代えて、より低コストのウェットエッチングによる方法を適用してもよい。
【0051】
上述したプローブアレイ用基体100を用いて構成されるプローブアレイ、より具体的には、複数種類のプローブDNAを配列したDNAチップを製造するにあたり、図4に示すような供給器200が使用される。
【0052】
供給器200は、複数の貫通孔201がたとえば240μmのピッチで形成された、たとえば厚み400μmのガラス部202と、微細加工されたシリコン部203とから構成されている。シリコン部203は、ガラス部202に形成された貫通孔201に連通するノズル204を有している。ノズル204の内径はたとえば30μmであり、ノズル204の壁の厚みはたとえば10μmであり、ノズル204の外径はたとえば50μmである。また、ノズル204の長さはたとえば150μmである。
【0053】
次に、図5を参照して、供給器200の製造方法の一例について説明する。図5は、供給器200における特定の切断面で切断して示した端面図である
まず、図5(1A)に示すように、両面が平面研磨された、たとえば厚み400μmのガラスウエハに対して、フォトリソグラフィーで形成したレジストパターンをマスクとしたサンドブラスト加工を施すことにより、貫通孔201を形成して、供給器200のためのガラス部202を得る。このとき、ガラスウエハの片面のみから加工を行なって貫通孔201を形成しても、あるいは、ガラスウエハ250の片面からまず半分を越える程度の深さの加工を行ない、次に反対面から加工を行なって貫通孔201を貫通させてもよい。
【0054】
他方、図5(1B)に示すように、両面が平面研磨された、たとえば厚み350μmのシリコンウエハ211の一方主面上に、レジストパターン212をフォトリソグラフィーによって形成し、このレジストパターン212をマスクとして、シリコンウエハ211に対して、ICP−RIEによるエッチングを実施し、たとえば深さ150μm程度の掘り込み加工を行なう。これによって、シリコン部203に備えるノズル204の形状が得られる。
【0055】
次に、図5(2B)に示すように、硫酸と過酸化水素水との混合溶液を用いて、シリコンウエハ211からレジストパターン212を除去するとともに、このレジストパターン212が形成されていた主面とは逆の主面上に、レジストパターン213を、レジストパターン212の場合と同様の方法により形成する。
【0056】
次に、図5(3B)に示すように、レジストパターン213をマスクとして、シリコンウエハ211に対して、ICP−RIEによるエッチングを実施し、ノズル204の内部を貫通する状態とする。
【0057】
次に、図5(4B)に示すように、硫酸と過酸化水素水との混合溶液を用いて、シリコンウエハ211からレジストパターン213を除去する。これによって、供給器200のためのシリコン部203を得る。
【0058】
次に、図5(5)に示すように、シリコン部203のノズル204とガラス部202の貫通孔201とを整列させた状態で、シリコン部203とガラス部202とを陽極接合によって接合する。陽極接合とは、シリコンとガラスとを重ね合わせて、300〜500℃程度まで加熱し、シリコンを陽極、ガラスを陰極とする方向に数百ボルトの直流電圧を印加することで、シリコンとガラスとを接合する技術である。陽極接合を行なうと、シリコン最表面の原子とガラス最表面の原子とが結合し、気密レベルの接合がなされる。
【0059】
以上のようにして、供給器200を得ることができる。
【0060】
次に、上述の供給器200を用いて実施される、プローブアレイの製造方法、より具体的には、複数種類のプローブDNAを配列したDNAチップの製造方法について説明する。
【0061】
プローブアレイ用基体100がシリコンをもって構成される場合、プローブアレイ用基体100のシリコンの露出している部分、すなわち、突起103および親水性領域105からなるプローブ保持部102ならびに検査用領域106には、シリコン酸化膜が形成されているが、ここにアミノシランを作用させることで、シリコン表面にアミノ基を導入する。その後、N−(6−マレイミドカプロイロキシ)スクシイミド(N‐(6‐Maleimidocaproyloxy)succinimide)を含む試薬を作用させて、プローブアレイ用基体100の最表面のアミノ基を、マレイミド基に置換する。
【0062】
