説明

マルチウェルマイクロ濾過装置

【課題】エアロゾル形成および/または吊下液滴による相互汚染を回避しながら、各ウェルから濾液を個別に収集できるマルチウェルマイクロ濾過配置の提供。
【解決手段】複数の流体サンプルを処理するためのマイクロ濾過装置であって、以下:複数のカラムを有する第一プレート;キャビティによって該第一プレートから間隔をあける第二プレートであって、該第二プレートは、(i)該カラムと整列して、該排出導管からサンプル流体を受容するための、複数の収集ウェル、および(ii)該第二プレートを通って該収集ウェルに隣接して伸びる、複数の通気口、を有する、第二プレート;ならびに気体透過性材料であって、該第一プレートと該第二プレートとの間のキャビティ内に配置され、該マトリックスが、少なくとも1つの排出導管と、整列した収集ウェルとの間の領域を横方向に囲む、気体透過性物質を備える、マイクロ濾過装置。

【発明の詳細な説明】
【技術分野】
【0001】
(発明の分野)
本発明は、その中でサンプルが分析または処理されるマルチウェルプレートおよびカラムアレイに関する。
【背景技術】
【0002】
(発明の背景)
近年、マイクロ滴定ウェルは多くの生物学的および生化学的用途、例えば、サンプル調製、ゲノム配列決定、および薬物発見プログラムにおいて重要な役割を果たしていると想定される。標準化されたフォーマットに従って構築された種々のマルチウェル配置が、現在、普及している。例えば、96個のくぼみまたは円筒状のウェルを12×8の規則的な矩形のアレイに配置したトレイまたはプレートは特に普及している配置の1つである。
【0003】
いくつかのマルチウェル構造においては、フィルタシートまたはメンブレンが開放底ウェルの下端または縁部に対して保持されている。このようなプレートはしばしば多層構造として製造され、これは全てのウェルの底部開口部を被覆するように配置された一元のシートまたはフィルタ材料を含み、フィルタシートは1つ以上のウェル開口部の外縁部をシールしている。しかし、単一のフィルタ材料のシートをこのような様式で用いると、液体がシートを横切って分散する能力のために(例えば、ウィッキング(wicking))、隣接ウェル間での相互汚染が生じ得る。
【0004】
この問題を克服する試みとして、各ウェルに各自別々のフィルタ要素またはディスクを設けることが提案されている。このような設計の1つによれば、プレカットしたフィルタディスクが各ウェルの上部の開放端に挿入され、そしてこれがウェルの底部に載置されるまで押し下げられる。次にO−リングをフィルタディスクの上部に載置されるようになるまで各ウェル中に押し下げて装着する。このO−リングはカラムの内壁に摩擦係合し、それによりフィルタを適所に保持する。一元フィルタシートの相互汚染の問題は回避されるが、このような構造は明らかに製造しにくい。また、O−リングとウェルの床との間に挟まれたディスクの部分は、有意な「死容積」をもたらし、これはサンプルの精製に悪影響を与え得る。例えば、サンプルマトリックスは、個別のフィルタディスクの周縁部の有意な部分に沿った領域に捕捉されることになり得る。血液サンプルからDNAを精製する場合、セルロースブロットメンブレンの縁部に捕捉された少量のヘモグロビン(ヘム)は、結局、精製プロセスの最終ステージで最終生成物を汚染する。混入したヘム残渣はDNA産物のPCRおよび配列決定反応アッセイにおける強力な阻害剤である。
【0005】
各ウェルがそれ自体の別々のフィルタ要素を有する別のマルチウェル配置は、フィルタ材料の単一シートを、中に複数のミニカラムが形成された上部プレートと複数の対応する「ドリップディレクタ」を有する下部プレートとの間に配置することによって形成される。プレートを一緒にして、それらの間に超音波結合を形成すると、フィルタシートはダイカットされて個別のフィルタディスクとなり、これらは各々のミニカラムの下に配置される。この構造は上記配置よりも製造が容易ではあるが、これも同様な欠点がある。詳細には、各フィルタディスクの周縁部の実質的な部分がカラムプレートとドリップディレクタプレートとの間に挟まれ、その結果、有意な死容積がもたらされ、これがサンプル精製に悪影響を及ぼし得る。
【0006】
従って、マルチウェルマイクロ濾過配置が必要とされる。この配置は、比較的製造が容易であり、かつ通常のフィルタシートを横切るウィッキングによる相互汚染、または個別
のフィルタディスクが実質的な死容積内にサンプル成分を捕捉すること関連する従来技術の配置に伴う問題を克服する。
【0007】
公知のマルチウェル濾過プレートの大部分、特に各ウェルに個別のフィルタディスクを備えるプレートは、フィルタ要素の下にフィルタを横切る均等に分布した流体の流れを可能とする適切な空間を有していない。多くの配置において、ドリップディレクタは各ウェルの底部で広い平らな表面を提供し、この上にフィルタ要素の大部分が載置される。そのため、優先的流路が、フィルタ要素のドリップディレクタ表面に接していないか、または近接していない領域を優先して創出される。このような優先的な流れは溶質の溶出に悪影響を与え得る。例えば、優先的流路は、フィルタ要素の優先されない領域で保持されたサンプル成分の浸出を妨げ得る。
【0008】
他方、各フィルタ要素の下に適切な支持体を欠くこともまた問題であり得る。マルチウェルトレイで用いられるフィルタ媒体は典型的には非常に薄く、そして比較的乏しい機械的特性を示す。特定の応力の高い状況(例えば、高圧または真空濾過)において、このようなメンブレンはその完全性を保持し得ない。周縁部の周りのみ支持されたフィルタディスクは、特にその中央部分に沿って垂れ下がり、そして引っ張られて、その縁部を保持している構造から外れることさえあり得る。例えば、フィルタディスクはドリップディレクタのキャビティ中に崩壊し得る。これは、フィルタの多孔度に影響を与え、そうでなければ溶出したであろうフィルタ中の特定のサンプル成分をトラップする。さらに、フィルタディスクが周縁部支持構造から引き抜かれることによって、フィルタの縁部に沿ってバイパスが形成する場合、サンプルの望ましくない損失がもたらされ得る。
【0009】
従って、フィルタ媒体を各ウェルで適切に支持し、実質的な優先流を創出しないマルチウェルマイクロ濾過配置が必要とされる。
【0010】
わずかな公知のマルチウェルマイクロ濾過配置は、サンプルウェルプレートの下に配置するための収集プレートを提供し、これは、これらのサンプルウェルに対応する複数の閉鎖底の収集ウェルを有する。一般に、濾液の収集は真空を付与して各ウェルを通じて移動相を吸引することで行われる。これらの配置の多くでは、濾液を各サンプルウェルから別々に収集する試みは、収集プレートのウェル間の相互汚染のため信頼性のない結果に終わっている。このような相互汚染の主要な原因は、濾液がドリップディレクタを出るときのエアロゾルの生成に関連する。このエアロゾルは容易に分散して隣接した収集ウェルに移動し得る。さらに、エアロゾルは技術者をサンプル中に存在し得る病原性の可能性がある微生物などに曝露し得る。
【0011】
エアロゾル形成による相互汚染はこのような系の真空配置によって誘導される典型的な流れパターンによって悪化する。通常、サンプルウェルプレートは収集プレート上に搭載され、そして収集プレートは、順次、真空チャンバ中に位置する。チャンバが排出すると、各ウェル中の溶液はフィルタ要素を通って各々の収集ウェルに向かって吸引される。一般に、真空は各ミニカラム内から延びる流路に沿って吸引され、各々のドリップディレクタを通り、そして収集プレートの上部を水平に横切り、収集プレートの一方の端に到達し、ここで流路は下方に向かって曲がり、排出ポートに向かう。ドリップディレクタが排出ポートを有するチャンバの側面に直接隣接して配置されている場合を除き、各真空流路に沿って各ドリップディレクタから吸引される物質(例えば、同伴エアロゾル、気体など)は、収集プレートの上部を横切って移動するときに、近隣の収集ウェルのそばを通過しなければならない。残念ながら、1つのドリップディレクタから出た濾液由来のエアロゾルが収集プレートを横切る流れに同伴され、近隣のウェルに入る場合がある。
【0012】
相互汚染の可能性は、上部のサンプルウェルおよびドリップディレクタプレートを収集
プレートから取り外す際に特に高い。ドリップディレクタに残る濾液の吊下液滴が、ドリップディレクタを収集プレートの上で動かしたときに、隣接のウェルに偶然落ちることがあり得る。標準的なマルチウェルプレートでは、このような吊下液滴の全てを各々の収集ウェルの内側に一斉に手動で「タッチオフ(touch−off)」することは、ウェルの数が多いので、不可能ではないとしても困難である。強力な真空をドリップディレクタの下に付与して、このような吊下液滴をドリップディレクタから下に吸引して除く試みは、吊下液滴を霧化し得、上述のエアロゾル形成による汚染に関連する問題をもたらす。
【発明の開示】
【発明が解決しようとする課題】
【0013】
そのため、エアロゾル形成および/または吊下液滴による相互汚染を回避しながら、各ウェルから濾液を個別に収集できるマルチウェルマイクロ濾過配置が必要とされる。
【課題を解決するための手段】
【0014】
項目1 複数の流体サンプルを処理するためのマイクロ濾過装置であって、以下:
複数のカラムを有する第一プレートであって、各カラムが、(i)該カラム内の管腔を規定する、第一内側ボア、および(ii)該カラム内にフィルタ媒体を受容するための、端部領域、を有し、該端部領域が、(a)該第一内側ボアより大きな直径を有する第二内側ボアおよび(b)該第二内側ボアを該第一内側ボアに接続する移行領域、を規定する、第一プレート;
各カラム端部領域内に、該移行領域に隣接して配置される、サンプルを濾過するための、フィルタ媒体;ならびに
複数の排出導管を有する第二プレートであって、各排出導管は、直立した上端部領域を有し、該上端部領域は、対応するカラム端部領域と整列して該カラム端部領域内に受容され、その結果、該端部領域間に実質的に流体密の界面を形成し、該排出導管の上端部領域は、該フィルタ媒体の周囲領域を支持するための末端リム領域を有し、その結果、各フィルタ媒体が、カラム移行領域と対応する排出導管の末端リム領域との間に圧迫されて保持され、該保持が、(i)該フィルタ媒体を固定的に保持するため、および(ii)該フィルタ媒体の周囲側部リム領域を、該カラムの内部側壁に対して半径方向に圧迫し、その結果、該リムの周囲の漏出を防止するため、に有効な様式である、第二プレート
を備える、マイクロ濾過装置。
項目2 前記移行領域が、環状テーパ状部分を有し;そして該環状テーパ状部分の周囲が、前記第二内側ボアから前記第一内側ボアへの方向に沿って、実質的に一定の様式で減少する、項目1に記載のマイクロ濾過装置。
項目3 前記テーパ状部分に沿って、前記カラムに対して長手方向に延びる線が、該カラムの長手軸に対して垂直な平面と鋭角を形成し、そして前記第二の内側ボアとの前記移行領域の接続を通って該カラムと交差する、項目2に記載のマイクロ濾過装置。
項目4 前記鋭角が、約30〜60℃の範囲内である、項目3に記載のマイクロ濾過装置。
項目5 前記各末端リム領域が、それぞれのフィルタ媒体の底部表面の表面積の約10%未満と接触する、項目1に記載のマイクロ濾過装置。
項目6 前記排出導管の各々の中に配置される、複数のフィン様支持バットレスをさらに備え;ここで、該支持バットレスが、細長い狭い最上表面を有し、該最上表面が、前記末端リム領域により規定される平面と実質的に同一平面である、項目1に記載のマイクロ濾過装置。
項目7 各支持バットレスの上部領域の水平断面積が、該支持バットレスの最上表面に向かって延びる方向に、該最上表面と前記末端リム領域の平面との交差が事実上実質的に接線状であり線を形成する様式で、減少する、項目6に記載のマイクロ濾過装置。
項目8 気体透過性マトリックスをさらに備え、該マトリックスが、少なくとも部分的に多孔質親水性ポリマー材料から構成され;ここで該マトリックスが、前記第二プレートの
前記第一プレートに対向する面に取り付けられ;そしてここで、該マトリックスが、複数の前記排出導管に外接する、項目1に記載のマイクロ濾過装置。
項目9 前記第一および第二のプレートを、ほぼ水平に延びる軸に沿った参照「ホーム」位置から、二方向のいずれかへと移動させ、次いで該プレートを、該参照「ホーム」位置へと戻すための手段をさらに備え;ここで、該移動手段が、該プレートと機械的に連絡するステッパモータを備え、その結果、該ステッパモータの角回転が、該プレートの直線運動を引き起こす、項目1に記載のマイクロ濾過装置。
項目10 前記排出導管から懸下する付着液滴を、前記収集ウェルから離れて該排出導管内に上がる方向に吸引するための手段をさらに備える、項目1に記載のマイクロ濾過装置。
項目11 複数のマイクロ濾過ウェルを同時に形成する方法であって、該複数のマイクロ濾過ウェルの各々が、該ウェルを通って延びる実質的に閉塞されていない流路を有し、該方法が、以下の工程:
(I)(A)複数のカラムを備える第一プレートであって、該カラムが、以下:(i)該カラム内に管腔を規定する、第一内側ボア、および(ii)端部領域であって、(a)該第一内側ボアの直径より大きな直径を有する第二内側ボアおよび(b)該第二内側ボアを該第一内側ボアに接続する移行領域、を規定する、端部領域、を有する、第一プレートと、
(B)複数の排出導管を備える第二プレートであって、各排出導管が、該第一プレートに面して対応するカラム端部領域と整列する、直立上端部領域を有する、第二プレートと、
の間に、フィルタ媒体のシートを配置する工程;ならびに
(II)該シートから該フィルタ媒体の部分を打ち抜いてフィルタ媒体プラグが各カラムの前記端部領域内に配置されるに効果的な様式で、該プレートを一緒に圧迫する工程であって、該プラグが、カラム移行領域と対応する排出導管上端部領域との間の圧迫において保持され、ここで該フィルタ媒体の周囲の側部リム領域が、該カラムの内部側壁に対して半径方向に圧迫され、その結果、該リムの周囲での漏出を防止する、工程、
を包含する、方法。
項目12 前記第一プレートを前記第二プレートに固定する工程をさらに包含する、項目11に記載の方法。
項目13 前記固定する工程が、各第二内側ボアの内部側壁と、それぞれの上端部領域の外周表面との間に結合を形成することによって実施される、項目12に記載の方法。
項目14 前記結合が超音波溶接である、項目13に記載の方法。
項目15 複数の流体サンプルを処理するためのマイクロ濾過装置であって、以下:
複数のカラムを有する第一プレートであって、各カラムが、その一端にフィルタ要素を備え、そして該フィルタ要素の下に流体排出導管を備える、第一プレート;
キャビティによって該第一プレートから間隔をあける第二プレートであって、該第二プレートは、(i)該カラムと整列して、該排出導管からサンプル流体を受容するための、複数の収集ウェル、および(ii)該第二プレートを通って該収集ウェルに隣接して伸びる、複数の通気口、を有する、第二プレート;ならびに
気体透過性材料であって、該第一プレートと該第二プレートとの間のキャビティ内に配置され、該マトリックスが、少なくとも1つの排出導管と、整列した収集ウェルとの間の領域を横方向に囲む、気体透過性物質、
を備え;
ここで、該気体透過性材料が、(i)該第二プレートの下から真空を引き、該通気口を介して該第二プレートの上の領域および該複数のカラムへと延び、これによって流体を該カラムから該収集ウェルへと吸引することを可能とするため、ならびに(ii)該第二プレートの頂部を横切ってエアロゾルの移動を妨害し、これによってウェル間の相互汚染を防止するために効果的である、マイクロ濾過装置。
項目16 前記気体透過性材料が、複数の開口部を有する連続的なシートであり、該開口
部が、各排出導管からそれぞれの収集ウェルへの濾液の通過を可能にする、項目15に記載のマイクロ濾過装置。
項目17 前記排出導管の各々が、少なくとも部分的に、前記開口部のそれぞれの中に延びる、項目16に記載のマイクロ濾過装置。
項目18 前記気体透過性材料が、複数の前記通気口にわたって延びる、項目16に記載のマイクロ濾過装置。
項目19 前記気体透過性材料が、少なくとも部分的に、多孔質の親水性ポリマー材料から構成される、項目15に記載のマイクロ濾過装置。
項目20 前記多孔質の親水性ポリマー材料が、エチルビニルアセテート(EVA)である、項目19に記載のマイクロ濾過装置。
項目21 前記収集ウェルが、少なくとも8個のウェルを有する矩形のアレイとして配置される、項目15に記載のマイクロ濾過装置。
項目22 前記第二プレートが、4つの収集ウェルごとに少なくとも1つの通気口を備え、そしてここで、該通気口が、1つの通気口が各収集ウェルと少なくとも1つの隣接する収集ウェルとの間に位置するように配置される、項目21に記載のマイクロ濾過装置。
項目23 前記少なくとも1つの隣接する収集ウェルが、対角線上で隣接する収集ウェルである、項目22に記載のマイクロ濾過装置。
項目24 前記カラムの各々が、(i)該カラム内の管腔を規定する、第一内側ボア、および(ii)端部領域であって、(a)該第一内側ボアより大きな直径を有する第二内側ボアおよび(b)該第二内側ボアと該第一内側ボアとを接続する移行領域、を規定する、端部領域、を備え;
そしてここで、前記排出導管の各々が、対応するカラム端部領域と整列し、そして該カラム端部領域により受容される、直立する上端部領域を有し、その結果、該端部領域間に実質的に流体密な界面を形成し、該排出導管の上端部領域が、前記フィルタ要素の周囲領域を支持するための末端リム領域を有し、その結果、各フィルタ要素が、カラム移行領域と、対応する排出導管の該末端リム領域との間に保持される、項目15に記載のマイクロ濾過装置。
項目25 前記第一プレートを、ほぼ水平に延びる軸に沿った参照「ホーム」位置から、二方向のいずれかへと移動させ、次いで該プレートを、該参照「ホーム」位置へと戻すための手段をさらに備え;ここで、該移動手段が、該プレートと機械的に連絡するステッパモータを備え、その結果、該ステッパモータの角回転が、該プレートの直線運動を引き起こす、項目15に記載のマイクロ濾過装置。
項目26 前記排出導管から懸下する付着液滴を、前記収集ウェルから離れて該排出導管内に上がる方向に吸引するための真空手段をさらに備える、項目25に記載のマイクロ濾過装置。
項目27 マイクロ濾過ウェルのアレイから収集ウェルの対応するアレイへと、別個に濾液を収集するための方法であって、該収集ウェルは、該マイクロ濾過ウェルのアレイの下に配置される収集トレイにより保持されており、該方法が、以下:
(A)流体サンプルを複数の該マイクロ濾過ウェルに入れる工程;
(B)(i)各マイクロ濾過ウェルから、(ii)対応する収集ウェルの点またはそれに隣接する点において、該収集トレイの上面により規定される平面を通して下方に、(iii)該収集トレイの下の領域へと、延びる経路に沿って、真空を引く工程であって、これによって、各マイクロ濾過ウェルから対応する収集ウェル内への濾液の流れを引き起こす、工程;ならびに
(C)マイクロ濾過ウェルのいずれか1つにおいて、該濾液から形成されるエアロゾルを、該収集トレイの上面を横切って対応しない収集ウェルへと移動することを妨害する工程であって、これによって相互汚染を防止する、工程、
を包含する、方法。
項目28 各真空経路が、気体透過性材料を通過し、該気体透過性材料が、前記マイクロ濾過ウェルのアレイと前記収集ウェルのアレイとの間のキャビティ内に配置される、項目
27に記載の方法。
項目29 前記気体透過性材料が、少なくとも部分的に、多孔質の親水性ポリマー材料から構成される、項目28に記載の方法。
項目30 前記気体透過性材料が、各マイクロ濾過ウェルと対応する収集ウェルとの間の領域に外接する、項目28に記載の方法。
項目31 前記真空経路が、前記収集ウェルの各々の近位の前記収集トレイを横切る通気口を経て該収集トレイの上面の平面を通り、そしてここで、該通気口が、前記気体透過性材料により被覆される、項目28に記載の方法。
項目32 前記真空経路の各々が、1つのマイクロ濾過ウェルからそれぞれの対応するウェルへと延び、その後、前記通気口を経て前記収集トレイの上面の平面を下方に通る、項目31に記載の方法。
項目33 前記マイクロ濾過ウェルが、以下:
複数のカラムを有する第一プレートであって、各カラムが、以下(i)該カラム内に管腔を規定する第一内側ボア、および(ii)該カラム内にフィルタ媒体を受容するための端部領域、を有し、該端部領域が、以下(a)該第一内側ボアの直径より大きな直径を有する第二内側ボアおよび(b)該第二内側ボアを該第一内側ボアへと接続する移行領域、を規定する、第一プレート;
各カラム端部領域内に、該移行領域に隣接して配置される、サンプルを濾過するためのフィルタ媒体;ならびに
複数の排出導管を有する第二プレートであって、各排出導管が、対応するカラム端部領域と整列し、該カラム端部領域に受容される、直立する上端部領域を有し、その結果、該端部領域間に実質的に流体密な界面を形成し、該排出導管上端部領域が、該フィルタ媒体の周囲領域を支持するための末端リム領域を有し、その結果、各フィルタ媒体が、カラム移行領域と、対応する排出導管の該末端領域との間に保持される、第二プレート、
を備える、項目27に記載の方法。
項目34 さらに、以下の工程:
(i)実質的に同時の様式で、各マイクロ濾過ウェルの底部から懸下する流体の付着液滴を、それぞれの収集ウェルの内部側壁へとタッチオフする工程;および
(ii)前記排出導管から懸下する流体の付着液滴を、前記対応する収集ウェルから離れて該排出導管内へと上がる方向へと吸引する工程、
を包含する、項目27に記載の方法。
項目35 対応するアレイの受容ウェルの上にアレイとして配置される複数の排出導管から懸下する流体の吊下液滴に起因する、相互汚染を回避するための装置であって、以下:
