説明

光デバイスおよび光変調装置

【課題】低い半波長電圧で、かつ、高い周波数で入力光を変調する光変調器を提供する。
【解決手段】基板と、基板上に形成され、並走する第1光導波路および第2光導波路を有する誘電体膜と、誘電体膜上に形成された絶縁膜と、絶縁膜上に形成され、第1光導波路および第2光導波路の間に配置された信号線と、第1光導波路に対する第2光導波路とは反対側の第1領域に配置された第1グランド線と、第2光導波路に対する第1光導波路とは反対側の第2領域に配置された第2グランド線とを有するコプレーナ線路と、第1領域および第2領域において誘電体膜と接してまたは絶縁膜の内部に設けられ、第1光導波路および第2光導波路に対するバイアス電圧を印加する補助電極と、を備える光デバイスを提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光デバイスおよび光変調装置に関する。
【背景技術】
【0002】
印加する電界強度に対して屈折率の変化がLiNbO(LN)とは異なる、チタン酸ジルコン酸ランタン鉛(PbLaZrTiO系の複合酸化物、PLZTと略す)結晶等を用いたマッハツェンダ型光デバイスが知られている(例えば、特許文献1参照)。このような光デバイスを高速に動作させるために、PLZT結晶上にSiO等の絶縁膜を形成してから電極を形成させることが知られている。
特許文献1 特開2006−58837号公報
【発明の概要】
【発明が解決しようとする課題】
【0003】
しかしながら、このような絶縁膜を電極とPLZT結晶との間に形成すると、電極とPLZT結晶との距離が遠くなるので、電極に印加した電圧に応じて生じる電界が、PLZT結晶で形成される導波路に届きにくくなる。したがって、印加電圧に対して導波路に印加される電界強度が低下してしまう。このため、例えば、マッハツェンダ型光デバイスを光変調器として用いる場合、入力光の位相を半波長シフトさせるのに必要な印加電圧であるVπ電圧を高い電圧値としていた。
【課題を解決するための手段】
【0004】
本発明の第1の態様においては、基板と、基板上に形成され、並走する第1光導波路および第2光導波路を有する誘電体膜と、誘電体膜上に形成された絶縁膜と、絶縁膜上に形成され、第1光導波路および第2光導波路の間に配置された信号線と、第1光導波路に対する第2光導波路とは反対側の第1領域に配置された第1グランド線と、第2光導波路に対する第1光導波路とは反対側の第2領域に配置された第2グランド線とを有するコプレーナ線路と、第1領域および第2領域において誘電体膜と接してまたは絶縁膜の内部に設けられ、第1光導波路および第2光導波路に対するバイアス電圧を印加する補助電極と、を備える光デバイスを提供する。
【0005】
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0006】
【図1】本実施形態に係る光デバイス部100の構成例を駆動回路部200と共に示す。
【図2】図1のA−A'断面を、駆動回路部200と共に示す。
【図3】本実施形態に係る誘電体膜20の印加電界に対する屈折率の変化の一例を示す。
【図4】本実施形態に係る駆動回路部200の駆動電圧VRFの一例を示す。
【図5】本実施形態に係る光デバイス部100の電極間電圧の一例を示す。
【図6】本実施形態に係る光デバイス部100のバイアス電圧とVπ電圧の関係を示す。
【図7】本実施形態に係る光デバイス部100の第1変形例を駆動回路部200と共に示す。
【図8】本実施形態に係る光デバイス部100の第2変形例を駆動回路部200と共に示す。
【発明を実施するための形態】
【0007】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0008】
図1は、本実施形態に係る光デバイス部100の構成例を駆動回路部200と共に示す。光デバイス部100は、強誘電体結晶で形成されるマッハツェンダ光導波路と、信号線と信号線を挟む2つのバイアス印加電極を有するコプレーナ型電極と、誘電体膜とコプレーナ型電極間に形成される絶縁膜とを備え、強誘電体薄膜上または絶縁膜内に形成される補助電極によって、マッハツェンダ光導波路へ効率的に変調電界を印加する。
【0009】
光デバイス部100は、第1光導波路110と、第2光導波路120と、信号線130と、第1グランド線132と、第2グランド線134と、第1光カプラ140と、第2光カプラ142と、第1補助電極150と、第2補助電極152と、第1外部電極160と、第2外部電極162とを備える。
【0010】
