説明

リチウムイオン二次電池用負極

【課題】サイクル特性に優れたリチウムイオン二次電池用負極を提供する。
【解決手段】銅又は銅合金からなる集電層2の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層3を形成したリチウムイオン二次電池用負極1において、上記活物質層3の上に導電性がありかつリチウム不活性な物質からなる強化層4を形成し、その強化層4の上に2つ目の活物質層3を形成し、該2つ目の活物質層3を最外層とした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、サイクル特性に優れたリチウムイオン二次電池用負極に関する。
【背景技術】
【0002】
リチウムイオン二次電池は、モバイル機器をはじめとして広い用途に普及している。そのリチウムイオン二次電池の負極としては、銅箔又は銅合金箔のような銅又は銅合金からなる集電層(負極集電体とも言う)の上にカーボン系の活物質(リチウム活性な物質)からなる活物質層を形成したものが一般的であった。すなわち、圧延銅箔、電解銅箔等の集電層にカーボン系の活物質をバインダと溶剤で溶いた溶液を塗布し、この溶液を乾燥させた後、熱ロールプレスを施してリチウムイオン二次電池用負極とする。
【0003】
なお、カーボン系の活物質とは、グラファイト、ハードカーボン、ソフトカーボンのうち少なくとも一つを含む活物質のことである。
【0004】
カーボン系の活物質としては、カーボンとリチウムの化合物であるLiC6がある。カーボン系の活物質は、リチウムイオンを吸蔵・脱離(離脱)することができる。このときLiC6の単位重さ当たりの理論放電容量(最大容量)は372mAh/gと言われている。カーボン系の活物質ではこの値を超えて容量の増大を図ることができないため、最近ではさらに放電容量の大きいスズ系の活物質(例えば、Li4.4Snは理論放電容量が約1000mAh/g)、ケイ素系の活物質(例えば、Li4.4Siは理論放電容量が約4000Ah/g)などの実用化検討が盛んに行われている。
【0005】
スズ(Sn)系の活物質とは、スズ、スズ合金のいずれかを含む活物質のことである。また、ケイ素(シリコン;Si)系の活物質とは、ケイ素、ケイ素合金のいずれかを含む活物質、アンチモン(Sb)系の活物質とは、アンチモン、アンチモン合金のいずれかを含む活物質のことである。
【0006】
スズ系の活物質については、非特許文献1に開示されている。すなわち、銅箔表面に電解めっきでスズのめっき層を形成して200℃で24時間熱処理を行った場合に、めっき層がSn−Cu6Sn5−Cu3Snの多層構造に変化し、充放電時の活物質の膨張収縮による応力を緩和して剥離を抑制するため、サイクル特性が向上する。
【0007】
また、スズ系やケイ素系の活物質をあらかじめ微粉化しておき、この活物質を導電性のバインダに混合したものを集電層に塗布することにより、リチウムとの反応による体積膨張を軽減してサイクル特性を向上しようと言う試みもなされている。例えば、特許文献1には、スズ含有物の粒子を負極活物質とすることが開示されている。
【0008】
【特許文献1】特開2004−087232号公報
【非特許文献1】三洋電機技報、Vol.34、No.1、pp.87−93(2002)
【発明の開示】
【発明が解決しようとする課題】
【0009】
前述のように、カーボン系の活物質は、理論放電容量に近いところまで開発が進んでおり、今後、放電容量の大幅な向上は困難である。このためスズ系やケイ素系の活物質の開発が行われている。しかしながら、これらの活物質は、リチウムイオンを吸蔵したときの体積膨張が極めて大きいという欠点がある。具体的には、カーボン系の活物質の体積膨張が1.5倍程度であるのに対し、スズ系の活物質の体積膨張は3.5倍、ケイ素系の活物質の体積膨張は4倍にもなる。この大きな体積変化のため、充放電サイクルに伴い、集電層である銅箔から活物質が剥離、脱落し、電池特性が急激に低下してしまうという問題が生じ、これが実用化にあたっての最大の障害となっている。
【0010】
スズのめっき層を形成した銅箔を熱処理するという非特許文献1の対応策も十分とはいえず、熱処理しなかった場合の剥離を軽減するに過ぎない。
【0011】
また、特許文献1の技術には、粒子を形成するためにメカニカルアロイングやガスアトマイズなどの工程を必要とし、製造コストが大幅にアップしてしまうという問題がある。また、活物質をバインダと混合するため、リチウムと反応する活物質の充填量が制限され、電池容量の低下という性能的な不具合を余儀なくされてしまう。
【0012】
そこで、本発明の目的は、上記課題を解決し、サイクル特性に優れたリチウムイオン二次電池用負極を提供することにある。
【課題を解決するための手段】
【0013】
