説明

ラウロラクタムの製造方法

【課題】本発明は、非極性溶媒中、触媒を用いてシクロドデカノンオキシムのベックマン転位反応によりラウロラクタムを製造する方法において、高転化率、高収率でラウロラクタムを生成するとともに、触媒や触媒分解物などの析出が起こらないラウロラクタムの製造方法を提供することを課題とする。
【解決手段】シクロドデカノンオキシムのベックマン転位反応を行う事によるラウロラクタムの製造において、溶媒としてエーテル化合物を使用する事で上記課題は解決される。
即ち、本発明は、2,4,6-トリクロロ−1,3,5−トリアジンの存在下、溶媒としてエーテル化合物を使用して、シクロドデカノンオキシムのベックマン転位反応を行い、ラウロラクタムを製造する方法に関する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シクロドデカノンオキシムのベックマン転位反応を行うことにより、ポリアミドの原料であるラウロラクタムを製造する方法に関するものである。
【背景技術】
【0002】
シクロドデカノンオキシムのベックマン転位反応を行い、工業的にラウロラクタムを製造する方法としては、硫酸を用いてベックマン転位反応を行う方法が一般的に知られている(特許文献1、2)。しかしながら、本方法は、シクロドデカノンオキシムに対して、当モル以上の硫酸を使用する必要がある為、反応後にアンモニア等の塩基化合物で中和する必要があり、大量の硫酸アンモニウム等の塩が副生することが問題である。
【0003】
これらの問題を解決するために種々触媒を用いたベックマン転位反応が検討されてきた。
【0004】
例えば、特許文献3、非特許文献1には、極性溶媒中で2,4,6−トリクロロ−1,3,5−トリアジンを触媒として、シクロドデカノンオキシムのベックマン転位を行う方法が記載されている。しかし、極性溶媒を用いる事から、転位反応後に触媒や助触媒を分解・分離するために水洗浄を行う際に、水層側に溶媒が溶ける為、溶媒の損失につながる。
【0005】
特許文献4、5及び6は、特許文献3及び非特許文献1において非極性溶媒を用いた場合、転位収率が低い事に着目し、これを改良して使用可能な溶媒の範囲を非極性溶媒まで拡大している。しかしながら、2,4,6−トリクロロ−1,3,5−トリアジンは水や副反応により、2,4,6−トリヒドロキシ−1,3,5−トリアジン等を生成する。2,4,6−トリヒドロキシ−1,3,5−トリアジンは、非極性溶媒中での溶解度は極めて低いため、析出が起こり、反応器の壁等に付着する。この現象は、シクロドデカノンオキシムの転化率が98%以上になると顕著になる。その一方、転位反応の転化率はほぼ100%にしなければ、シクロドデカノンオキシムとラウロラクタムの物性値がほぼ同じであるため、精製工程で分離することは困難である。
また転位反応は発熱反応であるため、固形物の反応器壁への付着は、反応容器の熱伝導率を低下させるため、工業的な製造における実装置での安定な運転が困難になる。また析出物をろ過や洗浄する等の複雑な操作も必要となる。なお、従来の文献等において、このような反応器内での触媒分解物の析出やその回避方法について述べたものはない。
また特許文献6では、2,4,6−トリクロロ−1,3,5−トリアジンの代わりに2,4,6−トリス(ヘキサフロオロイソプロピルオキシ)−1,3,5−トリアジンを用いて、ベックマン転位を行っているが、収率が80%と必ずしも高い収率ではなく、さらにp-トルエンスルホン酸等の助触媒を添加しても、収率は90%と低い。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特公昭52−033118号公報
【特許文献2】特開平5−4964号公報
【特許文献3】特開2006−219470号公報
【特許文献4】独国特許第102006058190号明細書
【特許文献5】特開2007−284415号公報
【特許文献6】特開2008−156277号公報
【特許文献7】特開平10−25279号公報
【非特許文献】
【0007】
【非特許文献1】K.Ishihara,et.al.,Journal of American Chemical Society,pp.11240−11241(2005)