(i)キャリッジであって、該アレイの1つを担持するよう構成され、そして該アレイが実質的に軸上に整列するニュートラル位置から、第一のほぼ水平な軸に沿う二方向のいずれかでの直線的な往復運動に適合される、キャリッジ;
(ii)ステッパモータ;
(iii)連結アセンブリであって、該連結アセンブリは、該ステッパモータを該キャリッジと機械的に連絡させ、その結果、該ステッパモータの各回転ステップが、該モータの角回転の方向に依存して、該二方向の一方へと、該ニュートラル位置から所与の距離で、該キャリッジの移動を引き起こし、これによって、該排出導管アレイと該受容ウェルアレイとの間の相対運動を行い、その結果、該排出導管から懸下する流体の吊下液滴が、対応する受容ウェルの内部側壁へと同時にタッチオフする、連結アセンブリ;ならびに
(iv)圧縮バネであって、該圧縮バネが、(a)該キャリッジの該ニュートラル位置からの移動に対して、所定の量の抵抗を提供し、そして(b)該モータの所望量を超える過剰の角回転に起因する、直線的オーバーシュートを補償または吸収して、該排出導管を移動させ、該受容ウェルの内部側壁と固く当接させる様式で、該連結アセンブリ内に設置される、圧縮バネ、
を備える、装置。
項目36 相互汚染を回避するための、項目35に記載の装置であって、さらに、以下:
前記排出導管の側部から該排出導管アレイと連絡し、前記受容ウェルアレイと対向する真空チャンバであって、これによって、該真空チャンバの排気が、該排出導管から懸下する流体の吊下液滴を、強制的に該受容ウェルから離れて該排出導管内へと押し込むに効果的である、真空チャンバ、
を備える、装置。
項目37 前記キャリッジが、前記排出導管アレイを担持するよう構成される、項目35に記載の相互汚染を回避するための装置。
項目38 相互汚染を回避するための、項目37に記載の装置であって、さらに、以下:
垂直位置決めアセンブリであって、前記キャリッジ上に配置され、そして前記排出導管アレイを、低位置と高位置との間で、第二のほぼ垂直な軸に沿った直線運動のために支持し、該低位置において、該排出導管がそれぞれの受容ウェル内に下がり、そして該高位置において、該排出導管が該受容ウェルを離れる、垂直位置決めアセンブリ、
を備える、装置。
項目39 受容ウェルの対応するアレイの上にアレイとして配置される、複数の排出導管から懸下する流体の吊下液滴に起因する、相互汚染を回避するための方法であって、以下:
(i)実質的に同時の様式で、該排出導管から懸下する流体の該吊下液滴を、それぞれの受容ウェルの内部側壁へとタッチオフする工程;ならびに
(ii)該排出導管から懸下する流体の該吊下液滴を、該対応する受容ウェルアレイから離れて該排出導管内へと吸引する工程、
を包含する、方法。
項目40 前記タッチオフする工程が、前記排出導管のアレイを、前記受容ウェルの長手軸に実質的に直交する平面に沿って移動させることにより実施され、一方で該受容ウェルが、実質的に固定された位置に維持される、項目39に記載の方法。
項目41 前記排出導管の各々が移動されて、それぞれの受容ウェルの1つの側壁部と接触し、次いで移動されて、該同じ受容ウェルの、別の横方向に対向する側壁部と接触する、項目40に記載の方法。
項目42 ステッパモータが、前記排出導管アレイを移動させるためにステッピングされ、該ステッパモータが、該排出導管アレイと機械連絡するよう配置され、その結果、該ステッパモータの角回転が、該排出導管の直線運動を引き起こす、項目41に記載の方法。項目43 前記流体の吊下液滴を吸引する工程が、前記排出導管の上に減圧を確立することによって実施される、項目39に記載の方法。
項目44 前記排出導管の各々の直立する上端部領域が、それぞれのカラム内に収容され、これによってマイクロ濾過ウェルのアレイを形成し;そしてここで、各カラムが、以下:(i)該カラム内に管腔を規定する、第一内側ボア、および(ii)端部領域であって、(a)該第一内側ボアの直径より大きな直径を有する第二内側ボアおよび(b)該第二内側ボアを該第一内側ボアに接続する移行領域を規定する、端部領域、を有し;そしてここで、フィルタ要素が、各カラム内に配置され、該フィルタ要素が、該カラムの移行領域と、それぞれの排出導管の上端部領域との間で圧迫される、項目39に記載の方法。
項目45 収集トレイ内に支持される一列の閉鎖底ウェルに別個に収容される複数のサンプルを隔離するための、取り外し可能なカバーであって、以下:
実質的に剛性の矩形シェル部であって、頂面、底面および周囲の側縁領域を有する、シェル部;
該シェル部の頂面に沿って形成される、可逆的に膨張可能な複数の管状スリーブ;
該シェル部の該底面に固定される、弾性的に従順な下部表面;
該シェル部の対向する側縁領域から該底面を越えて突出する、弾性的に変形可能な複数の細長サイドアームであって、各サイドアームは、通常、該底面により規定される平面に対して実質的に垂直に配置される、サイドアーム;ならびに
各サイドアームの端部に、該シェル部から遠位に形成される、内向きキャッチ、
を備える、カバー。
項目46 前記下部表面が、前記ウェルアレイに相補的なアレイとして配置される、下向きに凸状の複数の突起を備える、項目45に記載のカバー。
項目47 収集トレイに保持されるウェルのアレイを覆うための方法であって、該ウェルの各々が、開放された上部端を有し、該方法が、以下:
実質的に平行な複数の細長ロッドをカバー上に配置する工程であって、該ロッドが、支持体から垂下し、そして該支持体に隣接する収縮位置に配置される、工程;
該ロッドの少なくとも1つを該収縮位置に維持しながら、該ロッドの少なくとも2つを、該支持体から離してそれぞれの長手軸に沿って延長する工程であって、その結果、該延長したロッドの下端部領域が、該カバーの頂部に沿って形成されるそれぞれのキャビティ内に差し込まれ、そして少なくとも1つの収縮したロッドの下端部領域が自由なままである、工程;
該差し込まれたロッドを該支持体の方へと戻して収縮させることにより、該カバーを持ち上げる工程;
該支持体をほぼ水平に延びる平面に沿って移動させることにより、該収集トレイに上に該カバーを配置する工程;
該差し込まれたロッドを該支持体から離して延長させる工程であって、その結果、該カバーが該収集トレイ上に、該ウェル開口部の上に下げられる、工程;
少なくとも1つの自由なロッドを延長させる工程であって、その結果、少なくとも1つの自由端領域が、該カバーの上部領域に当接し、これによって、該支持体に向く方向に沿った該カバーの移動をブロックする、工程;ならびに
該支持体の方への該カバーの移動をこのようにブロックしながら、該差し込まれたロッドを該カバーから離して収縮させる工程であって、その結果、該差し込まれたロッドが該キャビティから離れる、工程、
を包含する、方法。
項目48 さらに、以下:
実質的に同時に、(i)前記ロッドの少なくとも1つを、前記支持体から離して延長させて前記カバーの上部領域と当接させ、これによって、該カバーを前記収集トレイとロッキング係合するよう圧迫し、そして;(ii)該ロッドの他方を、該支持体から離して延長させて該カバーの別の上部領域と当接させ、これによって該カバーの上方への移動をブロックする、工程、
を包含する、項目47に記載の方法。
項目49 前記カバーが、以下:(i)上部の実質的に剛性のシェル部、(ii)該シェル部に固定される、下部の従順な下部表面、および(iii)該シェル部を該収集トレイと解放可能にロックするための手段、を備える、項目47に記載の方法。
項目50 前記下部表面が、前記ウェルアレイと相補的なアレイとして配置される、下方に凸状の複数の突起を備え;そしてここで、前記シェル部が、該シェル部の上面に沿った複数のランディング部位を備え、該ランディング部位が、前記ロッドの前記低端部領域を受容するように形成される、項目49に記載の方法。
項目51 矩形の熱シール可能な複数のシートを保有するデバイスであって、以下:
トレイであって、実質的に矩形の底面、該底面から延びて4つの上方に分岐する側壁、および実質的に矩形の開放頂部を規定する上部周囲縁領域を有する、トレイ;ならびに
各側壁に沿って延び、そして該底面と該上部周囲縁領域との間の距離の大部分にまたがる、複数のリブ;
を備え、ここで、該リブの各々が、実質的に直線状の表面を有し、対向する側壁に面し、該対向する側壁が、該トレイの該底面により規定される平面に対して実質的に垂直である、デバイス。
項目52 スタックとして面−面で配置される、熱シール可能な複数のシートであって、該シートの周囲の側部リム領域が前記リブの各々の前記実質的に直線状の表面に接触して配置されるように、該スタックが該トレイ内に配置される、シートをさらに備える、項目51に記載のデバイス。
項目53 矩形の熱シール可能なシートを、収集トレイ内に保持されるウェルのアレイの上にシールする方法であって、該ウェルの各々が、開放上部端を有し、該方法が、以下:
透明な熱シール可能なシートをピックアップする工程;
該シートを該開放上部端の上に配置する工程;ならびに
適合した加熱された表面を、該収集トレイに対向する側から十分な圧力で、該シートに対して圧迫する工程であって、その結果、該シートが、該開放上部端の上の該収集トレイに熱シールされる、工程、
を包含し、ここで、該適合した加熱された表面が、間隔をあけた複数の細長ロッドを使用して、該シートに対して圧迫され、該ロッドが、該収集プレートの上面に対して実質的に垂直に配置されている、方法。
項目54 前記ロッドが、前記収集プレートの上に位置する支持構造から垂下する、項目53に記載の方法。
項目55 複数のマイクロ濾過ウェルを使用して、マイクロ濾過を実施するための方法であって、該マイクロ濾過ウェルの各々が、それを通って延びる実質的に閉塞されていない流路を有し、該方法が、以下の工程:
(I)流体サンプルを、該複数のマイクロ濾過ウェルに入れる工程;
(II)フィルタ媒体のシートを、
(A)複数のカラムを備える第一プレートであって、各カラムが、以下:(i)該カラム内に管腔を規定する、第一内側ボア、および(ii)端部領域であって、(a)該第一内側ボアの直径より大きな直径を有する第二内側ボアおよび(b)該第二内側ボアを該第一内側ボアに接続する移行領域、を規定する、端部領域、を有するカラムである、第一プレートと;
(B)複数の排出導管を有する第二プレートであって、各排出導管が、該第一プレートに面して対応するカラム端部領域と整列する、直立する上端部領域を有する、第二プレートと;
の間に配置する工程;
(C)該シートから該フィルタ媒体の部分を打ち抜いてフィルタ媒体プラグが各カラムの前記端部領域とともに配置されるに効果的な様式で、該プレートを一緒に圧迫する工程であって、該プラグが、カラム移行領域と対応する排出導管上端部領域との間で圧迫されて保持され、ここで該フィルタ媒体の周囲の側部リム領域が、該カラムの内部側壁に対して半径方向に圧迫され、その結果、該リムの周囲での漏出を防止する、工程;
濾液を、マイクロ濾過ウェルのアレイから対応する収集ウェルのアレイへと別個に収集する工程であって、該収集ウェルが、該マイクロ濾過ウェルアレイの下に位置する収集トレイにより保持され、そして(i)各マイクロ濾過ウェルから(ii)対応する収集ウェルの地点またはそれに隣接する位置で、該収集トレイの上面により規定される平面を通って下向きに(iii)該収集トレイの下の領域へと、延びる経路に沿って、真空が引かれると、各マイクロ濾過ウェルから対応する収集ウェル内への濾液の流れを引き起こす、工程;
(III)マイクロ濾過ウェルのいずれか1つにおいて該濾液から形成されるエアロゾルを、該収集トレイの該上面を横切って対応しない収集ウェルへと移動することから妨害し、これよって相互汚染を防止する、工程;
(IV)(A)各マイクロ濾過ウェルの底部から懸下する流体の付着液滴を、それぞれの収集ウェルの内部側壁へと、実質的に同時の様式でタッチオフする工程;および
(B)該排出導管から懸下する流体の付着液滴を、該対応する収集ウェルから離して該排出導管内へと上げる方向に吸引する工程;
(V)収集トレイ内に保持されるウェルのアレイを被覆する工程であって、該ウェルの各々が、開放上部端を有し、該工程が、以下:
実質的に平行な複数の細長ロッドをカバー上に配置する工程であって、該ロッドが支持体から垂下し、そして該支持体に隣接する収縮位置で配置される、工程;
該ロッドの少なくとも1つを該収縮位置に維持しながら、該ロッドの少なくとも2つ
を、該支持体から離して、それぞれの長手軸に沿って延長させる工程であって、その結果、該延長したロッドの下端部領域が、該カバーの頂部に沿って形成されるそれぞれのキャビティに差し込まれ、そして少なくとも1つの収縮したロッドの下端部領域が自由なままである、工程;
該差し込まれたロッドを該支持体の方へと戻して収縮させることにより、該カバーを持ち上げる工程;
該支持体をほぼ水平に延びる平面に沿って移動させることにより、該収集トレイの該カバーを配置する工程;
該差し込まれたロッドを該支持体から離して延長させる工程であって、その結果、該カバーが該収集トレイ上に、該ウェル開口部の上に下げられる、工程;
少なくとも1つの自由なロッドを延長させる工程であって、その結果、少なくとも1つの自由端領域が、該カバーの上部領域に当接し、これによって、該支持体に向く方向に沿った該カバーの移動をブロックする、工程;および
該支持体の方への該カバーの移動をこのようにブロックしながら、該差し込まれたロッドを該カバーから離して収縮させる工程であって、その結果、該差し込まれたロッドが該キャビティから離れる、工程、
による、工程;ならびに
(VI)矩形の熱シール可能なシートを、収集トレイ内に保持されるウェルのアレイの上にシールする工程であって、該ウェルの各々が、開放上部端を有し、該工程が、以下:
透明な熱シール可能なシートをピックアップする工程;
該シートを該開放上部端の上に配置する工程;および
適合した加熱された表面を、該収集トレイに対向する側から十分な圧力で、該シートに対して圧迫する工程であって、その結果、該シートが、該開放上部端の上の該収集トレイに熱シールされる、工程、
による工程であり、ここで、該適合した加熱された表面が、間隔をあけた複数の細長ロッドを使用して、該シートに対して圧迫され、該ロッドが、該収集プレートの上面に対して実質的に垂直に配置されている、工程
を包含する、方法。
(発明の要旨)
本発明の1つの局面は、複数の流体サンプルを処理するためのマイクロ濾過装置を提供する。
【0015】
1つの実施形態によれば、本発明のマイクロ濾過装置は、複数のカラムを有する第1のプレートと、複数の排出導管を有する第2のプレートとを備える。カラムの各々はカラム内の管腔を規定する第1の内側ボアとフィルタ媒体をカラム内に受容する端部領域とを有する。カラム端部領域は第1の内側ボアの直径よりも大きい直径を有する第2の内側ボアと、第2の内側ボアを第1の内側ボアに接続する移行領域とを規定する。サンプルを濾過するためのフィルタ媒体は各カラムの端部領域内に移行領域に隣接して配置される。各排出導管は直立した上端部領域を有し、これは対応するカラム端部領域と整列してこの中に受容され、それらの間に実質的に流体密の界面を形成する。排出導管の上端部領域はフィルタ媒体の円周領域を支持する末端リム領域を有し、それにより各フィルタ媒体はカラム移行領域と対応の排出導管の末端リム領域との間に保持される。
【0016】
1つの実施形態において、各カラムの移行領域は環状テーパー部分を有する。環状テーパー部分の円周は第2の内側ボアから第1の内側ボアに向かう方向に沿って実質的に一定の様式で減少する。関連の実施形態では、テーパー部分に沿って延びる、カラムに対して長手方向の直線は、カラムの長手軸に対して垂直な平面と鋭角を成し、そして移行領域と第2の内側ボアとの接合部を通じてカラムと交差する。鋭角は、1つの実施形態では、約30−70度の範囲内である。好ましくは、鋭角は約30−60度の範囲内である。1つの特定の実施形態において、鋭角は約45度である。
【0017】
1つの実施形態によれば、各排出導管の末端リム領域は、各フィルタ媒体の底面積の約15%以下、好ましくは約10%未満、そしてより好ましくは約5%未満と接する。
【0018】
1つの実施形態は、複数のフィン様の支持バットレスを排出導管の各々の中に備える。この実施形態では、支持バットレスの各々は長い狭い最上面を有し、これは各排出導管の末端リム領域によって規定される平面と実質的に同一平面上にある。関連の実施形態において、各支持バットレスの上部領域の水平断面積は、その最上面に向かって延びる方向で減少し、これは最上面と末端リム領域の平面との交差が実質的に接線の性質であり、線を形成するような様式である。
【0019】
別の実施形態によれば、マイクロ濾過装置は気体透過性マトリックスを備え、これは少なくとも部分的に多孔質の親水性ポリマー材料から構成される。このマトリックスは第2のプレートに、第1のプレートと反対の面上で取り付けられる。この実施形態ではまた、マトリックスは複数の排出導管に外接する。
【0020】
さらなる実施形態は、第1および第2のプレートを参照「ホーム」位置から概して水平に延びる軸に沿って二方向のいずれかに移動させ、そして次にプレートを参照「ホーム」位置に戻す手段を提供する。移動手段はプレートと機械的連絡して配置されるステッパモータを含み得、これによりステッパモータの角回転がプレートの線形動作を誘導する。
【0021】
別の実施形態によれば、真空手段が提供され、これは排出導管から懸下する流体の付着液滴を収集ウェルから遠ざかる方向に排出導管の中に上向きに吸引する。
【0022】
別の局面において、本発明は複数のマイクロ濾過ウェルを形成するための方法を提供する。1つの実施形態において、フィルタ媒体のシートが複数のカラムを含む第1のプレートと複数の排出導管を有する第2のプレートとの間に配置される。カラムの各々はカラム内の管腔を規定する第1の内側ボアと端部領域とを有し、この端部領域は第1の内側ボアよりも直径が大きい第2の内側ボアと、第2の内側ボアを第1の内側ボアに接続する移行領域とを規定する。各排出導管は直立した上端部領域を有し、これは第1のプレートに面し、そして対応のカラム端部領域と整列する。プレートをフィルタ媒体の一部をシートからパンチするのに有効なやり方で互いに圧迫して、フィルタ媒体のプラグを提供する。このプラグは各カラムの端部領域内に、カラム移行領域および対応の排出導管の上端部領域の末端リム領域に当接する位置を占める。
【0023】
本発明の方法はまた、各フィルタ要素の圧迫嵌合シーリングを提供する。1つの実施形態において、各フィルタ要素のカラム移行領域と対応の排出導管上端部領域の末端リム領域との間での圧迫は、フィルタ要素をカラムの内部側壁に固定し、そしてシールするように働く。
【0024】
別の実施形態において、この方法はさらに、第1のプレートを第2のプレートに固定する工程を包含する。固定工程は、超音波溶接のような結合を各第2内側ボアの内部側壁と各々の上端部領域の外側円周表面との間に形成することによって実施され得る。
【0025】
本発明のさらなる局面は、複数の流体サンプルの処理のためのマイクロ濾過装置を提供する。
【0026】
1つの実施形態において、この装置は複数のカラムを有する第1のプレートを含む。カラムの各々は、その一端にフィルタ要素と、フィルタ要素の下に流体排出導管とを含む。第2のプレートは第1のプレートからキャビティによって離れている。第2のプレートは
複数の受容または収集ウェルを有し、これはカラムと整列して、排出導管からのサンプル流体を受容する。第2のプレートはまた、複数の通気口を収集ウェルに隣接して備える。気体透過性マトリックスが第1のプレートと第2のプレートとの間のキャビティ中に2つのプレートの対向する面間の空間を満たすように位置する。マトリックスは少なくとも1つの排出導管と整列する収集ウェルとの間の領域を横から取り巻く。このマトリックスは、(i)真空を、第2のプレートの下から通気口を通って第2のプレートの上の領域そしてカラムまで引いて、それによりカラムから流体を吸引して収集ウェルに入れること、および(ii)エアロゾルが第2のプレートの上部を横切る動きを妨害して、それによりウェル間の相互汚染を制限するに有効である。
【0027】
1つの実施形態によれば、マトリックスは連続的なシートであり、複数の開口部を有し、濾液を各排出導管から各々の収集ウェルに通過させることを可能にする。排出導管の各々は、少なくとも一部がそれぞれの開口部の1つの中に延びていてもよい。さらに、マトリックスは、複数の通気口の上に延びていてもよい。1つの実施形態において、マトリックスはエチルビニルアセテート(EVA)などのような多孔質親水性ポリマー材料から構成される。
【0028】
1つの実施形態において、収集ウェルは少なくとも8つのウェル(例えば、8、12、24、48、または384ウェル)を有する矩形のアレイに配置される。1つの好適な配置において、第2プレートは4つの収集ウェル毎に少なくとも1つの通気口を備え、そして通気口は、各収集ウェルと少なくとも1つの隣接収集ウェルとの間に通気口が位置するように配置される。例えば、通気口は各収集ウェルとアレイの対角線上に隣接する少なくとも1つの収集ウェルとの間に設けられる。
【0029】
1つの実施形態によれば、カラムの各々は、カラム内の管腔を規定する第1の内側ボアと、第1の内側ボアよりも直径の大きい第2の内側ボアと第2の内側ボアを第1の内側ボアに接続する移行領域とを規定する端部領域とを有する。各排出導管は直立した上端部領域を有し、これは対応するカラム端部領域と整列してこれに受容され、その間に実質的に流体密の界面を形成する。排出導管の上端部領域はフィルタ要素の円周領域を支持する末端リム領域を有し、それにより各フィルタ要素がカラム移行領域と対応の排出導管の末端リム領域との間に保持される。
【0030】
