説明

光学フィルム及び光学フィルムの製造方法

【課題】本発明の目的は、大サイズ、薄膜の光学フィルムであってもブラックバンドやフィルム変形のない光学フィルム及び光学フィルムの製造方法を提供することにある。
【解決手段】フィルム端部にナーリング部を有する透明長尺基材フィルムの少なくとも一方の面にハードコート層を含む光学機能層を塗設した光学フィルムの製造方法において、該ナーリング部の高さが該ハードコート層を含む光学機能層の膜厚よりも1μm以上高くなるように予め加圧することを特徴とする光学フィルムの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学フィルム及び光学フィルムの製造方法に関し、更に詳しくはブラックバンドやフィルム変形のない光学フィルム及び光学フィルムの製造方法に関する。
【背景技術】
【0002】
CRTや液晶表示装置の高画質化に伴って、視認性を改善するため反射防止層のような光学機能層を設けた表示装置が求められており、例えば反射防止層が形成された光学フィルム等を表示装置前面に張り付けることが行われている。テレビのような大画面の表示装置では、直接、物が接触することがあり傷が付き易い。そこで、通常は傷つき防止のためにハードコート層を支持体上に形成し、その上に反射防止層が形成されたハードコート層付き反射防止フィルムが用いられる。
【0003】
反射防止フィルムとしては、特に最近、大画面化により1000mm以上、更に1400mm以上の幅広フィルムが必要となってきている。また、携帯電話やノートパソコン用として基材(支持体)厚みが80μm以下の薄い支持体が使用されるようになってきた。そのため、支持体にはセルロースエステル等の樹脂フィルムが使用され、その上にハードコート層、反射防止層、防汚層を形成することが行われている。
【0004】
しかし、上記のように大サイズ化のため基材が幅広となった場合、または薄膜化のため基材の厚さを薄くした場合には、ハードコート層、反射防止層を形成した後、または仕上がった反射防止フィルムを巻き取る際密着性が高いとブロッキングを起こし、巻き形状の悪化が生じたり、円周上に黒い帯状に見えるブラックバンドが発生し、酷い場合には変形を生じ、収率の低下を招くばかりではなく、表示装置への適応が出来なくなることがある。この為、フィルムに微粒子を混入させフィルム表面に微少な凹凸をつけ、表面の摩擦係数を小さくし、ブロッキングを防止することが行われている。
【0005】
また光学フィルムは、要求される機能上、ベースの変形がないことが必要であり、巻き取り状態の安定化のため、光学フィルムにナーリングと呼ばれるエンボス加工を行う技術が知られており、ナーリングの厚み規定、ナーリング部のエンボス高さ規定、複数列のエンボス加工技術が開示され(例えば、特許文献1〜3参照。)、更にはフィルムの厚みバラツキとエンボス高さ規定による改良技術が開示されている(例えば、特許文献4参照。)。しかしながら、エンボスの凸部は巻き取った後の圧力により変形する場合が多く、その為エンボス高さのばらつきが生じて、期待された効果が得られない場合がある。
【0006】
更に、大サイズ、薄膜のフィルムで、かつ光学機能層の厚みが5μmを超えた場合は上記微粒子の混入やナーリングの効果が限られており、特に前記ハードコート層、反射防止層を形成した後、または仕上がった反射防止フィルムを巻き取る段階での改善には言及していない。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平7−108603号公報
【特許文献2】特開平9−244180号公報
【特許文献3】特開2002−68538号公報
【特許文献4】特開2002−211803号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の目的は、上記課題に鑑み、大サイズ、薄膜の光学フィルムであってもブラックバンドやフィルム変形のない光学フィルム及び光学フィルムの製造方法を提供することにある。
【課題を解決するための手段】
【0009】
本発明の上記目的は、以下の構成により達成される。
【0010】
1.フィルム端部にナーリング部を有する透明長尺基材フィルムの少なくとも一方の面にハードコート層を含む光学機能層を塗設した光学フィルムの製造方法において、該ナーリング部の高さが該ハードコート層を含む光学機能層の膜厚よりも1μm以上高くなるように予め加圧することを特徴とする光学フィルムの製造方法。
【0011】
2.前記加圧が、目標とするナーリング部の高さになるように一定の間隙を有し配置された、一組以上の加圧ロール間を通し、かつ巻き取り時に前記光学フィルムが受ける応力以上の圧力で加圧することを特徴とする前記1に記載の光学フィルムの製造方法。
【0012】
3.前記1または2に記載の光学フィルムの製造方法によって製造したことを特徴とする光学フィルム。
【発明の効果】
【0013】
本発明により、大サイズ、薄膜の光学フィルムであってもブラックバンドやフィルム変形のない光学フィルム及び光学フィルムの製造方法を提供することが出来る。
【図面の簡単な説明】
【0014】
【図1】参考例に係るナーリング部の概略図である。
【図2】参考例に係る本発明のナーリング部の概略図である。
【図3】請求項1に係る本発明の加圧ロールを用いたナーリング部形成の概略図である。
【図4】請求項1に係る本発明の加圧ロールを用いたナーリング部形成の別の角度から見た概略図である。
【図5】本発明に用いられる金属酸化物層を形成するプラズマ放電処理装置の一例を示す図である。
【図6】本発明に用いられる金属酸化物薄膜層を形成する回転電極と固定電極を有するプラズマ放電処理装置の一例を示す図である。
【発明を実施するための形態】
【0015】
以下、発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
【0016】
(ナーリング部及びナーリング部加工)
最初に、ナーリング部及びナーリング部加工について、図を用いて説明する。但し、図は一例であり、これに限定されるものではない。
【0017】
図1は、参考例に係るナーリング部の概略図である。
【0018】
本発明では、ブラックバンドやフィルム変形を効果的に防止する観点から、参考例で示すように、フィルム端部に第1のナーリング部を有する透明長尺基材フィルムの少なくとも一方の面にハードコート層を含む光学機能層を塗設する光学フィルムの製造方法であって、該光学機能層を塗設した後少なくとも一方の面に第2のナーリング部を形成することを特徴としている。
【0019】
本発明のナーリング部とは、透明長尺基材フィルムの幅方向の両端に凹凸を付与して端部を嵩高くしたものであり、ナーリング部として凹凸を付与する方法としては、フィルムに加熱されたエンボスロールを押し当てることにより形成することが出来る。エンボスロールには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることが出来る。本発明に係るナーリング部の高さは、フィルム表面からエンボス凸部までの高さを言い、このエンボスロールの加工の段階で、凸部の高さが所望の高さになるよう凹凸に彫金したエンボスロールを用いることにより達成される。
【0020】
フィルム端部に上記エンボスロールを当てることにより、第1のナーリング部1を設け、ハードコート層を含む光学機能層3を塗設した後に第2のナーリング部2を設ける。ナーリング部は、透明長尺基材フィルムの巻き取り時に加熱したエンボスロールを用い形成し、第2のナーリング部は同様に光学機能層を塗設した後巻き取り時に設ければよい。
【0021】
参考例に係る第1のナーリング部及び第2のナーリング部は、フィルムの少なくとも一方の面に形成されていればよく、また両面に形成されていてもよい。ナーリング部の高さは、ハードコート層を含む光学機能層の膜厚よりも1μm以上高くすることが必須である。フィルムの両面にナーリング部を設ける場合は、ナーリング部の高さの和が1μm以上高くなればよい。1μm未満であると、本発明の効果を得る上で不十分である。好ましくは光学機能層の膜厚よりも2μm〜10μmの範囲で高くすることである。
【0022】
ナーリング部の幅は、5mm〜30mmの範囲であることが好ましい。
【0023】
透明長尺基材フィルムの幅は1400mm以上であることが、生産効率及び反射防止フィルムを表示装置に適用する場合の利用効率が高く、好ましくは1400mm〜4000mmであり、特に好ましくは1400〜3000mmである。この様な広幅の透明長尺基材フィルムを用いる場合には、上記第1のナーリング部及び第2のナーリング部は、基材フィルム端部だけではなく、その内側にも設けることが好ましい。即ち、基材フィルムに複数列のナーリング部を設けることも好ましい。例えば、基材フィルムの中央にナーリング部を設けると、広幅の基材フィルム中央に発生し易いブロッキングを効果的に防止することが出来る。
【0024】
図2は、参考例に係るナーリング部の概略図である。
【0025】
透明長尺基材フィルムに設けられた第1のナーリング部1を、ハードコート層を含む光学機能層3を塗設した後に、ロールカッター4により切除し、その内側に第2のナーリング部2を設けることも好ましい。第1のナーリング部が透明長尺基材フィルムの端部に設けられた後巻き取られた際に、巻き取り応力によりナーリング部の高さにばらつきが生じ易いため、第2のナーリング部よりも高い凸部が残ると、第2のナーリング部を設けても巻きづれが生じたりすることがある。請求項4に係る発明のように第一のナーリング部を切除することは、第2のナーリング部の効果を高める上で好ましい態様である。
【0026】
図3は、請求項1に係る本発明の加圧ロールを用いたナーリング部形成の概略図である。
【0027】
フィルム端部にナーリング部を有する透明長尺基材フィルムの少なくとも一方の面にハードコート層を含む光学機能層を塗設した光学フィルムにおいて、該ナーリング部の高さが該ハードコート層を含む光学機能層の膜厚よりも1μm以上高くなるように予め加圧することを特徴とする。
【0028】