上記目的を達成するために本発明は、銅又は銅合金からなる集電層の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層を形成したリチウムイオン二次電池用負極において、上記活物質層の上に導電性がありかつリチウム不活性な物質からなる強化層を形成し、その強化層の上に2つ目の活物質層を形成し、該2つ目の活物質層を最外層としたものである。
【0014】
上記2つ目の活物質層の上に2つ目の強化層を形成し、該2つ目の強化層の上に3つ目の活物質層を形成するようにして、強化層と活物質層とを交互に多層形成し、最後の活物質層を最外層としてもよい。
【0015】
上記強化層を形成する物質がニッケル、コバルト、鉄、銀、銅のいずれかの単金属又はいずれか2つ以上による合金であってもよい。
【0016】
上記強化層の厚さが0.05μm以上かつ0.5μm未満であってもよい。
【0017】
上記活物質層の厚さが5μm未満であってもよい。
【発明の効果】
【0018】
本発明は次の如き優れた効果を発揮する。
【0019】
(1)サイクル特性に優れる。
【発明を実施するための最良の形態】
【0020】
以下、本発明の一実施形態を添付図面に基づいて詳述する。
【0021】
図1に示されるように、本発明に係るリチウムイオン二次電池用負極1は、銅又は銅合金からなる集電層2の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層3を形成したリチウムイオン二次電池用負極1において、上記活物質層3の上に導電性がありかつリチウム不活性な物質からなる強化層4を形成し、その強化層4の上に2つ目の活物質層3を形成し、該2つ目の活物質層3を最外層としたものである。
【0022】
図示のように、本発明のリチウムイオン二次電池用負極1は、2つの活物質層3,3の間に導電性がありかつリチウム不活性な物質からなる強化層4を有する。これは、活物質層(活物質層3,3を合わせたもの)の内部に強化層4を設けたとも言える。
【0023】
集電層2である銅箔上にめっきなどによりスズ膜からなる活物質層3を形成したり、銅とスズの金属間化合物からなる活物質層3を形成しただけでは、充放電のサイクルを繰り返すうちに急激に活物質層3が崩壊し脱落してしまう。この問題を解決するために、本発明者は、鋭意検討の末、活物質層の内部に強化層4を設けることにより、飛躍的に充放電のサイクル特性が向上するという新しい知見を得ることができた。この効果は、充放電に寄与しない強化層4が存在することで、その強化層4によって活物質を固定し、崩壊を抑制できることに起因すると考えられる。
【0024】
強化層4に導電性がない場合、集電層2との導通が得られないので、強化層4の物質は導電性物質である必要がある。また、強化層4の物質がリチウム活性である場合、充放電に伴って強化層4が膨張収縮してしまうため、活物質層3の崩落を抑制する効果が得られない。その点、本発明は、導電性がありかつリチウム不活性な物質からなる強化層4を形成するので、集電層2との導通が得られ、しかも、活物質層3の崩落を抑制する効果が得られる。
【0025】
また、強化層4を最外層としてしまうと、正常な充放電が起きない。その点、本発明は、強化層4の上に最外層として2つ目の活物質層3を設けた(=活物質層の内部に強化層4を設けた)ので、正常な充放電を起こすことができる。
【0026】
このように、本実施の形態によるリチウムイオン二次電池用負極は、集電層2の上に形成した活物質層3の上に、導電性がありかつリチウム不活性な物質からなる強化層4を形成し、その強化層4の上に2つ目の活物質層3を形成することにより、活物質層の内部に強化層4を設けた構造とした。これにより、活物質層3の崩落をなくすることができ、従来のスズ系やケイ素系の活物質を用いたものに比べてサイクル特性に優れる。また、従来のカーボン系の活物質を用いたものに比べるとエネルギ密度が高く、サイクル特性に優れ、小型化可能なリチウムイオン二次電池が供給可能となる。
【0027】
この実施形態において、強化層4を形成する物質は、導電性がありかつリチウム不活性な物質であればよいが、例として、ニッケル(Ni)、コバルト(Co)、鉄(Fe)、銀(Ag)、銅(Cu)がある。これらは、単金属で使用してもよいし、いずれか2つ以上による合金を使用してもよく、前述した効果を奏することができる。
【0028】
強化層4の厚さは、0.05μm以上かつ0.5μm未満の範囲内とするのが望ましい。なぜなら、0.05μm未満であると、強化層4によって被覆されない活物質層3の表面領域が不可避的に拡大し、その領域での強化効果が得られなくなる。また、0.05μm未満であると、強化層4自体の強度が低くなるため、活物質の崩壊を効果的に抑えられない。一方、0.5μmを超えると、強化層4が実質的にピンホールフリーとなって活物質層3の表面全体を覆ってしまうために、リチウムイオンが強化層4を透過できなくなり、強化層4に挟まれた活物質層3が充放電に寄与できなくなる。その点、本発明では、強化層4の厚さは、0.05μm以上かつ0.5μm未満の範囲内とするので、活物質層3の表面が強化層4によって適度に覆われる。