別の実施形態では、第1のプレートを参照「ホーム」位置から概して水平に延びる軸に沿って二方向のいずれかに移動させ、そして次にプレートを参照「ホーム」位置に戻す手段が提供される。移動手段はプレートと機械的連絡して配置されるステッパモータを含み得、これによりステッパモータの角回転がプレートの線形動作を誘導する。
【0031】
さらなる実施形態において、真空手段が提供され、これは排出導管から懸下する流体の付着液滴を収集ウェルから遠ざかる方向に排出導管の中に上向きに吸引する。
【0032】
本発明の他の局面は、濾液を、マイクロ濾過ウェルのアレイから、このマイクロ濾過ウェルアレイの下方に位置する収集トレイによって保持された対応の閉鎖底収集ウェルのアレイ中に別々に収集する方法を提供する。
【0033】
1つの実施形態において、この方法は、以下の工程を包含する:
(A)流体サンプルを複数のマイクロ濾過ウェル中に入れる工程;
(B)真空を、各マイクロ濾過ウェルから下向きに延び、対応の収集ウェルの地点またはそれに隣接する地点で収集トレイの上面によって規定される平面を通り、収集トレイの下方の領域に至る経路に沿って引く工程であって、これによって濾液が各マイクロ濾過ウェルから流れて、対応の収集ウェルに収集される工程;および
(C)任意の1つのマイクロ濾過ウェルにおける濾液から形成されるエアロゾルが収集トレイの上面を横切って非対応の収集ウェルに移動することを妨げる工程であって、これにより相互汚染を制限する工程。
【0034】
1つの実施形態によれば、各真空経路はマイクロ濾過ウェルアレイと収集ウェルアレイとの間のキャビティに配置された気体透過性マトリックスを通過する。気体透過性マトリックスは多孔質親水性ポリマー材料、例えばエチルビニルアセテート(EVA)などから構成され得る。1つの好適な配置において、気体透過性マトリックスは各マイクロ濾過ウェルと対応の収集ウェルとの間の領域に外接する。
【0035】
1つの実施形態では、真空経路は収集トレイ上面の平面を通気口を経由して通過し、この通気口は各収集ウェルの各々の近傍で収集トレイを横切る。
【0036】
別の実施形態において、真空経路の各々は、通気口を通過する前に、マイクロ濾過ウェルの1つからそれぞれの収集ウェルに延びる。
【0037】
開放底ウェルを有する収集トレイが用いられるさらなる実施形態において、真空経路は、収集トレイ上面の平面を通過し、そして次に下に向かい、ウェルの開放底から外に出る。
【0038】
マイクロ濾過ウェルは、1つの実施形態によれば、複数のカラムを有する第1のプレートと複数の排出導管を有する第2のプレートを含む。各カラムはカラム内の管腔を規定する第1の内側ボアとフィルタ媒体をカラム内に受容する端部領域とを有する。端部領域は第1の内側ボアの直径よりも大きい直径を有する第2の内側ボアと、第2の内側ボアを第1の内側ボアに接続する移行領域とを規定する。サンプルを濾過するためのフィルタ媒体は各カラムの端部領域内に、移行領域に隣接して配置される。各排出導管は直立した上端部領域を有し、これは対応するカラム端部領域と整列してこの中に受容され、その間に実質的に流体密の界面を形成する。排出導管の上端部領域はフィルタ媒体の円周領域を支持する末端リム領域を有し、それにより各フィルタ媒体がカラム移行領域と対応の排出導管の末端リム領域との間に保持される。
【0039】
1つの実施形態において、この方法はさらなる工程:
(i)各マイクロ濾過ウェルの底部から懸下した流体の付着液滴をそれぞれの収集ウェルの内部側壁に、実質的に同時にタッチオフ(touching−off)する工程;および
(ii)排出導管から懸下した流体の付着液滴を対応の収集ウェルから遠ざかる方向に排出導管の中に上向きに吸引する工程、を包含する。
【0040】
別の局面において、本発明は、対応の収集ウェルアレイの上にアレイ状に配置された複数の排出導管から懸下する流体の吊下液滴による相互汚染を回避するための装置を提供する。
【0041】
1つの実施形態によれば、この装置は:
(i)アレイのうちの1つを担持するように形成されたキャリッジであって、アレイが実質的に軸方向に整列するニュートラル位置から、概して水平な、第1の軸に沿う2方向のいずれかの方向に線状に往復運動するように適合した、キャリッジ;
(ii)ステッパモータ;
(iii)ステッパモータとキャリッジを機械的に連絡する連結アセンブリであって、ステッパモータの各回転ステップが、キャリッジをニュートラル位置から、モータの角回転方向に応じて、2方向のうちの一方に所定の距離移動させる連結アセンブリであって、
これにより、排出導管アレイと収集ウェルアレイとの間に相対運動を達成し、排出導管から懸下する流体の吊下液滴が対応の収集ウェルの内部側壁に同時にタッチオフされる、連結アセンブリ;および
(iv)連結アセンブリ内に搭載された圧縮スプリングであって、このスプリングが(a)キャリッジのニュートラル位置からの移動に対する所定量の抵抗を提供し、かつ(b)排出導管が収集ウェルの内部側壁と堅固に当接するように移動するのに必要とされる量を超えるモータの過剰の角回転に起因する線形のオーバーシュート量のいくらかを補償または吸収することを可能にする様式で搭載される、圧縮スプリング、を含む。
【0042】
1つの実施形態において、真空チャンバは排出導管アレイと、収集ウェルアレイの反対側で連絡する。真空チャンバの排気は、排出導管から懸下する流体の吊下液滴を収集ウェルから遠ざかる方向に排出導管の中に駆動するのに有効である。
【0043】
1つの好適な実施形態において、キャリッジは排出導管アレイを担持するように形成され、その間、収集ウェルは静止したままである。垂直位置決めアセンブリがキャリッジ上に配置されて排出導管アレイを支持し、排出導管がそれぞれの収集ウェル中に下方に延びる低下位置と排出導管が収集ウェルから離れる上昇位置との間で、第2の概して垂直な軸に沿って線形運動させる。
【0044】
本発明のさらに他の局面は、対応の閉鎖底収集ウェルの上にアレイ状に配置された複数の排出導管から懸下する流体の吊下液滴による相互汚染を回避するための方法を提供する。
【0045】
1つの実施形態において、この方法は、以下の工程:
(i)排出導管から懸下した流体の吊下液滴をそれぞれの収集ウェルの内部側壁に実質的に同時にタッチオフする工程;および
(ii)排出導管から懸下した流体の吊下液滴を対応の収集ウェルから遠ざかる方向に排出導管中に吸引する工程を包含する。
【0046】
タッチオフ工程は、排出導管アレイを収集ウェルの長手軸に実質的に直交する平面に沿って移動し、その間、収集ウェルを実質的に固定位置に維持することによって行われ得る。1つの実施形態において、排出導管の各々を移動させてそれぞれの収集ウェルの1つの側壁部分と接触させ、そして次に排出導管の各々を移動させてそれぞれの収集ウェルの横方向に対向する別の側壁部分に接触させる。
【0047】
1つの実施形態は、排出導管アレイと機械的に連絡するステッパモータを提供し、それによりステッパモータの角回転が排出導管の線形運動を誘導する。この実施形態において、ステッパモータのステッピングが排出導管アレイを移動させる。
【0048】
流体の吊下液滴を吸引する工程は、減圧(真空)を排出導管の上に確立することによって達成され得る。
【0049】
1つの実施形態において、各排出導管の直立する上端部領域はそれぞれのカラム内に受容され、それによりマイクロ濾過ウェルのアレイを形成する。各カラムはカラム内の管腔を規定する第1の内側ボアと、第1の内側ボアよりも直径が大きい第2の内側ボアと第2の内側ボアを第1の内側ボアに接続する移行領域とを規定する端部領域とを有する。フィルタ要素は各カラム中に、カラムの移行領域とそれぞれの排出導管の上端部領域との間に配置される。
【0050】
別の局面において、本発明は、収集トレイ中に支持された閉鎖底ウェルのアレイに別々
に入れられた複数のサンプルを隔離するための取り外し可能なカバーを提供する。
【0051】
1つの実施形態によれば、カバーは実質的に硬質の矩形シェル部分を含み、これは上面、底面および周囲の側縁部領域を有する。複数の可逆的に膨張可能な管状のスリーブがシェル部分の上面上に設けられる。弾力性の従順(compliant)な下部面がシェル部分の底面に固定される。複数の弾力性の偏向可能な細長サイドアームが底面の下にシェル部分の対向する側縁部領域から突出している。その正常な(応力なしの)状態では、各サイドアームは底面によって規定される平面に対して実質的に垂直に位置する。内側向きのキャッチが各サイドアームのシェル部分から遠位の端部に形成される。アームおよび附属するキャッチは、カバーを収集トレイのウェル上に取り外し可能にスナップ止めするために有用である。
【0052】
1つの実施形態において、カバーの下部面は複数の下向きに凸の突起(半球状の造作)を含み、これは収集ウェルアレイに対して相補的なアレイの中に配置される。各突起は、カバーが収集トレイ上に固定されたとき、対応のウェル上にフィットするように適合される。
【0053】
本発明のさらなる局面は収集トレイ中に保持される上部開放ウェルのアレイの被覆のための方法を提供する。
【0054】
1つの実施形態によれば、この方法は、実質的に自動化された様式で(i)ほぼ水平な面(x/y方向)に沿って動くように適合された支持構造と(ii)上記支持体から垂下した複数の長い平行なロッドであって、それぞれの長手軸(y方向)に沿って動くように適合されたロッドを用いて行われる。最初に、ロッドは支持体に隣接した収縮位置に配置されており、カバー部材の上に配置される。ロッドのうちの2つを次に支持体から離れる方向(y方向)にのばして、その端部領域をカバーの上部に沿って形成されるそれぞれのキャビティ中に差し込む、その間、2つのロッドを収縮位置(すなわち自由端領域)に維持する。次にカバー部材を、差し込まれたロッドを支持体に向かって戻して収縮することによって、持ち上げる。次に支持体をx/y方向に沿って移動させ、カバーを収集トレイの上に位置させる。次に差し込まれたロッドを支持体から離れる方向にのばして、カバーを収集トレイの上に開口部を覆って下方に下げる。2つの収縮されたロッドの自由端を次にカバーの上部領域に当接するまで延ばし、これによりカバーが上方に動くのを妨げ、他方、差し込まれたロッドをカバーから離して収縮し、その結果これらはキャビティから取り除かれる(差し込みが外れる)。その結果、カバーは収集トレイの上にウェルの開口部を覆って載置されたまま残される。
【0055】
この位置から、カバー部材は取り外し可能に収集トレイにスナップ止めされ得る。これは例えば、少なくとも1つのロッドを支持体からのばし、そしてカバーの上部領域に当接させ、これにより、カバーを押して収集トレイとロックして係合させることによって達成され得る。ロックされている間にカバーがはじき飛ばされることを防ぐために、別のロッドを支持体から離れる方向に延ばして、カバーの他の上部領域と当接させ得る。
【0056】
この方法は、例えば、(i)上部の実質的に硬質のシェル部分、(ii)シェル部分に固定された下方の従順な下部面、および(iii)シェル部分を収集トレイに取り外し可能にロックする手段を有するカバーによって行われ得る。カバーの下部面は、例えば、複数の下向きに凸の突起(半球状の造作)を含み得、これはウェルアレイに相補的なアレイとして配置される。さらに、シェル部分はその上面に沿って、ロッドの下端領域を受容するように形作られた複数のランディング部を含み得る。
【0057】
本発明のさらに他の局面は、複数の矩形の熱シール可能なシートを保持するためのデバ
イスを提供する。
【0058】
1つの例示の実施形態において、このデバイスは、実質的に矩形の底面、底面から延びる4つの上向きに分岐した側壁、および実質的に矩形の開放上部を規定する上方の周縁部領域を有するトレイからなる。複数のリブが各側壁に沿って延び、底面と上部周縁部領域との間の距離の大部分に及ぶ。各リブは実質的に線形の表面を有し、これは(i)対向する側壁に面し、かつ(ii)トレイの底面によって規定された面に対して実質的に垂直である。
【0059】
1つの実施形態によれば、垂直なスタックとして配置された複数の熱シール可能なシートがトレイ中に位置し、シートの周縁の側縁部領域が各リブの実質的に線形の表面に接するようにされる。
【0060】
本発明の別の局面は、矩形の熱シール可能なシートを収集トレイ中に保持されたウェルのアレイ上にシールする方法を提供する。
【0061】
1つの実施形態において、この方法は、(i)透明な熱シール可能なシートをピックアップする工程;(ii)シートをウェルの開放された上端部を覆って配置する工程;および(iii)適合した加熱面を収集トレイと反対の側から十分な圧力でシートに対して圧迫し、シートをウェルの開放上端部を覆って収集トレイに熱シールさせる工程、を包含する。さらに、この実施形態によれば、適合した加熱面は、収集プレートの上面に対して実質的に垂直に配置された、複数の間隔を空けた細長ロッドを用いてシートに対して圧迫される。このロッドは収集プレートの上に位置する支持構造から垂下し得る。
【0062】
本発明のこれらおよび他の特徴ならびに利点は以下の説明から明らかとなる。
【発明の効果】
【0063】
本発明によって、エアロゾル形成および/または吊下液滴による相互汚染を回避しながら、各ウェルから濾液を個別に収集できるマルチウェルマイクロ濾過配置が提供された。
【発明を実施するための最良の形態】
【0064】
本発明の構造および操作手段、ならびに他の目的および利点は以下の説明を添付の図面と合わせて参照することによって最もよく理解され得る。ここで同一の参照番号は同様の要素を識別する。
【0065】
(発明の詳細な説明)
本発明の好適な実施形態の以下の論述は、単なる例示に過ぎない。従って、この論述は本発明の範囲、本発明の適用、または本発明の使用を限定することを少しも意図しない。
【0066】
図1−3は、本発明に従って構築されたマルチウェルマイクロ濾過装置の実施形態を、各々の斜視図、分解図および部分横断面図で示す。製造の組立工程において、図2で符号8で示されるフィルタシートまたはメンブレンは、12のような開放底ミニカラムのアレイを有するカラムトレイまたはプレート10と、このミニカラムに対応する16のようなドリップディレクタのアレイを有するドリップディレクタトレイまたはプレート14との間に位置する。ミニカラム12とドリップディレクタ16とを合わせて嵌合させると、マイクロ濾過ウェルのアレイが形成され、これは図3で概して符号18で示され、各々、その間に位置する不連続なフィルタ要素または媒体(例えば、プラグ、円板など)、例えば8aおよび8bを有する。各嵌合ミニカラム/ドリップディレクタ対の内壁は流路の境界となり、流路は下向きにウェル18を通って延びる。
【0067】
図2および3に示すように、各マイクロ濾過ウェルは内部領域または管腔を有し、これは水平断面が実質的に円形である。しかし、任意の所望の幾何学的断面(例えば、楕円、正方形、矩形、三角など)のマイクロ濾過ウェルが使用され得ることが理解されるべきである。同様に、ウェルはその長手軸に沿って見たときに任意の所望の形状、例えば、直線、テーパーまたは他の形状などであり得る。1つの実施形態において、各ウェルの壁は、ウェルの上部のローディング端からフィルタ媒体に延びる方向に沿って、わずかに外向きのテーパーを有する(すなわちウェルの直径が増大する)。
【0068】
マイクロ濾過装置のプレートは、任意の実質的に硬質の非水溶性の流体不浸透性材料から構築され得、これは実質的にアッセイサンプルと化学的に非反応性である。本明細書において使用される用語「実質的に硬質」は、その材料が軽い機械的または熱的負荷の下での変形また歪みに対して耐性であることを意味することが意図されるが、この材料はいくらかは弾性であり得る。適切な材料としては、アクリル、ポリカーボネート、ポリプロピレンおよびポリスルホンが挙げられる。また、用語「トレイ」および「プレート」は同義で用いられ、本明細書において相互交換可能であることに留意すべきである。
【0069】
任意に、ドリップディレクタの流体接触面は、表面を疎水性にして相互汚染の可能性を低下させるような材料で構成され、そして/またはそのようなコーティングで提供し得る。例えば、低表面エネルギー材料がドリップディレクタの形成および/またはコーティングにおいて使用され得る。もちろん、このような材料はアッセイサンプルに対して適合性であるべきである。
【0070】
プレートは任意の従来の手段によって形成され得、射出成形が特に便利な技術である。本発明の1つの実施形態は射出成形された矩形のプラスチックプレートの使用を意図し、その長さおよび幅は一般に使用される標準の5.03”×3.37”(127.8mm×85.5mm)に適合する。図1−3の実施形態において、ウェルはこのようなプレートで一体成型され、中心間の間隔が0.9cmの12×8の規則的な矩形のアレイに配置される。あるいは、ウェルは不連続なユニット(図示せず)として形成され、プラスチックの網(webbing)で相互に連結されてアレイを提供してもよい。他の実施形態において、ウェルはストリップ(図示せず)の形状で提供される。例えば、複数のウェルを列に並べ、隣接のウェルと互いに任意の適切な手段、例えば脆いプラスチック網によって接続する。次に複数のストリップを隣り合わせに、このようなストリップを保持するように設計されたフレームの中に配置し得る。例えば、12個の8ウェルストリップを矩形のフレーム中に隣り合わせに配置して96ウェルのアレイを形成し得る。さらなる実施形態において、各ウェルは、支持プレート中に形成された各々の開口部内に取り出し可能に配置された不連続なユニットとして形成される(図示せず)。例えば、トレイに12×8アレイの円形の開口部を設け、この中に、従来の試験管立ての中に試験管が保持されるのと同様の仕方で、円筒状のウェルが受容および保持され得る。
【0071】
図示した実施形態は一般的な96ウェルのフォーマットに従って形作られた配置を示すが、本発明はまた任意の他の合理的な数のウェル(例えば、12、24、48、384など)を任意の適切な形に配置したものも意図する。
【0072】
再び図1−3を参照すると、上部真空チャンバ20はカラムプレート10の上に位置する。上部真空チャンバ20は(i)装着位置(ここで4つの懸下した周囲の壁(20aで示される)は間に挟まれた弾力性のガスケット21を介して実質的に気密のシールをカラムプレート10の上部の周縁面に形成する)と(ii)収縮位置(ここでチャンバ20はカラムプレート10から間隔を空けて離れている)との間で動くように適合されている。チャンバ20の中空の内側は、チャンバ23の頂部を通して延びるホースコック23を介して外部真空源と空気的に接続可能である。減圧は、チャンバ20をカラムプレート10
上の、その装着位置に運び、次にチャンバ20を排気することによって、サンプルウェル上に確立され得る。
【0073】
いくつかの状態では、上昇した圧力をサンプルウェル上に確立することが所望され得る(例えば、サンプルがフィルタ媒体を通って、下部排出導管からウェルの外に出ることを促進するため)。このような場合、チャンバ20は適切な圧力源(例えばポンプ)によって加圧され得る。
【0074】
受容(または収集)プレート24がドリップディレクタプレート14の下に位置する。収集プレート24は上部の平らな面(25で示される)を含み、そして閉鎖底ウェル、例えば26のアレイがそこから懸下している。収集ウェルアレイはドリップディレクタアレイに対応し、各サンプルウェルからの濾液の個別収集を可能とする。収集プレートは、29で示される下部真空チャンバの開放リザーバーの内側にフィットするように適合され、収集ウェルはリザーバーへ下方に延びる。
【0075】
28のような開口部または通気口が、収集プレート24の上部の平面25を通して延びる。この理由で、少なくとも1つの開口部が隣接する各収集ウェルに位置されるべきことが明らかとなる。開口部28はプレート24の上および下の領域間の流体連絡を可能とする。この構造によって、収集プレートの下から吸引される真空は、プレートの上およびウェルの内側の領域に延びる。
【0076】
図示されないが、本発明はまた、プレート24の閉鎖底ウェルとは反対に開放底ウェルを有すること以外は収集プレート24と同様のプレートを提供する。あるいは、開放底ウェルのプレートは収集プレート24と同様に形作られる。すなわち、開放底ウェルのプレートは濾過および/または洗浄を効果的に行い、その上、相互汚染を防ぐ構造を提供する。しかし、濾液を種々のウェルに別々に収集する代わりに、濾液はウェルを通過し、そして開放底から外に出る。この状況が濾液の個別の収集を要求しないことを除いて、開放底ウェルのプレートは、プレート24について本明細書に記載のようなやり方で使用されることが考慮される。例えば、開放底ウェルのプレートは中間体の洗浄を行うのに特に有用である。本明細書において使用される場合、「収集プレート」および「受容プレート」は同義かつ相互交換可能に用いられ、いずれの用語も、ドリップディレクタアレイの下に配置することを意図するプレートであって、考慮中の仕事に対して適切であるように、開放底ウェルまたは閉鎖底ウェルのいずれかを有するプレートをいう。濾液の分離収集を行う場合、このウェルは閉鎖底のタイプであることが理解される。任意に、開放底ウェルを有する収集プレートは通気口の造作(例えば28)なしで形成されてもよく、真空が各ウェルの底部を通って直接下方に流れ得る。
【0077】