加圧はロールAとナーリング部高さ調整用ロールBにより、その間隙dに透明長尺基材フィルム−を通し、巻き取った後でもハードコート層を含む光学機能層の膜厚よりもナーリング部の高さが1μm以上高くなるように、ナーリング部の凸部をナーリング部高さ調整用ロールBにより加圧して押し潰しておくことを特徴としている。更に、加圧する圧力は、巻き取り時に基材フィルムが受ける応力を市販の圧力センサーによって巻きの各部の圧力を測定しておき、最大の圧力以上の圧力をかけることが好ましい。例えば、ニッタ株式会社製圧力センサーシートF−SCANを用い、該圧力センサーシートを巻き芯ナーリング部に装着し、フィルムを巻き付けることにより測定し、加圧する圧力を決定することが出来る。
【0029】
これにより、巻き取った後に受ける圧力によって基材フィルムに形成されたナーリング部の凸部が押されても、既にそれ以上の圧力によって変形されているため、ハードコート層を含む光学機能層の膜厚よりもナーリング部の高さをばらつき無く1μm以上高くすることが出来る。加圧ロールは一組でも、或いは複数を組み合わせてもよく、基材フィルムの形成後巻き取りまでの間に行えばよい。また、加圧ロールは加熱してもよい。
【0030】
図4は、請求項1に係る本発明の加圧ロールを用いたナーリング部形成の別の角度から見た概略図である。
【0031】
(透明長尺基材フィルム)
次に、本発明で用いることの出来る透明長尺フィルム基材について説明する。
【0032】
本発明に係る透明長尺基材フィルムとしては、製造が容易であること、活性線硬化型樹脂層との接着性が良好である、光学的に等方性である、光学的に透明であること等が好ましい要件として挙げられる。
【0033】
本発明でいう透明とは、可視光の透過率60%以上であることを指し、好ましくは80%以上であり、特に好ましくは90%以上である。
【0034】
上記の性質を有していれば特に限定はないが、例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテート、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオネア(以上、日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることが出来る。中でも、セルローストリアセテートフィルム、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)が好ましく、本発明においては、特にセルロースエステルフィルム(例えば、コニカタック 製品名KC8UX2MW、KC4UX2MW、KC8UY、KC4UY、KC5UN、KC12UR(コニカ(株)製))が、製造上、コスト面、透明性、等方性、接着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
【0035】
基材フィルムの光学特性としては膜厚方向のリターデーションRが0nm〜300nm、面内方向のリターデーションRが0nm〜1000nmのものが好ましく用いられる。
【0036】
本発明においては、基材フィルムとしてはセルロースエステルフィルムを用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。
【0037】
特にアセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースの混合脂肪酸エステルを有する基材フィルム上に活性線硬化型樹脂層と反射防止層を設けた反射防止フィルムが好ましく用いられる。
【0038】
2.3≦X+Y≦3.0
0.1≦Y≦1.2
特に、2.5≦X+Y≦2.85
0.3≦Y≦1.2であることが好ましい。
【0039】
本発明に係る基材フィルムとして、セルロースエステルを用いる場合、セルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることが出来る。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することが出来る。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることが出来る。
【0040】
アシル化剤が酸クロライド(CHCOCl、CCOCl、CCOCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10−45804号に記載の方法等を参考にして合成することが出来る。また、本発明に用いられるセルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。
【0041】
本発明に用いられるセルロースエステルとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基またはブチレート基が結合したセルロースの混合脂肪酸エステルが特に好ましく用いられる。尚、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。
【0042】
プロピオネート基を置換基として含むセルロースアセテートプロピオネートは耐水性に優れ、液晶画像表示装置用のフィルムとして有用である。
【0043】
アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することが出来る。
【0044】
セルロースエステルの数平均分子量は、70,000〜250,000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、更に好ましくは、80,000〜150,000である。
【0045】
これらセルロースエステルは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造されることが好ましい。
【0046】
これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解出来、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、蟻酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、1,3−ジメチル−2−イミダゾリジノン等を挙げることが出来るが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。
【0047】
また、下記の製膜工程に示すように、溶媒蒸発工程において流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30〜80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。
【0048】
上記記載の良溶媒の中でも溶解性に優れるメチレンクロライド或いは酢酸メチルが好ましく用いられる。
【0049】
上記有機溶媒の他に、0.1質量%〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。特に好ましくは5〜30質量%で前記アルコールが含まれることが好ましい。これらは上記記載のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。
【0050】
炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることが出来る。
【0051】
これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70質量%〜95質量%に対してエタノール5質量%〜30質量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることも出来る。このとき、冷却溶解法によりドープを調製してもよい。
【0052】
本発明で用いられるセルロースエステルフィルムは少なくとも幅手方向に延伸されたものが好ましく、特に溶液流延工程で残留溶媒量が3質量%〜40質量%である時に幅手方向に1.01倍〜1.5倍に延伸されたものであることが好ましい。より好ましくは幅手方向と長手方向に2軸延伸することであり、残留溶媒料が3質量%〜40質量%である時に幅手方向及び長手方向に、各々1.01倍〜1.5倍に延伸されることが望ましい。この様にすることにより、平面性及び光拡散性に優れた光拡散性フィルムを得ることが出来る。
【0053】
尚、残留溶媒量は下記の式により表される。
【0054】
残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mはウェブ(溶媒を含有したセルロースエステルフィルム)の任意時点における質量、NはMのウェブを110℃で3時間乾燥させた時の質量である。
【0055】
更に、2軸延伸し、前述のナーリング加工をすることによって、長尺状光学フィルムのロール状での保管中の巻き形状の劣化を著しく改善することが出来る。
【0056】
本発明においては、二軸延伸されたセルロースエステルフィルムは、光透過率が90%以上、より好ましくは93%以上の透明支持体であることが好ましい。
【0057】
本発明に係るセルロースエステルフィルム支持体は、その厚さが10μm〜100μmのものが好ましく、更に好ましくは40μm〜80μmであり、透湿性は、JIS Z 0208(25℃、90%RH)に準じて測定した値として、200g/m・24時間以下であることが好ましく、更に好ましくは、10〜180g/m・24時間以下であり、特に好ましくは、160g/m・24時間以下である。特には、膜厚10μm〜80μmで透湿性が上記範囲内であることが好ましい。
【0058】
本発明においては、長尺フィルムを用いることが好ましく、具体的には、100m〜5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、本発明の光学薄膜層形成用ハードコートフィルムの製造方法の効果をより発揮させる観点から、基材フィルムの幅は1.3〜4mであることが好ましい。
【0059】
本発明においては、透明長尺基材フィルムの局所膜厚偏差が0.7μm以下であることが好ましい。局所膜厚偏差とは、図2で示すように、基材フィルムの幅手方向での厚みを測定した場合、平均膜厚に対する膜厚のばらつきのうち、一つの山の底と頂上の膜厚差が最大となる厚み(μm)と定義する。0.7μmを超えると、ブラックバンドの発生原因となり好ましくない。