他方、供給器200が用意され、この供給器200の貫通孔201の各々に、図6(1)に示すように、プローブDNAを含むプローブ水溶液210を装填する。この装填には、マイクロピペットやインクジェットが用いられる。なお、プローブ水溶液210としては複数種類のものが用意され、それぞれ、異なる貫通孔201に装填される。プローブ水溶液210に含まれるプローブDNAとしては、5’末端にチオール基が付加されたプローブDNAが使用される。貫通孔201の各々に装填されたプローブ水溶液210は、貫通孔201およびノズル204の内径が十分に小さいため、毛細管現象によって、ノズル204の先端にまで迅速に達し、かつ、そこで表面張力が働くため、ノズル204から自然に流れ落ちることはない。
【0063】
供給器200の表面にプローブDNAが吸着されて、プローブ水溶液210の濃度が低下することを防ぐために、何度か友洗いをしてもよく、あるいは、プローブ水溶液210を貫通孔201の各々に入れる前に、BSA(ウシ血清アルブミン)や適当なDNA断片の水溶液で洗って、供給器200の表面をブロッキングしておいてもよい。
【0064】
次に、プローブアレイ用基体100と供給器200とを位置合わせした状態で互いに近接させる。その結果、ノズル204の各開口の中に位置しているプローブ水溶液210の各々が、プローブアレイ用基体100側の突起103に接触する。このとき、一例として、ノズル204の先端とプローブアレイ用基体100の主面101との間の距離が80μm程度になるまで近接させれば、ノズル204の内部に突起103が20μm程度挿入されるため、プローブ水溶液210と突起103とが確実に接触する。
【0065】
詳細な作用機序については後述するが、上述のように、プローブ水溶液210と突起103とが接触したとき、プローブ水溶液210とプローブアレイ用基体100のプローブ保持部102との間に働く濡れ力によって、プローブ水溶液210は、突起103に沿って濡れ伝わり、疎水性領域104で食い止められるまで親水性領域105上で濡れ広がる。このようにして、図6(2)に示すように、プローブ保持部102の各々にプローブ水溶液210が導入される。
【0066】
次いで、所定時間経過後に、供給器200をプローブアレイ用基体100から離せば、図6(3)に示すように、プローブアレイ用基体100の突起103を含むプローブ保持部102にプローブ水溶液210が付着した状態が得られる。
【0067】
プローブアレイ用基体100に60μmピッチで突起103が形成され、供給器200に240μmピッチでノズル204が形成されている場合には、図6に示した方法では、プローブアレイ用基体100のすべてのプローブ保持部102に、プローブ水溶液210を付着させることはできない。しかし、異なるプローブ水溶液210を充填した供給器200を4個準備して、順次、プローブアレイ用基体100へのプローブ水溶液210の導入を行なえば、すべてのプローブ保持部102に、それぞれ異なるプローブ水溶液210を付着させることができる。
【0068】
プローブアレイ用基体100のプローブ保持部102にプローブ水溶液210が付着した状態で一定時間放置すれば、プローブ保持部102に露出しているシリコン表面に結合しているマレイミド基とプローブDNA分子に導入されたチオール基とが化学的に結合して、結果的に、プローブアレイ用基体100のプローブ保持部102に、プローブとなるプローブDNA分子が保持された状態が得られる。この後、水洗を行ない、乾燥すれば、DNAチップが完成される。
【0069】
上述の実施形態では、プローブDNA分子とプローブアレイ用基体100との間の結合に、マレイミド基とチオール基の結合を利用したが、アビジン−ビオジン間の結合など、他の種類の結合を利用してもよい。
【0070】
供給器200を使用せずに、単純なノズル(毛細管)を使用して、プローブアレイ用基体100にプローブDNA水溶液を付着させてもよいが、プローブアレイ用基体100上のすべてのプローブ保持部102に対して、一回一回位置合わせをしてノズル近接を行なわなければならないため、時間とコストがかかる。そのため、図6に示したように、複数のノズルが配列された供給器200を使用することが好ましい。
【0071】
なお、供給器200にある複数のノズル204にプローブ水溶液210を充填するときには、異なる種類のプローブ水溶液210を複数のノズル204の各々に充填する必要があるため、比較的時間およびコストを要する作業となるが、一旦充填の完了した供給器200を使って、多数のプローブアレイ用基体100に対してプローブ水溶液210の供給を行なうことができるため、1つのプローブアレイについて見たときの作業時間およびコストはそれほどかかるものではない。
【0072】