クロスフローレストリクタ(restrictor)(エアロゾルガードとも称される)は30で示され、これは一般に気体を透過させるが、実質的にエアロゾルを透過せず、収集プレート24の上面とドリップディレクタプレート14の下面との間に挿入される。図示した実施形態において、クロスフローレストリクタ30は32のような複数の通路を有し、これは収集ウェルおよびドリップディレクタアレイに相補的なアレイとして配置される。通路32は濾液を各ドリップディレクタ16から対応の収集ウェル26に通過させる。図示した配置において、各ドリップディレクタ16はそれぞれの通路を通って延びる。このような通路以外は、クロスフローレストリクタ30はドリップディレクタと収集ウェルプレート(14、24)の対向する面の間の領域を実質的に充填される。
【0078】
好ましくは、組み立てられたミニカラムおよびドリップディレクタプレート配置を支持し、かつ、この配置と下部真空チャンバ29との間の気密シールの形成を補助するための手段が設けられる。図示した実施形態において、38で示される矩形のキャリッジフレー
ムがミニカラムおよびドリップディレクタプレートアセンブリを支持するように形作られている。クランプ34、36は、フレーム38の対向する端部に、概して垂直に延びる軸の周囲を旋回するように取り付けられる。クランプ34、36は、カラムおよびドリップディレクタアセンブリをフレーム38に係合し、そしてこれを保持するように操作可能であり、カラムおよびドリップディレクタプレートアセンブリの下部周縁部40はフレーム38の上面上にフレームの中央の開口部の周囲に配置されるガスケット42に対して圧迫される。
【0079】
スプリング装填センタリングピン、例えば37および39が、各クランプ34、36を通って延びていてもよい。図3の実施形態において、センタリングピン37はシャンクを有し、これはスプリング41によって、カラムプレート10の側壁中に形成された相補的なくぼみまたは凹み43の中に合わせられる。他の実施形態(図示せず)において、3つのスプリング装填センタリングピンが使用され、2つのピンは配置の長い側の上の位置に位置し、そして1つのピンは短い側の位置に位置し、一緒に操作可能であり、トレイをコーナーに対して押す。この方法で、この構成要素は、容易に(軸上で)センタリングされ得る。
【0080】
段状ガスケットは、一般に44で示され、フレーム38の下面に隣接して、フレームの中央の開口部の周囲に配置される。ガスケット44は、(i)上部に内向きに突出するフラップ部分であって、44aで示され、収集プレート24の周縁部の周りに配置される上方に突出したリッジ48に係合するように適合した下面を有する上部フラップ部分と、(ii)下部フラップ部分であって、44bで示され、斜め下方および外向きに延びて、底部真空チャンバ29の開放レザーバーの周囲の上面50に係合する、下部フラップ部分を有する。段状ガスケット44の中央の平坦領域は、44cで示され、これはフレーム38に任意の適切な手段で固定される。例えば、中央平坦領域44cは、接着剤および/またはファスナーを用いて付着し得る。1つの実施形態において、ガスケット44はフレーム38と矩形のクランピング(clamping)フレーム(図示せず)との間に挟持される。この実施形態において、矩形クランピングフレームはガスケット44の平坦領域44cに隣接して、ガスケット44のフレーム38とは反対の側に配置される。次にクランピングフレームをフレーム38にねじを切ったファスナーを使用してぴったりと固定する。ファスナーはクランピングフレームおよびガスケットの中に形成された整列した通路(図示せず)を通り、フレーム38中にフレームの下面から部分的に延びた内側にねじを切ったボアに受容される。上部ガスケット42と下部ガスケット44は一緒になって、(i)上部マイクロ濾過ウェルアセンブリとキャリッジフレームとの間、および(ii)キャリッジフレームと下部真空チャンバアセンブリとの間に、各々、実質的に気密のシールを形成する助けとなる。
【0081】
ガスケット(21、42、および44)は、シールを形成可能な任意の、変形可能な、弾力性の、実質的に不活性な材料で形成され得る。このような材料の例は、シリコーン、ゴム、ポリウレタンエラストマーおよびポリ塩化ビニルである。各ガスケットの厚みは重要ではなく、シールを形成するのに十分で有りさえすればよい。典型的なガスケットの厚みは、約1mm〜約5mmの範囲である。
【0082】
一旦、適切な気密シールが形成されたら、下部真空チャンバ29の排気により、実質的に均一な圧力低下がサンプルウェル18全体にわたって確立され、複数の個別のサンプル(例えば、図示した実施形態では96まで)を、選択したメンブレン上で同時に処理することが可能となる。
【0083】
当業者は、フィルタ媒体の選択はウェルの意図される用途に依存することを認識する。例えば、フィルタ媒体はサイズ排除フィルタとして作用してもよく、あるいは液相中の種
と相互作用する固相として作用して、このような種を、接触(例えば免疫学的相互作用または任意の他のタイプの親和性相互作用)の際に固定化してもよい。適切なフィルタの例としては、限定されないが、ニトロセルロース、再生セルロース、ナイロン、ポリスルホン、ガラス繊維、ブローされた(blown)マイクロファイバー、および紙のフィルタが挙げられる。適切なフィルタは種々の供給者、例えば、Schleicher & Schuell Inc.(Keene,N.H.)およびMillipore Corp.(Bedford,Mass)から入手可能である。
【0084】
適切なフィルタのさらなる例としては、超純粋石英(SiO2)のマイクロファイバー
フィルタが挙げられ、これは例えば、Whatman、Inc.(Tewksbury,MA)で製造され、商品名QM−AおよびQM−Bとして販売されている。QM−Aフィルタは約0.45mm厚であり、約0.6μmの粒子を保持する。QM−BフィルタはQM−Aと同じ組成であるが、2倍厚く、従って、より長い曲がりくねった流路を提供する。1つの実施形態において、石英またはガラスフィルタ要素は、粒子の生成を低減するために、マイクロ濾過ウェル中に置かれる前に、焼成(例えば約400℃で)され、それによりドリップディレクタの詰まりの可能性を低減する。
【0085】
他の実施形態において、フィルタ媒体は多孔質の要素であり、これはフリットとして作用し、カラム充填材(例えば、逆相またはサイズ排除充填材)を入れる役に立つ。
【0086】
(i)共通のフィルタシートを横切るウィッキング(wicking)による相互汚染、および(ii)個別のフィルタ要素がサンプルの構成要素を実質的な死容積(dead
volume)中にトラップすることに関係する上記の問題に対して向けられた本発明の特定の局面を、以下、より詳細に説明する。
【0087】
図3の断面図からの1つのマイクロ濾過ウェルを拡大して詳細に図4に示す。ミニカラム12およびドリップディレクタ16は軸方向に整列および嵌合し、ドリップディレクタ16の上向きに突出した部分はミニカラム管腔の下部領域内にぴったりと受容されて、実質的に流体密のウェル18を形成する。
【0088】
ドリップディレクタおよびミニカラムを一緒に保持する手段が提供される。1つの実施形態において、超音波溶接または接合(図示せず)が、図4で符号48によって示されるように、接触する環状領域に沿って形成され、ミニカラム12およびドリップディレクタ16を一緒に保持する。このような溶接または接合は、これらの要素間の流体密界面の保証を助けることが理解されるべきである。別の実施形態において、ミニカラム12およびドリップディレクタ16は、プレート10および14の対向する面に沿って形成されるさねはぎ(torgue−in−groove)配置(図示せず)によって一緒に保持される。例えば、カラムプレートは、その下面に沿って深い刻み目または溝を有するように形成され、各ウェルに外接する。ドリップディレクタプレートの上面には上向きに突出したリッジが設けられ、これはカラムプレートの溝パターンと相補的なパターンで配置され、そして溝内にスナップ装着されるように形作られる。あるいは、ドリップディレクタとミニカラムとの嵌合はプレートを摩擦係合のみによって一緒に保持するように十分にぴったりとしていてもよい。
【0089】
各個別フィルタ要素をそれぞれ組み立てられたマイクロ濾過ウェル内に保持するための手段が提供される。これに関して、各フィルタ要素はミニカラム管腔内に配置され、その結果、その周縁部が(i)ミニカラムの下部内の直径が狭窄した領域と(ii)ドリップディレクタの上部との間に保持される。フィルタ要素の中央領域はミニカラム管腔を完全に横切って延びる。
【0090】
図4の実施形態において、ミニカラム12はボア(bore)12aおよび反対ボア(countorbore)12bを備えるように形成され、後者は上向きにミニカラムの下端または縁部12cから延びる。ボア12aおよび反対ボア12bとの間に、移行領域がある。移行領域は直径が狭窄した領域、すなわちショルダーを、ミニカラム管腔中に提供し、これは対応のドリップディレクタの上部と協同してフィルタ要素を適切な場所に維持し得る。移行領域とボアおよび反対ボアとの接合部は任意の適切な形状であり得る。例えば、このような接合部は鋭い角はたまコーナーの形状を取り得、あるいは滑らかなカーブの形状をとり得る。さらに、移行領域それ自体が、このような接合部の間で、任意の形状、例えば、平板、曲線、段状、あるいはこれらの任意の組合せであり得、ただし適切な直径が狭窄した領域がミニカラム管腔中に、フィルタ要素の上端部領域と接触するために設けられる。
【0091】
1つの好適な実施形態(図4に示される)において、ボア12aおよび反対ボア12bの間の移行領域は、12dで示される、内側の環状ショルダーを規定する。この実施形態において、ショルダー12dとボア12aおよび反対ボア12bとの接合部の各々は、鋭い角度またはコーナーを規定する。このような接合部の間で、ショルダー12dは実質的に一定のテーパーを有する環状壁の形状をとり、反対ボア12bからボア12aの方向に沿って円周が減少する。長手方向に、ショルダー12dの表面はボア12aおよび反対ボア12bの表面に対して斜行する。好ましくは、ショルダー12dの表面は、ミニカラムの中心軸に垂直であり、かつショルダー12dと反対ボア12bとの接合部を通って延びる平面に対して鋭角を形成する。1つの実施形態において、この角度は図4においてαで表され、約30−85度の範囲内に入り、そして好ましくは約60−85度の範囲内である。
【0092】
ドリップディレクタ16は、ウェルからの移動相の溶出を、これを下方の開口部に向かって漏斗を通すことによって促進するように形作られる。図4の実施形態において、ドリップディレクタ16は、(i)ドリップディレクタプレート14の上面の平面の上に位置する環状の縁部またはリム16a、(ii)垂下する収束性の側壁16b、および(iii)ドリップディレクタプレート14の下面の平面の下に位置する縦樋または出口ポート16cを含む。下向きに傾斜した収束性の側壁16bの内側表面は、リム16aと出口ポート16cとの間で、円錐形および/またはホルン型のキャビティをウェル管腔の下部領域で規定する。
【0093】
先に述べたように、ドリップディレクタ16の上部は支持構造を提供し、これはフィルタ要素の下部周縁部領域に接するように適合される。図4の実施形態において、このような構造は上部の環状リム16aの形態をとる。リム16aの最上部領域(すなわち、リム16aの、フィルタ要素の下部周縁部領域に直接対面し、これを支持し得る部分)の表面積は変化し得る。1つの好適な実施形態において、リム16aの最上部領域は狭い円状の線を規定する。この実施形態において、リム16aとフィルタ要素8aとの接触部は接線の性質である。すなわち、リム16aとフィルタ要素8aとの間の接触領域は、非常に細い、円状の線を規定する。リム16aはフィルタ要素8aの底部表面積の約15%以下、および好ましくは約10%未満、そしてより好ましくは約5%未満と接する。
【0094】
図示した実施形態において、フィルタ要素8aの周縁部領域はショルダー12dとリム16aとの間に、フィルタ要素を適切な位置に固定し、かつその周囲の側縁部をカラム管腔の内面に対して圧迫するのに有効な様式で、好ましくは挟持または圧迫される。この配置はフィルタ要素が上向きまたは下向きに動くことを妨げて、その縁部の周囲の漏出を防止する。
【0095】
図5は、部分横断面図であり、本発明の1つの好適な実施形態に従って構築されたマイ
クロ濾過ウェルを示す。フィルタ要素8aはドリップディレクタのリム16aとミニカラムのショルダー12dとの間で圧迫され、その結果、メンブレンが適切な位置に固定して保持される。さらに、この圧迫装着は、フィルタ要素の外側の周囲側縁部領域を、流体がフィルタ要素の縁部の周囲をバイパスすることを避けるのに有効な様式で、カラム管腔の内壁に対して圧迫する。ショルダー12dはミニカラム管腔中に約45度の角度αで延びている。さらに、リム16aの最上面領域は最小限であり、円状の線に近づき、そのためフィルタ要素の最外部の周辺部のみがこれと接する。
【0096】
引き続き図5を参照して、圧縮および死容積の両方が、このようなマイクロ濾過ウェルの1つの中のフィルタ要素について、Prametric Technology Corporation(Waltham,MA)によるコンピュータ援用エンジニアリングパッケージ「Pro/ENGINEER」(リリース18)を用いて見積もられている。950μm厚のQM−B(Whatman,Inc.、Tewksbury、MA)フィルタ要素(直径6.88mm)についてのメンブレンの圧縮はわずか約2.6μl(図5の領域52)であると見積もられ、このようなフィルタ要素の死容積はわずか約3μl(図5の領域54)であると見積もられる。
【0097】
フィルタ要素8aの下で、ドリップディレクタ16の収束性の側壁16bの内側面はキャビティを規定する。キャビティは、フィルタ要素の下面の大部分が開放された、あるいはフリーの空間を曝露するように形作られる。このようなフリーの空間をフィルタ要素8aの下に提供することによって(すなわち、ドリップディレクタの収束性側壁16bとフィルタ要素の下面との間の容積)、優先的な流路が回避される。
【0098】
別の実施形態において、フィルタ要素がキャビティの中に垂れ下がること、あるいは移動することを防止するために、本発明は各フィルタ要素の中心点または領域を支持するための構造を提供する。例えば、支持バットレスがドリップディレクタ16のキャビティ内に配置され、フィルタ要素の下面の1つ以上の中央に位置する領域のための台となる、点、縁または面を提供する。ここで用語「中央」は、フィルタ要素の周縁部の半径方向に内側に位置する、フィルタ要素の部分を意味し;そして特に、ミニカラムの直径が狭窄した領域とドリップフィルタの最外部のリムとの間に保持または挟持されていない部分を意味する。好適な実施形態において、このような支持構造の最上部領域はドリップディレクタリムの最上部と実質的に同一平面である。このような構造はフィルタ要素がキャビティ中に下がり、あるいは移動することを防ぐことが理解されるべきである。これは、実質的な機械的強度および/または剛性に欠けるフィルタ要素に関して、特に有利である。
【0099】
図6の分解図に示される1つの好適な実施形態において、このような支持構造は58a−58cで示される3つのフィン様の支持バットレスの形態をとり、これはドリップディレクタ16のキャビティ内に中央の出口ポート16cの周囲に半径方向に、等距離で間隔を置いて配置される。他の任意の合理的な支持バットレスの数(例えば、4または6)がその代わりに用いられ得ることを理解すべきである。フィルタ要素8aの下面の小さい部分が、支持バットレス58a−58cの長く細い最上面または縁部の上に載置される。好ましくは、支持バットレス58a−58cは、実質的な死容積または優先流を系内に導入せずにフィルタ要素を支持するように形作られる。この点に関して、各支持バットレスの頂部は、フィルタ要素に近接し、カーブ、アーチまたは角度をなし得、その結果、フィルタ要素8aと各バットレスとの間の接触領域が実質的に線に沿う(すなわち接線の性質)ようにされる。さらに、各支持バットレスの輪郭は流体の流れ方向に沿って、狭くなり、流線型となる。
【0100】
図示した実施形態において、支持バットレス58a−58cはドリップディレクタ16と一体に形成される。あるいは、複数の不連続な支持バットレス配置(図示せず)は、流
動ディレクタとは独立して形成され、それぞれのドリップディレクタの中に取り外し可能に配置されてもよく、あるいは永久に固定されてもよい。
【0101】
有利には、本発明はまた、非常に効率的かつコスト的に有効な、本明細書に記載の装置の製造方法を提供する。1つの実施形態によれば、フィルタ材料のシートを、第1のプレートであって、その中に形成されたミニカラムを有し、ここにサンプルが配置される得る第1のプレートと、第2のプレートであって、排出導管、またはドリップディレクタを有し、サンプルがそこを通って出て来ることができる出口を有する第2のプレートとの間に配置する。プレートは、ミニカラムが軸方向にドリップディレクタと整列するように位置決めされる。次にプレートを互いに圧迫し、ドリップディレクタの上向きに突出している部分がミニカラム管腔の下部領域内にぴったりと収容されるようにする。後者の操作の間に、流路が形成され、これはミニカラム内からドリップディレクタの出口に延びる。また、圧縮行程の間に、フィルタ媒体の小片がシートから切断され、そしてミニカラム内の流路の部分を横切って配置される。
【0102】
本発明の方法は、上で詳述したマルチウェルマイクロ濾過装置の構築に特に有利である。従って、本発明の方法を、以下、図示された装置を参照して説明する。フィルタシート8をカラムプレート10とドリップディレクタプレート14の対面する面間に、図2に示すように、挿入する。プレート10、14を、各ミニカラム12が軸方向に対応するドリップディレクタ16と整列するように配置する。次にプレート10、14を互いに圧迫して、実質的に図3に示すような構成を達成する。圧縮行程の間に、各ドリップディレクタ16の上部環状リム16aはダイとして作用し、フィルタ媒体8aの小片を(例えば、ディスク状に)フィルタシートからパンチする。さらに、ドリップディレクタ16をミニカラム12に対して圧縮することで、フィルタ要素がミニカラム管腔内の適切な位置に固定される。その結果、フィルタ要素8aの外側の周縁部がドリップディレクタ16の上部環状リム16aとミニカラム12の内部の環状ショルダー12dとの間に挟持される。次にドリップディレクタ16およびミニカラム12は任意の適切な手段によって互いに固定される。例えば、超音波溶接またはさねはぎの配置は、ミニカラム12とドリップディレクタ16とを上述のように一緒に保持し得る。
【0103】
本発明のさらなる局面は、マルチウェルマイクロ濾過配置に関し、これは各ウェルから外への濾液の流動を提供し、他方、エアロゾルまたはスパッタリングによる相互汚染を回避する。
【0104】
先に記載したように、収集ウェルアレイはドリップディレクタアレイに対応し、各ドリップディレクタは直接、受容または収集ウェルの上に配置される。収集ウェルプレートは、次に、下部真空チャンバの開放レザーバー内にフィットするように適合され、収集ウェルはこのレザーバー中に延びる。適切な真空を下部チャンバー中に確立すると、濾液は各マイクロ濾過ウェルから対応の収集ウェル中に流れる。本発明のこの局面によれば、濾液に付随するエアロゾルおよびウェルのいずれかに存在する残渣が近隣のウェルに移動し、そして近隣のウェルを潜在的に汚染することを妨げる手段が提供される。このような手段は、例えば、クロスフローレストリクタ(エアロゾルガードとも称される)を含み得、これは実質的にエアロゾル不透過性の材料で構成され、収集プレートの上面とドリップディレクタプレートの下面との間の領域に挿入される。エアロゾルおよび濾液に関連する残渣の通過を制限しながら、クロスフローレストリクタは真空がその中を通って吸引されることができるように適合される。
【0105】
具体的に図2および3の実施形態を参照すると、シート状クロスフローレストリクタ30は通路32のアレイを備え、これは収集ウェルアレイおよびドリップディレクタアレイに対して相補的であり、これは濾液が各マイクロ濾過ウェル18から対応の収集ウェル2
6に通過することを可能にする。このような通路以外は、クロスフローレストリクタ30はドリップディレクタと収集ウェルプレート(14、24)の対面する面の間の領域を実質的に充填する。この方法において、エアロゾルが収集プレート24の上にウェルからウェルに移動することは実質的に阻止される。従って、エアロゾルの移動によって提示される相互汚染のリスクは実質的に軽減される。さらに、いずれか1つの収集ウェルで形成されて、不注意でクロスフローレストリクタを通過するエアロゾル(すなわち、効果的に阻止または捕捉できなかったエアロゾル)は、真空源によって、隣接の開口部28を通ってプレート24の下の領域に向かって下向きに吸引され、以下、より詳細に記載するように、近隣の収集ウェルの開口部の上を通過することはない。
【0106】
本発明の実施形態は、クロスフローレストリクタを収集ウェルプレート24の上面またはドリップディレクタプレート14の下面に取り付けることを意図する。このような取付は任意の適切な手段、例えば、ファスナー、溶接および/または1つ以上の接着剤、例えば、テープ、ガム、セメント、ペースト、または糊を用いて行われ得る。エアロゾルガードをプレートに取り付ける代わりに、エアロゾルガードは単純にプレートの対面する面の間に挟持され得、そして、例えば摩擦力および/または圧縮力によってその場所で維持される。
【0107】