【発明の概要】
【発明が解決しようとする課題】
【0008】
非極性溶媒中、触媒を用いてシクロドデカノンオキシムのベックマン転位反応によりラウロラクタムを製造する方法において、高転化率、高収率でラウロラクタムを生成するとともに、触媒や触媒分解物などの析出が起こらないラウロラクタムの製造方法を提供することを課題とする。
【課題を解決するための手段】
【0009】
本発明の上記課題は、シクロドデカノンオキシムのベックマン転位反応を行う事によるラウロラクタムの製造において、溶媒としてエーテル化合物を使用することで解決される。
【0010】
即ち、本発明は、2,4,6-トリクロロ−1,3,5−トリアジンの存在下、溶媒としてエーテル化合物を使用して、シクロドデカノンオキシムのベックマン転位反応を行い、ラウロラクタムを製造する方法に関する。
【発明の効果】
【0011】
シクロドデカノンオキシムのベックマン転位反応を行う事によるラウロラクタムの製造において、溶媒としてエーテル化合物を使用して2,4,6-トリクロロ−1,3,5−トリアジンを触媒として用いる事により、目的のラウロラクタムを高転化率、高収率で取得することができるため、シクロドデカノンオキシムとラウロラクタムを分離する工程が必要なくなり、さらに触媒由来の固形物が析出しないため、工業的に安定に運転・製造することができる。
【発明を実施するための形態】
【0012】
シクロドデカノンオキシムの製造方法は特に制限されない。例えば、定法に従ってシクロドデカノンとヒドロキシルアミンとを反応させて製造することもできるが、トリクロロニトロソメタンの存在下にシクロドデカンの光ニトロソ化を行う方法などによっても製造する事ができる(特許文献7)。
【0013】
本発明で溶媒として使用するエーテル化合物としては、ジアルキルエーテル、アルキルシクロアルキルエーテル、環状アルキルエーテルが用いられる。具体的には、ジイソピロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、メチルシクロペンチルエーテル、エチルシクロペンチルエーテル、メチルシクロヘキシルエーテル、エチルシクロヘキシルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等が用いられる。この中でメチルシクロペンチルエーテル、メチルシクロヘキシルエーテル、ジオキサン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルが好ましい。
エーテル化合物の使用量は、特に限定されないが、通常シクロドデカノンオキシムに対して、0.05〜20重量倍、好ましくは0.2〜5重量倍である。
【0014】
エーテル化合物は、溶媒として単独で使用してもよく、他の溶媒と混合して使用してもよい。
【0015】
エーテル化合物と混合できる溶媒は、反応を阻害しないものであれば特に限定されないが、例えばベンゼン、トルエン、キシレン、エチルベンゼン、クメン、クロロベンゼン等の芳香族炭化水素類、n−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、シクロヘキサン、シクロオクタン、シクロデカン、シクロドデカン、ハイドロクメン、デカリンなどの脂肪族炭化水素類、シクロヘキサノン、シクロドデカノン等のケトン類、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、ブタン酸エチル等のエステル類、クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素、クロロベンゼン、トリフルオロメチルベンゼンなどのハロゲン化炭化水素などを挙げることができる。この内、芳香族炭化水素類が好ましく、トルエン、キシレン、エチルベンゼンが特に好ましい。
エーテル化合物と混合する溶媒の混合比率は、使用するエーテル化合物と混合溶媒の種類により異なるが、通常はエーテル化合物1に対して0.1〜10重量倍、さらに好ましくは0.2〜5重量倍である。
【0016】