第1光導波路110および第2光導波路120は、誘電体材料の断面を凸状にしたリッジ型の構造をとり、入力される光を伝送する。第1光導波路110および第2光導波路120は、伝送する光の波長に応じた幅および高さで凸状に形成されてよい。
【0011】
信号線130は、第1光導波路110および第2光導波路120の間に配置される。信号線130は、一端が周波数信号源260に接続され、他端が終端抵抗250に接続され、一端から入力される周波数信号を他端へと伝送する。
【0012】
第1グランド線132は、信号線130と、第1光導波路110に対する第2光導波路120とは反対側の第1領域に配置される。第1グランド線132は、基準電圧210に接続される。第2グランド線134は、信号線130と、第2光導波路120に対する第1光導波路110とは反対側の第2領域に配置される。第2グランド線134は、基準電圧210に接続される。
【0013】
ここで、信号線130、第1グランド線132、および第2グランド線134は、コプレーナ伝送線路を形成する。即ち、信号線130の線幅、信号線130と第1グランド線132との間隔、および信号線130と第2グランド線134との間隔は、信号線130の特性インピーダンスに応じて予め定められた値で形成される。これによって、信号線130は、数十GHzに至る高周波信号を伝送することができる。
【0014】
第1光カプラ140は、光デバイス部100への入力光を分岐して第1光導波路110および第2光導波路120へと導く。第2光カプラ142は、第1光導波路110および第2光導波路120からの光を合波する。第2光カプラ142は、合波した光を光デバイス部100の出力光として出力する。
【0015】
第1光カプラ140および第2光カプラ142は、2つの入力部のいずれの入力部から入力される光を1対1に分岐して2つの出力部からそれぞれ出力する、2入力2出力の3dB光カプラであってよい。これに代えて、第1光カプラ140は1入力2出力の光分岐カプラ、第2光カプラ142は2入力1出力の光合波カプラであってよい。第1光カプラ140および第2光カプラ142は、マルチモード干渉(MMI)カプラであってよい。
【0016】
ここで、第1光導波路110、第2光導波路120、第1光カプラ140、および第2光カプラ142は、マッハツェンダ型光導波路を形成する。即ち、光デバイス部100は、入力光を第1光カプラ140で2つに分岐して第1光導波路110および第2光導波路120へと伝送させ、第2光カプラ142で合波して合波した光を出力する。ここで光デバイス部100は、駆動回路部200からコプレーナ伝送路に印加された信号に応じて、第1光導波路110および第2光導波路120に電界を印加して伝送する光の位相を変調し、第2光カプラ142で合波することで位相差に応じて強度変調された光を出力する。
【0017】
第1補助電極150は、第1光導波路110に対するバイアス電圧を印加する。第1外部電極160は、光デバイス部100の表面に形成され、第1補助電極150と電気的に接続して駆動回路部200からのバイアス電圧を第1補助電極150に供給する。
【0018】
第2補助電極152は、第2光導波路120に対するバイアス電圧を印加する。第2外部電極162は、光デバイス部100の表面に形成され、第2補助電極152と電気的に接続して駆動回路部200からのバイアス電圧を第2補助電極152に供給する。
【0019】
駆動回路部200は、第1補助電極150および第2補助電極152に互いに異なる第1バイアス電圧および第2バイアス電圧を印加し、信号線130に第1バイアス電圧および第2バイアス電圧の間の制御電圧を印加する。駆動回路部200は、基準電圧210と、第1電源部220と、第2電源部222と、第1インダクタ230と、第2インダクタ232と、第1コンデンサ240と、第2コンデンサ242と、終端抵抗250と、周波数信号源260を備える。
【0020】
基準電圧210は、予め定められた電圧を供給する。本実施例において、基準電圧210は、GND(0V)電圧である。
【0021】
第1電源部220は、第1バイアス電圧を、第1インダクタ230および第1外部電極160を介して第1補助電極150へ供給する。第1インダクタ230は、第1バイアス電圧を出力する第1電源部220と第1外部電極160との間に接続される。
【0022】
第2電源部222は、第2バイアス電圧を、第2インダクタ232および第2外部電極162を介して第2補助電極152へ供給する。第2インダクタ232は、第2バイアス電圧を出力する第2電源部222と第2外部電極162との間に接続される。
【0023】
第1コンデンサ240は、基準電圧210と第1外部電極160との間に接続される。これによって、第1外部電極160は、直流成分をオープンとしつつ、高周波数成分を低抵抗で基準電圧であるGND電圧に接続する。