エアロゾルガードは例えば、約0.10インチから0.15インチ厚の単一のシートとして形成され得るか、あるいは、例えば各々約0.060インチから0.065インチ厚の2枚以上のシートから層状に配置されて形成され得る。1つの好適な実施形態において、単一層のエアロゾルガードであって、従順な性質を有する多孔質親水性ポリマー、例えばエチルビニルアセテート(EVA)などから作製されるものが、ドリップディレクタプレートの下面に感圧接着剤を用いて取り付けられる。他の実施形態は、多層の構築物を意図し、これは:(i)約0.062インチ厚の発泡パッドを含み、両面に感圧接着剤を有する順応層(conformant layer)、および(ii)約0.062インチ厚の多孔質のUHMW(超高分子量)ポリマー層であって、空気を透過するが、実質的にエアロゾルを不透過のもの、を含む。この後者の実施形態において、順応層はドリップディレクタプレートの下面に取り付けられ、そして次にUHMWポリマー層が順応層に取り付けられる。
【0108】
他の材料(すなわち、疎水性、非ポリマー性など)は、この材料(単数または複数)がエアロゾルの通過を有効に制限しながら、それを通る真空の吸引を可能とする場合のみ、従順な本発明のエアロゾルガードを形成するために用いられ得る。
【0109】
他の実施形態において、エアロゾルのウェルからウェルの移動に起因する相互汚染を回避する手段は、収集プレート24の表面を通って延びる通気口または開口部28を含む。1つの好適な実施形態において、少なくとも1つのこのような開口部が各収集ウェルの近くに配置される。プレートの下から適用される減圧が、開口部を通ってマイクロ濾過ウェルに及ぶことが理解されるべきである。
【0110】
任意の数および空間的形状の開口部を利用してもよく、ただし、各ドリップディレクタの出口と対応の収集ウェルとの間の領域が、収集プレートの下の領域と、隣接のウェルの開口部を越えて通過しない通路に沿って流体連絡(すなわち、真空可能)で配置されればよい。例えば、開口部は4つのウェルのグループの中心に設けられ、ウェルは四辺形上の角の周囲に配置される。このような4ウェルグループを24個設けることによって、標準的な96ウェルの配置の各ウェルにそれに隣接した通気口または開口部が設けられ得る。あるいは、開口部の数は収集ウェルの数と等しいかまたはそれより多く、各ウェルは1つ以上の近接した付随の開口部をその近傍に有する。例えば、96ウェル収集プレートに、少なくとも96個の開口部が、各ウェルがすくなくとも1つの近接した付随の開口部を有
するように設けられ得る。これに関して、開口部は例えば、12×8または13×9の規則的な矩形アレイで配置され得る。
【0111】
先に述べたように、開口部28は収集ウェルプレート24の上と下との間の流体連絡を可能とする。下部真空チャンバ29を排気すると、真空は出口ポート51から各マイクロ濾過ウェルと対応の収集ウェルとの間の領域に達して確立される。特に、真空は各マイクロ濾過ウェル18から収集ウェルプレート24とドリップディレクタプレート14の対面する面との間の界面領域の中に延びる流路に沿って引かれる。真空流路は次に収集プレート表面25をそれぞれの通気口28経由で下向きに横切って、チャンバ29の開放レザーバーに入る。ここで、真空流路は下部チャンバに沿って延び、出口ポート51まで達する。図3において、大きな黒い矢印は例示の真空流路を示す。有利には、真空流に同伴するエアロゾルおよび濾液残渣は大部分が各収集ウェル領域から遠ざかる方向に向き、隣接の収集ウェルの上を通過することなく系外に出る。また、真空経路は、流れが大部分下向きで、かつ層流の性質となるように促進するような様式で向けられることが理解される。クロスフロー、従って乱流は、多くの従来の配置と比べて大幅に低減される。
【0112】
図示した実施形態は、クロスフローレストリクタ30を直前で記載した通気口を空けた収集ウェルプレート24と組み合わせて用いることを示す。注目すべきことに、クロスフローレストリクタ30は開口部28を覆い、その結果、各マイクロ濾過ウェル18と対応の収集ウェル26との間の領域から収集ウェルプレート24の下の領域に、開口部28の近くを経由して延びる真空通路は、クロスフローレストリクタ30を通過しなければならない。クロスフローレストリクタ30は真空がそれを通って引かれることを可能とするが、エアロゾルの通過を妨げ、濾液に付随するエアロゾルは吸引される真空から実質的に分離され(すなわち、クロスフローレストリクタで濾別される)、それによりウェルからウェルへと収集プレートの表面25の上をエアロゾルが移動する可能性が、さらになお低減される。
【0113】
一元のクロスフローレストリクタを複数のドリップディレクタおよび収集ウェル(例えば、その中を通って延びる複数の円形の穿孔を有するシート)に対して、上記のように、かつ添付の図面に記載のように利用する代わりに、別の実施形態は、複数の個別のカラーまたはスカート様のクロスフローレストリクタを意図する。水平断面において、このような個別のクロスフローレストリクタは任意の適切な形状、例えば、環状、長円形、長方形(oblong)などであり得る。1つの実施形態において、各々の個別のクロスフローレストリクタは、1つのドリップディレクタと対応の収集ウェルとの間の領域を同軸で横方向に取り巻く。このようなクロスフローレストリクタは実質的に剛直な材料(例えば、ドリップディレクタプレートの材料と同様)で形成され得、あるいは、従順な多孔質の親水性材料、例えば、エチルビニルアセテート(EVA)などのようなポリマーで作製され得る。1つの実施形態において、実質的に剛直な複数の環状または長円状のクロスフローレストリクタは、トレーの1つと共に一体成形される。例えば、ドリップディレクタプレートの下面から垂下し、そして各ドリップディレクタの周囲で、収集ウェルプレートに向かって延びる。さらに、このような剛直なクロスフローレストリクタの各々は、真空が、ドリップディレクタプレートの下に位置する収集プレートの下から、取り囲まれたドリップディレクタの近傍領域に延びることを可能とするように構成される。これに関して、各クロスフローレストリクタは、対応の収集ウェルに加えて、収集プレートの下の領域に至る隣接の開口部も包含するように形作られ得る。すなわち、クロスフローレストリクタは、対応の収集ウェルおよび隣接の開口部の両方の周囲に延びてもよい。別の実施形態において、クロスフローレストリクタはその対応の収集ウェルのみの周囲に延びる。すなわち、クロスフローレストリクタは隣接の開口部をさらに包含しない。むしろ、この実施形態では、小さいスルーホールが開口部の近傍でクロスフローレストリクタの中に形成され、開口部とドリップディレクタの近傍の領域との間の流体連絡を可能とする。先に記載した
シート状のクロスフローレストリクタ30と同様に、個別のクロスフローレストリクタは、濾液のスパッタリング、およびエアロゾルが収集ウェルの上面を横切って望ましくない横方向の移動をすること(これは相互汚染をもたらし得る)に対して保護することが理解されるべきである。
【0114】
先に述べたように、収集ウェルプレートの上および下の領域間に確立される真空フロー経路は、本明細書に記載の全ての実施形態において、大部分が層流の下向きの流れ(任意の同伴ガスおよび/またはエアロゾルを含む)を促進する様式で経路が定められる。従来の大部分の配置と比べて、収集ウェルプレートの上面をわたる水平方向の流れは大幅に最小化された。これはマイクロ濾過および収集ウェルの近傍の領域の場合のみならず、プレートの周縁部領域についての場合でもある。これに関し、そして図3の実施形態を特に参照して、内向きに延びる段状のガスケット44のフラップ44aと収集ウェルプレート24のリッジ48の頂部との間の接触は、その間の空気の流れが妨害され、あるいは遮断(baffled)されるように接触する。従って、下部真空チャンバ29を排気すると、段状ガスケット44の上の矢印46で示される領域中の位置する気体は、通気口28を通って下部真空チャンバの中に吸引される。段状ガスケット44の下面の下の空間中の気体は、概して矢印47で示され、これは他方で、収集ウェルプレートと真空チャンバ29の周囲の面50との間に設けられたギャップ49を通って、下部真空チャンバ中に吸引される。収集ウェルプレートをこの方式で横切る水平の空気流の程度を制限することで、この配置の周縁部に沿うクロスフローからもたらされる乱流は最小化される。
【0115】
ウェルからウェルのエアロゾルの移動、ならびに濾液のスパッタリングによる相互汚染を回避するためのさらなる手段は、各ドリップディレクタ下部開口部を対応の収集ウェルの上部リムまたはリップに対して位置決めすることに関連する。この特徴によれば、各ドリップディレクタ16の出口ポート16cはドリップディレクタプレート14から下向きに延び、対応の収集ウェル26に入る。これに関して、各ドリップディレクタ16の下部は、収集プレート24中の対応の収集ウェル26の開放頂部と合う(register)ことができる直径を有する。図3の実施形態に示すように、各ドリップディレクタ16の16cの出口部分は対応の収集ウェル26の上部リムまたはリップの下に位置する。出口ポート16cを収集ウェル26の内側側壁によって横方向に取り巻かれた領域に置くことによって、濾過の際に発生するエアロゾルの多くは、横向きに隣接の収集ウェルの方向に動くのと反対に、収集ウェルの壁に衝突する。さらなる利点として、このようにドリップディレクタ出口を配置することは、濾液のはねを低減するのに役立つ。
【0116】
関連の局面において、本発明はエアロゾルがマルチウェルマイクロ濾過系のウェルからウェルへのエアロゾルの移動による相互汚染を回避する方法を提供する。1つの実施形態によれば、この方法は以下の工程を包含する:
(i)マイクロ濾過ウェル(流体サンプルを含む)のアレイを対応の収集ウェルのアレイを支持する収集ウェルトレイの上に設ける工程;
(ii)真空を(a)各マイクロ濾過ウェルから(b)収集トレイの上面によって規定される平面を通って、対応の収集ウェルのところで、またはそれに隣接して、下向きに、(c)収集トレイの下の領域に延びる流路に沿って引く工程であって、それにより濾液の各マイクロ濾過ウェルから対応の収集ウェルへの流動を引き起こす工程;および
(iii)任意のマイクロ濾過ウェルで濾液から形成されるエアロゾルが、収集トレイの上面を横切って非対応の収集ウェルに移動するのを防いで、これにより相互汚染を制限する工程。
【0117】
上記の装置は特にこの方法を行うのに適していることが理解されるべきである。例えば、図3に示す下部チャンバ29のような真空チャンバは、マイクロ濾過ウェル18中に配置されたフィルタ要素8a、8bを横切る圧力差を確立するために、真空ポンプ(図示せ
ず)のような低圧源に接続され得る。次に、減圧により濾液がドリップディレクタ16から発出される。エアロゾルガード30は、任意のマイクロ濾過ウェル18で濾液から形成される濾液付随エアロゾルが収集ウェルプレート24の上面25を横切って隣接の収集ウェルに移動することを制限する手段を提供する。開口部28は、収集プレート24の表面25を通って延び、これが真空を、隣接の収集ウェルの開口部を越えて通る必要なしに、各マイクロ濾過ウェルと収集ウェルプレート24の下の領域との間に延ばす。
【0118】
下部チャンバを排気するとき、非常に低い圧力(例えば、約2psi未満、好ましくは約1psi未満)を利用することに組み合わせて、圧力を所望の値までゆっくりと変化させ(勾配をつける)ることが、エアロゾルによる相互汚染の可能性をさらに低減するために有利である。例えば、周囲圧力から約0.75〜約2psiの範囲の値まで行く場合、約2〜3秒の勾配時間が使用される。
【0119】
本発明の他の局面は、各ウェルから濾液を流すために提供され、他方種々のマイクロ濾過ウェルのドリップディレクタに付着し得る吊下液滴(pendent
drops)による相互汚染を回避する、マルチウェルマイクロ濾過配置に関する。先に述べたように、このような吊下液滴は、ドリップディレクタプレートを収集ウェルプレートの上で移動させたときに、隣接の収集ウェルの中に落ちることがある。
【0120】
1つの実施形態によれば、マイクロ濾過ウェルはその上部開口部の方向に排気され、それにより、そのドリップディレクタから懸下する(hanging)流体の吊下液滴がウェルの中に引き戻される。排気を達成するために、圧力制御源(例えば真空ポンプ)がミニカラムの上部領域に連絡し、これはミニカラムをドリップディレクタから上部開口部に延びる方向に排気するように操作可能である。
【0121】
他の実施形態は、ドリップディレクタのチップの「タッチオフ」を提供し、ドリップディレクタから懸下し得る濾液の吊下液滴を除去する。これに関して、全てのマイクロ濾過ウェルのドリップディレクタの出口は、対応の収集ウェルの内部側壁に同時に接触させられる。
【0122】
ドリップディレクタプレートと収集ウェルプレートとの間で相対的な移動を達成し、排出導管を同時に動かしてそれぞれの収集ウェルの内壁に接触させ、そして離す手段が提供される。1つの実施形態において、このような手段は収集ウェルプレートをマイクロ濾過ウェルの長手軸に対して実質的に直交する平面に沿って移動させるように操作可能であり、この間、マイクロ濾過ウェル自体は実質的に固定した位置に維持される。他の実施形態において、相対移動を行う手段は、マイクロ濾過ウェルを収集ウェルの長手軸に対して実質的に直交する平面に沿って移動させるように操作可能であり、この間、収集ウェルは実質的に固定した位置に維持される。
【0123】
相対移動を達成するための例示の配置を図7〜10に示す。最初に図7および8を参照すると、符号60で示されるようなL型のキャリッジが設けられ、これは中央開口部62を有し、これは概して6で示されるマルチウェルマイクロ濾過アセンブリを上方から収容および支持するように形作られている。キャリッジ60の下に収集ウェル26のアレイを有する収集プレート24が下部真空チャンバ(図示せず)の中に支持される。
【0124】
キャリッジ60は、第1の実質的に水平な軸に沿って往復線形運動するための一対の平行な長手軸キャリアレールに装着される。図示した実施形態において、キャリアレールの一方は線形のベアリングレールであり、64で示され、これはキャリッジ60を、キャリッジ60の下面に一方の横の縁部に向けて取り付けられた、挿入されたベアリング部材65を介して支持する。他方のキャリアレールはU字形のベアリングガイドであり、66で
示され、これはキャリッジ60の他方の縁部から横向きに外側に延びるベアリングホイール68を、細長トラックまたはスロット66aの中に収容する。
【0125】
キャリッジ60は、ベルトアセンブリによってレール64、66に沿って移動し、ベルトアセンブリは可撓性のベルト70で構成され、これはその末端がU字形のブラケット74の長手軸末端のそれぞれに付着しており、ブラケット74はスプリングを装着した移動制御機構72の一部を形成し、以下、より詳細に記載される。ベルト70は駆動76ローラおよびキャリアレール配列の長手方向の反対の末端の近傍に位置するアイドラーローラ78の周囲を通る。すべりを防ぐため、ベルトには歯70aが設けられてもよく、これはローラ上の歯76a、78aの相補的なセットと嵌合係合するように適合される。
【0126】
駆動ローラ76は、該して参照番号84で示されるような、動力トレインアセンブリを通して、82のようなモータと機械的に連絡している。モータ82が電圧を加えられると、ベルト70が動き、キャリッジ60をキャリアレール64、66に沿って滑動させ、移動の方向は、モータ82から延びる駆動軸86の回転に依存する。モータ82は、任意の適切な公知のタイプ、例えば、ステッパモータ、サーボモータ、または類似の装置、であり得る。
【0127】
本発明の1つの好ましい実施形態は、ベルトを動かすためのステッパモータの使用を考慮する。予備知識として、ステッパモータは、個々のステップで動く特殊なタイプのモータである。サーボモータと異なり、ステッパの位置は、その位置をチェックするための高価なエンコーダの必要なしに決定され得る。ステッパモータは、その簡単な制御および駆動回路構成のために、サーボシステムより費用効果がかなり高い。ステッパモータには取り換えるブラシが無く、保守管理の頻度を減らす。それらの使用の容易さおよび比較的低い費用のために、ステッパは、多くの最新のコンピュータ処理される運動制御システムのために、しばしばサーボモータより好まれる。
【0128】
本発明のこの実施形態に従って、制御システムは、所望の様式でステッパモータを作動させるために提供される。例えば、Motorola68332のような小型制御器は、従来の技術を使用するモータの制御に利用され得る。
【0129】
前述のように、モータ82のステッピングは、モータの軸86の回転の方向に依存する運動の方向で、ベルト70をローラ76、78の周りで運動させる。ベルト70の運動は、次は、キャリッジ60をガイドレール64、66に沿って滑動させ、それによってドリップディレクタアレイ16を収集ウェルアレイ26に対して側方に移動する。このドリップディレクタ16が、それぞれの収集ウェル26内に延びるように位置決めされると、与えられた方向への十分なステッピングは、図9(A)〜9(B)の断面図に示されるように、このドリップディレクタ16を、収集ウェル26の上部内面に係合させる。このようにして、ドリップディレクタ16に懸下する濾液の液滴は、個々の収集ウェル26の内面に「タッチオフ」される。同様に、ステッピング方向を逆にすると、ドリップディレクタ16は、収集ウェル26の対向側で、上部内面に係合するように移動され得、吊下液滴の効果的なタッチオフをさらに確実にする。
【0130】
前述のように、本発明の代替の実施形態は、ベルトを動かすためのサーボモータの使用を考慮する。このような実施形態の一つでは、エンコーダ(図示せず)のような位置的なフィードバックを提供する手段は、このサーボモータの位置を追跡するために提供される。
【0131】
キャリッジは、マイクロ濾過配置6を第二の概して垂直な軸に沿って移動し、位置決めするための手段をさらに支持する。図7の実施形態を特に参照すると、垂直位置決め機構
は、マイクロ濾過配置のそれぞれの側面側に沿って、キャリッジの上部表面上に配置される。各位置決め機構は、以下を含む:(i)ドリップディレクタ16が収集ウェル26の上部のリップを完全に離れる上昇位置まで、マイクロ濾過配置6を上昇させるような継続的な上向きの力を提供する、92のようなリフトバネ、および(ii)各ドリップディレクタ16が各収集ウェル26の上方領域に及ぶ収容位置まで、リフトバネ92の力に抗して、マイクロ濾過配置6を降下させるように操作可能である、94のような流体シリンダ。その完全に収容された(降下された)位置では、マイクロ濾過配置6は、低真空チャンバとともにシールを形成する(図示せず)。
【0132】
バネ92および流体シリンダ94の両方は、それらの上端部で、96として示されるハンドルを係合し、このハンドルは、マイクロ濾過配置の支持フレーム38の各側部から上方外側に延びる。1つの実施形態では、バネ/シリンダ配置は、以下の三つの位置のいずれか一つで、マイクロ濾過配置を保持するように操作可能である:(i)上または移動の位置、(ii)タッチオフ位置、および(iii)下またはシールの位置。
【0133】
タッチオフ操作は、ドリップディレクタ16が少なくとも部分的に収集ウェル26内に及ぶことのみを条件として、第二の(垂直な)軸に沿った任意の位置に配置されたマイクロ濾過配置6で実行され得る。1つの実施形態では、ドリップディレクタ16の、その出口16cに最も近い最下部領域が、収集ウェル26の内部表面に当接するように、マイクロ濾過配置6がその完全に収容された位置より上にわずかに上昇されることで、ドリップディレクタ16の収集ウェル26の内部側壁へのタッチオフは、達成される。
【0134】
その出口に近接するそれぞれのドリップディレクタ16の領域は、吊下濾液の液滴すべてがドリップディレクタ16のある領域に局在化することを促進し、そしてタッチオフの間の、このような領域と、対応する収集ウェル26の内部側壁との接触を最適化するように、形作られ得る(例えば、その下位の円周付近で角度を付けられるかまたは面取りされる)。同様に、それぞれの収集ウェル26の上部領域もまた、ドリップディレクタ16から濾液の吊下液滴の全てを実質的に取り去るために、タッチオフの間にこれらの要素間に適切な接触がなされるように形作られ得る(例えば、形作られたドリップディレクタ16と相補的な手法(すなわち、ぴったり合う)により)。1つの好ましい実施形態においては、図9A−Cで示され得るように、上部の、それぞれの収集ウェルの領域は、外向きに角度をなす内部側壁で形作られ、これは対応するドリップディレクタの下部の領域に沿った、内向きに角度をなす外部表面にぴったり合い、それによって、タッチオフ操作の間、これらの要素間に実質的に当接する表面を提供する。
【0135】
上述のように、ステッパモータ82がステップするたびにシャフト86に与えられる角回転の分散量は、ブラケット74による与えられた長さの直線移動に最終的に変換される。例えば、モータ82が1回ステップすることにより、ブラケット74は、特定の方向に1/4”移動し得る。ステッパモータ82がタッチオフを達成するために必要とされるスッテプの最小の数が、ドリップディレクタ16を必要よりも遠くへ移動することを引き起こし得るということが認められる。すなわち、ドリップディレクタ16は、内壁の向こうに移動するための連続的な圧力により、収集ウェル26の内壁と係合するように移動し得る。次に記載されるように、このような直線的なオーバーシュートは、吊下液滴の除去を補助し得るため、有利である。ドリップディレクタが、吊下液滴の除去を効果的に促進するために、収集ウェルの側壁に対して適切な位置に移動する(例えば、側壁とのしっかりした当接において)ことが望ましいということは明らかである。適切な量の直線オーバーシュートをドリップディレクタの横への移動に与えることにより、配置に固有な様々な小程度位置的な不正確さにかかわらず、このような位置決めが確保され得る(すなわち、ドリップディレクタは側壁に届かないことがない)。従って、適切な量の直線オーバーシュートを与えることにより、この側壁は、これら自身ドリップディレクタの最終的な位置を
