説明

健康管理用装置

【課題】 携帯者の運動パターンを精度良くかつ効率的に推定することにより、携帯者の健康管理を効率的に支援するための健康管理用装置を提供する。
【解決手段】 携帯者に装着されるとともに、携帯者の身体行動データから運動パターンを推定するための健康管理用装置であって、携帯者における所定部分の少なくとも1つの方向の加速度(G)及び角速度(ω)を、身体行動データとして検出するための運動センサと、当該加速度(G)及び角速度(ω)の周期性を抽出して歩数を算出するための識別手段と、を備えるとともに、検出した身体行動データと照合するためのマッピングデータであって、予め作成した[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータを備えて、携帯者の運動パターンを推定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は健康管理用装置に関する。より詳しくは、携帯者の運動パターンを精度良くかつ効率的に推定することにより、携帯者の健康管理を効率的に支援するための健康管理用装置に関する。
【背景技術】
【0002】
人体に運動センサを装着して身体の運動を検出し、その運動パターンと大きさから運動の種類と強度を推定し、消費カロリー等を算出して健康維持のデータとする方法は、下記文献に開示されているように、従来広く知られている。
例えば、携帯型情報処理装置の運動検出部が、加速度センサ(直交3軸の各軸方向の加速度波形を検出)と、ジャイロ(直交3軸の各軸回りの回転角速度波形を検出)とを備え、行動認識部において携帯者の行動パターンを特定し、その結果を表示部に表示する技術である(例えば、特許文献1)。
また、利用者が携帯端末を身につけ、その加速度から利用者の運動量を自動計測し、摂取カロリー等関連情報と共にデータを外部のセンタコンピュータに電話回線を用いて送信する技術である。そして、送信されたデータを分析して、健康診断を行い、その診断結果を携帯端末に返送する技術である。なお、携帯端末としては、データを保存し、利用者の要求に応じて表示する機能を有しており、当該携帯端末を利用者の腰部に装着した例が図示されている(例えば、特許文献2)。
【特許文献1】特開平10−24026号公報(特許請求の範囲)
【特許文献2】特開平10−295651号公報(特許請求の範囲)
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、特許文献1では、携帯者の身体のどの部位にどのように加速度や角速度のセンサを装着すべきかについての言及がされていないし、検出波形から如何にして携帯者の行動パターンを特定できるのかが明らかではない。
また、特許文献2では、腰部への装着が例示されているが、腰部で如何なる方向の加速度を検出しそれをどのように用いて消費カロリーを算出するかが示されていない。また、車椅子利用者や下肢拘束者がリハビリ中に、上体の動きを検出したい場合に供することができなかった。すなわち、従来技術においては必要な運動の形態を知るための運動センサの好適な使用方法や装置の形態を含む一貫した実用的な技術が肝心な部分でまだ確立されているとは言い難いと考えられる。
さらに、携帯者の個人差で、腕振り動作が大きい場合や、ポケットに手を入れた状態で、歩行している場合や、さらには荷物を運搬している場合等、携帯者の運動パターンを精度良く推定できないという問題が見られた。
一方、従来の携帯型情報処理装置は、加速度(G)及び角速度(ω)を含む身体行動データに対するノイズの低減処理のために、フーリエ変換を一般的に実施しており、処理工程数が多くなるという問題が見られた。したがって、データ処理速度を高めるために、制御回路のクロック周波数を大きくしなければならず、結果として、携帯型情報処理装置であるにもかかわらず消費電力が大きいという問題が見られた。
【0004】
そこで、本発明者等は、このような問題を鋭意検討した結果、運動センサによって計測された[加速度(G)]及び[角速度(ω)]、並びに識別手段によって計測された[歩数データ]のデータ処理方法を考慮するだけで、携帯者の個人差等によらず、運動パターンを精度良くかつ効率的に推定できることを見出したものである。
すなわち、本発明は、予め作成した[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータを利用して、携帯者の運動パターンを精度良くかつ効率的に推定する実用的な健康管理装置(システム)を提供することを目的としたものである。
【課題を解決するための手段】
【0005】
本発明によれば、携帯者に装着されるとともに、携帯者の身体行動データから運動パターンを推定するための健康管理用装置であって、携帯者における所定部分の少なくとも1つの方向の加速度(G)及び角速度(ω)を、身体行動データとして検出するための運動センサと、当該加速度(G)及び角速度(ω)、あるいはいずれか一方の周期性を抽出して歩数データを算出するための識別手段と、を備えるとともに、検出した身体行動データと照合するためのマッピングデータであって、予め作成した[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータを備えることを特徴とする健康管理用装置が提供され、上述した問題を解決することができる。
【0006】
また、本発明の健康管理用装置を構成するにあたり、外部計算機への身体行動データの送信手段をさらに含むことが好ましい。
すなわち、外部計算機を用いることにより、健康管理用装置の処理作業の一部を負担させたり、より高度な処理を実施させたりすることが好ましい。
【0007】
また、本発明の健康管理用装置を構成するにあたり、身体行動データに対して、アナログ的にノイズの低減処理するためのバンドパスフィルタ及びローパスフィルタ、あるいはいずれか一方のフィルタを備えることが好ましい。
なお、加速度(G)についてはバンドパスフィルタを用いてノイズの低減処理し、角速度(ω)についてはローパスフィルタを用いてノイズの低減処理した後、それぞれ運動パターンの周期性を判断することがより好ましい。
【0008】
また、本発明の健康管理用装置を構成するにあたり、身体行動データに対して、さらにデジタル的にノイズの低減処理するためのデジタルフィルタを備えることが好ましい。
すなわち、バンドパスフィルタ又はローパスフィルタを用いて、身体行動データをアナログ的にノイズの低減処理した後、それをA/D変換し、さらにデジタルフィルタを用いて、所定値以外のデータを急峻に削除するノイズの低減処理を実施することが好ましい。
【0009】
また、本発明の健康管理用装置を構成するにあたり、制御回路のクロック周波数を0.01〜5MHzの範囲内の値とすることが好ましい。
すなわち、データ処理数や処理工程の低下に伴い、制御回路のクロック周波数を所定範囲内に制限することが好ましい。
【0010】
また、本発明の健康管理用装置を構成するにあたり、角速度(ω)を検出する動作を、所定時間あるいは任意期間停止させるためのスリープ機能を備えることが好ましい。
すなわち、角速度(ω)に関しては、運動センサにスリープ機能を備えて、例えば、加速度(G)が所定値を超えた場合のみ、所定時間停止したり、複数の加速度(G)の測定の合間の任意期間のみ停止したりすることが好ましい。
【0011】
また、本発明の健康管理用装置を構成するにあたり、マッピングデータを複数備え、前記身体行動データとの照合前に、いずれか一つのマッピングデータを携帯者が予め選択する構成であることが好ましい。