【0024】
第2コンデンサ242は、基準電圧210と第2外部電極162との間に接続される。これによって、第2外部電極162は、直流成分をオープンとしつつ、高周波数成分を低抵抗で基準電圧であるGND電圧に接続する。
【0025】
終端抵抗250は、信号線130を終端する。一例として、信号線130は特性インピーダンスが50Ωの伝送線路であり、終端抵抗250の抵抗値は50Ωである。
【0026】
周波数信号源260は、信号線130に予め定められた周波数の周波数信号を制御信号として供給する。ここで、周波数信号源260は、数十GHzに至る周波数信号を供給してよい。
【0027】
以上のように、第1グランド線132および第2グランド線134は、GND電圧に接続され、信号線130は、一端が終端され他端から高周波信号が供給される。即ち、信号線130、第1グランド線132、および第2グランド線134は、コプレーナ伝送路として機能する。
【0028】
図2は、図1のA−A'断面を、駆動回路部200と共に示す。ここで、本図において、図1に示された本実施形態に係る光デバイス部100および駆動回路部200の動作と略同一のものには同一の符号を付け、説明を省略する。光デバイス部100は、基板10と、誘電体膜20と、絶縁膜30とを備える。
【0029】
基板10は、単結晶材料で形成される。例えば、基板10は、Al(サファイア)基板またはMgO基板である。一例として、基板10は、サファイア基板の(1102)面が表面になるように切り出されて研磨された、R−cutサファイアと呼ばれる基板である。
【0030】
これに代えて、基板10は、何らかの層が基板上に積層されたものでよい。即ち基板10は、表面上に誘電体膜20を成膜するので、基板材料が誘電体膜20へ拡散することの防止および/または誘電体膜20と格子整合のするためのバッファ層が積層された基板でよい。
【0031】
誘電体膜20は、基板10上に形成され、並走する第1光導波路110および第2光導波路120を有する。また、誘電体膜20は、第1光導波路110および第2光導波路120とそれぞれ接続する第1光カプラ140および第2光カプラ142を有する。
【0032】
誘電体膜20は、強誘電体薄膜である。誘電体膜20は、エピタキシャル成長で形成されてよい。誘電体膜20は、例えば10μm以下の厚さの薄膜でよい。また、誘電体膜20は、850nm帯、1300nm帯、および1500nm帯といった光通信で用いられる波長の光を伝送する光導波路のコア材料を形成してよい。また、誘電体膜20は、伝送する光の波長に基づいて、膜厚が設計されてよい。
【0033】
誘電体膜20は、PZT薄膜、PLZT薄膜、またはBaTiO薄膜といった強誘電体薄膜である。PLZT結晶、PZT結晶、およびBaTiO結晶等は、結晶構造の一種であるペロブスカイト構造を有する強誘電体結晶であり、温度および材料組成によって正方晶、斜方晶、菱面体晶、または立方晶等の結晶構造に変化する。しかしながら、PLZT結晶等は、特定の基板上に薄膜として成長させると、基板材料の格子定数とバルクの単結晶基板の格子定数とが異なるので、薄膜に応力が印加されて結晶構造が変化する場合がある。
【0034】
例えば、誘電体膜20であるPLZT薄膜がサファイア(1102)基板上に形成された場合、PLZT薄膜は、 PLZT[110]方向に優先配向する。このように、誘電体膜20は、結晶配列方向を適切に選択した基板10上に適切な構造の結晶として形成されると、基板10の表面と並行に結晶が配向するので、自発分極の方向を基板10の面と並行にすることができる。これにより、光デバイス部100は、PLZT薄膜の分極容易軸に対して平行に電界を印加するデバイスに適した基板を提供できる。
【0035】
絶縁膜30は、誘電体膜20上に形成される。絶縁膜30は、SiOまたはSiNを含む。絶縁膜30は、誘電体膜20より比誘電率が低い低誘電率膜でよい。ここで、基板10も、誘電体膜20より比誘電率が低くてよい。例えば、絶縁膜30および基板10の比誘電率はそれぞれ10以下、誘電体膜20の比誘電率は数百から数千程度である。
【0036】
これによって、比誘電率の高い誘電体膜20は、比誘電率および屈折率の低い基板10と絶縁膜30で挟まれる構造になるので、効率的な光の閉じ込め効果を有する第1光導波路110および第2光導波路120を形成することができる。また、光デバイス部100に変調信号を与えて変調器として用いる場合、基板10および絶縁膜30の厚みや材質を変えて実効誘電率を調整することで、変調信号の伝送速度と第1光導波路110および第2光導波路120を伝送する光波の伝送速度とを一致させる速度整合を実現させることができる。また、基板10と絶縁膜30は、変調信号を伝送させる伝送ラインの特性インピーダンスを、例えば50Ωといった予め定められた値にすることができる。