【0029】
強化層4の厚さは、0.1μm以上かつ0.3μm未満の範囲内とするのがいっそう望ましい。なぜなら、前述した範囲に対してマージンをとれるからである。
【0030】
活物質層3の厚さは、5μm未満とするのが望ましい。図2のリチウムイオン二次電池用負極21のように強化層24と活物質層23とを交互に多層形成することで、活物質層23の厚さを薄くすることができ、活物質層23の厚さが薄いことにより、活物質が脱落しにくくなる。
【0031】
活物質層3の厚さは、3μm未満とするのがいっそう望ましい。なぜなら、前述した上限に対してマージンをとれるからである。
【0032】
活物質層3を形成する方法として、例えば、銅とスズの合金を活物質とする場合、集電層2の上に銅めっきとスズめっきを別々に施した後に、熱拡散によってCu6Snなどの合金からなる活物質層3を形成してもよいし、銅とスズを同時にめっきできるめっき液により、直接、集電層2の上に銅とスズの合金からなる活物質層3を形成してもよい。
【0033】
次に、本発明の他の実施形態を説明する。
【0034】
図2に示されるように、本発明に係るリチウムイオン二次電池用負極21は、銅又は銅合金からなる集電層22の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層23を形成したリチウムイオン二次電池用負極21において、上記活物質層23の上に導電性がありかつリチウム不活性な物質からなる強化層24を形成し、その強化層24の上に2つ目の活物質層23を形成し、該2つ目の活物質層23の上に2つ目の強化層24を形成し、該2つ目の強化層24の上に3つ目の活物質層23を形成するようにして、強化層24と活物質層23とを交互に多層形成し、最後の活物質層23を最外層としたものである。
【0035】
この構成により、各活物質層23を充放電反応に寄与させることができる。よって、各活物質層23における活物質量の合計が電池設計上で目標とする活物質量になるようにすればよい。このため、活物質層23の数を多くするほど1つの活物質層23の厚さを薄くすることができ、活物質層23の厚さを薄くすることで脱落しにくくできる。各活物質層23の厚さは同じである必要はない。
【実施例1】
【0036】
表面粗さRa=0.12μmに粗化処理した厚さ18μmの銅箔を集電層として準備し、その集電層の上に、表1に示す銅めっき液で2.7μmの厚さの銅めっきを行い、次いで表1に示すスズめっき液で5μmの厚さのスズめっきを行った。次に、このめっきした試料を真空中で200℃において20時間熱処理し、負極を得た。この熱処理後の負極について、X線回折(XRD)装置でめっき層の構造解析を行い、JCPDSデータと比較することで、所望の活物質であるCu6Sn5の金属間化合物が形成されていることを確認した。この活物質層の厚さは8μmであった。この負極は、集電層の上に活物質層を1層のみ形成した従来構造のもので、これを比較例1−1の負極とする。
【0037】
【表1】

【0038】
上記と同様の集電層の上に、同様のめっき液で1.3μmの厚さの銅めっきを行い、次いで2.5μmの厚さのスズめっきを行い、次いで、表1のニッケルめっき液で0.1μmの厚さのニッケルめっきを行い、さらに2.5μmの厚さのスズめっきを行った後、上記と同様に熱処理を行って負極を得た。この負極は、集電層の上に活物質層、強化層、活物質層を順に形成した図1の形態のもので、これを実施例1−1の負極とする。
【0039】
上記と同様の集電層の上に、同様のめっき液で0.9μmの厚さの銅めっき、1.6μmの厚さのスズめっき、0.1μmの厚さのニッケルめっき、0.9μmの厚さの銅めっき、1.6μmの厚さのスズめっき、0.1μmの厚さのニッケルめっき、0.9μmの厚さの銅めっき、1.6μmの厚さのスズめっきを順に行い、上記と同様に熱処理を行って負極を得た。この負極は、集電層の上に活物質層、強化層、活物質層、強化層、活物質層を順に形成した図2の形態のもので、これを実施例1−2の負極とする。
【0040】
実施例1−2の負極(めっき後)の断面SEM写真を図3に示す。図示のように、銅からなる集電層の上に、銅とスズからなる活物質層とニッケルからなる強化層とが交互に積層されている。
【0041】