すなわち、例えば、携帯者が荷物を所有している場合と、荷物を所有していない場合に分けて、[加速度(G)/角速度(ω)]及び[歩数データ]からなる二つのマッピングデータを予め作成しておき、データ照合に際して、携帯者が選択したいずれかのマッピングデータを使用することが好ましい。
【0012】
また、本発明の健康管理用装置を構成するにあたり、マッピングデータを複数備え、身体行動データと同期させて、当該マッピングデータを自動的に選択するように構成してあることが好ましい。
すなわち、例えば、携帯者が老人であって、リハビリテーションを目的として、軽運動を欲している場合や、携帯者が青年であって、激しいフィジカルトレーニングを目的として、重運動を欲している場合にそれぞれ対応して、測定される身体行動データと同期させて、予め作成された複数のマッピングデータのいずれかを自動選択して使用することが好ましい。
【0013】
また、本発明の健康管理用装置を構成するにあたり、角速度(ω)から、携帯者の運動パターンの歩幅/身長データを推定できる構成であることが好ましい。
すなわち、所定条件下、角速度(ω)と、携帯者の歩幅/身長データと、が比例することが判明しており、それを利用して携帯者の歩幅/身長データを推定することが好ましい。
【0014】
また、本発明の健康管理用装置を構成するにあたり、別途入力した身長データを加味することにより、携帯者の運動パターンの歩幅/身長データから、携帯者の歩幅を算出できる構成であることが好ましい。
すなわち、所定条件下、携帯者の歩幅/身長データが推定できることから、別途判明している身長データの情報を加味して、携帯者の歩幅を算出することが好ましい。
【0015】
また、本発明の健康管理用装置を構成するにあたり、携帯者の歩幅と、加速度(G)及び角速度(ω)、あるいはいずれか一方の周期性を抽出して算出された歩数データと、から歩行速度を算出できる構成が好ましい。
すなわち、所定条件下、携帯者の歩幅が算出できることから、別途測定される歩数データの情報を加味して、携帯者の歩行速度を算出できる構成が好ましい。
【0016】
また、本発明の健康管理用装置を構成するにあたり、携帯者の運動パターンにおける平均消費カロリーを算出できる構成であることが好ましい。
すなわち、推定された運動パターンと、それに対応して別途定められる運動係数等から、携帯者の運動パターンにおける平均消費カロリーを算出できる構成が好ましい。
【0017】
また、本発明の健康管理用装置を構成するにあたり、携帯者が所定重量の荷物を携帯している場合には、当該荷物の重量を携帯者の体重に加算して、運動パターンにおける平均消費カロリーを算出できる構成が好ましい。
すなわち、推定された運動パターンと、それに対応して別途定められる運動係数等から、携帯者が所定重量の荷物を携帯している場合であっても、平均消費カロリーを正確に算出できる構成が好ましい。
【0018】
また、本発明の健康管理用装置を構成するにあたり、携帯者の心拍数、心拍間隔、血圧、血流速、酸素消費量、血糖値及び体温の少なくとも一つを測定するセンサをさらに備えることが好ましい。
すなわち、携帯者の運動パターンにおける加速度(G)、角速度(ω)及び歩数データ以外の身体行動データを、専用センサを備えて測定することが好ましい。
【発明の効果】
【0019】
本発明の健康管理用装置によれば、身体行動データと、予め作成した[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータと、を照合することによって、携帯者の運動パターンを精度良く推定することができる。
また、携帯者の運動パターンを精度良く推定できることから、身体行動データの測定頻度や測定時間等を少なくすることができる。したがって、データ処理数の減少に伴い、制御回路のクロック周波数を低下させることが可能となり、結果として、健康管理用装置の消費電力を低下させることもできる。
【0020】
また、本発明の健康管理用装置によれば、外部計算機への身体行動データの送信手段をさらに含むことにより、外部計算機に、健康管理用装置の処理作業の一部を負担させたり、より高度な処理を実施させたりすることができる。
【0021】
また、本発明の健康管理用装置によれば、身体行動データに対して、アナログ的にノイズの低減処理するための特定のフィルタを備えることにより、健康管理用装置の省電力化を有効に図ることができる。
すなわち、一般的に従来実施してきたフーリエ変換法によるノイズの低減処理と異なり、特定のフィルタ処理によるノイズの低減処理によれば、処理工程数を大幅に減少させることができる。したがって、制御回路のクロック周波数を低減し、健康管理用装置の省電力化を有効に図ることができる。
なお、携帯者の加速度(G)のセンシングについては、所定周波数領域のデータが必要であることから、バンドパスフィルタを用いてノイズの低減処理し、携帯者の角速度(ω)については所定周波数以下のデータが必要であることから、ローパスフィルタを用いてノイズの低減処理することにより、例えば、運動パターンにおける角速度(ω)等の周期性を精度良く判断することができる。
【0022】
また、本発明の健康管理用装置によれば、身体行動データに対して、さらにデジタルフィルタを用いてノイズの低減処理することにより、健康管理用装置の省電力化を有効に図ることができる。
すなわち、特定のアナログフィルタによるノイズの低減処理のほかに、デジタルフィルタを用いてノイズの低減処理を実施することにより、急峻に所望値を取り出すことができる。したがって、携帯者の運動パターンを精度良く推定することができる一方、省電力化をさらに有効に図ることができる。
【0023】
また、本発明の健康管理用装置によれば、制御回路のクロック周波数を所定範囲の値に制限することにより、健康管理用装置の省電力化をさらに有効に図ることができる。
すなわち、データ処理数や処理工程の低下に伴い、制御回路のクロック周波数を所定範囲内に制限することができる。
【0024】
また、本発明の健康管理用装置によれば、角速度(ω)の測定に関しては、スリープ機能を備えて、運動センサを所定時間あるいは任意期間停止させることにより、健康管理用装置の省電力化を有効に図ることができる。
すなわち、角速度(ω)の測定に関しては、健康管理用装置の消費電力が、加速度(G)のそれの約100倍に及ぶという事実がある。したがって、健康管理用装置にスリープ機能を備えて、角速度(ω)の検知を所定時間停止したり、任意期間停止したりすることにより、健康管理用装置の省電力化を有効に図ることができる。
【0025】
また、本発明の健康管理用装置によれば、[加速度(G)/角速度(ω)]及び[歩数データ]からなる複数のマッピングデータを備えることにより、携帯者の運動パターンをさらに精度良く推定することができる。
すなわち、携帯者の動作が制限された状態で運動する場合には、運動パターンの推定精度が低下する場合がある。したがって、例えば、携帯者が荷物を所有している場合には、それに対応して、複数のマッピングデータを予め作成しておき、データ照合に際して、携帯者が選択したいずれかのマッピングデータを使用することにより、携帯者の運動パターンを精度良く推定することができる。
【0026】
また、本発明の健康管理用装置によれば、マッピングデータを複数備え、身体行動データと同期させて、当該マッピングデータのいずれかを自動的に選択することにより、携帯者の運動パターンをさらに精度良く推定することができる。