決定する。トルクを比較的低く保つこともまた望ましく、これによりモータのコギングが避けられる。さらに、ドリップディレクタ16および/または収集ウェル26に過大応力をかけることを避けるため、直線オーバーシュートのうちいくつかを吸収するかまたは補償することが望ましい。
【0136】
これらに関しては、本発明の1つの実施形態は、モータ82とキャリッジ60の間の機械的連結システムにおける、バネ負荷動作制御機構72の使用を意図する。この動作制御機構72は、側壁との当接におけるドリップディレクタの正確な位置決めを確保し、一方で、ドリップディレクタ16が移動して収集ウェル26の内部側壁と接触するために必要とされる量を超える、過剰の直線動作を吸収する。さらなる長所としては、動作制御機構72は、キャリッジ60のレール64、66に沿った滑り運動に対する制動抵抗を提供する。
【0137】
1つの実施形態においては、この動作制御機構は、第一の軸に沿った一方の方向へのキャリッジの移動がこのバネを圧縮させるように配置されるバネを備える。図10(A)−(C)の部分概略頂平面図を特に参照して、ベルトアセンブリの一部を形成するU形状のブラケット74は、通常それぞれ102および108と示される大小のボアを有するハウジング101に強固に接続する。ボア102は、半径方向のステップ102cにより分離される、大直径部分102aおよび小直径部分102bを有する。通常104と示される階段状直径シャフトは、半径方向のステップ104cにより分離される、大直径部分104aおよび小直径部分104bを有し、ボア102を通過し、そしてL−形状のキャリッジ60の延長アーム部分60aと、その大直径の端で、強固に装着される。キャリッジ60の実質的に水平方向の配向を維持することを補助するガイドピン106は、キャリッジ60の延長アーム部分60aとその一端で強固に接続し、その他方の端で小ボア108に受容される。ボア102の大直径部分102aの内側で、バネ110は、112および116で示される1対の間隔のあいたワッシャの間で、シャフト104の小直径部分104bを同軸的に取り付ける。この2つのワッシャ112、116は、階段状シャフト104の小直径部分104bに沿った滑り運動のため、同軸的に取り付けられる。バネ110は、この2つのワッシャ112、116が、シャフト104の小直径部分104bの対向の、両極の端の方に促す。位置固定ワッシャ114は、シャフト104の自由端の近くにあるシャフト104の小直径部分104bに形成される周囲溝(図示せず)の内側に設置される。
【0138】
ベルト70が、U字型ブラケット74を、図10Bの矢印「A」によって示される方向に移動させる場合、ボア102がキャリッジ60の延びたアーム60aに向かう方向に、シャフト104に沿ってスライドする。その結果、ボア102の端部で、内側へ放射状に延びる環状リップ120は、ワッシャ112の環状の周辺領域に対して、作用し、ワッシャ112をステッピングシャフト104の小直径部分104bに沿ってスライドさせる。その結果、バネ110を圧縮する。圧縮力が予め付与された保持力に打ち勝つと、キャリッジ60は、同じ方向(方向「A」)にシフトする。
【0139】
ベルト70が、U字型ブラケット74を、図10Cの矢印「B」によって示される方向に移動させる場合、ボア102がキャリッジ60の延びたアーム60aから離れる方向に、シャフト104に沿ってスライドする。その結果、ボア102の放射状ステップ102cは、ワッシャ116の環状の周辺領域に対して作用し、ワッシャ116をステッピングシャフト104の小直径部分104bに沿ってスライドさせる。その結果、バネ110を圧縮する。圧縮力が予め付与された保持力に打ち勝つと、キャリッジ60は、同じ方向(すなわち、方向「B」)にシフトする。
【0140】
1つの実施形態において、バネ110は、約1ポンドの予め付与した力を提供する。従
って、ステッパモータ82から付与された力は、約1ポンドの閾値に打ち勝つまで、キャリッジ60を移動させるのに有効ではない。有利に、この配置は、(i)中心またはニュートラル位置での定固定モード、および(ii)タッチオフを生じるための一定力モードを提供する。このスプリング110は、システム中にコンプライアンスを提供する(例えば、タッチオフが1ポンドで始まって、1.2ポンドで終了することを可能にする)。
【0141】
上記の装置を参照して、本発明の1つの好ましい実施形態が、以下の工程を考慮する:
(i)マイクロ濾過装置6が、キャリッジ60へ装填され、適所にクランプされる;
(ii)キャリッジ60が、下部の真空チャンバ29上の中心に置かれる;
(iii)マイクロ濾過装置6が、その降りた位置へと低くされ(例えば、流体シリンダ94を収縮させることによって)、そして下部真空チャンバ29に渡って密閉される;
(iv)ロボット(示されていない)が、マイクロ濾過装置6の頂部に対して、上部真空チャンバ20を低くし、そして必要に応じて、重なった配置に、例えば約5ポンドの下向きの力を付与する;
(v)下部真空チャンバ29を排気し(例えば、約0.5〜3psi)、溶離/精製を実施する;
(vi)ドリップディレクタ16の最も下部の領域のみが、収集ウェル26の上部リップの下に延びるために、キャリッジ60が、その完全な降りた位置からタッチオフ高さへ、少し上昇する;
(vii)モータ82が、前方方向にステップし、ドリップディレクタ16を収集ウェル26の側壁にタッチオフさせる;
(viii)モータ82が、逆方向にステップし、ドリップディレクタ16を収集ウェル26の対向する内壁にタッチオフさせる;
(ix)モータ82の前方および後方ステッピングが繰り返され、タッチオフステップのそれぞれをもう一度実施する;
(x)キャリッジ60を、下部真空チャンバ29の上で中心に再度配置する;
(xi)マイクロ濾過装置6をその降りた位置に下げ、そして下部真空チャンバ29にわたって密封する:
(xii)必要に応じて、ロボットが、下向きの力(例えば、約5ポンド)を、重なった配置に付与し得る:
(xiii)上部真空チャンバ20が、排気され、吊下液滴の引き戻しを生じる(例えば、約0.1〜0.3psi);
(xiv)マイクロ濾過装置6は、ドリップディレクタ16が完全に、収集ウェル26を離れるように、完全に上昇した位置に上げられる;次いで
(xv)キャリッジ60が、次のステーションに移動させられる。
【0142】
図16は、自動高スループットサンプル調製ワークステーション202を示し、このワークステーション202は、本発明の教示に従って、例えば、マイクロ濾過装置、相互汚染制御装置、ならびに収集ウェルカバーリングおよび熱シーリングアセンブリ(以下に記載される)、ならびに関連した構成要素および試薬を含む。例示されるように、いくつかの収集トレイが、ワークステーションの1つの端部の近傍に並列様式で配列された、隣接する真空チャンバに提供され得る。例えば、トレイ24のような閉鎖底部収集トレイは、最も端の2つの真空チャンバのそれぞれに置かれ得、一方で、開放底部収集トレイが中心の2つの真空チャンバ内に置かれ得る。次いで、キャリッジ60は、マイクロ濾過装置6を連続的に1つの真空チャンバから隣のチャンバへ運搬し得る。例えば、濾液の最初の収集は、ワークステーションの前方に近い閉鎖底部収集トレイ24を保持する真空チャンバにおいて、行われ得る。次いで、連続的な洗浄が、開放底部収集プレートが配置される中心の2つの真空チャンバのそれぞれで実施され得る。次に、濾液の最終収集がワークステーションの後方に近い真空チャンバで行なわれ得、ここには、別の閉鎖底部収集トレイが位置される。
【0143】
空間的な配向に関して、この時点で、種々の構成要素(例えば、上部チャンバ、ミニカラムプレート、フィルタ要素、ドリップディレクタプレート、フレーム、交差フローレストリクター、収集ウェルプレート、およびチャンバ)が、上部真空チャンバを最も上部にある構成要素として、垂直な関係で重ねられるように、本明細書中で例示され、そして記載されることに注意すべきである。さらに、各マイクロ濾過ウェルは、実質的に垂直様式で配置される中心軸を有し、流路がウェルを通って下向きに延びるように記載される。しかし、これらの配向は、詳細な説明の記載における利便性のため、そして本発明の理解を容易にするために、単に採用されただけであることに注意すべきである。実際には、本発明は、構成要素およびウェルが、任意の配向で配置され得ることを意図する。
【0144】
別のその局面において、本発明は、流体サンプルを含むマルチウェルトレイをカバーおよびシールすることを提供する。
【0145】
図11〜14に示される一つの実施形態では、参照番号150で一般に示されるカバー部材は、上部シェル部(一般に154で示される)を備え、これはその下側の面でシーリング層すなわち下面(図11で一般に156で示される)を支持している。上部シェル部154は、実質的に平坦な面158(図12および13)および下面156を側方に取り囲む付随する外周側壁160から構成される。長さおよび幅の寸法に沿って、下面158は、マルチウェルプレート24の上面とほぼ同じ形状で構成され、これにより、ウェル開口部26aのアレイ全体を覆うことが可能となる。
【0146】
図11に最も良く見られるように、下面は、収集トレイ24のウェル26のアレイに対応する矩形アレイに配置された複数の個々の突起(例えば、166)を備える。各突起166は、他の形状が用いられてもよいが、好ましくは、下方に突き出た(例えば、ドーム形状)の下部を有する。突起166は、ウェブまたはシート168により互いから所定の間隔を空けられた関係で保持された弾性のある可撓性の材料から作製される。ウェブ168は、示されるように、突起166で一体的に形成され得るか、あるいは成形されるかまたは適切な位置でウェブに接着して取り付けられる突起で別々に形成され得る。
【0147】
カバー150は、好ましくは、実質的に剛性の材料から構成され、この材料は、マルチウェルプレート24の周囲に沿った対応するリッジ48の領域に対して、対向する周囲縁領域で押下した場合、各ウェル26の上部リップ26bとの係合を押さえる状態に、各突起166の環状領域を維持することができる。下面156にわたる下向きの力を均等に分配することにより、上部シェル部154の上面にわたって横方向および/または長手方向に伸長することができ、これにより、剛性が増加する。
【0148】
下面156は、剛性のある変形可能な材料から形成され、この材料は、開口部26aの上を押されると、シールを形成することができる。下面156を形成するための適切な材料には、例えば、シリコーン、ポリスルフィドナトリウム、ポリクロロプレン(ネオプレン)、ブタジエン−スチレン共重合体などの合成ゴム様ポリマーが挙げられる。上部シェル部154は、実質的に剛性な材料(例えば、ナイロン、ポリカーボネート、ポリプロピレンなど)から形成される。
【0149】
一つ好ましい実施形態では、本発明のカバーは、上部シェル部が初めに成形され、次いでシーリング下面がシェル部に射出成形される、射出同時成形プロセスにより作製される。上部シェルを形成するに有用な好ましいナイロン材料は、ZYTEL(登録商標)等級101(DuPont Co.,Wilmington,Del.)として市販されている。成形されたナイロンシェル部への熱によって引き起こされたダメージを回避するために、好ましいシリコーン材料は、比較低い射出温度および硬化温度(例えば、約180℃
未満)を有する。下面の同時成形に有用な一つの特に好ましいシリコーン材料は、COMPU LSR 2630クリア(Bayer AG,Germany)として市販されている。
【0150】
下面156を上部シェル部154に固定するために、一連のホール(示されず)がシェルの平坦面158を介して形成される。上部シェル部154の下側から液体シリコーンを射出する際に、シリコーンはホールを貫通し、ホールの直径よりも大きな直径を有し上部シェル部154の上側に隣接する突起(例えば、180)を形成する。硬化時に、シリコーンは、突起180および一面の下面156が互いの方へ引き合うように、わずかに収縮する。このように、きちんと納まった取り付けが、上部シェル部154の下面に対して下面156を保持する幾つかの位置で実施される。
【0151】
カバー150は、取り外し可能な取り付け手段によって、マルチウェルトレイ24に取り付けられる。図11〜14の実施形態では、取り付け手段は、複数の一体的に形成された弾性のたわむことができるアーム(例えば、184)を備える。このアームは、上部シェル部154の対向する側方側面から垂下している。上部シェル部154から遠位の端において、各アーム184は、マルチウェルプレート24において形成された周囲側壁24aへ保持されるように適合されたキャッチまたはフック186を備える。図11および14で最も良く分かるように、各キャッチ186は、以下の(i)および(ii)を有する半分矢(half−arrow)形状に実質的に形成される:(i)下方かつ外側に角度を付けられたカム表面186a、および(ii)上部ショルダまたはストップ部186b。カバー150をウェル開口部26aを超えて据えられた位置の方へ動かすとき、各キャッチ186のカム表面186aは、収集プレート24の周囲側壁24aを超えて下方に滑動し、それにより、アーム184が側方に外側にたわむ。一旦、各キャッチ186のショルダ186bが周囲側壁24aの下方端24bを離れると、アーム184は内側にスナップし、図13に示されるように、閉位置にカバー154を固定する。
【0152】
マルチウェルトレイ24からスナップ固定されたカバー154を解放するために、アーム184は、周囲側壁24aから離れて外側に引かれ得、その結果各ショルダ186bは下方縁24bを離れる。次いで、カバー154は、ウェル開口部26aを現すためにトレイ24から分離され得る。
【0153】
図15に示されるように、代替の実施形態では、取り外し可能な取り付け手段は、カバー154の下面の周囲に沿った種々の点から垂下する弾性の変形可能な末端バルブ192aを有する複数のナブまたは突出部192を備える。この実施形態では、ナブ192は、マルチウェルプレート24の上面の対応する領域に沿って形成された相補的なボア194内に受容可能である。各バルブ192aのそれぞれのボア194の内側側壁との摩擦係合により、カバー154をマルチウェルプレート24の上に定位置に保持する。
【0154】
図12に最も良く示されるように、一つの好ましい実施形態では、ロボットの流体操作装置を使用して自動化操作を容易にする構造物が、上部シェル部154の上部に沿って提供される。例示のロボットシステムは、TECAN(登録商標)RSP(Tecan AG;Hombrechtikon,Switzerland)の商標で市販されている。示された配置において、このロボットシステム(一般に198で示される)は、4つの細長の吸引および注入フィンガー(1〜4で示される)を備える。このフィンガーはラインをほぼ規定するそれぞれの地点で、ロボットアーム200に設置される。アーム200は、ほぼ水平面に沿ったx/y方向で、フィンガーを転位置することができ、それによって、フィンガー(1〜4)の長手方向軸は、互いに一定の間隔を空けた関係に維持される。フィンガー(1〜4)の長手方向軸は、約9mm〜約36mmに均等に間隔を空けられ、好ましくは、互いから約18mm間隔を空けられる。それぞれのフィンガー(1〜4)は
、それぞれのほぼ垂直な軸に沿って、z方向に別々に転位置され得る。アーム200およびフィンガー(1〜4)の運動は、好ましくは、公知の技術によるプログラムされたコンピュータ(示されず)の制御下で実施される。
【0155】
TECAN(登録商標)RSPは、公知の方法で使用されて、流体を作動面(例えば、図16に示されたワークテーブル202)に配置された種々のチャンバ(例えば、マイクロプレート24、バイアル206、トラフ208などのウェル)へおよびそれらから移送し得る。TECAN(登録商標)RSPのための他の公知の用途には、例えば、添加剤、希釈剤および混合剤が挙げられる。
【0156】
先に記載したように、本発明は、上部シェル部154の上部に沿って自動化された操作を容易にする構造物を提供する。有利なことに、このような構造物は、従来の流体操作タスクを越えてロボットシステム198の性能を拡張し、以下に記載のように、例えばカバーをピックアップすること、マルチウェルプレートの上にカバーを置くこと、カバーをプレートに取り付けることなどの新規なタスクを含む。図12の実施形態で示されるように、このような構造物は、長手方向に溝のある弾性の拡張可能なスリーブ様の部材(例えば211および214)を含み得、これらはそれぞれ、フィンガー(1〜4)の一つのチップ領域を受容するように適合され、それによりフィンガーはその中に差し込まれる。このような構造物は、フィンガーチップ(1a〜4a)の直径よりも大きな直径を有するリムの付いた窪みすなわちボアにより規定された複数のランディングシート(例えば、221〜224および212〜213)をさらに備え、これによりフィンガーが、ずれの危険性が低減されたカバーの上面に接することができる戦略的な領域を提供する。
【0157】
一般に、各スリーブ(211、214)のフィンガーチップ(1a〜4a)のうちの一つとの摩擦係合により、所望のように、ロボットがカバー150をピックアップし、運搬し、および/または置くことが可能となる。適切に置かれると、カバーは、一つ以上のフリーのフィンガーをカバーの上面の対応するランディングシートに対して伸長し、差し込まれたフィンガーチップを引っ込めることにより解放され得る。例示の操作において、フィンガー(1、4)は、例えばワークステーション202の表面上に配置されたカバー150の方へz方向に下方に伸長され、その結果フィンガーチップ(1a、4a)が各拡張可能なスリーブ(211、214)内部に入って差し込まれる。次いで、フィンガー(1、4)は、一斉にz方向に部分的に引っ込み、作動面の上にカバー150を持ち上げる。次に、持ち上げられたカバー150は、アーム200をx/y方向に沿って作動面の別の領域にまで移動させることによって転位置される。次いで、フィンガー(1、4)は、z方向に、一斉に下方に延長され、マルチウェルトレイ24上へとカバー150を下げ、このマルチウェルトレイは、例えば複数の別々に収集された流体サンプルを含む。カバー150は、フリーのフィンガー(2、3)をカバー150の上面のランディングシート(212、213)に対して下方に伸長し、フィンガー(1、4)をスリーブ(211、214)から引っ込めることにより、ロボット198から解放される。最終的に、すべてのフィンガー(1〜4)は、充分に引っ込められた位置に対するアーム200の方へ上がる。
【0158】
そのように配置された取り外し可能な取り付け手段であるカバー150を使用すると、上方からの下向きの力を適用することにより、マルチウェルトレイ24にスナップロックすることができる。例示の操作において、フィンガー(1、4)は、z方向に下方に伸長されて、カバー150の上部のランディングシート(221および223)にそれぞれ接触する。フィンガー1の下向きの運動は、ランディングシート221に対して継続し、その結果その下にある固定アーム184がマルチウェルトレイ24の周囲側壁24aとスナップ係合するように移動する。その間に、フィンガー4は、カバーがひっくり返るといういかなる傾向にも対抗するために、ランディングシート223に隣接して実質的に動かなくなる。次いで、適切な下向きの力が、すべてのアームがマルチウェルトレイにスナップ
固定されるまで、残りのアームの上のランディングシートに適用される。
【0159】
本明細書中に記載されるカバーは、広範な状況において使用可能であるということが理解されるべきであり、それらは特に、長期間の保存の間、蒸発および/または相互汚染に対して底が閉じた収集ウェルのアレイ中に別々に含まれた複数の流体サンプルを保護するために有用である。例えば、流体濾液(例えば、RNAまたはDNAのような精製されたまたは濃縮された核酸を含む)が、図1〜3のマイクロ濾過装置を使用して収集され得る。次いで、収集ウェルは、今まさに記載したTECAN(登録商標)RSP流体操作ロボットを使用して、そこへ図11〜14のカバー150をスナップ固定することによりシールされ得る。次いで、覆われたマルチウェルトレイは、貯蔵するために冷蔵庫に置かれる。カバーは、所望であれば複数回再使用され得る。
【0160】
種々のタスクをワークステーションで実施するために、単一のロボット流体操作アームを利用することにより、有益な作業空間が維持される。さらに、追加のロボットデバイス(例えば、カバーをピックアップし、動かし、配置し、そして固定するためのグリッパ)の必要性をなくすことにより、装置およびプログラムの費用が削除される。
【0161】
本発明はまた、熱シール可能なカバーを有するマルチウェルトレイのシールを提供する。一般に、本発明の熱シール装置は、個々の予めカットされた熱シール可能シートまたはフィルムをビンから持ち上げ、そしてそのシートをマルチウェルトレイの複数のウェル開口部に乗せるように適合されたピックアンドプレイスアセンブリを備える。加熱可能圧盤が、そのように配置されたシートを係合するために提供され、熱はそのシートをマルチウェルプレートの上面にシールし、それによって各ウェル上にシールを形成する。有利なことに、この操作は自動化様式で行われる。
【0162】