このようにして得た比較例1−1、実施例1−1、実施例1−2の負極をそれぞれ2cm2の円形に打ち抜き、この負極に対し金属リチウムを正極とする試作セル(リチウムイオン二次電池)を製作し、各試作セルの充放電試験と評価を行った。測定装置は北斗電工製HJ1001SM8Aであり、セパレータにはセルガード製#2400、電解液には富士薬品工業LIPASTER−EDMC/PF1(1mol/1000cm3のLiPF6を溶解したエチレンカーボネートとジエチルカーボネートの混合溶液(1:1 vol.))を用いた。充放電は、0.01〜1V vs Li/Li+の範囲で0.25mA/cm2の定電流密度で行った。
【0042】
表2に、初期サイクル(1サイクル目)の放電容量(以下、初回放電容量という)に対する5サイクル後と20サイクル後の放電容量で表される放電容量維持率の評価結果を示す。表2に示すように、活物質層が1層のみの比較例1−1に比べ、強化層を設けた実施例1−1、実施例1−2のほうが放電容量維持率が高い。この結果から、強化層を設けることでサイクル特性が向上することが分かる。
【0043】
【表2】

【0044】
また、充放電試験後の試作セルを分解し、負極表面を観察すると、比較例1−1の負極は活物質の脱落が起こっていたのに対し、実施例1−1、実施例1−2の負極では、活物質の脱落が起こっておらず、健全性が保たれていた。
【実施例2】
【0045】
実施例1−1と同様に、集電層の上に活物質層、強化層、活物質層を順に形成した図1の形態の負極を作成した。ただし、強化層の厚さが0.01,0.05,0.1,0.3,0.5μmの負極を作成し、その厚さの順に比較例2−1、実施例2−1、実施例2−2、実施例2−3、比較例2−2とした。
【0046】
これらの負極を用いて各々試作セルを作成し、前述と同様の充放電試験を行った。ここでは、初回放電容量と放電容量維持率とで評価した。
【0047】
【表3】

【0048】
表3に示すように、初回放電容量は、比較例2−2が286mAh/gで他の例が530mAh/g前後であるのに比べて約半分である。これは比較例2−2における強化層の厚さが0.5μmと厚いため、リチウムイオンの透過が阻害されて活物質層の活物質が充放電に寄与していないためと考えられる。比較例2−1及び実施例2−1、実施例2−2、実施例2−3は、強化層をリチウムイオンが透過し易いため、活物質層が充放電によく寄与し、初回放電容量が高くなる。
【0049】
放電容量維持率で比較すると、強化層の厚さが0.01μmと薄い比較例2−1では放電容量維持率が低く、サイクル特性が悪いのに対し、強化層の厚さが0.05μm以上ある実施例2−1、実施例2−2、実施例2−3及び比較例2−2では放電容量維持率が高く、サイクル特性が良い。
【0050】
この試験結果から、強化層の厚さは、0.05μm以上かつ0.5μm未満の範囲内とするのが好ましいことが分かる。
【図面の簡単な説明】
【0051】
【図1】本発明の一実施形態を示すリチウムイオン二次電池用負極の断面図である。
【図2】本発明の他の実施形態を示すリチウムイオン二次電池用負極の断面図である。
【図3】実施例1−2の負極(めっき後)の断面SEM写真のイメージ図である。
【符号の説明】
【0052】
1,21 リチウムイオン二次電池用負極
2,22 集電層
3,23 活物質層
4,24 強化層

【特許請求の範囲】
【請求項1】
銅又は銅合金からなる集電層の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層を形成したリチウムイオン二次電池用負極において、上記活物質層の上に導電性がありかつリチウム不活性な物質からなる強化層を形成し、その強化層の上に2つ目の活物質層を形成し、該2つ目の活物質層を最外層としたことを特徴とするリチウムイオン二次電池用負極。
【請求項2】
上記2つ目の活物質層の上に2つ目の強化層を形成し、該2つ目の強化層の上に3つ目の活物質層を形成するようにして、強化層と活物質層とを交互に多層形成し、最後の活物質層を最外層としたことを特徴とする請求項1記載のリチウムイオン二次電池用負極。
【請求項3】
上記強化層を形成する物質がニッケル、コバルト、鉄、銀、銅のいずれかの単金属又はいずれか2つ以上による合金であることを特徴とする請求項1又は2記載のリチウムイオン二次電池用負極。
【請求項4】
上記強化層の厚さが0.05μm以上かつ0.5μm未満であることを特徴とする請求項1〜3いずれか記載のリチウムイオン二次電池用負極。
【請求項5】
上記活物質層の厚さが5μm未満であることを特徴とする請求項1〜4いずれか記載のリチウムイオン二次電池用負極。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−10364(P2008−10364A)
【公開日】平成20年1月17日(2008.1.17)
【国際特許分類】
【出願番号】特願2006−181837(P2006−181837)
【出願日】平成18年6月30日(2006.6.30)
【出願人】(000005120)日立電線株式会社 (3,358)
【Fターム(参考)】