すなわち、携帯者の種類や要求に対応して、測定される身体行動データと同期させて、予め作成された複数のマッピングデータのいずれかを自動選択することにより、携帯者の運動パターンをさらに精度良く推定することができる。
【0027】
また、本発明の健康管理用装置によれば、角速度(ω)から、携帯者の歩幅/身長データを推定することにより、携帯者の運動パターンをさらに精度良く推定することができる。
すなわち、所定条件下、角速度(ω)と、携帯者の歩幅/身長データと、が比例することから携帯者の歩幅/身長データを精度良く算出し、それを利用して、携帯者の運動パターンをさらに精度良く推定することができる。
【0028】
また、本発明の健康管理用装置によれば、別途入力された身長データを加味することにより、携帯者の運動パターンの歩幅/身長データから、携帯者の運動パターンの歩幅を算出し、携帯者の運動パターンをさらに精度良く推定することができる。
すなわち、所定条件下、角速度(ω)と、携帯者の歩幅/身長データと、が比例することから携帯者の歩幅を精度良く算出し、それを利用して、携帯者の運動パターンをさらに精度良く推定することができる。
【0029】
また、本発明の健康管理用装置によれば、携帯者の歩幅と、運動センサによって測定された歩数データと、から歩行速度を算出し、携帯者の運動パターンをさらに精度良く推定することができる。
すなわち、所定条件下、角速度(ω)と、携帯者の歩幅/身長データと、が比例することから携帯者の歩行速度を精度良く算出し、それを利用して、携帯者の運動パターンをさらに精度良く推定することができる。
【0030】
また、本発明の健康管理用装置によれば、携帯者の運動パターンにおける平均消費カロリーを算出し、携帯者の健康管理をより効率的に支援することができる。
なお、かかる平均消費カロリーは、一例として、後述する式(1)から算出することができる。
【0031】
また、本発明の健康管理用装置によれば、携帯者が所定重量の荷物を携帯している場合には、当該荷物の重量を携帯者の体重に加算して、運動パターンにおける平均消費カロリーをより正確に算出することができる。
すなわち、後述する式(1)において、推定された運動パターンと、それに対応して別途定められる運動係数等から、携帯者が所定重量の荷物を携帯している場合であっても、平均消費カロリーを正確に算出することができる。
【0032】
また、本発明の健康管理用装置によれば、携帯者の心拍数、心拍間隔、血圧、血流速、酸素消費量、血糖値及び体温の少なくとも一つを測定するセンサをさらに備えることにより、携帯者の健康管理をさらに効率的に支援することができる。
【発明を実施するための最良の形態】
【0033】
以下、図面を適宜参照しながら、本発明の健康管理用装置に関する実施形態について、具体的に説明する。
まず、図1は、予め作成した[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータを示している。横軸に、瞬間歩数(歩数/分)を採って示してあり、縦軸に、加速度(G)/角速度(ω)の比率(m/(rad・秒))を採って示してある。かかる図1より容易に理解できるように、境界線(L)との関係及び瞬間歩数との関係で、携帯者の運動パターンは、例えば、運動強度に対応した6つの領域に分類することができる。
より具体的には、直線[G/ω=−0.05×(瞬間歩数)+9]で表される境界線(L)の下方であって、瞬間歩数が100歩数/分未満に位置する領域Aを、運動強度が最低レベルの歩行パターン(歩行パターン1)に対応させることができる。また、その隣の境界線(L)の下方であって、瞬間歩数が100〜110歩数/分未満に位置する領域Bを、運動強度が比較的低レベルの歩行パターン(歩行パターン2)に対応させることができる。また、その隣の境界線(L)の下方であって、瞬間歩数が110〜120歩数/分未満に位置する領域Cを、運動強度が比較的中レベルの歩行パターン(歩行パターン3)に対応させることができる。さらに、その隣の境界線(L)の下方であって、瞬間歩数が120以上に位置する領域Dを、運動強度が中レベルの歩行パターン(歩行パターン4)に対応させることができる。
一方、境界線(L)の上方であって、瞬間歩数が160歩数/分未満に位置する領域Eを、運動強度が比較的高レベルの走行パターン(走行パターン1)に対応させることができる。さらにその右隣の境界線(L)の上方であって、瞬間歩数が160歩数/分以上に位置する領域Fを、運動強度が高レベルの走行パターン(走行パターン2)に対応させることができる。
なお、加速度(G)/角速度(ω)に所定の定数を加減したり、所定の係数を乗じたり、対数平均等の数値処理を施すことも好ましい。
さらに、角速度(ω)については、所定の演算処理、例えば一定条件下における加速度(G)を積分し、長さを乗じるなどの演算処理を行うことにより、加速度(G)から算出することもできる。
【0034】
なお、マッピングに表示されている領域A〜Fは、上述したように、運動強度が異なる歩行パターン1、2、3、4及び走行パターン1、2に対応しており、それぞれ、さらに後述する表3(第4次改定「日本人の栄養所要量」)に規定された複数の歩行パターン及び複数の走行パターンに対応させることができる。
より具体的には、歩行パターン1を、歩行速度60m/minの歩行にほぼ対応させることができる。また、歩行パターン2を、歩行速度70m/minの歩行にほぼ対応させることができる。また、歩行パターン3を、歩行速度80m/minの歩行にほぼ対応させることができる。また、歩行パターン4を、歩行速度が90m/min以上の歩行にほぼ対応させることができる。また、走行パターン1を、軽めのジョギングにほぼ対応させることができる。さらに、走行パターン2を、強めのジョギングにほぼ対応させることができる。
【0035】
また、図2は、図1に示す[加速度(G)]及び[角速度(ω)]の測定データを、従来の分類方法に沿ってマッピングした図である。より具体的には、横軸に携帯者の角速度(ω)を採って示してあり、縦軸に携帯者の加速度(G)を採って示してある。
かかる図2より容易に理解できるように、携帯者の運動パターンを精度良く分類することが困難な場合がある。すなわち、図1に示す歩行パターン1〜4に該当するデータを黒マル(●)で示し、図1に示す走行パターン1〜2に該当するデータを白三角(△)で示してあるが、黒マル(●)と、白三角(△)とが一部混在している場合がある。
よって、図2に示すような従来の分類方法と異なり、図1に示すような、[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータと、運動センサによって計測された加速度(G)及び角速度(ω)、並びに、マイクロプロセッサ等の識別手段により測定された歩数データと照合することによって、携帯者の運動パターンを精度良くかつ効率的に推定することができる。
【0036】
ここで、表1に、本発明の健康管理用装置を用いた場合の運動パターンの推定結果と、表2に、従来の健康管理用装置を用いた場合の運動パターンの推定結果との相違を示す。それぞれ横方向のカラムに、実際に実施した運動パターンとしての歩行及び走行が取ってあり、縦方向のカラムに、健康管理用装置を用いて推定した運動パターンとしての歩行及び走行が取ってある。