図6(2)に示したプローブ水溶液210の、プローブアレイ用基体100側への転写工程において、隣接するプローブ保持部102にまでプローブ水溶液210が到達してしまうと、複数のプローブ保持部102間でのプローブ水溶液210の混じり合い(クロスコンタミネーション)が生じ、本来の意図とは異なる種類のプローブDNA分子が結合することになるため、このようにして得られたDNAチップは不良となる。したがって、このような不良が発生したときには、これを不良品として確実に検出する必要がある。
【0073】
この実施形態によれば、隣接するプローブ保持部102にまで、プローブ水溶液210が到達してしまったときには、必ず、検査用領域106にもプローブ水溶液210が到達していることになる。したがって、検査用領域106にプローブ水溶液210が到達しなかったことを確認できれば、上述したようなクロスコンタミネーションによる不良は発生していないと判断できる。そのため、図6(2)に示した工程の直後、または図6(3)に示した工程の直後に、検査用領域106が濡れていないかどうかを検査することにより、クロスコンタミネーションによる不良を検出することができる。あるいは、図6(2)および(3)に示した各工程を終え、さらに後の工程を終えたとき、検査用領域106においてプローブ水溶液210が一旦付着し乾燥した痕跡(たとえば、塩分の残留など)がないかどうかを検査することにより、クロスコンタミネーションによる不良を検出するようにしてもよい。
【0074】
図6に示した方法を用いた場合、前述したように、プローブアレイ用基体100のプローブ保持部102とプローブ水溶液210との間に働く濡れ力によって、プローブアレイ用基体100のプローブ保持部102にプローブ水溶液210が導入されかつ充填される。その作用機序について、図7ないし図10を用いて以下に説明する。
【0075】
説明の前準備として、まず、図7を参照する。図7は、液体400の液面に、固体の円柱401を、液面に対して垂直に入れたときの状態を示している。図7において、円柱401の中心軸に沿ってx軸をとる。x座標ごとに断面をとれば、液体400の液面はx軸を中心とする円になっている。
【0076】
この円の半径をyとすると、液体400の液面の表面積Sは、次の数式1によって表現されることができる。
【0077】
【数1】

【0078】
表面張力の作用により、液体400の表面積は最小値をとる。また、液体400には供給源があるから、液体400の体積を一定に保つ制約もない。したがって、数式1の定積分は、yの関数形の微小な変化に対して停留値をとる。よって、次の数式2で表されるオイラーの微分方程式が成立する(原島鮮著,「力学II−解析力学」,第21版,裳華房,1990年10月25日,p.13−20参照)。
【0079】
【数2】

【0080】
上記数式2を整理していくと、次の数式3が得られる。
【0081】
【数3】

【0082】
そして、上記数式3の微分方程式を解くことにより、下記の数式4が導かれる。
【0083】
y=A・cosh {(x−B)/A} …<数式4>
数式4において、AおよびBは任意の定数であって、境界条件によって定まる。たとえば、図7の場合には、「円柱401と液体400のなす角度θが、固有の濡れ角になる。」ということが境界条件となる。また、coshは双曲線余弦関数であって、下記の数式5によって定義される。
【0084】
cosh ξ={exp ξ+exp (−ξ)}/2 …<数式5>
図6に示した方法を用いた場合、プローブアレイ用基体100のプローブ保持部102に形成された突起103とプローブ水溶液210とが接触したとき、最初の物理ステップとして、プローブ水溶液210が突起103に導かれてプローブ保持部102の親水性領域105に到達する。突起103は親水性であるから、突起103の案内溝109および112(図2参照)を伝って、いわゆる毛細管現象によって、プローブ水溶液210がプローブ保持部102の親水性領域105にまで誘引される。
【0085】
なお、突起103に案内溝が形成されていない場合であっても、供給器200のシリコン部203で形成されたノズル204の開口の奥深くまで突起103を挿入して、ノズル204の先端とプローブ保持部102の親水性領域105とを十分に近づければ、プローブ水溶液210がプローブ保持部102の親水性領域105にまで到達する。そのため、突起103に案内溝が必ずしも形成されていなくてもよいが、プローブ保持部102の親水性領域105へのプローブ水溶液210の誘引をより確実にかつより円滑にするためには、突起103に案内溝が形成されていることが望ましい。
【0086】