【0037】
信号線130と第1グランド線132および第2グランド線134とを有するコプレーナ伝送線路は、絶縁膜上に形成される。伝送線路は、金を含む金属で形成されてよい。
【0038】
第1補助電極150は、第1領域において誘電体膜20と接してまたは絶縁膜30の内部に設けられ、第1光導波路110に対するバイアス電圧を印加する。第1補助電極150は、第1グランド線132よりも第1光導波路110に近接して設けられてよい。
【0039】
第2補助電極152は、第2領域において誘電体膜20と接してまたは絶縁膜30の内部に設けられ、第2光導波路120に対するバイアス電圧を印加する。第2補助電極152は、第2グランド線134よりも第2光導波路120に近接して設けられてよい。図中において、第1補助電極150および第2補助電極152は、誘電体膜20上に形成される例を示した。また、第1外部電極160および第2外部電極162は、絶縁膜30上に形成される。
【0040】
ここで、従来の光デバイスは、コプレーナ伝送線路の第1グランド線132および/または第2グランド線134にバイアス電圧を印加して、第1光導波路110および/または第2光導波路120に対して電界を印加していた。例えば、信号線130および第1グランド線132は第1光導波路110に、信号線130および第2グランド線134は第2光導波路120に電界を印加する。
【0041】
このような光デバイスは、信号線130を伝送する信号の伝送速度と、光導波路を伝送する光波の伝送速度との不整合に起因する損失、および/または、誘電体膜20が高周波の分極に追随できなくなる誘電正接に起因する損失等を緩和する目的で、例えば、厚さ1μm以上の絶縁膜30を形成して、1GHz程度以上の周波数信号を信号線130に伝送させていた。しかしながら、絶縁膜30の厚さを1μm程度以上に形成すると、信号線130と第1光導波路110および第2光導波路120との間隔が絶縁膜30の厚さに応じて離れるので、第1光導波路110および第2光導波路120に印加される電界強度が減少する。
【0042】
したがって、このような光デバイスは、絶縁膜30の厚さを厚くした分に応じて、信号線130に印加する電圧および/またはバイアス電圧を増加して、第1光導波路110および第2光導波路120に印加される電界強度を調節していた。例えば、このような光デバイスを光変調器に用いた場合、入力光を半周期だけ変調させるのに必要な印加電圧であるVπ電圧が、絶縁膜30の厚さに応じて増加していた。また、Vπ電圧を最小にする目的でバイアス電圧を増加させると、バイアス電圧は、140V以上に達することもあった。
【0043】
これに対して、本実施形態に係る光デバイス部100の信号線130および第1補助電極150は、図中のV1で示した電極間電圧に応じた電界を、第1光導波路110に印加し、信号線130および第2補助電極152は、図中のV2で示した電極間電圧に応じた電界を、第2光導波路120に印加する。即ち、光デバイス部100は、絶縁膜30上に形成した電極間の電界のもれ電界を光導波路に印加するのではなく、絶縁膜30上に形成した電極と誘電体膜20上に形成された電極との間に電界を生じさせ、生じさせた電界をより直接的に光導波路に印加する。これによって、光デバイス部100は、第1光導波路110および第2光導波路120に印加する電界強度の低減を防ぎつつ、絶縁膜30の厚さを1μm程度以上に形成することができる。
【0044】
図3は、本実施形態に係る誘電体膜20の印加電界に対する屈折率の変化の一例を示す。図中の横軸は、誘電体膜20へ印加する電圧に応じて生じる印加電界強度を示す。縦軸は、誘電体膜20の印加電界に対する屈折率の変化を示す。
【0045】
PLZT結晶、PZT結晶、およびBaTiO結晶等によって形成される誘電体膜20は、印加電界に対して分極反転を生じるので、印加電界に対して直線的な屈折率変化を示すLiNbO結晶等とは異なり、印加電界に対して例えばバタフライ形状の複雑な屈折率変化を示す。したがって、誘電体膜20は、制御信号として正弦波電圧を印加する場合に、オフセット電圧を加えないと、屈折率の変化は正弦波から歪んだ特性となる。ここで、自発分極を有し、印加電界に対して分極が反転する誘電体膜を強誘電体膜と呼ぶ。
【0046】