これらの推定結果を比較すれば明らであるが、本発明に従って、[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータと、運動センサによって計測された加速度(G)及び角速度(ω)、並びに、識別手段により測定された歩数データとを照合することによって、携帯者の運動パターンをより精度良くかつ効率的に推定することができる。それに対して、従来の健康管理用装置を用いた場合には、携帯者の運動パターンを誤って推定する場合が多いことが理解できる。
【0037】
【表1】

【0038】
【表2】

【0039】
次いで、図3を参照して、携帯者が一定基準(100歩相当)走行した場合における(繰り返し数:47サンプル)、本発明の健康管理用装置を用いて算出した歩数と、従来の健康管理用装置を用いて算出した歩数との比較結果を説明する。
すなわち、図3は、横軸に健康管理用装置を用いて算出した歩数が示してあり、縦軸に、繰り返し数:47サンプルのうちの頻度が採って示してある。また、斜線の棒グラフが本発明の健康管理用装置を用いて算出した歩数に対応しており、シロ抜きの棒グラフが従来の健康管理用装置を用いて算出した歩数に対応している。
かかる図3に示すように、発明の健康管理用装置を用いて算出した歩数の方が、測定におけるばらつきが小さくなっている。より具体的には、発明の健康管理用装置を用いて算出した歩数の場合、80〜110歩の範囲内の値となっているのに対して、従来の健康管理用装置を用いて算出した歩数は、60〜110歩の範囲内の値となっている。
したがって、走行動作において、本発明の健康管理用装置を用いて算出した歩数によれば、従来の健康管理用装置を用いて算出した歩数と比較して、精度良く測定されていると言える。
【0040】
次いで、図4を参照して、携帯者が一定基準(100歩相当)歩行した場合における(繰り返し数:47サンプル)、本発明の健康管理用装置を用いて算出した歩数と、従来の健康管理用装置を用いて算出した歩数との比較結果を説明する。
すなわち、図4は、横軸に健康管理用装置を用いて算出した歩数が示してあり、縦軸に、繰り返し数:47サンプルのうちの頻度が採って示してある。また、斜線の棒グラフが本発明の健康管理用装置を用いて算出した歩数に対応しており、シロ抜きの棒グラフが従来の健康管理用装置を用いて算出した歩数に対応している。
かかる図4に示すように、発明の健康管理用装置を用いて算出した歩数の方が、測定におけるばらつきが小さくなっているとともに、真値である100歩の頻度がより高くなっている。より具体的には、発明の健康管理用装置を用いて算出した歩数の場合、80〜120歩の範囲内の値であって、真値である100歩の頻度が33となっている。それに対して、従来の健康管理用装置を用いて算出した歩数は、30〜110歩の範囲内の値であって、真値である100歩の頻度は28となっている。
したがって、歩行動作において、本発明の健康管理用装置を用いて算出した歩数によれば、従来の健康管理用装置を用いて算出した歩数と比較して、精度良く測定されていると言える。
【0041】
次いで、図5を参照して、重さ5kgの荷物を携帯した状態で、携帯者が一定基準(100歩相当)歩行した場合における(繰り返し数:47サンプル)、本発明の健康管理用装置を用いて算出した歩数と、従来の健康管理用装置を用いて算出した歩数との比較結果を説明する。
すなわち、図5は、横軸に健康管理用装置を用いて算出した歩数が示してあり、縦軸に、繰り返し数:47サンプルのうちの頻度が採って示してある。また、斜線の棒グラフが本発明の健康管理用装置を用いて算出した歩数に対応しており、シロ抜きの棒グラフが従来の健康管理用装置を用いて算出した歩数に対応している。
かかる図5に示すように、発明の健康管理用装置を用いて算出した歩数の方が、測定におけるばらつきが小さくなっているとともに、真値である100歩の頻度が著しく高くなっている。より具体的には、発明の健康管理用装置を用いて算出した歩数の場合、90〜110歩の範囲内の値であって、真値である100歩の頻度が33となっている。それに対して、従来の健康管理用装置を用いて算出した歩数は、0〜110歩の範囲内の値であって、真値である100歩の頻度は0となっている。
したがって、荷物を携帯した状態の歩行動作において、本発明の健康管理用装置を用いて算出した歩数によれば、図5に示すように、従来の健康管理用装置を用いて算出した歩数と比較して、著しく精度良く測定されていると言える。
【0042】
なお、このように携帯者の行動が制限されるような場合には、複数のマッピングデータを備え、身体行動データの照合前に、いずれか一つのマッピングデータを携帯者が予め選択して、それを利用することが好ましい。
すなわち、例えば、携帯者が荷物を所有している場合と、荷物を所有していない場合とに分けて、二つのマッピングデータを予め作成しておき、データ照合に際して、携帯者が選択したいずれかのマッピングデータを使用することが好ましい。
また、例えば、携帯者がポケットに手を入れた状態で動作している場合と、携帯者がポケットから手を出した状態で動作している場合とに分けて、二つのマッピングデータを予め作成しておき、データ照合に際して、携帯者が選択したいずれかのマッピングデータを使用することが好ましい。
また、老人におけるリハビリテーションや脳の活性化のために、軽運動が効果的であることが認識されてきているが、本発明の健康管理用装置は、かかる軽運動のように微細な変化であっても検出できるという特徴がある。したがって、携帯者の種類や要求に対応して、測定される身体行動データと同期させて、予め作成された[加速度(G)/角速度(ω)]及び[歩数データ]からなる複数のマッピングデータを自動選択することにより、携帯者の運動パターンをさらに精度良く推定することができる。
さらには、例えば、携帯者の腕振りが大きい場合と、携帯者の腕振りが中程度である場合と、携帯者の腕振りが小さい場合と、に分けて、三つに対応したマッピングデータを予め作成しておき、データ照合に際して、携帯者が選択したいずれかのマッピングデータを使用することも好ましい。
【0043】
次いで、図6を参照して、本発明の健康管理用装置を用いて算出した角速度(ω)と、歩幅/身長データとの関係を説明する。
すなわち、図6は、横軸に複数の携帯者(合計測定数:18サンプル)が一定基準(100歩相当)歩行した場合における、本発明の健康管理用装置を用いて算出した角速度(ω)が示してあり、縦軸に、複数の携帯者における歩幅/身長データ(−)が採って示してある。
この図6から理解されるように、本発明の健康管理用装置を用いて算出した角速度(ω)が所定範囲、より具体的には、角速度(ω)が約300〜3300rad/秒の範囲であれば、複数の携帯者における歩幅/身長データ(−)と比例関係にあることが理解される。
したがって、本発明の健康管理用装置の場合、それを用いて算出した角速度(ω)から、複数の携帯者における歩幅/身長データ(−)が精度良く算出できると言える。
なお、このように所定条件下、角速度(ω)と、携帯者の歩幅/身長データと、が比例することから携帯者の歩幅/身長データを精度良く算出し、それを利用して、携帯者の歩幅や運動パターンをさらに精度良く推定することができる。したがって、適切に推定された運動パターンから、携帯者の運動パターンにおける平均消費カロリーをより精度良く算出し、結果として、携帯者の健康管理をより効率的に支援することができる。
【0044】
次いで、図7及び図8を参照して、本発明の健康管理用装置における携帯型測定機器及びその構成について具体的に説明する。