上述のように、突起103がプローブ水溶液210をプローブ保持部102の親水性領域105にまで導くことができたならば、次の物理ステップとして、プローブ水溶液210が、プローブ保持部102の親水性領域105を十分に濡れ広がって、疎水性領域104の内縁部にまで到達することが好ましい。この物理ステップが遂行されるための条件を、図8を用いて説明する。
【0087】
現実には、プローブ保持部102は有限の大きさを持ち、疎水性領域104の内縁部によって規定されるが、以下の考察においては、プローブ保持部102が無限に大きく、疎水性領域104が存在しない状態を考える。このような条件下でのプローブ水溶液210の濡れ広がり量Rwが、プローブ保持部102の親水性領域105を越えていれば、プローブ水溶液210が親水性領域105の全域をカバーしたことを理論上示したことになる。
【0088】
図8においても、プローブ水溶液210の液面半径yとxとの間には、前掲の数式4が成立する。また、プローブ保持部102の親水性領域105における「濡れの先端」においては、プローブ保持部102とプローブ水溶液210との間の角度は、固有の濡れ角θ2となる。また、ノズル204の外周面における「濡れの先端」においては、ノズル204の外周面とプローブ水溶液210との間の角度は、固有の濡れ角θ3となる。これらから、プローブ水溶液210の濡れ広がり量Rwを計算すると、下記の数式6が得られる。
【0089】
Rw=[D×cosh {arcsinh (1/tan θ2)}]/[2×cosh {arcsinh (tan θ3)}] …<数式6>
ここで、Dは供給器200のノズル204の外径である。したがって、突起103の中心から疎水性領域104までの距離をIとしたときに、下記の数式7が成立すれば、プローブ水溶液210がプローブ保持部102の親水性領域105の全域をカバーすると言える。
【0090】
I<[D×cosh {arcsinh (1/tan θ2)}]/[2×cosh {arcsinh (tan θ3)}] …<数式7>
現実には、プローブ保持部102の親水性領域105の微細な凹凸の凹部を伝うようにして、プローブ水溶液210が上記の計算以上に濡れ広がる場合もあるから、数式7が成立していなければ、プローブ水溶液210が親水性領域105の全域をカバーしない、とは必ずしも言えないが、プローブ水溶液210が親水性領域105の全域を確実にカバーするようにするためには、数式7が成立していることが望ましい。
【0091】
前述した具体例に従って説明すると、突起103の中心から疎水性領域104までの距離Iは15μmであり、供給器200のノズル204の外径Dは50μmであり、シリコン酸化膜と水との間の濡れ角となるθ2およびθ3は、4〜20°である。なお、これらθ2およびθ3の値は、表面の清浄度によって変わるが、シリコン酸化膜と水との間での一般的な値である。
【0092】
これらの値を使って数式7の左辺と右辺とを計算すると、左辺は15[μm]となる一方、右辺は、θ2およびθ3の値によって異なるが、4〜20°の範囲で考えれば、θ2=θ3=4°のときに最も小さく、68[μm]となり、θ2=θ3=20°のときに最も大きく、357[μm]となる。したがって、いずれにしても数式7が成立していることがわかる。したがって、前述した具体例によれば、プローブ水溶液210はプローブ保持部102の親水性領域105の全域を確実にカバーし得ると言える。
【0093】
ところで、供給器200のシリコン部203におけるノズル204の長さが不足していると、ノズル204の外周面を濡れ上がったプローブ水溶液210が供給器200の下方に向く面にまで到達してしまって、隣り合うノズル204の各々内のプローブ水溶液210同士が混合してしまう危険がある。このような異なるプローブ水溶液210同士の混合を回避するためには、ノズル204の長さが十分に長いことが必要である。以下に、ノズル204の好ましい長さについて検討する。
【0094】
まず、図9に示すように、ノズル204の外径をD、突起103の中心から疎水性領域104までの距離をIとしたときに、I≦D/2の関係が成立すれば、ノズル204の長さNに関わらず、プローブ溶液210がノズル204の外周面を濡れ上がることはない。
【0095】
次に、図10に示すように、I>D/2の関係が成立する場合、ノズル204の好ましい長さを求めるには、図10における濡れ上がり量Nwを計算すればよいことがわかる。図10においても、プローブ水溶液210の液面半径yとxとの間には、前掲の数式4が成立する。また、ノズル204の外周面における「濡れの先端」においては、ノズル204の外周面とプローブ水溶液210との間の角度は、固有の濡れ角θ3となる。これらからNwを計算すると下記の数式8のとおりとなる。