図16〜24に示される一実施形態によると、第1に、実質的に平面の作業表面(一般に、302として表される)は、クーラー(これは一般に、参照番号306で表される)上に位置決めされる。例えば、キャビティ310のような複数の矩形のキャビティは、作業表面にわたって形成され、その各々はこのキャビティ内のマルチウェルトレイ(例えば、トレイ324)を支持するように適合され、このトレイの底面は、クーラー306の温度制御環境と連絡して配置される。好ましい実施形態において、4つのこのようなキャビティが、作業表面302にわたって形成される。マルチウェルトレイが、1つのキャビティ310内に適切に位置決めされる場合、トレイの外周端部または縁部は、キャビティに外接する表面の領域に乗り、ウェルの底面領域は、この表面の下をクーラーに向かって伸長する。クーラー306は、サンプルを、所望の低温(例えば、純粋なまたは濃縮された核酸(例えば、RNA)を含有する流体サンプルの場合、約4℃)に維持するように適合される。
【0163】
各々のキャビティにマルチウェルトレイを適切に配置する(すなわち、配向する)ことを保証するための方法が提供される。一実施形態によると、三角形のキーフィーチャ(322として表される)の一面が、各キャビティ310のコーナーに近位の作業表面302に強固に取り付けられる。さらに、各マルチウェルトレイの1つのコーナーは、トレイが適切に(完全に)固定される場合、キャビティ310に面したキー322の端部に近接した作業表面302上に乗るように、324dにおけるように角度付けされる。トレイ324の角度のあるコーナー324dのみが、キーフィーチャ322に隣接した作業表面302に乗り得ることが理解されるべきである。トレイ324が、誤った配向でキャビティ内に配置される場合、トレイ324の角度のないコーナー(すなわち、324d以外)は、キー322の上面に乗り、それにより、操作者に明らかな様式で、トレイ324の適切な(完全な)シールが防止される。
【0164】
第2に、実質的に平面の作業表面(332と表される)は、第1表面302と並んで位置決めされ、その結果、この2つの表面は実質的に同一平面である。熱シール可能なカバーの個々のシートを収容するためのビンまたはトレイ(336と表される)は、第2作業表面332の一端付近に取り付けられたフレーム(一般に、338と表される)内に収容される。トレイ336は、面を合わせて垂直に積み重ねられた複数の熱シール可能シート(一般に、342と表される)を収容するように適合され、その結果、一番上のシートは常に、サクションピッカーアセンブリ(394と表される)による回収のために、実質的に同一の所定の垂直高さで提供される。例えば、トレイ336は、フレーム338内の垂直運動のために適合されたバネ付勢ベッド(図示せず)に乗り得る。
【0165】
トレイ336は、好ましくは、従来の熱成形プロセスを使用して、一体型ユニットとして形成される。一実施形態において、トレイ336は、軽量プラスチック材料(例えば、PETG)、または他の適切な熱可塑性樹脂材料から形成される。図18で最もよく分かるように、トレイ336は、底面336a、4つの側壁336b、外向きに伸長した外周縁部336c、および開いた頂部と共に形成される。熱成形の分野で周知のように、一般に、熱成形したトレイの側壁の製図を提供する必要がある。製図は、硬化後に、熱成形部分を鋳型から、その部分の壁を妨げることなく取り出すのを可能にする熱成形部分の設計に提供されるわずかなテーパーである。本発明の熱成形トレイにおいて、トレイの対向する側壁間の距離は、トレイの底面からトレイの頂部の距離に沿ってわずかに増加する。例えば、これらの側壁は、約1〜10°の範囲の持ち上がった斜面と共に提供され得る。一実施形態において、この持ち上がった斜面は、約5°である。
【0166】
製図の結果として、トレイの底面336aに対して平行なトレイの側壁336bにより制限される平面領域は、トレイの底面336aから頂部までの距離に沿って徐々に大きく動くようになる。トレイ内に保持されるシート(図18には示されない)の移動を防止するために、特にそのトレイのより幅広の上部領域において、リブ(例えば、337)が各側壁336bに沿って設けられる。リブ337は、各シートの垂直運動の範囲全体にわたって、スタックの各シートの各周辺側縁部上の一点、好ましくは複数の点を連続して接触するために、実質的にまっすぐな表面または縁部を提供するように構成される。従って、リブ337は、トレイ336を介して垂直に動かされる場合、各シートをガイドするのに役立ち、各シートがトレイ336内の所望の配向で保持されることを保証する。例示の実施形態において、リブ337は、トレイの対向する側壁に沿って伸長する、一体的に成形された対向する対として提供される。各側壁336bに沿って伸びるリブは、トレイ内に収容されるシートが曲がらないように、十分に間隔をあけられる。この実施形態において、各リブ337は、トレイ336の底面336aにより規定される平面に対して実質的に直角である、垂直に伸長する延長線または表面を提供する。トレイの側壁336bの上向きに広がった特徴に起因して、これらのリブ337は、トレイ336の底面336aからトレイ336の頂部の方向に沿って、わずかにより際だつようになる(すなわち、これらのリブは、各側壁の主表面からさらに外向きに伸長する)。
【0167】
解放可能な取り付け手段が提供され、フレーム338からトレイ336が不慮に外れることを防止する。一実施形態において、取り付け手段は、弾力性の偏向可能アーム(例えば、350)を備え、このアームはフレーム338の対向する外側から上向きに伸長する。各アーム350は、その末端付近で、例えば、ファスナー352によって、作業表面332の近位のフレーム338の下部領域に取り付けられる。図19(A)〜19(B)で最もよく分かるように、各アーム350の上部領域は、トレイが完全に固定された位置に配置される場合、トレイ336の頂部で外周縁部336cに保持するように適合された止め金またはフック356と共に提供される。各止め金350は、実質的に半矢印の形状で形成され、これは(i)上向きまたは外向きに角度付けされたカム表面356a、および(ii)下部ショルダーまたは止め部分356bを有する。トレイ336がフレーム33
8内の固定された位置に向かって移動すると、各止め金356のカム表面356aは縁部336cの外周端部上をスライドし、それにより各アーム350を側方に外向きに偏向させる。一旦、この縁部がショルダー356bの下を通過すると、図17に示されるように、これらのアームは内向きに折れ、トレイをフレーム内に固定する。
【0168】
スナップ−ロック(snap−locked)トレイ336をフレーム338から解放するために、アーム350は外向きに曲げられ、互いに離され得、その結果、各ショルダー356bは縁部336cの外端部をきれいにする。次いで、トレイ336はフレーム338から持ち上げられ得る。
【0169】
362と表される、アバットメントは、各長手軸末端付近のフレーム338の上面に強固に固定される。アバットメント362は、実質的に垂直な対面した表面を提供し、これらの表面はトレイ336がフレーム338内に配置される場合にこのトレイ336をガイドし、そしてこのトレイが固定される間、所望の位置にトレイを維持する。
【0170】
シート342は、任意の実質的に化学的に不活性な材料から作製され得、この材料は、適度な圧力(例えば、約10〜35lb)下で、適度な熱(例えば、90〜170℃)を付与された場合に、マルチウェルトレイの上面、またはその適切な領域(各ウェルの開口部の周りの直立リムまたは縁部)と共にシールを形成し得る。例えば、シート342は、ポリマーフィルム(例えば、ポリスチレン、ポリエステル、ポリプロピレンおよび/またはポリエチレンフィルム)から形成され得る。適切なポリマーシートは、例えば、Polyfiltronics,Inc.(Rockland,MA)およびAdvanced
Biotechnologies(Epsom,Surrey England UK)から市販されている。一実施形態において、各シートは、約0.05ミリメートル厚の実質的に透明なポリマーフィルムであり、これはトレイ324の壁内で生じる反応の光学測定を可能にする。例えば、本発明は、例えば、PCT公開WO 95/30139および米国特許出願第08/235,411号(これらの各々は本明細書中で参考として援用される)に記載されるような核酸増幅産物(例えば、PCR)のリアルタイムの蛍光ベースの測定を考慮する。一般に、励起ビームは、シールカバーシートを通って、反応ウェルのアレイに別々に含まれる複数の蛍光混合物の各々に方向付けられ、ここで、このビームは各混合物内の蛍光中心を励起するのに適切なエネルギーを有する。蛍光強度の測定は、各反応の進行をリアルタイムで示す。このようなリアルタイムのモニタリングを可能にする目的のため、この実施形態における各シートは、透明であるか、または励起および測定波長(単数または複数)において少なくとも透明である熱シール可能材料から形成される。この点において、好ましい熱シール可能シートはポリプロピレンおよびポリエチレンの共積層体(co−laminate)である。
【0171】
しばしば、熱シール可能フィルムまたはシートが、ロール形態のウエブとして得られる。驚くほどのことではないが、このようなロールはしばしば、かさ高くそして重い。さらに、それらを所望の形状に適切にカットするために必要な装置は、費用がかかり、その上場所をとる。有利なことに、本発明によって提供される熱シール可能シートは、適切な寸法に予めカットされ、そしてトレイの中に貯蔵される。本明細書中で考慮されるように、シート342のスタックを収容するトレイ(例えば、336)は、予め組み立てられたユニットとしてパッケージングされ、これは容易に開けられ、そしてフレーム338に挿入される。
【0172】
キャリッジアセンブリ376を支持するリニアトラック370が、クーラ306に隣接して、作動面332に長手方向にわたって設置される。リバーシブル駆動手段は、所望のように、トラック370に沿ってキャリッジ376を前後に動かすように適合される。例示の実施形態では、駆動手段は、一方の端から他方の端まで、その上面に沿って形成され
た上方に向かう歯378を有するナイロンレール382を含む。歯378は、キャリッジハウジングの内側での回転のために配置された円形の外方向に歯の付いたモータ駆動ギア(図示せず)と噛み合うように適合される。可撓性のガイドまたは導管386(KabelSchlepp
America,Inc.(Milwaukee,WI)から市販され、入手可能である)が、この装置の種々のケーブルおよびワイヤ(図示せず)を含むために、レール382に平行して配置される。
【0173】
キャリッジ376は、ピックアンドプレイスアセンブリ(参照番号388で一般に示される)、および加熱可能圧盤アセンブリ(412で示される)を支持する。ピックアンドプレイスアセンブリ388は、キャリッジ376の上側面を介して伸長する回転可能マウント392を経て、キャリッジの上で支持された細長のピッカアーム390を備える。例えば、回転可能マウントは、キャリッジハイジング内で保持されたリバーシブルステッパモータ(図示せず)に接続した駆動シャフトであり得る。アーム390は、そこで回転するように駆動シャフト392に取り付けられる。アーム390は、「ホーム」位置(図16および23)、「ピックアップ」位置(図17および20)、および「ドロップオフ」位置(図21および22)の間で、ほぼ水平面に沿って動くように適合される。
【0174】
アーム390の他方の端は、トレイ336に保持されたスタック342から熱シール可能シートをピックアップし、そのシートをクーラ306でキャビティの一つに保持されたマルチウェルトレイの上に置くように適合されたサクションピッカアセンブリ(参照番号394で一般に示される)を支持する。サクションピッカアセンブリ394は、4つの細長ガイドロッド(396a〜396dで示される)を備え、これらはそれぞれ、アーム390を介して垂直に延びるボア(図示せず)に保持された、それぞれのリニアベアリング(398a〜398d)内で相互に滑動するように支持される。ロッド(396a〜396d)は、それらの下方の端で、プレナム(400で示される)の上部に固定される。
【0175】
プレナム400は、直線移動手段によって所望の垂直高さまで上下に移動され得る。この直線移動手段は、ロッド(396a〜396d)のアームの中心に設置されたステッパモータ(例えば、402)であり得る。スッテパモータ402の回転運動により、モータ402を介して中心を通過するリードスクリュー404が、回転方向に依存してその長手方向軸に沿って上下に移動する。次に、リードスクリュー404の下方の端が、プレナム400に回転可能に軸支される。したがって、モータ402をステップする際、プレナム400は、リードスクリュー404の直線運動をともなって上下に移動する。
【0176】
複数のサクションレッグ(例えば、406a〜406d)は、プレナム400の下方の側から依存する。例示の実施形態では、一つのこのようなレッグが、プレナム400の各コーナー近傍に配置される。下方に向かうサクションカップ(例えば、408a〜408d)は、各レッグ(406a〜406d)の下方の端に取り付けられる。各サクションカップ(408a〜408d)の面領域は、各レッグ(406a〜406d)を介して長手方向に延びるチャネル(図示せず)を経て、プレナム400と流体連絡して配置される。次に、プレナム400は、適切なホースを経て、遠隔真空源(図示せず)と連絡する。プレナム400を脱気すると、各サクションカップ(408a〜408d)の面領域で真空が確立される。
【0177】
図24をさらに参照すると、圧盤412は複数の層のアセンブリであり、これは(上部から下部まで)以下を含む:(i)支持プレート414;(ii)断熱層416;(iii)ヒータ418;および(iv)熱伝導性適合パッド420。これらのそれぞれは、以下でより詳細に記載される。
【0178】
支持プレート414は、剛直な材料から形成され、この材料は、上から下方に押されると、種々の下層(416、418、420)にわたって下方に圧力を伝達することができ、その結果、熱伝導性適合パッド420の下側の面が、マルチウェルのトレイの上面に対して押下される。支持プレート414を形成するために適切な材料は、例えば、アルミニウムなどの金属を含む。複数の凹部すなわち窪み(例えば、425〜428)がプレート414の上面に沿って提供され、この窪みはランディング部またはシートを提供し、これらは流体操作ロボットの指(例えば、4本の指をしたTECAN(登録商標)RSP)用であり、以下に記載のように、圧盤412上を接触および押下する。
【0179】
断熱層416は、上方支持プレート414および関連した要素を、その下の加熱(および熱)構成要素から熱的に絶縁する。一つの好ましい実施形態では、断熱材料はフェノール製ブロックである。
【0180】
ヒータ418は、好ましくは、熱伝導性金属プレート(例えば、アルミニウムプレートなど)内に配置された電気抵抗性加熱要素(図示せず)である。例えば、この加熱要素は、シリコーンラバーヒータであり得る。好ましいシリコーンラバーヒータ(80ワット、24ボルト)は、Minco Products,Inc.(Minneapolis,MN)から市販されている。
【0181】
熱伝導性適合パッド420は、加熱された金属プレートとマルチウェルプレートの上面に沿った領域との間で熱的界面として作用する。このパッドを形成するために好ましい材料は、Gap PadTMの登録商標名で、The Bergquist Company(Edina,MN)から市販されている。Gap PadTMは、アルミナで充填された高適合性シリコーンポリマーである(例えば、本明細書中で参考として明確に援用される、米国特許第5,679,457号を参照のこと)。加熱された金属プレートの下側に取り付けられたこのパッドは、約0.10〜0.20インチの厚さであり、好ましくは約0.160インチである。このパッドは、そこに熱シール可能シートを適応するためにマルチウェルプレートの上面の輪郭に適合可能な加熱された表面を提供する。
【0182】
圧盤412は、一対の矩形のクロスバー部材(例えば、クロスバー438)により、一定の間隔を空けた関係で保持された二つの実質的に垂直側部パネル(432、434)を有するフレーム構造をさらに備える。クロスバー部材は、側部パネル(432、434)に、例えばファスナー440によってしっかりと取り付けられており、これにより、そのそれぞれの長手方向の端(それらのうちの一つだけが図に見ることができる)で、側部パネル(432、434)の直面する面を橋掛けする幅の狭い、平坦なフロア領域を形成する。代替の実施形態では、フレーム構造は、単一の部品として鋳造される。
【0183】
支持プレート414の各端は、オーバーハング領域(例えば、414aおよび414b)を有し、これは種々の下層(416、418、420)を超えて長手方向に投影する。各オーバーハング領域(414a、414b)は、クロスバー部材のうちの一つで、その長さおよび幅寸法に沿ってほぼ同じサイズである。図24で最も良く分かるように、オーバーハング領域414aの下面は、クロスバー部材438の上面に向かう。図では見られないが、幾つかの配置がフレーム構造の対向する側部に存在することに留意すべきである。
【0184】
三つの細長の円筒形ロッドが、線をほぼ規定する間隔を空けた点で、各クロスバー部材の上側の平坦面に実質的に垂直に配置される。例えば、図24は、圧盤412の一方の端の近くのロッド(450、452、454)を示す。同様に、同様な構造が圧盤412の他方の端の近くに存在する。各ロッドの下側の端は、それぞれのクロスバー部材にしっかりと取り付けられており、上側(自由)の端は、それぞれのオーバーハング領域(414
aまたは414b)を介して垂直に形成されたそれぞれのボア(図示せず)を通過する。各クロスバー部材上の二つの外側のロッド(例えば、ロッド450および454)は、リニアベアリング(例えば、ベアリング460および464)に受容され、そのようなボア内で保持され、それがほぼ垂直方向に沿って上下に移動するにつれて、圧盤412をガイドするように働く。各クロスバー部材上の中心ロッド(例えば、ロッド452)は、圧盤412を上方に押しやるように作用するバイアス手段の一部を形成する。この点について、圧縮バネ(例えば、バネ468)は、圧盤412の各端で中心ロッドについて同心円状に設置され、このときバネは、それぞれのクロスバー部材の上面と、直面するオーバーハング領域(414aまたは414b)の下面との間で予め圧縮されている。所望の程度において、バネは連続的な上方に向けた力を提供し、この力は、対向力以上がない場合、充分に上がった位置に圧盤412を位置付けるに充分であり、その結果、支持プレート414は、側部パネル(432、434)の上部縁の領域に近接して配置される。
【0185】
E−型保持リング(例えば、470および471)は、各中心(バネ−ベアリング)ロッドの上部付近に設置され、これにより支持プレート414の上方への運動を制限する。代替の実施形態(図示せず)において、各側部パネルの上方の縁は、パネルの主要面に対して例えば90度内側に角度が付けられ得、支持プレートの上方への運動を制限するように作用するリップを形成する。
【0186】
先に示したように、ピックアンドプレイスアセンブリ388は、保持しているトレイ336から個々の熱シール可能カバーをピックアップし、それらをマルチウェルトレイ324上に置くために使用される。加熱可能な圧盤412は、適切なシールを実施するために必要な熱および力を付与する。
【0187】
例示の操作において、図16〜24を参照すると、熱シールステーション装置は、ホーム位置(図16および23)からピックアップ位置(図17および20)まで、約90度の弧にわたって、ピッカーアーム390を回転させることにより、シーリングプロセスを開始する。キャリッジ376は、必要な場合、サクションピッカーアセンブリ394がポリエチレン/ポリプロピレンカバー342のスタックを保持するトレイ336の上に直接位置するまで、リニアトラック370に沿って移動する。ここで、サクションピッカーアセンブリ394は、各サクションカップ(408a〜408d)がスタック342の最上部のシートと接触するまで、ステッパモータ402およびリードスクリュー404により下方に駆動される。次いで、プレナム400は、各サクションカップ(408a〜408d)の面領域で例えば、約5〜10psiの真空を確立するために、遠隔真空源(図示せず)により脱気される。次いで、サクションピッカーアセンブリ394は上方に駆動され、これにより、スタック342から熱シール可能カバー342aを持ち上げる。次いで、ピッカーアーム390は、ピックアップ位置からドロップオフ位置まで(図21および22)さらに90度回転される。ここで、サクションピッカーアセンブリ394は、シート342aが真空が開放される位置であるマルチウェルトレイ324に置かれるまで、下方に駆動される。次いで、サクションピッカーアセンブリ394は再度上方に上昇し、このときサクションピッカーアーム390は、ホーム位置に戻る。次に、キャリッジ376は、マルチウェルトレイ324の直接上の圧盤412の位置まで移動する。TECAN(登録商標)RSP198(図16)は、支持プレート414の上部の各ランディング部(425〜428)の上のその4つのフィンガー(1〜4)の位置へ、x/y方向に沿って移動する。次いで、TECAN(登録商標)RSPは、各フィンガー(1〜4)でz方向に押し下げられ、それにより、約105〜120℃まで加熱された圧盤412の底面を、マルチウェルトレイ324に置かれている熱シール可能シート342aに対して圧縮する。加熱された圧盤412は、短い時間(例えば、約10〜20秒)、約20lbsの圧力で、マルチウェルトレイに対して保持され、それにより、熱シール可能シート342aをトレイ324上へシールする。次いで、TECAN(登録商標)RSP198のフィンガー