すなわち、図7(a)は、腕時計型の携帯型測定機器100の手首107への装着状態を示す図であり、図7(b)は、腕時計型の携帯型測定機器100の側面図であり、図8は、外部計算機(図示せず)に接続するためのアダプタ4への携帯型測定機器100の装着方法を説明するための図である。
したがって、かかる携帯型測定機器100は、健康管理用装置として、携帯者が違和感なく装着できるように、図7(b)に示すように、腕時計に似た形態として、その腕巻きバンド103によって、図7(a)に示すように、携帯者の手首107に装着することができる。但し、このような携帯型測定機器を、ペンダント風にアレンジしたり、腰や足に装着したりする構成であってもよい。
また、かかる携帯型測定機器100は、主要構成部品として、運動センサ110、表示装置111、外部計算機との通信回路モジュール105、電源112、操作スイッチ106及び109を備えている。
【0045】
そして、運動センサ110については、表示装置111と平行となるように配置することが好ましい。この理由は、携帯型測定装置100を腕時計のように、表示面が手首の甲側又は掌側になるように装着したとし、上体を直立させ肘を自然に曲げ伸ばしするとき、その回転面は携帯型測定装置100の表示面すなわち表示装置111と平行になるためである。より詳細に言うと、運動パターンを検出する最適な方法としては、加速度について身体の上下(鉛直)方向の直線運動、即ち(a)図に示すX方向について測定するためである。また、回転角速度については、身体の上下方向と前後方向の双方を含む平面内の回転(同図のω方向)、即ち身体の左右方向を向き、かつ水平な回転軸(図示Z軸に平行)回りの回転運動について測定するためである。すなわち、その最も広い面に平行な回転検出面をもつ薄型の角速度センサがあれば、それを内部に含む運動センサ110を表示装置111と平行に配置することが好ましい。
また、携帯型測定機器100から外部計算機への身体行動データの送信手段についても特に制限されるもので無く、例えば、携帯型測定機器と、外部計算機とをケーブル接続したり、携帯電話通信システムを利用して無線接続したりして、データ送信することが好ましい。より具体的には、ブルートゥース(bluetooth)規格と呼ばれる2.4GHz周波数帯域での無線通信規格を用いた通信手段を利用することができる。
但し、全体構成をより小型化することができることから、図8に示すように、腕時計型の携帯型測定機器100を携帯者がはずして、それを外部計算機に接続するためのアダプタ4へ装着することにより、データ送信することも好ましい。このように構成すると、携帯型測定機器における電源部分を小さくし、適宜充電しながら、測定機能を発揮することができる。
【0046】
次いで、図9を参照して、本発明の健康管理用装置としての携帯型測定機器に搭載する運動センサの一例について説明する。
すなわち、かかる運動センサ200は、箱型の気密状態に保持された外部容器240と、外部容器240の底部を貫通する多数のハーメチック端部ピン241を備えている。各ピン242は運動センサ振動体50上の電極膜群の個々に対して、例えば、ワイヤボンディングの手法で電気接続されているが、電極膜やボンディングワイヤは図示を省略してある。また、運動センサ振動体250は、1枚の圧電性材料平板から形成されており、加速度センサ部と、角速度センサ部とが一体化されて形成されている。すなわち、運動センサ振動体250は、総基部251の裏側の固定部A252(斜線部)と、小面積の固定部B264(斜線部)の裏面とが容器240側の台座(図示せず)上に電気接続されて、強固に支持されている。
【0047】
また、運動センサ200の角速度センサ部250は、いわゆる三脚音叉型の形状をした部分であり、各々L字型の外脚A253,外脚B255,中脚C254,及び音叉基部256、支点257より構成されている。そして、外脚A253と、外脚B255とは通常の二脚音叉と同様にそれぞれが片持ち梁的で対称軸(図示せず)に関して対称的な振動を行なうように、角速度測定回路に含まれる励振回路(発振回路)によって一定振幅で励振させられている。
また、中脚C254は励振されないが、その撓みを検出するための表面電極(図示せず)を備えている。さらに、固定部と異なるハッチングを付して示した領域258A,258B、258Cはそれぞれ負荷質量で、固有振動数を下げかつ互いに等しくするために脚先端部に施した金属の厚メッキ層より構成されている。但し、中脚C254の固有振動数は、両外脚の固有振動数と適宜差をつけるように構成することがある。
そして、このような運動センサ200の角速度センサ部250が、図示の方向、即ち紙面に垂直なZ軸に平行な回転軸の回りに角速度(ω)で回転すると、両外側の振動脚には角速度に比例するコリオリ力が作用する。その方向は脚の長手方向であって、ある瞬間外脚A253に脚先端向きの力が作用すれば、外脚B255には脚の基部に向かう力が作用する。したがって、力の方向は脚の振動と同期して正弦的に変化し、周期的に反転する。また、2つの力は両外脚が平行に離れておりかつ負荷質量の偏心方向も外脚軸に対して逆であるため、偶力を構成し、音叉基部256を揺さぶり、支点257の回りに微小な回転振動を惹起する。このコリオリ力によるモーメントに起因する音叉基部256の振動を感知して、中脚C254はコリオリ力に比例した振幅で振動する。すなわち、中脚C254に設けた検出電極で抽出された振動電圧が角速度(ω)の検出信号である。
【0048】
一方、運動センサ200の加速度センサ部260は、一対の平行な振動する2本の棒261、262と、負荷質量265より構成されている。また、バネ部である棒261、262、負荷質量265、2本の支持バネ263(負荷質量265を支持しながら図示X方向の微小な変位を許すための部材)、固定部264(負荷質量265が特にX方向に大きく変位しないように支持固定するための部分)より構成されている。そして、各々両端固定である棒261、262は、加速度センサ部260の対称軸に関して対称な弓型をなす振動姿態で発振回路に励振させられる。
その発振周波数は通常一定であるが、負荷質量265に図示X方向の加速度(G)が作用すると、その大きさに比例する力で負荷質量265は、棒261、262をその長手方向に圧縮あるいは引っ張ることになる。したがって、その力の方向と大きさにより発振周波数が増減し変化する。そこで別途設けた基準周波数と上記発振周波数とを比較し、発振周波数の変化の方向と量を知ればX軸方向の加速度(G)を求めることができる。
すなわち、このような運動センサの最大の利点は薄型であって、かつ腕時計型装置の最大の面(表示面)に平行に配置して、重要な加速度(G)及び、角速度(ω)が検出可能なことである。
【0049】
なお、このような運動センサ200を動作させるにあたり、角速度(ω)を検出する動作を、所定時間あるいは任意期間のみ運動センサを停止させるためのスリープ機能を備えることが好ましい。
すなわち、角速度(ω)に関しては、運動センサにスリープ機能を備えて、例えば、加速度(G)が所定値を超えた場合のみ、所定時間停止させたり、複数の加速度(G)の測定の合間の任意期間のみ停止させたりすることが好ましい。
この理由は、角速度(ω)のセンシングを所定時間、停止したり、任意期間、停止したりすることにより、健康管理用装置の省電力化を有効に図ることができるためである。より具体的には、消費電力が100倍も大きい角速度(ω)の測定に関しては、加速度(G)が所定値を超えた場合や、予め設定した時間滞のみに実施することにより、健康管理用装置の省電力化を有効に図ることができるためである。