【0096】
Nw=D×[arccosh {(2I/D)× cosh (ψ)}−ψ]/[2×cosh (ψ)] …<数式8>
ここで、ψは、θ3を用いて、下記の数式9により定義される。
【0097】
ψ=arcsinh (tan θ3) …<数式9>
ノズル204の長さをNとしたとき、Nが上に計算したNwよりも長く、下記の数式10が成立すれば、プローブ水溶液210の濡れ上がりをノズル204の途中で停止させることができる。
N>D×[arccosh {(2I/D)×cosh (ψ)}−ψ]/[2×cosh (ψ)] …<数式10>
前述した具体例に従って説明すると、ノズル204の長さNが150μmであり、ノズル204の外径Dが50μmであり、突起103の中心から疎水性領域104までの距離Iが15μmであり、シリコン酸化膜と水の間の濡れ角となるθ3は、4〜20°である。これらの値を使って数式10が成立しているかを確認する。
【0098】
まず、数式10の左辺は150μmである。右辺は、θ3の値によって異なるが、θ3を4〜20°の範囲で考えれば、θ3=4°のときに28μmで最大となり、θ3=20°のときに21μmで最小となる。したがって、いずれにしても、数式10が成立していることがわかる。このことから、前述した具体例によれば、プローブ水溶液210のノズル204の外周面での濡れ上がりは、ノズル204の途中で停止するため、プローブ水溶液210が供給器200の下方に向く面にまで濡れ上がって、異なるプローブ水溶液210同士が混合する危険は少ない。
【0099】
数式8および数式10には「arccosh」という関数が含まれているが、これは数式5で定義されている双曲線余弦関数「cosh」の逆関数である。双曲線余弦関数「cosh」の逆関数は、理論上2つ考えられるが、「arccosh」で定義されている逆関数は、常に関数値として0以上の値をとる関数である。以上の定義から、「arccosh」は一義的に決まる。
【0100】
図示した供給器200のように、複数のノズルが配列された供給器を使用する場合、供給器の下方に向く面へのプローブ水溶液の濡れ上がりは、前述したとおり、異なるプローブ水溶液同士の混合の原因となるため、避けることが望ましく、したがって、数式10が成立することが望ましい。単独のノズルを使用する場合であっても、ノズルをつかんで操作する部分に、プローブ水溶液が濡れ上がってくることは好ましくないため、数式10が成立し、プローブ水溶液の濡れ上がり量に対して、ノズルが十分に長いことが好ましい。
【0101】
また、ノズルの外周面が疎水性になっていれば、プローブ水溶液の濡れ上がりが抑制されるため、より好ましい。このとき、ノズルの外周面のすべてが疎水性になっている必要はなく、ノズルの先端付近は親水性のままで、ノズルの少なくとも根元付近が疎水性になっていれば、過剰な濡れ上がりを抑制するという効果が得られる。ノズルの外周面を疎水性にするための方法としては、たとえば、疎水性の液体を塗布するなどの方法がある。
【0102】
図11は、この発明の第2の実施形態を説明するための図2に対応する図である。図11において、図2に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
【0103】
図11に示したプローブアレイ用基体100aにおいては、プローブ保持部102の一部をなす親水性領域105と検査用領域106とが、疎水性領域104を横切る幅の狭い親水性領域114で連結されている。このような実施形態の場合であっても、親水性領域114の幅が十分に狭ければ、プローブ保持部102に適正に導入されたプローブ溶液が、幅の狭い親水性領域114を通って検査用領域106に流れ込むことはない。親水性領域114の幅が十分に狭ければ、親水性領域114をプローブ溶液が濡れ進む際、親水性領域114の表面が濡れることによる表面自由エネルギーの減少分よりも、親水性領域114の両側にある疎水性領域114が濡れることによる表面自由エネルギーの増加分とプローブ溶液の表面積が増加することによる表面張力自由エネルギーの増加分との和の方が大きくなるからである。
【0104】
なお、幅の狭い親水性領域114は特に有利な作用効果を発揮するものではないが、上記の第2の実施形態は、このような親水性領域114が形成されたものも、この発明の範囲内にあることを確認する意義がある。
【0105】
図12は、この発明の第3の実施形態を説明するための図1に対応する図である。図12において、図1に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