【0060】
上記膜厚は、市販の透過型赤外線膜厚計、β線膜厚計により測定することが出来る。透過型赤外線膜厚計の例としては、クラボウ・インダストリィーズ製RX−100型、RX−200型等が挙げられる。β線膜厚計の例としては、帝人エンジニアリング(株)製β線厚さ計が挙げられる。
【0061】
また、図2で示すように、山の形状から下記B.B指数を求めることも出来る。
【0062】
B.B指数=b/a
a:山の半値幅(μm)
b:山の高さ(μm)
長尺基材フィルム膜厚偏差において、上記山の勾配もブラックバンドの発生の頻度に関連しており、B.B指数は0.05以下が好ましい。
【0063】
本発明の反射防止フィルム用長尺フィルムにセルロースエステルフィルムを用いる場合、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤等を好ましく用いることが出来る。
【0064】
リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることが出来る。その他のカルボン酸エステルの例には、トリメチロールプロパントリベンゾエート、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。
【0065】
ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることが出来る。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4−シクロヘキシルジカルボン酸等を用いることが出来る。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、1,4−ブチレングリコール、1,3−ブチレングリコール、1,2−ブチレングリコール等を用いることが出来る。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、二種以上混合して用いてもよい。
【0066】
これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1質量%〜20質量%が好ましく、特に好ましくは、3質量%〜13質量%である。
【0067】
本発明の反射防止フィルム用の長尺フィルムには、紫外線吸収剤が好ましく用いられる。
【0068】
紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。
【0069】
本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。
【0070】
ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。
【0071】
UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。
【0072】
UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
【0073】
また、特開2001−187825に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。
【0074】
また、特開平6−148430号に記載の一般式(1)または一般式(2)、特願2000−156039の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等が市販されている。
【0075】
また、本発明に用いられるセルロースエステルフィルムには滑り性を付与するため、活性線硬化型樹脂を含む塗布層で記載したのと同様の微粒子を用いることが出来る。
【0076】
本発明に用いられるセルロースエステルフィルムに添加される微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5〜16nmであり、特に好ましくは、5〜12nmである。これらの微粒子は0.1〜5μmの粒径の2次粒子を形成してセルロースエステルフィルムに含まれることが好ましく、好ましい平均粒径は0.1〜2μmであり、更に好ましくは0.2〜0.6μmである。これにより、フィルム表面に高さ0.1〜1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることが出来る。
【0077】
本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって、1次平均粒子径とした。
【0078】
微粒子の見掛比重としては、70g/リットル以上が好ましく、更に好ましくは、90〜200g/リットルであり、特に好ましくは、100〜200g/リットルである。見掛比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、本発明のように固形分濃度の高いドープを調製する際には、特に好ましく用いられる。
【0079】
1次粒子の平均径が20nm以下、見掛比重が70g/リットル以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000〜1200℃にて空気中で燃焼させることで得ることが出来る。また例えばアエロジル200V、アエロジルR972V(以上、日本アエロジル(株)製)の商品名で市販されており、それらを使用することが出来る。
【0080】
上記記載の見掛比重は二酸化珪素微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出したものである。
【0081】
見掛比重(g/リットル)=二酸化珪素質量(g)/二酸化珪素の容積(リットル)
本発明に用いられる微粒子の分散液を調製する方法としては、例えば以下に示すような3種類が挙げられる。
【0082】
《調製方法A》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。微粒子分散液をドープ液に加えて攪拌する。
【0083】
《調製方法B》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。別に溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに前記微粒子分散液を加えて攪拌する。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
【0084】
《調製方法C》
溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに微粒子を加えて分散機で分散を行う。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
【0085】
調製方法Aは二酸化珪素微粒子の分散性に優れ、調製方法Cは二酸化珪素微粒子が再凝集しにくい点で優れている。中でも、上記記載の調製方法Bは二酸化珪素微粒子の分散性と、二酸化珪素微粒子が再凝集しにくい等、両方に優れている好ましい調製方法である。
【0086】
《分散方法》
二酸化珪素微粒子を溶剤などと混合して分散する時の二酸化珪素の濃度は5質量%〜30質量%が好ましく、10質量%〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度は高い方が、添加量に対する液濁度は低くなる傾向があり、ヘイズ、凝集物が良化するため好ましい。
【0087】
使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。
【0088】
セルロースエステルに対する二酸化珪素微粒子の添加量はセルロースエステル100質量部に対して、二酸化珪素微粒子は0.01質量部〜5.0質量部が好ましく、0.05質量部〜1.0質量部が更に好ましく、0.1質量部〜0.5質量部が最も好ましい。添加量は多い方が、動摩擦係数に優れ、添加量が少ない方が、凝集物が少なくなる。
【0089】
分散機は通常の分散機が使用出来る。分散機は大きく分けてメディア分散機とメディアレス分散機に分けられる。二酸化珪素微粒子の分散にはメディアレス分散機がヘイズが低く好ましい。メディア分散機としてはボールミル、サンドミル、ダイノミルなどが挙げられる。メディアレス分散機としては超音波型、遠心型、高圧型などがあるが、本発明においては高圧分散装置が好ましい。高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置で処理する場合、例えば、管径1〜2000μmの細管中で装置内部の最大圧力条件が9.807MPa以上であることが好ましい。更に好ましくは19.613MPa以上である。またその際、最高到達速度が100m/秒以上に達するもの、伝熱速度が420kJ/時間以上に達するものが好ましい。
【0090】
上記のような高圧分散装置には、Microfluidics Corporation社製超高圧ホモジナイザ(商品名マイクロフルイダイザ)或いはナノマイザ社製ナノマイザがあり、他にもマントンゴーリン型高圧分散装置、例えば、イズミフードマシナリ製ホモジナイザ、三和機械(株)社製UHN−01等が挙げられる。
【0091】
また、微粒子を含むドープを流延支持体に直接接するように流延することが、滑り性が高く、ヘイズが低いフィルムが得られるので好ましい。
【0092】
また、流延後に剥離して乾燥されロール状に巻き取られた後、本発明に係る光学薄膜層が設けられる。加工若しくは出荷されるまでの間、汚れや静電気によるゴミ付着等から製品を保護するために通常、包装加工がなされる。この包装材料については、上記目的が果たせれば特に限定されないが、フィルムからの残留溶媒の揮発を妨げないものが好ましい。具体的には、ポリエチレン、ポリエステル、ポリプロピレン、ナイロン、ポリスチレン、紙、各種不織布等が挙げられる。繊維がメッシュクロス状になったものは、より好ましく用いられる。
【0093】
本発明に用いられるセルロースエステルフィルムは、複数のドープを用いた共流延法等による多層構成を有するものであってもよい。
【0094】