一方、正負の印加電界範囲において直線的な屈折率変化を示すLN結晶等は、マッハツェンダ型光導波路を形成して光変調器として用いる場合、G(グランド)、S(シグナル)、G(グランド)電極を備えるコプレーナ伝送線路を形成して変調動作させることが知られている。このようなLN光変調器は、マッハツェンダ型光導波路の並走する2本の光導波路間にS電極が配置されて制御信号が印加され、当該並走する2本の光導波路は、互いに逆方向の電界がそれぞれ印加される。即ち、並走する2本の光導波路を通過する光は、逆方向の位相変化を受けて光変調動作する。
【0047】
しかしながら、PLZT等の強誘電体は、図のように、印加電界強度の絶対値の変化に対して、正の印加電界範囲の屈折率の傾きと、負の印加電界範囲の屈折率の傾きとが、ほぼ一致するように変化する。このような強誘電体を用いた光デバイスは、LN光変調器と同様のGSG型のコプレーナ伝送線路を適用する場合、並走する2本の光導波路に同一方向の電界が印加される。即ち、並走する2本の光導波路内を通過する光は、同一方向の位相変化を受けて位相差が得られないので、PLZT等の強誘電体を用いた光デバイスは、光変調器または光スイッチとしての動作が不安定、または動作不能となっていた。
【0048】
これに対して、本実施例の駆動回路部200は、オフセット電圧であるバイアス電圧Vを制御信号に加えて誘電体膜20に印加する。ここで、バイアス電圧Vは、バイアス電圧Vを中心として制御信号の振幅電圧だけ増減しても、誘電体膜20の屈折率変化がほぼ直線的に変化するように、予め定められてよい。一例として、制御信号の振幅電圧を20Vとすると、80〜120Vの範囲でほぼ直線的に変化する誘電体膜20の屈折率変化を用いるように、Vは100Vと定められる。
【0049】
このように、バイアス電圧Vを印加することによって、誘電体膜20は、印加された制御信号とほぼ相似な屈折率変化の特性を示すことができる。ここで、図中の例における誘電体膜20は、印加電界に対して負の傾きの屈折率変化を示すので、印加された正弦波の制御信号に対して位相が反転する。
【0050】
図4は、本実施形態に係る駆動回路部200の駆動電圧VRFの一例を示す。図中の横軸は時間を示し、縦軸は電圧を示す。ここで、第1領域に設けられた第1補助電極150は、正極のバイアスが印加される電極であり、第2領域に設けられた第2補助電極152は、負極のバイアスが印加される電極である。
【0051】
例えば、第1電源部220は、第1バイアス電圧としてVb+(=100V)を、第1補助電極150へ供給し、第2電源部222は、第2バイアス電圧としてVb−(=−100V)を、第2補助電極152へ供給する。また、周波数信号源260は、第1バイアス電圧Vb+および第2バイアス電圧Vb−の間の制御信号である振幅20Vの正弦波信号VRFを信号線130に印加する。
【0052】
したがって、第1光導波路110は、第1バイアス電圧Vb+が印加された第1補助電極150と、正弦波信号VRFが印加された信号線130との電極間電圧V1=Vb+−VRFに応じた電界が印加される。同様に、第2光導波路120は、第2バイアス電圧Vb−が印加された第2補助電極152と、正弦波信号VRFが印加された信号線130との電極間電圧V2=VRF−Vb−に応じた電界が印加される。
【0053】
図5は、本実施形態に係る光デバイス部100の電極間電圧の一例を示す。図中の横軸は時間を示し、縦軸は電圧を示す。電極間電圧V1=Vb+−VRFは、Vb+(=100V)を中心に、振幅20Vだけ増減する位相が180度反転した正弦波信号の波形となる。また、電極間電圧V2=VRF−Vb−は、−Vb−(=Vb+=100V)を中心に、振幅20Vだけ増減する正弦波信号の波形となる。
【0054】
即ち、駆動回路部200は、光デバイス部100の第1光導波路110および第2光導波路120に対して、逆位相の電界を印加することができる。このように、駆動回路部200は、第1光導波路110および第2光導波路120にpush−pull駆動することで、第1光導波路110または第2光導波路120の片側だけに電界を印加する片側駆動に比べて、2つの光導波路を伝わる光の位相差を約2倍にすることができる。
【0055】
このように、駆動回路部200は、1つの周波数信号源260からの制御信号を用いて、PLZT等で形成された第1光導波路110および第2光導波路120にpush−pull駆動させる電界を効率的に印加することができる。これによって、光デバイス部100および駆動回路部200は、複数のバイアスT、付加回路、および差動信号ドライバ等を用いずに光変調動作を実行することができる。
【0056】