【0106】
図12に示したプローブアレイ用基体100bにおいては、突起103によってのみプローブ保持部102が与えられることを特徴としている。したがって、プローブアレイ用基体100bの主面101における突起103が設けられた部分以外の部分は疎水性領域104とされ、突起103は、疎水性領域104から立ち上がるように設けられている。
【0107】
このようなプローブアレイ用基体100bを製造するにあたっては、前述の図3(1)〜(3)に示した工程を経て、材料基板120に突起103を形成した後、液状の樹脂を材料基板上に付与し、スピンコートを適用して樹脂膜を形成し、次いで、これを硬化させる。このとき、突起103の上面および側面に形成される樹脂膜の厚みは、突起103以外の部分に形成される樹脂膜の厚みより薄くなる。その後、突起103の上面および側面に形成された樹脂膜が完全に除去され、かつ、突起103以外の部分に形成された樹脂膜がなくならない程度の条件で、たとえばプラズマアッシングを実施すれば、目的とするプローブアレイ用基体100bが得られる。
【0108】
上述の製造方法によれば、フォトリソグラフィー技術を用いることなく、疎水性領域104となる樹脂膜を形成することができるため、前述のプローブアレイ用基体100の場合に比べて、より低コストでの製造が可能となる。また、用いられる樹脂は、感光性である必要がないため、樹脂の選択の幅を広げることができる。
【0109】
図13は、この発明の第4の実施形態を説明するための図1に対応する図である。図13において、図1に示す要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
【0110】
図13に示したプローブアレイ用基体100cでは、複数のプローブ保持部102の各々において、突起103を取り囲むように隔壁116が形成されていることを特徴としている。隔壁116は、突起103と同じ高さである。隣り合う隔壁116間に挟まれた溝部分には、樹脂117が充填される。疎水性領域104は、この溝部分を充填する樹脂117の表面によって与えられる。また、検査用領域106は、隣り合う隔壁116間の溝部分に島状に形成された立ち上がり壁118の上面によって与えられる。
【0111】
このようなプローブアレイ用基体100cを製造するにあたっては、前述の図3(1)〜(3)に示した工程と同様の工程を実施して、突起103を形成すると同時に隔壁116および立ち上がり壁118を形成する。そして、隣り合う隔壁116間に、液状の樹脂を流し込み、これを硬化させる。次いで、隣り合う隔壁116間に充填された樹脂117がなくならない程度に、たとえばプラズマアッシングを実施し、隣り合う隔壁116間の溝以外の部分や立ち上がり壁118の上面に付着した樹脂を除去する。このような加工を行なう材料基板がシリコンからなる場合、上述のプラズマアッシングによって、その最表面に酸化膜が形成される。
【0112】
上述のようなプローブアレイ用基体100cを使用した場合、プローブ保持部102が陥凹した形状によって与えられているため、前述のプローブアレイ用基体100を使用した場合と比較して、大量のプローブ溶液をプローブ保持部102で保持することができる。このように、比較的大量のプローブ溶液をスポッティングすることができるため、スポッティングするプローブ溶液量の制御が容易であり、スポッティングされるプローブ溶液量のばらつきを小さくすることが容易である。
【0113】
また、このようなプローブアレイ用基体100cを使用した場合には、若干過剰量のプローブ溶液をスポッティングしても、隔壁116でプローブ溶液の濡れ広がりを食い止めることができる。したがって、スポッティングするプローブ溶液量を多めに設定することができる。このことも、スポッティングするプローブ溶液量の制御の容易化、およびスポッティングされるプローブ溶液量のばらつきの低減の容易化に寄与する。
【0114】
さらに、このようなプローブアレイ用基体100cを使用した場合、プローブ保持部102が陥凹した形状によって与えられているため、その側面にもプローブ分子が保持されることができる。したがって、プローブ保持部102に保持され得るプローブ分子の数、すなわち、スポットに保持されるプローブ分子の数を多くすることができ、プローブアレイの感度を高めることができる。
【0115】
なお、図13に示したプローブアレイ用基体100cの変形例として、検査用領域106を与える立ち上がり壁118を備えず、隣り合う隔壁116間の間隔をより狭くして、プローブアレイ用基体を小型化することも可能である。
【図面の簡単な説明】
【0116】