共流延とは、異なったダイを通じて2層または3層構成にする逐次多層流延方法、2つまたは3つのスリットを有するダイ内で合流させ2層または3層構成にする同時多層流延方法、逐次多層流延と同時多層流延を組み合わせた多層流延方法のいずれであっても良い。
【0095】
また、本発明で用いられるセルロースエステルは、フィルムにした時の輝点異物が少ないものが、支持体として好ましく用いられる。本発明において、輝点異物とは、2枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステルフィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステルフィルムを観察した時に、光源の光がもれて見える点のことである。
【0096】
このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物の発生は、セルロースエステルに含まれる未酢化のセルロースがその原因の1つと考えられ、対策としては、未酢化のセルロース量の少ないセルロースエステルを用いることや、また、セルロースエステルを溶解したドープ液の濾過等により、除去、低減が可能である。また、フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロースエステルの含有量が少なくなるほど輝点異物は少なくなる傾向がある。
【0097】
輝点異物は、輝点の直径0.01mm以上のものが200個/cm以下であることが好ましく、更に好ましくは、100個/cm以下、50個/cm以下、30個/cm以下、10個/cm以下であることが好ましいが、特に好ましくは、0であることである。
【0098】
また、0.005mm〜0.01mmの輝点についても200個/cm以下であることが好ましく、更に好ましくは、100個/cm以下、50個/cm以下、30個/cm以下、10個/cm以下であることが好ましいが、特に好ましいのは、輝点が0の場合である。0.005mm以下の輝点についても少ないものが好ましい。
【0099】
輝点異物を濾過によって除去する場合、セルロースエステルを単独で溶解させたものを濾過するよりも可塑剤を添加混合した組成物を濾過することが輝点異物の除去効率が高く好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知のものが好ましく用いられるが、セラミックス、金属等も好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく、更に好ましくは、30μm以下、10μm以下であるが、特に好ましくは、5μm以下のものである。
【0100】
これらは、適宜組み合わせて使用することも出来る。濾材はサーフェースタイプでもデプスタイプでも用いることが出来るが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。
【0101】
本発明の光学機能層とは、ハードコート層上に設けられた反射防止層であることが好ましい。
【0102】
次に本発明に係る反射防止層が塗設された反射防止フィルムに有用な塗布層について述べる。
【0103】
本発明の反射防止層またはその他の薄膜は、上記フィルム状またはシート状の基材に直接形成してもよいが、他の層を介してその上に形成してもよい。
【0104】
本発明において、基材の薄膜形成側の面に塗布する塗布層(薄膜形成側塗布層)としては、クリアハードコート層、防眩層、接着層、帯電防止層等を挙げることが出来、クリアハードコート層、防眩層、帯電防止層が好ましく塗布され、特に、反射防止フィルムの場合には、クリアハードコート層を反射防止フィルムの表面硬度を高めるために、特に「他の層」として設けることが好ましい。また反射防止層またはその他の薄膜を形成する側と基材の反対側にバックコート層を設けてもよい。
【0105】
ここで、本発明に有用な「他の層」としての塗布層として、反射防止フィルムに用いられるクリアハードコート層について述べる。
【0106】
クリアハードコート層は、紫外線により硬化する紫外線硬化化合物(樹脂)を含有する層であることが好ましく、耐擦り傷性に優れた反射防止フィルムを得ることが出来る。
【0107】
クリアハードコート層の紫外線硬化樹脂層は、エチレン性不飽和モノマーを含む成分を重合させて形成した樹脂層であることが好ましい。ここで、紫外線硬化樹脂層は、紫外線の外に電子線のような活性線照射により架橋反応などを経て硬化する樹脂を主たる成分とする層をいう。紫外線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂などが代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることが出来る。
【0108】
紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、若しくはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートと記載した場合、メタクリレートを包含するものとする)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59−151110号等を参照)。
【0109】
紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59−151112号を参照)。
【0110】
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させたものを挙げることが出来る(例えば、特開平1−105738号)。この光反応開始剤としては、ベンゾイン誘導体、オキシムケトン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体等のうちから、1種若しくは2種以上を選択して使用することが出来る。
【0111】
また、紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。
【0112】
これらの樹脂は通常公知の光増感剤と共に使用される。また上記光反応開始剤も光増感剤としても使用出来る。具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることが出来る。また、エポキシアクリレート系の光反応剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることが出来る。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤また光増感剤は該組成物の通常1〜10質量%添加することが出来、2.5〜6質量%であることが好ましい。
【0113】
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、酢酸ビニル、ベンジルアクリレート、シクロヘキシルアクリレート、スチレン等の一般的なモノマーを挙げることが出来る。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることが出来る。
【0114】
例えば、紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(以上、旭電化工業株式会社製)、或いはコーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(以上、広栄化学工業株式会社製)、或いはセイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業株式会社製)、或いはKRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー株式会社)、或いはRC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(以上、大日本インキ化学工業株式会社製)、或いはオーレックスNo.340クリヤ(中国塗料株式会社製)、或いはサンラッドH−601(三洋化成工業株式会社製)、或いはSP−1509、SP−1507(昭和高分子株式会社製)、或いはRCC−15C(グレース・ジャパン株式会社製)、アロニックスM−6100、M−8030、M−8060(以上、東亞合成株式会社製)或いはこの他の市販のものから適宜選択して利用出来る。
【0115】
紫外線硬化樹脂層は公知の方法で塗設することが出来る。
【0116】
紫外線硬化樹脂層を塗設する際の溶媒としては、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、或いはこれらを混合し利用出来る。好ましくは、プロピレングリコールモノ(炭素数1〜4のアルキル基)アルキルエーテル出来はプロピレングリコールモノ(炭素数1〜4のアルキル基)アルキルエーテルエステルを5質量%以上、更に好ましくは5〜80質量%以上含有する溶媒が用いられる。
【0117】
紫外線硬化性樹脂を光硬化反応により硬化皮膜層を形成するための光源としては、紫外線を発生する光源であればいずれでも使用出来る。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによって異なるが、照射光量は20〜10000mJ/cm程度あればよく、好ましくは、50〜2000mJ/cmである。近紫外線領域〜可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって使用出来る。
【0118】
紫外線硬化性樹脂組成物は塗布乾燥された後、紫外線を光源より照射するが、照射時間は0.5秒〜5分がよく、紫外線硬化性樹脂の硬化効率、作業効率とから3秒〜2分がより好ましい。
【0119】
こうして得た硬化皮膜層に、ブロッキングを防止するため、また対擦り傷性等を高めるために無機或いは有機の微粒子を加えることが好ましい。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることが出来、また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等を挙げることが出来、紫外線硬化性樹脂組成物に加えることが出来る。これらの微粒子粉末の平均粒径としては、0.005μm〜1μmが好ましく0.01〜0.1μmであることが特に好ましい。