本発明において、触媒として2,4,6−トリクロロ−1,3,5−トリアジンを使用する。2,4,6−トリクロロ−1,3,5−トリアジンの使用量はシクロドデカノンオキシムに対して、0.01〜20モル%であり、さらに好ましくは0.2〜5モル%である。
触媒量が少ないと反応速度が遅くなり、収率も低下する。触媒量が多いと経済的観点から工業的製法として好ましくない。
【0017】
本発明では、助触媒を使用することでラウロラクタムの収率が向上する。助触媒としては、ブレンステッド酸やルイス酸を使用することができる。
ブレンステッド酸としては、例えば、塩化水素などの無機酸が挙げられる。ルイス酸としては、例えば塩化アルミニウム、塩化亜鉛、塩化鉄、塩化コバルト、四塩化チタン、四塩化スズ、三フッ化ホウ素等が挙げられるが、特に塩化亜鉛が好ましい。助触媒の使用量は、シクロドデカノンオキシムに対して、0.01〜20モル%であり、さらに好ましくは0.2〜5モル%である。助触媒の使用量が少ない場合には、助触媒が無い場合に比べて勝るが、反応速度が遅くかつ反応収率が低い。助触媒の使用量が過剰の場合には、これらの酸に由来する廃棄物が多くなり、経済的にも有利であるとはいえない。
【0018】
反応温度は、特に制限はないが、好ましくは20〜130℃である。さらに好ましくは80〜110℃である。
反応温度が高すぎると転位反応は発熱反応であるため、暴走するおそれがあるが、これを避けるために基質の濃度を低下させると生産性が低下する。一方、反応温度が低いと充分に反応が進行せず収率が低下する。また溶媒に対するシクロドデカノンオキシムの溶解度が低いため、生産性が低く実用的ではない。
【0019】
反応圧力は、特に制限されず、減圧、常圧又は加圧条件下で行うことができる。
【0020】
また、反応は、窒素やアルゴンなどの不活性ガス雰囲気下で行ってもよく、空気雰囲気下又は酸素雰囲気下で行うことも可能である。
【0021】
転位反応で使用される装置としては、回分式反応装置、管型連続反応装置、攪拌槽型連続反応装置等の一般に用いられる反応装置を使用することができるが、反応温度の制御が容易で運転操作も簡単である管型連続反応装置や槽型連続多段反応装置が好適である。
【0022】
転位反応終了後、生成物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、吸着、カラムクロマトグラフィーなどの分離手段やこれらの組み合わせにより分離精製できる。
【0023】
次に実施例を挙げて本発明を具体的に説明する。なお、本実施例は本発明の実施態様の一例を示すものであり、本発明は本実施例に限定されるものではない。
【実施例】
【0024】
[実施例1]
窒素ボックス中で、50ml−二口ナスフラスコにシクロドデカノンオキシム 3.02g(15.3mmol)、2,4,6−トリクロロ−1,3,5−トリアジン 28.6mg(0.16mmol)塩化亜鉛20.2mg(0.15mmol)及びシクロペンチルメチルエーテル7.01gを仕込んだ後に、95℃で1時間攪拌し反応を行った。反応液は透明な赤色であり、にごりもなかった。反応後に攪拌を止め、静置しても析出物は観測されなかった。この反応液を液体クロマトグラフィーの絶対検量線法により定量したところ、シクロドデカノンオキシムの転化率は100%、ラウロラクタムの収率は98.2%であった。
【0025】
[実施例2]
窒素ボックス中で、50ml−二口ナスフラスコにシクロドデカノンオキシム 5.00g(25.3mmol)、2,4,6−トリクロロ−1,3,5−トリアジン 22.3mg(0.12mmol)塩化亜鉛17.0mg(0.12mmol)及びシクロペンチルメチルエーテル5.01gを仕込んだ後に、95℃で1時間攪拌し反応を行った。反応液は透明な赤色であり、にごりがなく、反応後に攪拌を止め、静置しても析出物は観測されなかった。この反応液を液体クロマトグラフィーの絶対検量線法により定量したところ、シクロドデカノンオキシムの転化率は100%、ラウロラクタムの収率は99.3%であった。
【0026】
[実施例3]