【図1】この発明の第1の実施形態によるプローブアレイ用基体100の一部を示す斜視図である。
【図2】図1に示したプローブアレイ用基体100の一部を示す上面図である。
【図3】図1に示したプローブアレイ用基体100を製造するために実施される工程を示す断面図である。
【図4】図1に示したプローブアレイ用基体100を用いてプローブアレイを製造するため、プローブアレイ用基体100と組み合わされて有利に用いられる供給器200を示す断面図である。
【図5】図4に示した供給器200を製造するために実施される工程を説明するためのもので、供給器200における特定の切断面で切断して示した端面図である。
【図6】図1に示したプローブアレイ用基体100と図4に示した供給器200とを用いてプローブアレイを製造するために実施される工程を示す断面図である。
【図7】液体400の液面に、固体の円柱401を、液面に対して垂直に入れたときの状態を説明するための図である。
【図8】プローブ保持部102の親水性領域105にまで導かれたプローブ水溶液210が、親水性領域105上で十分に濡れ広がる過程を説明するための図である。
【図9】プローブ保持部102の親水性領域105の全域をカバーした状態にあるプローブ水溶液210の、ノズル204の外周面に沿う濡れ上がりを説明するための図であって、I≦D/2の関係が成立する場合を示している。
【図10】プローブ保持部102の親水性領域105の全域をカバーした状態にあるプローブ水溶液210の、ノズル204の外周面に沿う濡れ上がりを説明するための図であって、I>D/2の関係が成立する場合を示している。
【図11】この発明の第2の実施形態を説明するための図2に対応する図である。
【図12】この発明の第3の実施形態を説明するための図1に対応する図である。
【図13】この発明の第4の実施形態を説明するための図1に対応する図である。
【符号の説明】
【0117】
100,100a,100b,100c プローブアレイ用基体
101 主面
102 プローブ保持部
103 突起
104 疎水性領域
105 親水性領域
106 検査用領域
109,112 案内溝
122 感光性樹脂膜
200 供給器
204 ノズル
210 プローブ水溶液

【特許請求の範囲】
【請求項1】
主面を有し、かつ前記主面に沿って複数のプローブ保持部が配列されているプローブアレイ用基体であって、
各前記プローブ保持部には、プローブ溶液に対して比較的高い濡れ性を示す突起が設けられ、
プローブ溶液に対して比較的低い濡れ性を示す低濡れ性領域が各前記プローブ保持部の周囲を実質的に取り囲むように形成されている、プローブアレイ用基体。
【請求項2】
前記突起は、前記低濡れ性領域から立ち上がるように設けられていて、前記プローブ保持部は、前記突起のみによって与えられる、請求項1に記載のプローブアレイ用基体。
【請求項3】
前記主面上であって、前記突起の周囲の領域に、プローブ溶液に対して比較的高い濡れ性を示す高濡れ性領域が形成され、前記プローブ保持部は、前記突起および前記高濡れ性領域によって与えられる、請求項1に記載のプローブアレイ用基体。
【請求項4】
各前記プローブ保持部には、前記主面から陥凹した形状が付与されている、請求項3に記載のプローブアレイ用基体。
【請求項5】
複数の前記プローブ保持部間でのプローブ溶液の混じり合いの有無を検査するため、プローブ溶液に対して比較的高い濡れ性を示す検査用領域が、複数の前記プローブ保持部の隣り合うものの間において、各前記プローブ保持部に対して前記低濡れ性領域を隔てて位置するように形成されている、請求項1ないし4のいずれかに記載のプローブアレイ用基体。
【請求項6】
前記突起には、前記プローブ保持部へのプローブ溶液の導入を円滑にするための案内溝が形成されている、請求項1ないし5のいずれかに記載のプローブアレイ用基体。
【請求項7】
主面を有し、かつ前記主面に沿って複数のプローブ保持部が配列されているプローブアレイ用基体であって、
各前記プローブ保持部は、プローブ溶液に対して比較的高い濡れ性を示す領域によって与えられ、
プローブ溶液に対して比較的低い濡れ性を示す低濡れ性領域が各前記プローブ保持部の周囲を実質的に取り囲むように形成され、
複数の前記プローブ保持部間でのプローブ溶液の混じり合いの有無を検査するため、プローブ溶液に対して比較的高い濡れ性を示す検査用領域が、複数の前記プローブ保持部の隣り合うものの間において、各前記プローブ保持部に対して前記低濡れ性領域を隔てて位置するように形成されている、
プローブアレイ用基体。
【請求項8】