【0120】
紫外線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1〜10質量部となるように配合することが望ましい。
【0121】
この様にして形成された紫外線硬化樹脂を硬化させた層は、JIS B 0601に規定される中心線平均粗さRaが1〜50nmのクリアハードコート層であっても、Raが0.1〜1μm程度の防眩層であってもよい。
【0122】
クリアハードコート層や防眩層、またはバックコート層を基材に塗布する方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押し出しコーター、エアードクターコーター等公知の方法を用いることが出来る。塗布の際の液膜厚(ウェット膜厚ともいう)で1〜100μm程度で、0.1〜30μmが好ましく、より好ましくは、0.5〜15μmである。
【0123】
(バックコート層)
本発明に用いられるセルロースエステルフィルムは、裏面側に微粒子を含有するバックコート層を設けることも好ましい。
【0124】
本発明に有用なバックコート層に含ませる微粒子としては、無機化合物の微粒子または有機化合物の微粒子を挙げることが出来、前述のセルロースエステルフィルムに含有させる微粒子、微粒子の粒径、微粒子の見掛比重、分散方法等ほぼ同様である。
【0125】
バックコート層のバインダーに対する微粒子の添加量は樹脂100質量部に対して、微粒子は0.01質量部〜1質量部が好ましく、0.05質量部〜0.5質量部が更に好ましく、0.08質量部〜0.2質量部が最も好ましい。添加量は多い方が、動摩擦係数が低くなり、また少ない方がヘイズが低く、凝集物も少なくなる。
【0126】
バックコート層に使用される有機溶媒は特に限定されないが、バックコート層にアンチカール機能を付与することも出来るので、セルロースエステルフィルム及びセルロースエステルフィルムの素材の樹脂を溶解させる有機溶媒または膨潤させる有機溶媒が有用である。これらをセルロースエステルフィルムのカール度合、樹脂の種類、混合割合、塗布量等により適宜選べばよい。
【0127】
バックコート層に使用し得る有機溶媒としては、例えば、ベンゼン、トルエン、キシレン、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノンなどがある。
【0128】
溶解させない有機溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノールなどがあるが、有機溶媒としては特にこれらに限定されるものではない。
【0129】
バックコート層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、ワイヤーバーコーター、リバースコーター、押し出しコーター等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1〜100μmとすることが好ましく、特に5〜30μmが好ましい。
【0130】
バックコート層に用いられる樹脂としては、例えば塩化ビニル/酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル/酢酸ビニルコポリマー、塩化ビニル/塩化ビニリデンコポリマー、塩化ビニル/アクリロニトリルコポリマー、エチレン/ビニルアルコールコポリマー、塩素化ポリ塩化ビニル、エチレン/塩化ビニルコポリマー、エチレン/酢酸ビニルコポリマー等のビニル系ホモポリマー或いはコポリマー、セルロースニトラート、セルロースアセテートプロピオネート、セルロースジアセテート、セルローストリアセテート、セルロースアセテートフタレート、セルロースアセテートブチレート樹脂等のセルロースエステル系樹脂、マレイン酸及び/またはアクリル酸のコポリマー、アクリル酸エステルコポリマー、アクリロニトリル/スチレンコポリマー、塩素化ポリエチレン、アクリロニトリル/塩素化ポリエチレン/スチレンコポリマー、メチルメタクリレート/ブタジエン/スチレンコポリマー、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン/ブタジエン樹脂、ブタジエン/アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリメチルメタクリレート、ポリメチルメタクリレートとポリメチルアクリレートの共重合体等を挙げることが出来るが、これらに限定されるものではない。特に好ましくはセルロースジアセテート、セルロースアセテートプロピオネートのようなセルロース系樹脂層である。
【0131】
次に、本発明の反射防止層、及び反射防止フィルムについて述べる。
【0132】
本発明の反射防止フィルムにおいては、金属酸化物層を前述の透明長尺基材フィルムに直接形成させてもよいが、他の被覆層を少なくとも1層設け、凹凸面を有する長尺基材フィルム上に形成させてもよい。他の被覆層としては、JIS B 0601で規定される中心線平均表面粗さ(Ra)が0.01〜1μmの前述の硬化樹脂層が好ましい。これらは紫外線等の活性線により硬化する活性線硬化樹脂層である。この様な紫外線で硬化された樹脂層の上に本発明に係る金属酸化物層を形成させることによって耐擦り傷性に優れた反射防止フィルムを得ることが出来る。
【0133】
金属酸化物層は高屈折率層、中屈折率層、低屈折率層の少なくともいずれかの1層に用いられることが好ましい。
【0134】
本発明では金属酸化物層を設ける方法は特に限定されず、塗布、大気圧プラズマCVD法、スパッタ、蒸着によって形成することが好ましい。特に、塗布または大気圧プラズマCVDによって形成されることが好ましい。
【0135】
金属酸化物層を塗設によって形成する方法について説明する。
【0136】
本発明の反射防止フィルムの基本的な構成を説明する。例えば、好ましい反射防止フィルムは、透明支持体、ハードコート層、中屈折率層、高屈折率層、低屈折率層の順序の層構成を有する。透明支持体、中屈折率層、高屈折率層及び低屈折率層は、以下の関係を満足する屈折率を有する。
【0137】
低屈折率層の屈折率<透明支持体の屈折率<中屈折率層の屈折率<高屈折率層の屈折率。
【0138】
中屈折率層、高屈折率層及び低屈折率層を有する反射防止フィルムでは、特開昭59−50401号に記載されているように、中屈折率層が下記数式(1)を、高屈折率層が下記数式(2)を、低屈折率層が下記数式(3)をそれぞれ満足することにより、反射防止フィルムとしての平均反射率を更に下げる設計が可能となり好ましい。
【0139】
(hλ/4)×0.7<n<(hλ/4)×1.3・・・数式(1)
数式(1)中でも、hは正の整数(一般に1、2または3)であり、nは中屈折率層の屈折率であり、そして、dは中屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
【0140】
(jλ/4)×0.7<n<(jλ/4)×1.3・・・数式(2)
数式(2)中でも、jは正の整数(一般に1、2または3)であり、nは高屈折率層の屈折率であり、そして、dは高屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
【0141】
(kλ/4)×0.7<n<(kλ/4)×1.3・・・数式(3)
数式(3)中でも、kは正の奇数(一般に1)であり、nは低屈折率層の屈折率であり、そして、dは低屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
【0142】
また、本発明においては、ハードコート層或いは高屈折率層に凹凸を付与して防眩性反射防止フィルムとすることも好ましい。
【0143】
この他、透明支持体、ハードコート層(防眩層)、高屈折率層、低屈折率層、高屈折率層、低屈折率層の順の層構成も好ましい構成である。表面の低屈折率層に防眩性を付与することが好ましく、表面に防眩層を設けてもよい。
【0144】
〈高屈折率層及び中屈折率〉
本発明においては、反射率の低減のために、透明支持体若しくはハードコート層を付与した透明支持体と低屈折率層との間に、高屈折率層を設けることが好ましい。また、透明支持体と高屈折率層との間に中屈折率層を設けることは、反射率の低減のために好ましい。高屈折率層の屈折率は、1.55〜2.30であることが好ましく、1.57〜2.20であることが更に好ましい。中屈折率層の屈折率は、透明支持体の屈折率と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましい。高屈折率層及び中屈折率層の厚さは、5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。高屈折率層及び中屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。高屈折率層及び中屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることが更に好ましく、3H以上であることが最も好ましい。高屈折率層及び中屈折率層は、無機微粒子とバインダーポリマーとを含むことが好ましい。
【0145】
高屈折率層及び中屈折率層に用いる無機微粒子は、屈折率が1.80〜2.80であることが好ましく、1.90〜2.80であることが更に好ましい。無機微粒子の1次粒子の重量平均径は、1〜150nmであることが好ましく、1〜100nmであることが更に好ましく、1〜80nmであることが最も好ましい。層中での無機微粒子の重量平均径は、1〜200nmであることが好ましく、5〜150nmであることがより好ましく、10〜100nmであることが更に好ましく、10〜80nmであることが最も好ましい。無機微粒子の平均粒径は、20〜30nm以上であれば光散乱法により、20〜30nm以下であれば電子顕微鏡写真により測定される。無機微粒子の比表面積は、BET法で測定された値として、10〜400m/gであることが好ましく、20〜200m/gであることが更に好ましく、30〜150m/gであることが最も好ましい。