以上の本実施形態に係る光デバイス部100および駆動回路部200によれば、印加電界強度に対して屈折率が複雑に変化するPLZT結晶等を用いたマッハツェンダ型光デバイスに対して、コプレーナ型電極を形成して高速な制御信号を伝送させつつ、制御信号に応じて2つの光導波路に逆位相の電界を印加することができる。これによって、光デバイス部100は、数十GHzの制御信号に追随する光変調器として動作することができる。
【0057】
また、光デバイス部100は、絶縁膜30を備え、変調信号の伝送速度と第1光導波路110および第2光導波路120を伝送する光波の伝送速度とを一致させて速度整合しつつ、第1光導波路110および第2光導波路120に効率的に電界を印加することができ、Vπ電圧の増加を防止する。
【0058】
図6は、本実施形態に係る光デバイス部100のバイアス電圧とVπ電圧の関係を示す。図中の横軸は、バイアス電圧の絶対値(=Vb+=−Vb−)を示し、縦軸はバイアス電圧に応じたVπ電圧の実測値の一例を示す。
【0059】
図中の□でプロットしたグラフは、コプレーナ伝送線路の第1グランド線132および第2グランド線134にバイアス電圧を印加した従来構造のVπ電圧の結果である。また、図中の○でプロットしたグラフは、本実施形態の補助電極にバイアス電圧を印加した構造のVπ電圧の結果である。ここで、絶縁膜30は、SiO膜を1μm、コプレーナ型電極は、信号線130の電極幅が7μm、電極間隔が11μm、電極厚さが7μm、電極長が10mmであった。
【0060】
以上の結果より、本実施形態に係る光デバイス部100は、従来構造と比べて同じVπを得るために必要なバイアス電圧を低下させることができ、補助電極がバイアス電圧を光導波路に対して効率的に印加できることがわかる。また、従来構造では、バイアス電圧を140V以上にすることで、Vπの変動を一定の値に収束させる傾向が得られたが、光デバイス部100は、その半分以下のバイアス電圧である60Vで、Vπを一定の値に収束させる傾向を得られた。
【0061】
また、例えば、従来構造では、140Vのバイアス電圧においてVπ=14Vを得られるのに対して、光デバイス部100は、20Vのバイアス電圧程度で同一のVπが得られ、バイアス電圧を略1/7にできることがわかる。このように、本実施形態の光デバイス部100によれば、従来構造に比べて、低い半波長電圧Vπで、もしくは、高い周波数で入力光を変調する光変調器を実現できる。
【0062】
図7は、本実施形態に係る光デバイス部100の第1変形例を駆動回路部200と共に示す。本図において、図1および図2に示された本実施形態に係る光デバイス部100および駆動回路部200の動作と略同一のものには同一の符号を付け、説明を省略する。
【0063】
本変形例において、第1領域に設けられた第1補助電極150は、第1グランド線132と接続される。第1グランド線132は、第1コンデンサ240を介して予め定められた基準電圧210に接続される。また、第1グランド線132は、第1インダクタ230を介して第1電源部220に接続される。
【0064】
第2領域に設けられた第2補助電極152は、第2グランド線134と接続される。第2グランド線134は、第2コンデンサ242を介して予め定められた基準電圧210に接続される。また、第2グランド線134は、第2インダクタ232を介して第2電源部222に接続される。
【0065】
以上のように、本変形例において、第1グランド線132および第2グランド線134は、第1バイアス電圧および第2バイアス電圧がそれぞれ供給されつつ、高周波数的にはGND電圧に接続される。また、信号線130は、一端が終端され他端から高周波信号が供給される。即ち、信号線130、第1グランド線132、および第2グランド線134は、周波数信号源260が供給する駆動周波数においてコプレーナ伝送路として機能する。
【0066】
また、本変形例においても、光デバイス部100は、絶縁膜30上に形成した電極と誘電体膜20上に形成された電極との間に電界を生じさせ、より直接的に生じた電界を光導波路に印加する。これによって、光デバイス部100は、第1光導波路110および第2光導波路120に印加される電界強度の低減を防ぎつつ、絶縁膜30の厚さを1μm程度以上に形成することができる。したがって、光デバイス部100は、従来構造に比べて、低い半波長電圧Vπで、もしくは、高い周波数で入力光を変調する光変調器を実現できる。
【0067】
以上の実施形態において、駆動回路部200は、周波数信号源260を備え、信号線130に予め定められた周波数の周波数信号を供給する例を説明した。これに代えて、駆動回路部200は、パルス信号源またはスイッチ回路等を備え、信号線130にパルス信号またはスイッチング制御信号を供給してもよい。これによって、光デバイス部100は、パルス信号またはスイッチング制御信号に応じて、入力された光を出力するか否かを切り換える光スイッチとして動作することができる。