(1〜4)が上がり、それにより加熱された圧盤412が上がることが可能となる。上記のプロセスは、作動面302のキャビティ310に保持された任意の他のマルチウェルプレートについて繰り返される。
【0188】
先に記載したように、コンピュータ制御ユニットが、公知の方法を使用してプログラムされ、上記のプロセスを自動化し得る。この目的のために、非接触センサ(例えば、赤外エミッタ/検出器対(図示せず))、およびセンサフラグ(例えば、フラグ476)が戦略的に配置されて、コンピュータ制御ユニットによってモニタするための位置信号を提供する。
【0189】
ここで、当業者は先の記載から、本発明の広範な教示が種々の形態で実行され得ることを理解し得る。それ故、本発明は、特定の実施形態およびそれらの実施例と関連して記載されてきたが、本発明の真の範囲は限定されるべきではない。種々の変更および改変が、本発明の範囲から逸脱することなく、特許請求の範囲によって規定されたようになされ得る。
【図面の簡単な説明】
【0190】
【図1】図1は、本発明の実施形態に従って構築されたマルチウェルマイクロ濾過装置の斜視図である。
【図2】図2は、図1のマルチウェルマイクロ濾過装置の分解図である。
【図3】図3は、図1および2のマルチウェルマイクロ濾過装置の部分横断面図である。
【図4】図4は、図3の断面図の1つのマイクロ濾過ウェルを拡大して詳細を示す。
【図5】図5は、本発明の実施形態に従って構築されたマイクロ濾過ウェルを示す部分横断面図である。
【図6】図6は、本発明の実施形態に従って構築された3つのフィン様支持バットレスの形態のメンブレン支持構造を示す、マイクロ濾過ウェルの分解図である。
【図7】図7は、本発明の実施形態に従う、ドリップディレクタプレートのドリップディレクタと収集プレートの収集ウェルとの相対運動を達成するためのキャリッジアセンブリの一端からの立面図である。
【図8】図8は、本発明の実施形態に従う、ドリップディレクタプレートのドリップディレクタと収集プレートの収集ウェルとの相対運動を達成するためのキャリッジアセンブリを示す部分分解斜視図である。
【図9】図9Aは、タッチオフ操作を示す横断面図であり、ここで複数のドリップディレクタが右および左に横方向に移動し、それによりドリップディレクタ出口領域が複数の対応する収集ウェルの内部側壁に同時に接する。図9Bは、タッチオフ操作を示す横断面図であり、ここで複数のドリップディレクタが右および左に横方向に移動し、それによりドリップディレクタ出口領域が複数の対応する収集ウェルの内部側壁に同時に接する。図9Cは、タッチオフ操作を示す横断面図であり、ここで複数のドリップディレクタが右および左に横方向に移動し、それによりドリップディレクタ出口領域が複数の対応する収集ウェルの内部側壁に同時に接する。
【図10】図10Aは、スプリングを備えるタッチオフ機構の正常(すなわちニュートラル)位置を示す部分概略上平面図である。図10Bは、スプリングを備える図10(A)のタッチオフ機構の第1の移動位置を示す部分概略上平面図である。図10Cは、図10(A)−10(B)スプリングを備えるタッチオフ機構の第2の移動位置を示す部分概略上平面図である。
【図11】図11は、本発明の実施形態に従うカバー部材の斜視図であり、これはマルチウェルトレイの上に配置された弾力性の可撓性の半球状の造作のアレイをその下面に有する。
【図12】図12は、本発明の実施形態に従う図12のカバー部材の他の斜視図であり、トレイ上に位置する流体ハンドリングロボットの伸長した流体ハンドリングフィンガーの下端領域を受容するカバーの上面の複数の部位を示す。
【図13】図13は、図11および12のカバーを示す斜視図であり、本発明の実施形態に従い、マルチウェルトレイの開口部の上に配置され、そしてマルチウェルトレイに取り外し可能にスナップ止めされる。
【図14】図14Aは、本発明の実施形態に従う、各々拡大した斜視図であり、本発明のカバーをマルチウェルトレイに固定するための取り外し可能なスナップ止めアセンブリを示す。図14Bは、本発明の実施形態に従う、各々拡大した横断面図であり、本発明のカバーをマルチウェルトレイに固定するための取り外し可能なスナップ止めアセンブリを示す。
【図15】図15は、本発明のさらなる実施形態に従う、本発明のカバーをマルチウェルトレイに取り外し可能に固定するためのアセンブリを示す斜視図である。
【図16】図16は、本発明の教示に従う、自動化高スループットサンプル調製ワークステーションを示す斜視図であり、これは、例えば、マイクロ濾過装置、相互汚染制御配置、収集ウェルカバーおよび熱シールアセンブリ、ならびに関連の成分および試薬を含む。
【図17】図17は、本発明の実施形態に従う、熱シール可能なシートをマルチウェルトレイのウェルの上に適用するための自動化ステーションの斜視図である。
【図18】図18は、本発明の実施形態に従って構築された、熱シール可能なシートのスタックを保持するためのトレイまたは箱(bin)を示す斜視図である。
【図19】図19Aは、本発明の実施形態に従う、各々拡大した斜視図であり、図18に示すようなトレイまたは箱を図17に示すような例えば熱シールステーションに位置するフレームアセンブリに固定するための取り外し可能なスナップ止めアセンブリを示す。図19は、本発明の実施形態に従う、各々拡大した横断面図であり、図18に示すようなトレイまたは箱を図17に示すような例えば熱シールステーションに位置するフレームアセンブリに固定するための取り外し可能なスナップ止めアセンブリを示す。
【図20】図20は、本発明の実施形態に従う、図17の自動化熱シールステーションの種々の造作、ならびに操作を示す斜視図である。
【図21】図21は、本発明の実施形態に従う、図17の自動化熱シールステーションの種々の造作、ならびに操作を示す斜視図である。
【図22】図22は、本発明の実施形態に従う、図17の自動化熱シールステーションの種々の造作、ならびに操作を示す斜視図である。
【図23】図23は、本発明の実施形態に従う、図17の自動化熱シールステーションの種々の造作、ならびに操作を示す斜視図である。
【図24】図24は、本発明の実施形態に従う、例えば図17および20−23の熱シールステーションで使用されるような、加熱可能な圧盤アセンブリの一部切取斜視図である。

【特許請求の範囲】
【請求項1】
対応するアレイの受容ウェルの上にアレイとして配置される複数の排出導管から懸下する流体の吊下液滴に起因する、相互汚染を回避するための装置であって、以下:
(i)キャリッジであって、該アレイの1つを担持するよう構成され、そして該アレイが実質的に軸上に整列するニュートラル位置から、第一のほぼ水平な軸に沿う二方向のいずれかでの直線的な往復運動に適合される、キャリッジ;
(ii)ステッパモータ;
(iii)連結アセンブリであって、該連結アセンブリは、該ステッパモータを該キャリッジと機械的に連絡させ、その結果、該ステッパモータの各回転ス テップが、該モータの角回転の方向に依存して、該二方向の一方へと、該ニュートラル位置から所与の距離で、該キャリッジの移動を引き起こし、これによって、該排出導管アレイと該受容ウェルアレイとの間の相対運動を行い、その結果、該排出導管から懸下する流体の吊下液滴が、対応する受容ウェルの内部側壁へ と同時にタッチオフする、連結アセンブリ;ならびに
(iv)圧縮バネであって、該圧縮バネが、(a)該キャリッジの該ニュートラル位置からの移動に対して、所定の量の抵抗を提供し、そして(b)該モータ の所望量を超える過剰の角回転に起因する、直線的オーバーシュートを補償または吸収して、該排出導管を移動させ、該受容ウェルの内部側壁と固く当接させる様式で、該連結アセンブリ内に設置される、圧縮バネ、
を備える、装置。
【請求項2】
相互汚染を回避するための、請求項1に記載の装置であって、さらに、以下:
前記排出導管の側部から該排出導管アレイと連絡し、前記受容ウェルアレイと対向する真空チャンバであって、これによって、該真空チャンバの排気が、該排 出導管から懸下する流体の吊下液滴を、強制的に該受容ウェルから離れて該排出導管内へと押し込むに効果的である、真空チャンバ、
を備える、装置。
【請求項3】
前記キャリッジが、前記排出導管アレイを担持するよう構成される、請求項1に記載の相互汚染を回避するための装置。
【請求項4】
相互汚染を回避するための、請求項3に記載の装置であって、さらに、以下:
垂直位置決めアセンブリであって、前記キャリッジ上に配置され、そして前記排出導管アレイを、低位置と高位置との間で、第二のほぼ垂直な軸に沿った直線運動のために支持し、該低位置において、該排出導管がそれぞれの受容ウェル内に下がり、そして該高位置において、該排出導管が該受容ウェルを離れる、垂直位置決めアセンブリ、
を備える、装置。
【請求項5】
受容ウェルの対応するアレイの上にアレイとして配置される、複数の排出導管から懸下する流体の吊下液滴に起因する、相互汚染を回避するための方法であって、以下:
(i)実質的に同時の様式で、該排出導管から懸下する流体の該吊下液滴を、それぞれの受容ウェルの内部側壁へとタッチオフする工程;ならびに
(ii)該排出導管から懸下する流体の該吊下液滴を、該対応する受容ウェルアレイから離れて該排出導管内へと吸引する工程、
を包含する、方法。
【請求項6】
前記タッチオフする工程が、前記排出導管のアレイを、前記受容ウェルの長手軸に実質的に直交する平面に沿って移動させることにより実施され、一方で該受容ウェルが、実質的に固定された位置に維持される、請求項5に記載の方法。
【請求項7】
前記排出導管の各々が移動されて、それぞれの受容ウェルの1つの側壁部と接触し、次いで移動されて、該同じ受容ウェルの、別の横方向に対向する側壁部と接触する、請求項6に記載の方法。
【請求項8】
ステッパモータが、前記排出導管アレイを移動させるためにステッピングされ、該ステッパモータが、該排出導管アレイと機械連絡するよう配置され、その結果、該ステッパモータの角回転が、該排出導管の直線運動を引き起こす、請求項7に記載の方法。
【請求項9】
前記流体の吊下液滴を吸引する工程が、前記排出導管の上に減圧を確立することによって実施される、請求項5に記載の方法。
【請求項10】
前記排出導管の各々の直立する上端部領域が、それぞれのカラム内に収容され、これによってマイクロ濾過ウェルのアレイを形成し;そしてここで、各カラム が、以下:(i)該カラム内に管腔を規定する、第一内側ボア、および(ii)端部領域であって、(a)該第一内側ボアの直径より大きな直径を有する第二内側ボアおよび(b)該第二内側ボアを該第一内側ボアに接続する移行領域を規定する、端部領域、を有し;そしてここで、フィルタ要素が、各カラム内に配置さ れ、該フィルタ要素が、該カラムの移行領域と、それぞれの排出導管の上端部領域との間で圧迫される、請求項5に記載の方法。
【請求項11】
収集トレイ内に支持される一列の閉鎖底ウェルに別個に収容される複数のサンプルを隔離するための、取り外し可能なカバーであって、以下:
実質的に剛性の矩形シェル部であって、頂面、底面および周囲の側縁領域を有する、シェル部;
該シェル部の頂面に沿って形成される、可逆的に膨張可能な複数の管状スリーブ;
該シェル部の該底面に固定される、弾性的に従順な下部表面;
該シェル部の対向する側縁領域から該底面を越えて突出する、弾性的に変形可能な複数の細長サイドアームであって、各サイドアームは、通常、該底面により規定される平面に対して実質的に垂直に配置される、サイドアーム;ならびに
各サイドアームの端部に、該シェル部から遠位に形成される、内向きキャッチ、
を備える、カバー。
【請求項12】
前記下部表面が、前記ウェルアレイに相補的なアレイとして配置される、下向きに凸状の複数の突起を備える、請求項11に記載のカバー。
【請求項13】
収集トレイに保持されるウェルのアレイを覆うための方法であって、該ウェルの各々が、開放された上部端を有し、該方法が、以下:
実質的に平行な複数の細長ロッドをカバー上に配置する工程であって、該ロッドが、支持体から垂下し、そして該支持体に隣接する収縮位置に配置される、工程;
該ロッドの少なくとも1つを該収縮位置に維持しながら、該ロッドの少なくとも2つを、該支持体から離してそれぞれの長手軸に沿って延長する工程であっ て、その結果、該延長したロッドの下端部領域が、該カバーの頂部に沿って形成されるそれぞれのキャビティ内に差し込まれ、そして少なくとも1つの収縮したロッドの下端部領域が自由なままである、工程;
該差し込まれたロッドを該支持体の方へと戻して収縮させることにより、該カバーを持ち上げる工程;
該支持体をほぼ水平に延びる平面に沿って移動させることにより、該収集トレイに上に該カバーを配置する工程;
該差し込まれたロッドを該支持体から離して延長させる工程であって、その結果、該カバーが該収集トレイ上に、該ウェル開口部の上に下げられる、工程;
少なくとも1つの自由なロッドを延長させる工程であって、その結果、少なくとも1つの自由端領域が、該カバーの上部領域に当接し、これによって、該支持体に向く方向に沿った該カバーの移動をブロックする、工程;ならびに
該支持体の方への該カバーの移動をこのようにブロックしながら、該差し込まれたロッドを該カバーから離して収縮させる工程であって、その結果、該差し込まれたロッドが該キャビティから離れる、工程、
を包含する、方法。
【請求項14】
さらに、以下:
実質的に同時に、(i)前記ロッドの少なくとも1つを、前記支持体から離して延長させて前記カバーの上部領域と当接させ、これによって、該カバーを前記 収集トレイとロッキング係合するよう圧迫し、そして;(ii)該ロッドの他方を、該支持体から離して延長させて該カバーの別の上部領域と当接させ、これによって該カバーの上方への移動をブロックする、工程、
を包含する、請求項13に記載の方法。
【請求項15】
前記カバーが、以下:(i)上部の実質的に剛性のシェル部、(ii)該シェル部に固定される、下部の従順な下部表面、および(iii)該シェル部を該収集トレイと解放可能にロックするための手段、を備える、請求項13に記載の方法。
【請求項16】
前記下部表面が、前記ウェルアレイと相補的なアレイとして配置される、下方に凸状の複数の突起を備え;そしてここで、前記シェル部が、該シェル部の上面に 沿った複数のランディング部位を備え、該ランディング部位が、前記ロッドの前記低端部領域を受容するように形成される、請求項15に記載の方法。
【請求項17】
矩形の熱シール可能な複数のシートを保有するデバイスであって、以下:
トレイであって、実質的に矩形の底面、該底面から延びて4つの上方に分岐する側壁、および実質的に矩形の開放頂部を規定する上部周囲縁領域を有する、トレイ;ならびに
各側壁に沿って延び、そして該底面と該上部周囲縁領域との間の距離の大部分にまたがる、複数のリブ;
を備え、ここで、該リブの各々が、実質的に直線状の表面を有し、対向する側壁に面し、該対向する側壁が、該トレイの該底面により規定される平面に対して実質的に垂直である、デバイス。
【請求項18】
スタックとして面−面で配置される、熱シール可能な複数のシートであって、該シートの周囲の側部リム領域が前記リブの各々の前記実質的に直線状の表面に接触して配置されるように、該スタックが該トレイ内に配置される、シートをさらに備える、請求項17に記載のデバイス。
【請求項19】
矩形の熱シール可能なシートを、収集トレイ内に保持されるウェルのアレイの上にシールする方法であって、該ウェルの各々が、開放上部端を有し、該方法が、以下:
透明な熱シール可能なシートをピックアップする工程;
該シートを該開放上部端の上に配置する工程;ならびに
適合した加熱された表面を、該収集トレイに対向する側から十分な圧力で、該シートに対して圧迫する工程であって、その結果、該シートが、該開放上部端の上の該収集トレイに熱シールされる、工程、
を包含し、ここで、該適合した加熱された表面が、間隔をあけた複数の細長ロッドを使用して、該シートに対して圧迫され、該ロッドが、該収集プレートの上面に対して実質的に垂直に配置されている、方法。
【請求項20】
前記ロッドが、前記収集プレートの上に位置する支持構造から垂下する、請求項19に記載の方法。
【請求項21】
複数のマイクロ濾過ウェルを使用して、マイクロ濾過を実施するための方法であって、該マイクロ濾過ウェルの各々が、それを通って延びる実質的に閉塞されていない流路を有し、該方法が、以下の工程:
(I)流体サンプルを、該複数のマイクロ濾過ウェルに入れる工程;
(II)フィルタ媒体のシートを、
(A)複数のカラムを備える第一プレートであって、各カラムが、以下:(i)該カラム内に管腔を規定する、第一内側ボア、および(ii)端部領域で あって、(a)該第一内側ボアの直径より大きな直径を有する第二内側ボアおよび(b)該第二内側ボアを該第一内側ボアに接続する移行領域、を規定する、端部領域、を有するカラムである、第一プレートと;
(B)複数の排出導管を有する第二プレートであって、各排出導管が、該第一プレートに面して対応するカラム端部領域と整列する、直立する上端部領域を有する、第二プレートと;
の間に配置する工程;
(C)該シートから該フィルタ媒体の部分を打ち抜いてフィルタ媒体プラグが各カラムの前記端部領域とともに配置されるに効果的な様式で、該プレートを一 緒に圧迫する工程であって、該プラグが、カラム移行領域と対応する排出導管上端部領域との間で圧迫されて保持され、ここで該フィルタ媒体の周囲の側部リム領域が、該カラムの内部側壁に対して半径方向に圧迫され、その結果、該リムの周囲での漏出を防止する、工程;
濾液を、マイクロ濾過ウェルのアレイから対応する収集ウェルのアレイへと別個に収集する工程であって、該収集ウェルが、該マイクロ濾過ウェルアレイの下 に位置する収集トレイにより保持され、そして(i)各マイクロ濾過ウェルから(ii)対応する収集ウェルの地点またはそれに隣接する位置で、該収集トレイの上面により規定される平面を通って下向きに(iii)該収集トレイの下の領域へと、延びる経路に沿って、真空が引かれると、各マイクロ濾過ウェルから対応する収集ウェル内への濾液の流れを引き起こす、工程;
(III)マイクロ濾過ウェルのいずれか1つにおいて該濾液から形成されるエアロゾルを、該収集トレイの該上面を横切って対応しない収集ウェルへと移動することから妨害し、これよって相互汚染を防止する、工程;
(IV)(A)各マイクロ濾過ウェルの底部から懸下する流体の付着液滴を、それぞれの収集ウェルの内部側壁へと、実質的に同時の様式でタッチオフする工程;および
(B)該排出導管から懸下する流体の付着液滴を、該対応する収集ウェルから離して該排出導管内へと上げる方向に吸引する工程;
(V)収集トレイ内に保持されるウェルのアレイを被覆する工程であって、該ウェルの各々が、開放上部端を有し、該工程が、以下:
実質的に平行な複数の細長ロッドをカバー上に配置する工程であって、該ロッドが支持体から垂下し、そして該支持体に隣接する収縮位置で配置される、工程;
該ロッドの少なくとも1つを該収縮位置に維持しながら、該ロッドの少なくとも2つを、該支持体から離して、それぞれの長手軸に沿って延長させる工程で あって、その結果、該延長したロッドの下端部領域が、該カバーの頂部に沿って形成されるそれぞれのキャビティに差し込まれ、そして少なくとも1つの収縮したロッドの下端部領域が自由なままである、工程;
該差し込まれたロッドを該支持体の方へと戻して収縮させることにより、該カバーを持ち上げる工程;
該支持体をほぼ水平に延びる平面に沿って移動させることにより、該収集トレイの該カバーを配置する工程;
該差し込まれたロッドを該支持体から離して延長させる工程であって、その結果、該カバーが該収集トレイ上に、該ウェル開口部の上に下げられる、工程;
少なくとも1つの自由なロッドを延長させる工程であって、その結果、少なくとも1つの自由端領域が、該カバーの上部領域に当接し、これによって、該支持体に向く方向に沿った該カバーの移動をブロックする、工程;および
該支持体の方への該カバーの移動をこのようにブロックしながら、該差し込まれたロッドを該カバーから離して収縮させる工程であって、その結果、該差し込まれたロッドが該キャビティから離れる、工程、
による、工程;ならびに
(VI)矩形の熱シール可能なシートを、収集トレイ内に保持されるウェルのアレイの上にシールする工程であって、該ウェルの各々が、開放上部端を有し、該工程が、以下:
透明な熱シール可能なシートをピックアップする工程;
該シートを該開放上部端の上に配置する工程;および
適合した加熱された表面を、該収集トレイに対向する側から十分な圧力で、該シートに対して圧迫する工程であって、その結果、該シートが、該開放上部端の上の該収集トレイに熱シールされる、工程、
による工程であり、ここで、該適合した加熱された表面が、間隔をあけた複数の細長ロッドを使用して、該シートに対して圧迫され、該ロッドが、該収集プレートの上面に対して実質的に垂直に配置されている、工程
を包含する、方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2007−263966(P2007−263966A)
【公開日】平成19年10月11日(2007.10.11)
【国際特許分類】
【出願番号】特願2007−102163(P2007−102163)
【出願日】平成19年4月9日(2007.4.9)
【分割の表示】特願2004−233955(P2004−233955)の分割
【原出願日】平成11年10月28日(1999.10.28)
【出願人】(500069057)アプレラ コーポレイション (120)
【住所又は居所原語表記】850 Lincoln Centre Drive Foster City CALIFORNIA 94404 U.S.A.
【Fターム(参考)】