【0146】
無機微粒子は、金属の酸化物または硫化物から形成された粒子であることが好ましい。金属の酸化物または硫化物の例として、二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、酸化ジルコニウム及び硫化亜鉛が挙げられる。中でも、酸化チタン、酸化錫及び酸化インジウムが特に好ましい。無機微粒子は、これらの金属の酸化物または硫化物を主成分とし、更に他の元素を含むことが出来る。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSが挙げられる。
【0147】
無機微粒子は表面処理されていてもよい。表面処理は、無機化合物または有機化合物を用いて実施することが出来る。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。中でも、シランカップリング剤が最も好ましい。2種類以上の表面処理を組み合わせて処理されていても構わない。無機微粒子の形状は、米粒状、球形状、立方体状、紡錘形状或いは不定形状であることが好ましい。2種類以上の無機微粒子を高屈折率層及び中屈折率層に併用してもよい。
【0148】
高屈折率層及び中屈折率層中の無機微粒子の割合は、5〜65体積%であることが好ましく、より好ましくは10〜60体積%であり、更に好ましくは20〜55体積%である。
【0149】
無機微粒子は、媒体に分散した分散体の状態で、高屈折率層及び中屈折率層を形成するための塗布液に供される。無機微粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
【0150】
無機微粒子は、分散機を用いて媒体中に分散することが出来る。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。
【0151】
高屈折率層及び中屈折率層は、架橋構造を有するポリマー(以下、架橋ポリマーともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。
【0152】
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることが更に好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。
【0153】
アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基または4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基または4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。尚、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位或いは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
【0154】
上記アミノ基または4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基または4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、或いは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基または4級アンモニウム基は、2級アミノ基、3級アミノ基または4級アンモニウム基であることが好ましく、3級アミノ基または4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基または4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1〜12のアルキル基であり、更に好ましくは炭素数1〜6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または4級アンモニウム基とポリマー鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基または4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることが更に好ましく、0.1〜28質量%であることが最も好ましい。
【0155】
架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1〜50質量%、より好ましくは5〜40質量%、更に好ましくは10〜30質量%使用される。また、アミノ基または4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基または4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3〜33質量%使用される。塗布液の塗布と同時または塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることが出来る。
【0156】
2個以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基または4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM−21、PM−2(日本化薬(株)製)、AntoxMS−60、MS−2N、MS−NH4(日本乳化剤(株)製)、アロニックスM−5000、M−6000、M−8000シリーズ(東亞合成化学工業(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX−8289(第一工業製薬(株)製)、NKエステルCB−1、A−SA(新中村化学工業(株)製)、AR−100、MR−100、MR−200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基または4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC−1615(第一工業製薬(株)製)等が挙げられる。
【0157】
ポリマーの重合反応は、光重合反応または熱重合反応を用いることが出来る。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる前述した熱重合開始剤、及び光重合開始剤が挙げられる。
【0158】
重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2〜10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。
【0159】
中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式または芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることが出来る。
【0160】
金属酸化物層は金属酸化物を含む無機微粒子を含有する塗布液を塗設することによって設けることが好ましい。
【0161】
被膜形成能を有する有機金属化合物から、高屈折率層または中屈折率層を形成してもよい。
【0162】
有機金属化合物は、適当な媒体に分散し得るか、或いは液状であることが好ましい。有機金属化合物の例としては、金属アルコレート(例えば、チタンテトラエトキシド、チタンテトラ−i−プロポキシド、チタンテトラ−n−プロポキシド、チタンテトラ−n−ブトキシド、チタンテトラ−sec−ブトキシド、チタンテトラ−tert−ブトキシド、アルミニウムトリエトキシド、アルミニウムトリ−i−プロポキシド、アルミニウムトリブトキシド、アンチモントリエトキシド、アンチモントリブトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラ−i−プロポキシド、ジルコニウムテトラ−n−プロポキシド、ジルコニウムテトラ−n−ブトキシド、ジルコニウムテトラ−sec−ブトキシド、ジルコニウムテトラ−tert−ブトキシド)、キレート化合物(例えば、ジ−イソプロポキシチタニウムビスアセチルアセトネート、ジ−ブトキシチタニウムビスアセチルアセトネート、ジ−エトキシチタニウムビスアセチルアセトネート、ビスアセチルアセトンジルコニウム、アルミニウムアセチルアセトネート、アルミニウムジ−n−ブトキシドモノエチルアセトアセテート、アルミニウムジ−i−プロポキシドモノメチルアセトアセテート、トリ−n−ブトキシドジルコニウムモノエチルアセトアセテート)、有機酸塩(例えば、炭酸ジルコニールアンモニウム)及びジルコニウム等が挙げられる。
【0163】
低屈折率層としては、熱または電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)の架橋からなる低屈折率層、ゾルゲル法による低屈折率層、及び粒子とバインダーポリマーを用い、粒子間または粒子内部に空隙を有する低屈折率層等が用いられる。低屈折率層の屈折率は、低ければ反射防止性能が良化するため好ましいが、低屈折率層の強度付与の観点では困難となる。このバランスから、低屈折率層の屈折率は1.30〜1.50であることが好ましく、1.35〜1.49であることが更に好ましい。
【0164】
架橋前の含フッ素樹脂として、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることが出来る。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入出来ることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。
【0165】
また上記モノマー加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることが出来る。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。
【0166】
架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。
【0167】