より具体的には、このようなスリープ機能を備えることにより、制御回路のクロック周波数が従来の10MHzのままであっても、電池寿命(充電必要時間)を2日から、10日以上に延長できることが判明している。
【0050】
次いで、図10及び図11を参照して、本発明の健康管理用装置における身体測定データの周期性の判断方法について説明する。
すなわち、運動センサによって測定される加速度(G)及び角速度(ω)、あるいはいずれか一方の身体測定データをもとにして、識別手段によりそれらを適宜抽出して、所定の周期性が見られれば、携帯者が歩行状態であるか、走行状態であるかを推定することができる。
より具体的には、図10及び図11に示すように、S1、S1´で割り込み処理し、次いで、S2、S2´で、運動センサによって角速度(ω)又は加速度(G)を具体的に測定する。次いで、S3、S3´において、得られた角速度(ω)及び角速度(ω)、あるいはいずれか一方の身体測定データに対して、それぞれアナログフィルタを用いてノイズの低減処理を実施する。その際、角速度(ω)については、ローパスフィルタを用いて、所定高域のノイズの低減処理を実施することがより好ましく、加速度(G)については、バンドパスフィルタを用いて、所定範囲域のノイズの低減処理を実施することがより好ましい。すなわち、携帯者の加速度(G)については、所定周波数領域のデータが必要であることから、バンドパスフィルタを用いてノイズの低減処理を実施し、携帯者の角速度(ω)については所定周波数以下のデータが必要であることから、ローパスフィルタを用いてノイズの低減処理を実施することにより、運動パターンの周期性をそれぞれ精度良く判断することができる。
なお、携帯者が人間である場合、例えば、0.01〜5Hzの低周波帯域に、運動パターンに対応した角速度(ω)又は加速度(G)のピークが発生することが判明している。したがって、識別手段により、この低周波帯域の角速度(ω)又は加速度(G)のピークやゼロクロス点を解析し、適宜抽出することにより、運動パターンの周期性を正確に推定することができる。
【0051】
次いで、S4、S4´において、アナログフィルタを用いてノイズの低減処理を実施した角速度(ω)又は加速度(G)の身体測定データを、A/D変換することが好ましい。そして、A/D変換した角速度(ω)又は加速度(G)に対して、デジタルフィルタを用いてノイズの低減処理を実施することが好ましい。
すなわち、特定のアナログフィルタによるノイズの低減処理のほかに、デジタルフィルタを用いたノイズの低減処理を実施することにより、急峻に所望値のみを取り出すことができる。
次いで、S5、S5´において、マイナスデータがプラスデータに変わるゼロクロス点を定める。したがって、定めたゼロクロス点を基準として、ノイズの低減処理が実施された角速度(ω)及び加速度(G)の周期性をそれぞれ明確に定めることができる。
次いで、角速度(ω)又は加速度(G)の身体測定データのゼロクロス点間の周期(Tω又はT)が所定値以下の場合、身体測定データに所定の周期性があると判断することができる。逆に言えば、ゼロクロス点間の周期(Tω又はT)が所定値以下の場合、携帯者が所定の周期性を有する運動を実施していると言える。
一方、角速度(ω)又は加速度(G)の身体測定データのゼロクロス点間の周期(Tω又はT)が所定値を超えた場合には、身体測定データに周期性が無いと判断することができる。すなわち、所定時間以上において、携帯者が所定の運動パターンを実施していないと言える。したがって、その場合には、図12に示すように、携帯者が静運動の状態、例えば、デスクワークをしていると判断することができる。
そして、携帯者が周期性を有する所定の運動パターンを実施していると判断された場合には、測定される角速度(ω)のゼロクロス点周波数の2倍×基準測定時間(例えば、2秒)を、基準測定時間における歩数データとしてカウントすることができる。
なお、運動パターンにおける角速度(ω)及び加速度(G)のいずれかにおいて周期性があれば、携帯者が周期性を有する運動パターンを実施していると判断できるが、仮に、いずれか一方において周期性が観察されない場合であっても、もう一方において周期性が観察されれば十分である。したがって、例えば、先に角速度(ω)の周期性を測定し、それに周期性があれば、加速度(G)の周期性を測定することなく携帯者が周期性を有する運動パターンを実施していると判断することができる。一方、先に角速度(ω)の周期性を測定し、それに周期性が無くとも、次いで加速度(G)の周期性を測定して観察された場合には、携帯者が周期性を有する運動パターンを実施していると判断することができる。
【0052】
次いで、図12を参照して、本発明の健康管理用装置を用いた運動パターンの認識方法について説明する。
すなわち、図10及び図11のフローチャートに沿って、運動パターンにおける角速度(ω)等に周期性があると判断された場合、携帯者の加速度(G)、角速度(ω)及び歩数データをそれぞれ加味して、予め作成した[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータと照合することで、携帯者の運動パターンを推定することができる。
より具体的には、マッピングデータと照合して、境界線(L)の上方に位置するか、下方に位置するかで、携帯者が走行状態か、歩行状態であるかを判断することができる。
そして、携帯者が走行状態であると判断した場合には、その歩数データを加味して、例えば、走行パターン1及び走行パターン2のいずれかの状態であるかを判断することができる。
一方、携帯者が歩行状態であると判断した場合にも、その歩数データを加味して、例えば、歩行パターン1〜4のいずれかの状態であるかを判断することができる。
【0053】
なお、運動パターンを認識するに当って周期性を判断する際に、身体行動データに対して、バンドパスフィルタ及びローパスフィルタ、あるいはいずれか一方のフィルタを用いてノイズの低減処理を実施していることから、従来のフーリエ変換によるノイズの低減処理と比較して、処理工程を著しく低減できるという特徴がある。
より具体的には、従来のフーリエ変換によるノイズの低減処理では100ステップ程度かかっていた処理工程数を、アナログフィルタによるノイズの低減処理では1/10程度に低下させることが可能である。
また、身体行動データに対して、さらにデジタルフィルタを用いてノイズの低減処理することにより、健康管理用装置の著しい省電力化を図ることができる。
すなわち、特定のアナログフィルタによるノイズの低減処理のほかに、デジタルフィルタを用いてノイズの低減処理を実施することにより、急峻に所望値を取り出すことができる。
一方、従来のフーリエ変換による主周波数抽出処理では、データ処理速度を高めるために、制御回路のクロック周波数を大きくしなければならず、具体的に、少なくとも10MHz以上としなければならなかった。それに対して、本発明の特定フィルタによるノイズの低減処理によれば、データ処理量が著しく少なくて済むため、制御回路のクロック周波数を小さくする、具体的に2MHz以下とすることができる。
したがって、このようにアナログフィルタによるノイズの低減処理、さらにはデジタルフィルタを用いたノイズの低減処理を実施することにより、携帯者の運動パターンの周期性や歩数を精度良く推定することができる一方、省電力化をさらに有効に図ることができる。なお、制御回路のクロック周波数を10MHzから、2MHzに低下させた場合、健康管理用装置の電池寿命(充電必要時間)を2日から、10日以上に延長できることが判明している。