【0068】
図8は、本実施形態に係る光デバイス部100の第2変形例を駆動回路部200と共に示す。本図において、図1および図2に示された本実施形態に係る光デバイス部100および駆動回路部200の動作と略同一のものには同一の符号を付け、説明を省略する。第2変形例において、光デバイス部100は、第1差動信号線136と、第2差動信号線138と、接地電極154と、逆相周波数信号源262とを更に備える。
【0069】
第1差動信号線136は、絶縁膜30上の第1領域において、信号線130と第1グランド線132との間に形成される。第2差動信号線138は、絶縁膜30上の第2領域において、信号線130と第2グランド線134との間に形成される。
【0070】
接地電極154は、第1光導波路110および第2光導波路120の間において、誘電体膜20と接してまたは誘電体膜20と絶縁膜30との間に設けられ、予め定められた基準電圧210に接続される。接地電極154は、信号線130よりも第1光導波路110に近接して設けられてよい。また、接地電極154は、信号線130よりも第2光導波路120に近接して設けられてよい。第1差動信号線136、第2差動信号線138、および接地電極154は、金を含んでよい。
【0071】
逆相周波数信号源262は、周波数信号源260が出力する周波数と同一で、かつ、位相が180度異なる周波数信号を出力する。周波数信号源260および逆相周波数信号源262は、差動信号源として機能する。
【0072】
第2変形例において、第1補助電極150は第1電源部220に接続される。第2補助電極152は、第2電源部222に接続される。また、第1グランド線132および第2グランド線134は、基準電圧210に接続される。ここで、信号線130は、接地電極154と接続され、かつ、基準電圧210に接続される。即ち、第2変形例において、信号線130は、第1グランド線132および第2グランド線134と同様に、グランド線として機能する外部接地電極である。
【0073】
第1差動信号線136は、第1インダクタ230を介して第1電源部220に接続される。
【0074】
また、第1差動信号線136は、第1コンデンサ240を介して信号線の一端を周波数信号源260と接続され、他端を第2コンデンサ242を介して終端抵抗250に接続される。これによって、第1差動信号線136は、第1電源部220から第1バイアス電圧が印加されつつ、周波数信号源260からの周波数信号を一端から他端へと伝送する伝送線路として機能する。
【0075】
第2差動信号線138は、第2インダクタ232を介して第2電源部222に接続される。
【0076】
また、第2差動信号線138は、第3コンデンサ244を介して信号線の一端を逆相周波数信号源262と接続され、他端を第4コンデンサ246を介して終端抵抗250に接続される。これによって、第2差動信号線138は、第2電源部222から第2バイアス電圧が印加されつつ、逆相周波数信号源262からの周波数信号を一端から他端へと伝送する伝送線路として機能する。
【0077】
以上のように、第2変形例に係る光デバイス部100は、駆動回路部200から供給される第1バイアス電圧および第2バイアス電圧が印加された差動信号を、信号線130、第1グランド線132、第2グランド線134、第1差動信号線136、および第2差動信号線138で構成するコプレーナ差動伝送線路に伝送させる。これによって、光デバイス部100は、第1差動信号線136と接地電極154との電極間電圧V1に応じた電界を第1光導波路110に印加する。同様に、光デバイス部100は、第2差動信号線138と接地電極154との電極間電圧V2に応じた電界を第2光導波路120に印加する。
【0078】
このように、光デバイス部100は、絶縁膜30上に形成した電極と誘電体膜20上に形成された電極との間に電界を生じさせ、差動信号に応じた電界を第1光導波路110および第2光導波路120に印加することができる。これによって、光デバイス部100は、第1光導波路110および第2光導波路120に印加する電界強度の低減を防ぎつつ、絶縁膜30の厚さを1μm程度以上に形成することができる。
【0079】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0080】
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0081】