含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることが出来る。
【0168】
架橋前の含フッ素樹脂は、市販されており使用することが出来る。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。
【0169】
架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。
【0170】
架橋した含フッ素樹脂を構成成分とする低屈折率層が無機粒子を含有することは、強度向上の点から好ましい。低屈折率層に用いられる無機微粒子としては、非晶質のものが好ましく用いられ、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、中でも金属酸化物が特に好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。2種以上の金属を含む無機微粒子を用いてもよい。特に好ましい無機微粒子は、二酸化珪素微粒子、即ちシリカ微粒子である。無機微粒子の平均粒径は0.001〜0.2μmであることが好ましく、0.005〜0.05μmであることがより好ましい。微粒子の粒径はなるべく均一(単分散)であることが好ましい。無機微粒子の粒径は大きすぎると光が散乱し、フィルムが不透明になり、小さすぎるものは凝集し易く合成及び取り扱いが困難である。
【0171】
無機微粒子の配合量は、低屈折率層の全質量の5〜90質量%であることが好ましく、更に好ましくは10〜70質量%であり、特に好ましくは10〜50質量%である。無機微粒子は、表面処理を施して用いることも好ましい。表面処理法としてはプラズマ放電処理やコロナ放電処理のような物理的表面処理とカップリング剤を使用する化学的表面処理があるが、カップリング剤の使用が好ましい。カップリング剤としては、オルガノアルコキシ金属化合物(例、チタンカップリング剤、シランカップリング剤等)が好ましく用いられる。無機微粒子がシリカの場合はシランカップリング剤による処理が特に有効である。
【0172】
また、低屈折率層用の素材として、各種ゾルゲル素材を用いることも出来る。この様なゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びその加水分解物を用いることが出来る。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。
【0173】
低屈折率層として、無機若しくは有機の微粒子を用い、微粒子間または微粒子内のミクロボイドとして形成した層を用いることも好ましい。微粒子の平均粒径は、0.5〜200nmであることが好ましく、1〜100nmであることがより好ましく、3〜70nmであることが更に好ましく、5〜40nmの範囲であることが最も好ましい。微粒子の粒径は、なるべく均一(単分散)であることが好ましい。
【0174】
無機微粒子としては、非晶質であることが好ましい。無機微粒子は、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、金属酸化物または金属ハロゲン化物からなることが更に好ましく、金属酸化物または金属フッ化物からなることが最も好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。二種類の金属を含む無機化合物を用いてもよい。特に好ましい無機化合物は、二酸化珪素、即ちシリカである。
【0175】
無機微粒子内ミクロボイドは、例えば、粒子を形成するシリカの分子を架橋させることにより形成することが出来る。シリカの分子を架橋させると体積が縮小し、粒子が多孔質になる。ミクロボイドを有する(多孔質)無機微粒子は、ゾル−ゲル法(特開昭53−112732号、特公昭57−9051号に記載)または析出法(APPLIED OPTICS,27巻,3356頁(1988)記載)により、分散物として直接合成することが出来る。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることも出来る。市販の多孔質無機微粒子(例えば、二酸化珪素ゾル)を用いてもよい。ミクロボイドを有する無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)が好ましい。
【0176】
有機微粒子も非晶質であることが好ましい。有機微粒子は、モノマーの重合反応(例えば乳化重合法)により合成されるポリマー微粒子であることが好ましい。有機微粒子のポリマーはフッ素原子を含むことが好ましい。ポリマー中のフッ素原子の割合は、35〜80質量%であることが好ましく、45〜75質量%であることが更に好ましい。また、有機微粒子内に、例えば、粒子を形成するポリマーを架橋させ、体積を縮小させることによりミクロボイドを形成させることも好ましい。粒子を形成するポリマーを架橋させるためには、ポリマーを合成するためのモノマーの20モル%以上を多官能モノマーとすることが好ましい。多官能モノマーの割合は、30〜80モル%であることが更に好ましく、35〜50モル%であることが最も好ましい。上記有機微粒子の合成に用いられるモノマーとしては、含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例として、フルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類及びフッ素化ビニルエーテル類が挙げられる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例としては、オレフィン類(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例えば、スチレン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル類(例えば、メチルビニルエーテル)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例えば、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド類及びアクリルニトリル類が挙げられる。多官能モノマーの例としては、ジエン類(例えば、ブタジエン、ペンタジエン)、多価アルコールとアクリル酸とのエステル(例えば、エチレングリコールジアクリレート、1,4−シクロヘキサンジアクリレート、ジペンタエリスリトールヘキサアクリレート)、多価アルコールとメタクリル酸とのエステル(例えば、エチレングリコールジメタクリレート、1,2,4−シクロヘキサンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート)、ジビニル化合物(例えば、ジビニルシクロヘキサン、1,4−ジビニルベンゼン)、ジビニルスルホン、ビスアクリルアミド類(例えば、メチレンビスアクリルアミド)及びビスメタクリルアミド類が挙げられる。
【0177】
粒子間のミクロボイドは、微粒子を少なくとも2個以上積み重ねることにより形成することが出来る。尚、粒径が等しい(完全な単分散の)球状微粒子を最密充填すると、26体積%の空隙率の微粒子間ミクロボイドが形成される。粒径が等しい球状微粒子を単純立方充填すると、48体積%の空隙率の微粒子間ミクロボイドが形成される。実際の低屈折率層では、微粒子の粒径の分布や粒子内ミクロボイドが存在するため、空隙率は上記の理論値からかなり変動する。空隙率を増加させると、低屈折率層の屈折率が低下する。微粒子を積み重ねてミクロボイドを形成すると、微粒子の粒径を調整することで、粒子間ミクロボイドの大きさも適度の(光を散乱せず、低屈折率層の強度に問題が生じない)値に容易に調節出来る。更に、微粒子の粒径を均一にすることで、粒子間ミクロボイドの大きさも均一である光学的に均一な低屈折率層を得ることが出来る。これにより、低屈折率層は微視的にはミクロボイド含有多孔質膜であるが、光学的或いは巨視的には均一な膜にすることが出来る。粒子間ミクロボイドは、微粒子及びポリマーによって低屈折率層内で閉じていることが好ましい。閉じている空隙には、低屈折率層表面に開かれた開口と比較して、低屈折率層表面での光の散乱が少ないとの利点もある。
【0178】
ミクロボイドを形成することにより、低屈折率層の巨視的屈折率は、低屈折率層を構成する成分の屈折率の和よりも低い値になる。層の屈折率は、層の構成要素の体積当たりの屈折率の和になる。微粒子やポリマーのような低屈折率層の構成成分の屈折率は1よりも大きな値であるのに対して、空気の屈折率は1.00である。そのため、ミクロボイドを形成することによって、屈折率が非常に低い低屈折率層を得ることが出来る。
【0179】
低屈折率層は、5〜50質量%の量のポリマーを含むことが好ましい。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持出来るように調整する。ポリマーの量は、低屈折率層の全量の10〜30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応により形成することが好ましい。上記(1)〜(3)のうちの二つまたは全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、または(1)〜(3)全てを組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。
【0180】
(1)表面処理
微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類出来る。化学的表面処理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子が二酸化珪素からなる場合は、シランカップリング剤による表面処理が特に有効に実施出来る。具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
【0181】
また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
【0182】