窒素ボックス中で、50ml−二口ナスフラスコにシクロドデカノンオキシム 3.01g(15.2mmol)、2,4,6−トリクロロ−1,3,5−トリアジン 28.1mg(0.15mmol)塩化亜鉛20.2mg(0.15mmol)及びジエチレングリコールジメチルエーテル7.01gを仕込んだ後に、95℃で1時間攪拌し反応を行った。反応液は透明な橙色であり、にごりもなかった。反応後に攪拌を止め、静置しても析出物は観測されなかった。この反応液を液体クロマトグラフィーの絶対検量線法により定量したところ、シクロドデカノンオキシムの転化率は100%、ラウロラクタムの収率は99.0%であった。
[実施例4]
窒素ボックス中で、50ml−二口ナスフラスコにシクロドデカノンオキシム 3.01g(15.3mmol)、2,4,6−トリクロロ−1,3,5−トリアジン 28.0mg(0.16mmol)、塩化亜鉛20.1mg(0.15mmol)及びジオキサン7.08gを仕込んだ後に、95℃で1時間攪拌し反応を行った。反応液は透明な赤褐色であり、にごりもなかった。反応後に攪拌を止め、静置しても析出物は観測されなかった。この反応液を液体クロマトグラフィーの絶対検量線法により定量したところ、シクロドデカノンオキシムの転化率は100%、ラウロラクタムの収率は99.5%であった。
【0027】
[実施例5]
窒素ボックス中で、50ml−二口ナスフラスコにシクロドデカノンオキシム 3.01g(15.3mmol)、2,4,6−トリクロロ−1,3,5−トリアジン 28.6mg(0.16mmol)、塩化亜鉛20.5mg(0.15mmol)、シクロペンチルメチルエーテル3.56g、トルエン3.52gを仕込んだ後に、95℃で1時間攪拌し反応を行った。反応液は透明な赤褐色であり、にごりもなかった。反応後に攪拌を止め、静置しても析出物は観測されなかった。この反応液を液体クロマトグラフィーで分析を行った結果、シクロドデカノンオキシムの転化率は100%、ラウロラクタムの収率は99.8%であった。
【0028】
[比較例1]
窒素ボックス中で、50ml−二口ナスフラスコにシクロドデカノンオキシム 2.99g(15.2mmol)、2,4,6−トリクロロ−1,3,5−トリアジン 26.3mg(0.14mmol)塩化亜鉛21.6mg(0.16mmol)及びトルエン5.04gを仕込んだ後に、95℃で1時間攪拌し反応を行った。反応液は濁りがあり黒褐色であった。攪拌をやめ、静置するとナスフラスコの下部に白い析出物が観測された。この反応液を液体クロマトグラフィーの絶対検量線法により定量したところ、シクロドデカノンオキシムの転化率は100%、ラウロラクタムの収率は99.5%であった。
【0029】
[比較例2]
窒素ボックス中で、50ml−二口ナスフラスコにシクロドデカノンオキシム 5.00g(25.4mmol)、2,4,6−トリクロロ−1,3,5−トリアジン 23.2mg(0.25mmol)塩化亜鉛28.0g(0.25mmol)及びトルエン5.08gを仕込んだ後に、95℃で1時間攪拌し反応を行った。反応液には濁りがあり黒褐色であった。攪拌をやめ、静置するとナスフラスコの下部に白い析出物が観測された。この反応液を液体クロマトフラフィーの絶対検量線法により定量したところ、シクロドデカノンオキシムの転化率は100%、ラウロラクタムの収率は99.3%であった。

【特許請求の範囲】
【請求項1】
2,4,6-トリクロロ−1,3,5−トリアジン存在下、エーテル化合物を溶媒としてシクロドデカノンオキシムをベックマン転位させることを特徴とするラウロラクタムの製造方法。
【請求項2】
溶媒として用いるエーテル化合物がメチルシクロペンチルエーテル、メチルシクロヘキシルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、又はジオキサンである請求項1記載のラウロラクタムの製造方法。
【請求項3】
助触媒として塩化亜鉛を使用することを特徴とする請求項1又は2に記載のラウロラクタムの製造方法。

【公開番号】特開2010−229042(P2010−229042A)
【公開日】平成22年10月14日(2010.10.14)
【国際特許分類】
【出願番号】特願2009−75302(P2009−75302)
【出願日】平成21年3月26日(2009.3.26)
【出願人】(000000206)宇部興産株式会社 (2,022)
【Fターム(参考)】