【0054】
最後に、図13を参照して、本発明の健康管理用装置を用いたシステムについて説明する。
すなわち、図13は、健康管理用装置の詳細なシステムを示す図である。かかる健康管理用装置のシステムは、携帯者の身体行動データを測定し、携帯者の身体行動データから運動パターンを推定するための携帯型測定機器100と、推定された携帯者の運動パターン等と、別途入力された行動別係数や補正係数等から、例えば、平均消費カロリーを算出するための外部計算機としてのコンピュータ装置8と、から基本的に構成されている。
そして、携帯型測定機器100と、コンピュータ装置8と、の間で通信する充電・通信アダプタ4と、複数の無線LAN端末との間でルートを開設してネットワークを構築する無線LANルータ5と、身体の体重を測定するための無線LAN体重計6と、身体の体脂肪や内臓脂肪を測定するための無線LAN体脂肪計や無線LAN内臓脂肪計7と、が設けてあり、充電・通信アダプタ4上に装着された携帯型測定機器100からライン4cを介して受信した運動パターンデータをもとに、消費カロリーに関する演算を行った後に健康管理に関するデータを示すためのモニタ9と、をさらに含んでいることが好ましい。
なお、例えば、体重計に載った人を特定するため、本発明の健康管理用装置に、無線タグを取り付けるとともに、体脂肪計や内臓脂肪計に組み込まれたタグリーダで、個人識別情報としてのIDを読み取り、体重等のデータと共に、コンピュータ装置へ送信するシステムを付加することも好ましい。
また、携帯型測定機器100は、携帯者の身体(図示しない)の一部分の加速度を検出するために、その特定の方向への加速度を検知する加速度センサ11と、特定の面に平行な回転の角速度を検知する角速度センサ12と、それら機械的振動体であるセンサを各々励振し(駆動信号はP130及びP140)、加速度及び角速度あるいはいずれか一方の検出信号P11及びP12を抽出し、検波・増幅等の処理をしてそれぞれ検出値に比例する電圧を出力する加速度測定回路13と、角速度測定回路14と、を含んでいることが好ましい。
【0055】
ここで、加速度出力P13と、角速度出力P14は、それぞれ加速度演算回路15及び角速度演算回路16によって所定の演算が施される。この所定の演算とは、信号P13、P14の波形に加工を施して信号を変換することであり、例えば、入力波形のピーク値を抽出する、整流・平滑化を行って平均化する、所定期間に現れる波形のピーク値の分散値を求める、所定期間の信号を細かくサンプリングしてその分散値を出す、その他の数学的処理を行なうことや、振動する波形の周期を求めること等を意味する。それらの出力である運動データは、加速度演算出力P15及び角速度演算出力P16が意味している。
また、運動判定回路17は、加速度演算回路15と、角速度演算回路16と、さらに制御回路26と、から内部信号P15、P16、P265等を受けて、それに含まれる加速度演算出力と角速度演算出力の2種類の情報と、予め何種類かの運動について実験的に求めておいたそれぞれの数値範囲とを比較し、ある期間内に、携帯者が行った運動の種類とその強度を判定する。
これらの情報を含む判定結果信号P17は、記憶装置19に記憶されるとともに表示装置18(必要な回路を含む)に送られて、その内容(運動の種類、強度、その評価)等が予め登録されていた携帯者の個人情報や、栄養摂取データとともに表示され、医療担当者等を含むデータ管理者による診断や判断を可能にする。また、記憶装置19に記憶された内容を含む記憶信号P19は、再生回路20によって必要に応じて再生信号P20として随時再生され、表示装置18により表示される。
また、制御回路26は、携帯型測定機器100内の各回路に作用し、制御信号P261、P62、P263、P264、P265を発生し、各回路の動作タイミングや各回路間の連携動作を調整することが好ましい。
【0056】
また、運動判定回路17からの出力は、通信制御回路27によって、通信ケーブル4cを介してコンピュータ装置8に設けられた通信制御回路36に送信される。
したがって、図2に示すように、コンピュータ装置8は、演算及び制御を行なうCPU31、BIOSを記憶するROM32、ハードディスクHD34からOSソフトウエア及びアプリケーションソフトウエアをブートして書き込むRAM33、OSソフトウエア及びアプリケーションソフトウエアを記憶するとともにソフトウエアからなるカロリー演算部34aと、所定情報を制御表示するための表示制御部34bと、を含むハードディスクHD34、携帯型測定機器100に表示データを描画してモニタ9に表示する表示制御回路35、COMポート及びUSBポートとの間でシリアル通信を制御する通信制御回路36、キー操作によりキーコードを入力するキーボード37、画面上に表示されたカーソル位置を移動するとともにクリック情報を入力するマウス38、無線LANルータ5との間で無線LAN通信を行なう無線LAN制御回路39から構成されていることが好ましい。
なお、携帯型測定機器100には、図示しないものの、携帯者の身体における所定部分の少なくとも一つの方向の加速度(G)及び角速度(ω)以外の測定装置として、携帯者の身体的データとしての心拍数(脈拍)、心拍間隔、血圧、血流速、酸素消費量、血糖値及び体温の少なくとも一つを測定するセンサを別途備えることが好ましい。
すなわち、携帯者の運動パターンにおける加速度(G)、角速度(ω)及び歩数データ以外の身体行動データを、専用センサを備えて測定して加味することにより、携帯者の運動パターンの推定もより精度良くなるとともに、健康管理をさらに効率的に支援することができる。
【0057】
そして、測定された加速度(G)や、角速度(ω)のデータは様々に加工され、運動パターンの識別や、消費エネルギの算出に用いることができる。その場合、加速度(G)や、角速度(ω)の運動データをコンピュータ装置8に転送し、かかるコンピュータ装置8が演算して、それを視覚化するとともに、所定の記録をすることが好ましい。
すなわち、従来の広範な研究データにより、例えば、表3に示すような20〜29歳の男性を基準として、種々の行動の形態毎に単位体重(kg)当たりの消費エネルギが「行動別係数」として与えられており、それを利用することができる(日本体育協会スポーツ科学委員会による。)
また、年齢や性別の異なる被験者(使用者)については、表4に示すような消費エネルギに関する補正係数が与えられており、それを利用することができる(第4次改定「日本人の栄養所要量」による。)
さらに、携帯者の運動パターンは、加速度(G)又は角速度(ω)の大きさを示す量によって、運動強度に対応して何段階かに分けることもできる。さらに、歩行状態や、走行状態であると判断された場合には、データの周期性から歩数や歩幅等をカウントすることも容易にできる。
したがって、携帯者が行っていると推定される運動パターンや運動の種類が決まれば、このような外部機関によって得られた基礎データに基づいて、行動パターンにおける短時間の平均消費エネルギ(基礎代謝エネルギを含む)について、下記式(1)より計算することができる。
平均消費エネルギ=行動別係数[kcal/kg/分]×体重[kg]×時間[分]×補正係数 (1)
【0058】
なお、長時間の消費エネルギについては、時間的に変化する短時間の消費エネルギを積分することにより算出することができる。あるいは、運動センサを常時ではなく間欠的に動作させ、動作中のデータより識別された運動パターンの種類及び強度が、例えば数分〜10数分である間欠動作の間隔期間中に持続するものと推定し、それより計算した消費エネルギを積算してもよい。