プローブ溶液は水溶液であり、前記プローブアレイ用基体は親水性を有する材料からなり、前記低濡れ性領域はプローブアレイ用基体の表面にフォトリソグラフィー技術を用いてパターニングされて形成された感光性樹脂膜によって与えられる、請求項1ないし7のいずれかに記載のプローブアレイ用基体。
【請求項9】
プローブ溶液は水溶液であり、前記プローブアレイ用基体は親水性を有する材料からなり、前記プローブアレイ用基体の主面には樹脂膜が形成され、前記プローブ保持部は、前記樹脂膜を形成した後、前記樹脂膜をプラズマアッシングによって除去した部分に形成され、前記低濡れ性領域は、プラズマアッシングによって除去した後に残った前記樹脂膜によって与えられる、請求項1ないし8のいずれかに記載のプローブアレイ用基体。
【請求項10】
複数の前記プローブ保持部の各々において、前記突起を取り囲むように隔壁が形成され、隣り合う前記隔壁間には溝部分が形成され、前記溝部分には樹脂が付与され、前記低濡れ性領域は、前記溝部分内の前記樹脂がなくならない程度にプラズマアッシングされた後に残された前記樹脂の表面によって与えられ、前記高濡れ性領域の少なくとも一部は、前記プラズマアッシングされて余分な前記樹脂が除去された部分によって与えられる、請求項3または4に記載のプローブアレイ用基体。
【請求項11】
請求項1ないし10のいずれかに記載のプローブアレイ用基体と、前記プローブアレイ用基体の各前記プローブ保持部に保持されたプローブ分子とを備える、プローブアレイ。
【請求項12】
請求項1ないし6および10のいずれかに記載のプローブアレイ用基体を用意する工程と、
複数の前記突起に対応するように配列され、かつ各々にプローブ溶液が充填されたノズルを有する、供給器を用意する工程と、
前記プローブアレイ用基体の前記突起に、前記供給器の前記ノズルを近接させて、前記プローブ溶液と前記突起とを接触させることによって、前記プローブ溶液を前記プローブ保持部に導く工程と
を備える、プローブアレイの製造方法。
【請求項13】
前記突起の中心から前記低濡れ性領域までの距離をI、および、
前記ノズルの外径をDとしたとき、
I≦D/2の関係が成立する、
請求項12に記載のプローブアレイの製造方法。
【請求項14】
前記突起の中心から前記低濡れ性領域までの距離をI、
前記ノズルの外径をD、
前記ノズルの長さをN、および、
前記ノズルの外周面と前記プローブ溶液との間の濡れ角をθ3とし、かつ、
ψを、ψ=arcsinh (tan θ3)で定義したとき、
I>D/2のときに、
N>D×[arccosh {(2I/D)×cosh (ψ)}−ψ]/[2×cosh (ψ)]
の関係が成立する、
請求項12に記載のプローブアレイの製造方法。
【請求項15】
請求項3、4または10に記載のプローブアレイ用基体を用意する工程と、
複数の前記突起に対応するように配列され、かつ各々にプローブ溶液が充填されたノズルを有する、供給器を用意する工程と、
前記プローブアレイ用基体の前記突起に、前記供給器の前記ノズルを近接させて、前記プローブ溶液と前記突起とを接触させることによって、前記プローブ溶液を前記プローブ保持部に導く工程と
を備え、
前記ノズルの外径をD、
前記突起の中心から前記低濡れ性領域までの距離をI、
前記プローブアレイ用基体における前記プローブ保持部周辺の前記高濡れ性領域と前記プローブ溶液との間の濡れ角をθ2、および、
前記ノズルの外周面とプローブ溶液との間の濡れ角をθ3としたとき、
I<[D×cosh {arcsinh (1/tan θ2)}]/[2×cosh {arcsinh (tan θ3)}]
の関係が成立する、
プローブアレイの製造方法。
【請求項16】
請求項5に記載のプローブアレイ用基体を用意する工程と、
複数の前記突起に対応するように配列され、かつ各々にプローブ溶液が充填されたノズルを有する、供給器を用意する工程と、
前記プローブアレイ用基体の前記突起に、前記供給器の前記ノズルを近接させて、前記プローブ溶液と前記突起とを接触させることによって、前記プローブ溶液を前記プローブ保持部に導く工程と、
次いで、前記検査用領域に前記プローブ溶液が付着していないことを確認する工程と
を備える、プローブアレイの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2010−14647(P2010−14647A)
【公開日】平成22年1月21日(2010.1.21)
【国際特許分類】
【出願番号】特願2008−176716(P2008−176716)
【出願日】平成20年7月7日(2008.7.7)
【出願人】(000006231)株式会社村田製作所 (3,635)
【Fターム(参考)】