10 基板、20 誘電体膜、30 絶縁膜、100 光デバイス部、110 第1光導波路、120 第2光導波路、130 信号線、132 第1グランド線、134 第2グランド線、136 第1差動信号線、138 第2差動信号線、140 第1光カプラ、142 第2光カプラ、150 第1補助電極、152 第2補助電極、154 接地電極、160 第1外部電極、162 第2外部電極、200 駆動回路部、210 基準電圧、220 第1電源部、222 第2電源部、230 第1インダクタ、232 第2インダクタ、240 第1コンデンサ、242 第2コンデンサ、244 第3コンデンサ、246 第4コンデンサ、250 終端抵抗、260 周波数信号源、262 逆相周波数信号源

【特許請求の範囲】
【請求項1】
基板と、
前記基板上に形成され、並走する第1光導波路および第2光導波路を有する誘電体膜と、
前記誘電体膜上に形成された絶縁膜と、
前記絶縁膜上に形成され、前記第1光導波路および前記第2光導波路の間に配置された信号線と、前記第1光導波路に対する前記第2光導波路とは反対側の第1領域に配置された第1グランド線と、前記第2光導波路に対する前記第1光導波路とは反対側の第2領域に配置された第2グランド線とを有するコプレーナ線路と、
前記第1領域および前記第2領域において前記誘電体膜と接してまたは前記絶縁膜の内部に設けられ、前記第1光導波路および前記第2光導波路に対するバイアス電圧を印加する補助電極と、
を備える光デバイス。
【請求項2】
前記補助電極は、前記第1グランド線および前記第2グランド線よりも前記第1光導波路および前記第2光導波路に近接して設けられた請求項1に記載の光デバイス。
【請求項3】
前記誘電体膜は、
入射光を分岐して前記第1光導波路および前記第2光導波路へと導く第1光カプラと、
前記第1光導波路および前記第2光導波路からの光を合波する第2光カプラと、
を更に有し、
前記第1光導波路、前記第2光導波路、前記第1光カプラ、および前記第2光カプラは、マッハツェンダ型光導波路を形成する請求項1または2に記載の光デバイス。
【請求項4】
前記第1領域に設けられた前記補助電極は、正極のバイアスが印加される電極であり、
前記第2領域に設けられた前記補助電極は、負極のバイアスが印加される電極である請求項1から3のいずれか1項に記載の光デバイス。
【請求項5】
前記基板は、単結晶材料で形成される請求項1から4のいずれか1項に記載の光デバイス。
【請求項6】
前記基板は、サファイア基板またはMgO基板である請求項5に記載の光デバイス。
【請求項7】
前記誘電体膜は、強誘電体薄膜である請求項1から6のいずれか1項に記載の光デバイス。
【請求項8】
前記強誘電体薄膜は、ペロブスカイト結晶構造であるPZT薄膜、PLZT薄膜、またはBaTiO薄膜である請求項7に記載の光デバイス。
【請求項9】
前記絶縁膜は、SiOまたはSiNを含む請求項1から8のいずれか1項に記載の光デバイス。
【請求項10】
前記第1領域に設けられた前記補助電極は、前記第1グランド線と接続され、
前記第2領域に設けられた前記補助電極は、前記第2グランド線と接続され、
前記第1グランド線および前記第2グランド線は、コンデンサを介して予め定められた基準電圧に接続される請求項1から9のいずれか1項に記載の光デバイス。
【請求項11】
前記第1光導波路および前記第2光導波路の間において、前記誘電体膜と接してまたは前記誘電体膜と前記絶縁膜との間に設けられ、予め定められた基準電圧に接続される接地電極を更に備える請求項1から10のいずれか1項に記載の光デバイス。
【請求項12】
前記コプレーナ線路の前記信号線は、前記接地電極と接続され、
前記コプレーナ線路は、
前記絶縁膜上の前記第1領域において、前記信号線と前記第1グランド線との間に形成される第1差動信号線と、
前記絶縁膜上の前記第2領域において、前記信号線と前記第2グランド線との間に形成される第2差動信号線と、
を更に有する請求項11に記載の光デバイス。
【請求項13】
請求項1から12のいずれか1項に記載の光デバイスと、
前記信号線に予め定められた周波数の周波数信号を供給する周波数信号源と、
を備える光変調装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−7909(P2013−7909A)
【公開日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2011−140860(P2011−140860)
【出願日】平成23年6月24日(2011.6.24)
【出願人】(390005175)株式会社アドバンテスト (1,005)
【Fターム(参考)】