さらに、携帯者が所定重量の荷物を携帯している場合には、当該荷物の重量を携帯者の体重に加算して、運動パターンにおける平均消費カロリーをより正確に算出することができる。
すなわち、例えば、5kgの荷物を携帯している場合には、前述した式(1)において、当該荷物の重量を携帯者の体重に加算して、運動パターンにおける平均消費カロリーを正確に算出することができる。
【0059】
【表3】

【0060】
【表4】

【産業上の利用可能性】
【0061】
本発明の健康管理用装置によれば、測定された身体行動データと、予め作成した[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータとを照合することによって、携帯者の運動パターンを精度良くかつ効率的に推定することができるようになった。
したがって、携帯者の運動パターンの周期性や歩数を精度良く推定することができる一方、制御回路のクロック周波数を低下することが可能となるため、省電力化をさらに有効に図ることができ、例えば、健康管理用装置の電池寿命を10日以上に延長できるようになった。
一方、本発明の健康管理用装置によれば、別途入力された身長データを加味することにより、携帯者の運動パターンの歩幅を算出することができるようになった。したがって、携帯者の運動パターンの推定に役立てることができるとともに、携帯者の健康管理をさらに効率的に支援することができるようになった。
【図面の簡単な説明】
【0062】
【図1】[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータを説明するために供する図である。
【図2】従来の分類方法からなるマッピングデータを説明するために供する図である。
【図3】走行動作における本発明の健康管理用装置を用いて算出した歩数と、従来の健康管理用装置を用いて算出した歩数とを比較した図である。
【図4】歩行動作における本発明の健康管理用装置を用いて算出した歩数と、従来の健康管理用装置を用いて算出した歩数とを比較した図である。
【図5】荷物を携帯した状態での歩行動作における本発明の健康管理用装置を用いて算出した歩数と、従来の健康管理用装置を用いて算出した歩数とを比較した図である。
【図6】本発明の健康管理用装置を用いて算出した角速度(ω)と、歩幅/身長データとの関係を説明するための図である。
【図7】(a)は、腕時計型の携帯型測定機器の手首への装着状態を示す図であり、(b)は、腕時計型の携帯型測定機器の側面図である。
【図8】外部計算機へ接続するためのアダプタへの携帯型測定機器の装着方法を説明するための図である。
【図9】携帯型測定機器に搭載する運動センサを説明するために供する図である。
【図10】携帯型測定機器における角速度(ω)の測定による周期性の判断方法を説明するためのフローチャートである。
【図11】携帯型測定機器における加速度(G)の測定による周期性の判断方法を説明するためのフローチャートである。
【図12】本発明の健康管理用装置を用いた運動パターンの認識するためのアルゴリズムである。
【図13】本発明の健康管理用装置を用いたシステムを説明するための図である。
【符号の説明】
【0063】
4:充電・通信アダプタ
6:無線LAN体重計
7:無線LAN体脂肪計・内臓脂肪計
8:外部計算機(コンピュータ装置)
9:モニタ
100:携帯型測定機器(健康管理用装置)
200:運動センサ
250:角速度センサ部
260:加速度センサ部

【特許請求の範囲】
【請求項1】
携帯者に装着されるとともに、携帯者の身体行動データから運動パターンを推定するための健康管理用装置であって、
前記携帯者における所定部分の少なくとも1つの方向の加速度(G)及び角速度(ω)を、前記身体行動データとして検出するための運動センサと、
当該加速度(G)及び角速度(ω)、あるいはいずれか一方の周期性を抽出して歩数データを算出するための識別手段と、を備えるとともに、
前記検出した身体行動データと照合するためのマッピングデータであって、予め作成した[加速度(G)/角速度(ω)]及び[歩数データ]からなるマッピングデータを備えることを特徴とする健康管理用装置。
【請求項2】
外部計算機への身体行動データの送信手段をさらに含むことを特徴とする請求項1に記載の健康管理用装置。
【請求項3】
前記身体行動データに対して、アナログ的にノイズの低減処理するためのバンドパスフィルタ及びローパスフィルタ、あるいはいずれか一方のフィルタを備えることを特徴とする請求項1又は2に記載の健康管理用装置。
【請求項4】
前記身体行動データに対して、さらにデジタル的にノイズの低減処理するためのデジタルフィルタを備えることを特徴とする請求項1〜3のいずれか一項に記載の健康管理用装置。
【請求項5】
制御回路のクロック周波数を0.01〜5MHzの範囲内の値とすることを特徴とする請求項1〜4のいずれか一項に記載の健康管理用装置。
【請求項6】
前記角速度(ω)を検出する動作を、所定時間あるいは任意期間停止するためのスリープ機能を備えることを特徴とする請求項1〜5のいずれか一項に記載の健康管理用装置。
【請求項7】
前記マッピングデータを複数備え、前記身体行動データとの照合前に、いずれか一つのマッピングデータを携帯者が予め選択することを特徴とする請求項1〜6のいずれか一項に記載の健康管理用装置。
【請求項8】
前記マッピングデータを複数備え、前記身体行動データと同期させて、当該マッピングデータを自動的に選択することを特徴とする請求項1〜6のいずれか一項に記載の健康管理用装置。
【請求項9】
前記角速度(ω)から、前記携帯者の運動パターンの歩幅/身長データを推定することを特徴とする請求項1〜8のいずれか一項に記載の健康管理用装置。
【請求項10】
別途入力された身長データを加味することにより、前記携帯者の運動パターンの歩幅/身長データから、前記携帯者の運動パターンの歩幅を算出することを特徴とする請求項9に記載の健康管理用装置。
【請求項11】
前記携帯者の運動パターンの歩幅と、前記運動センサによって測定された歩数データとから、歩行速度を算出することを特徴とする請求項10に記載の健康管理用装置。
【請求項12】
前記携帯者の運動パターンにおける平均消費カロリーを算出することを特徴とする請求項1〜11のいずれか一項に記載の健康管理用装置。
【請求項13】
前記携帯者が所定重量の荷物を携帯している場合には、当該荷物の重量を携帯者の体重に加算して、前記運動パターンにおける平均消費カロリーを算出することを特徴とする請求項1〜12のいずれか一項に記載の健康管理用装置。
【請求項14】
前記携帯者の心拍数、心拍間隔、血圧、血流速、酸素消費量、血糖値及び体温の少なくとも一つを測定するセンサをさらに備えることを特徴とする請求項1〜13のいずれか一項に記載の健康管理用装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2006−101973(P2006−101973A)
【公開日】平成18年4月20日(2006.4.20)
【国際特許分類】
【出願番号】特願2004−289913(P2004−289913)
【出願日】平成16年10月1日(2004.10.1)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.Bluetooth
【出願人】(500020287)マイクロストーン株式会社 (16)
【Fターム(参考)】