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
【0183】
2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリングを用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施出来る。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
【0184】
(2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステルまたはポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35〜80質量%のフッ素原子を含むことが好ましく、45〜75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。
【0185】
シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。
【0186】
後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5〜90体積%含まれていることが好ましく、15〜80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。
【0187】
(3)バインダー
バインダーポリマーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。2以上のエチレン性不飽和基を有するモノマーの代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用出来る。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
【0188】
バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。
【0189】
反射防止フィルムの各層またはその塗布液には、前述した成分(無機微粒子、ポリマー、分散媒体、重合開始剤、重合促進剤)以外に、重合禁止剤、レベリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防止剤や接着付与剤を添加してもよい。反射防止フィルムの各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号)により、塗布により形成することが出来る。2以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号及び原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。
【0190】
本発明においては、大気圧プラズマ放電処理によって金属酸化物層を形成する方法も好ましく用いられる。
【0191】
以下に、大気圧プラズマ放電処理により金属酸化物層を形成する方法を図5、6を用いて説明する。
【0192】
本発明のハードコート層を有するフィルム上に金属酸化物層を形成する方法としての大気圧若しくはその近傍の圧力下のプラズマ放電処理は、下記の如きプラズマ放電処理装置を用いることによって行われる。
【0193】
図5は、本発明のハードコート層を有するフィルム上に金属酸化物層を形成するのに用いられるプラズマ放電処理装置の一例を示す図である。
【0194】
図5においては、この装置は一対の回転電極10Aと10Bを有し、回転電極10Aと10Bには、プラズマ放電を発生させるための電圧を印加できる電源80が電圧供給手段81に接続され一方はアースに接続されており、82がアースに接続されている。
【0195】
回転電極10Aと10Bはハードコート層を有するフィルムを巻き回しながら搬送するもので、ロール電極若しくはベルト状の電極であることが好ましく、図5ではロール電極を示している。
【0196】
これらの回転電極間の間隙(電極間隙)は放電が行われる場所であり、ハードコート層を有するフィルムFが搬送出来る間隔に設定されている。この電極間の間隙が放電部50となる。
【0197】
この電極間隙は大気圧若しくは大気圧近傍の圧力下に維持されており、ここに反応ガス供給部30より反応ガスGが供給され、ハードコート層を有するフィルムF表面がプラズマ放電処理される。
【0198】
ここで、元巻きロールから巻き出されたハードコート層を有するフィルムFまたは前工程から搬送されてくるハードコート層を有するフィルムFがガイドロール20を経て、まず、移送方向に回転する回転電極10Aに接しながら移送され、放電部50を通過して、ハードコート層を有するフィルムFの表面に薄膜が形成される。
【0199】
一旦放電部50から出たハードコート層を有するフィルムFは、Uターンロール11A〜11DでUターンされて、今度は、ハードコート層を有するフィルムFは回転電極10Aと反対方向に回転している回転電極10Bに接しながら移送され、再び前記放電部50を通過して、先ほど薄膜が形成されたハードコート層を有するフィルムFの表面に更にプラズマ放電処理され薄膜が形成される。Uターンは通常0.1秒〜1分程度で行われる。
【0200】
処理に使用された反応ガスGはガス排出口40より反応後の排ガスG′として排出される。反応ガスGは室温〜250℃、好ましくは50〜150℃、更に好ましくは80〜120℃に過熱して放電部50に送り込まれることが好ましい。
【0201】
尚、放電部50には整流板51が設けられていることが好ましく、反応ガスGや排ガスG′の流れをスムーズにすると共に、放電部50が広がって電極10Aと10Bの間で不要な放電を起こさないように制御することが好ましく、整流板51は絶縁性部材で出来ていることが好ましい。
【0202】
図ではハードコート層を有するフィルムF上に形成された薄膜は省略してある。表面に薄膜が形成されたハードコート層を有するフィルムFは、ガイドローラー21を介して次工程または巻き取りロール(図示してない)方向に搬送される。
【0203】
従って、ハードコート層を有するフィルムFは回転電極10A、10Bに密着した状態で放電部50を往復してプラズマ放電処理されることとなる。
【0204】
尚、図示してないが、回転電極10Aと10B、ガイドロール20、21、Uターンロール11A〜11D、反応ガス供給部30、ガス排出口40等の装置は外界と遮断するプラズマ放電処理容器内に囲まれて納められていることが好ましい。
【0205】
また、図示してないが、必要に応じて、回転電極10Aと10Bの温度制御をするための温度制御用媒体が循環され、各々の電極表面温度を所定の値に制御するようになっている。また、回転電極10Aと10Bの直径は10〜1000mm、好ましくは50〜500mmであり、直径の異なるものを組み合わせて用いてもよい。
【0206】
図6は本発明のハードコート層を有するフィルム上に金属酸化物薄膜層を形成するのに有用な回転電極と固定電極を有するプラズマ放電処理装置の一例を示す図である。
【0207】
回転電極110とそれに対向して配置された複数の固定電極111を有し、図示されていない元巻きロールまたは前工程から搬送されて来るハードコート層を有するフィルムFがガイドロール120、ニップロール122を経て回転電極110に導かれ、ハードコート層を有するフィルムFは回転電極110に接した状態で回転電極110の回転と同期しながら移送され、大気圧若しくはその近傍の圧力下にある放電部150に反応ガス発生装置131で調製された反応ガスGが給気管130から供給され、固定電極111に対向しているハードコート層を有するフィルム面に薄膜が形成される。
【0208】
回転電極110と固定電極には、プラズマ放電を発生させるための電圧を印加できる電源180が電圧供給手段181に接続され一方はアースに接続されており、182がアースに接続されている。
【0209】
また、回転電極110、固定電極111、放電部150はプラズマ放電処理容器190で覆われ、外界と遮断されている。処理された排ガスG′は処理室の下部にあるガス排気口140から排出される。
【0210】
プラズマ放電処理されたハードコート層を有するフィルムFはニップロール123及びガイドロール121を経て次工程または図示してない巻き取りロールへ搬送される。
【0211】
ハードコート層を有するフィルムFがプラズマ放電処理容器の出入り部分のニップロール122及び123のところに外界との仕切板124及び125が設けられており、外界からニップロール122と共にハードコート層を有するフィルムFに同伴して来る空気を遮断し、また出口においては、反応ガスGまたは排ガスG′が外界に漏れないようになっている。
【0212】
この様に、本発明において、薄膜が形成されるハードコート層を有するフィルムは回転電極上で移送しながらプラズマ放電処理されるのが好ましい。
【0213】
回転電極がハードコート層を有するフィルムと接する表面は高い平滑性が求められ、回転電極の表面の表面粗さがJIS−B−0601で規定される表面粗さの最大高さ(Rmax)が10μm以下であることが好ましく、より好ましくは8μm以下であり、特に好ましくは、7μm以下である。また、均一な製膜のため電極にゴミや異物が付着しないようにすることが必要である。
【0214】
プラズマ放電処理に用いられる電極の表面は固体誘電体で被覆されていることが望ましく、特に金属等の導電性母材に対し固体誘電体で被覆されていることが望ましい。固体誘電体としては、ポリテトラフルオロエチレン、ポリエチレンテレフタレート等のプラスチック、ガラス、二酸化珪素、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)等の金属酸化物、チタン酸バリウム等の複酸化物等を挙げることが出来る。これらを組み合わせて2層以上の構成としてもよい。
【0215】
特に好ましくは、セラミックスを溶射後、無機材料を用いて封孔処理したセラミックス被覆処理誘電体であることが望ましい。ここで、金属等の導電性母材としては、銀、白金、ステンレス、アルミニウム、鉄等の金属等を挙げることが出来るが、加工の観点からステンレスが好ましい。
【0216】
また、ライニング材としては、ケイ酸塩系ガラス、ホウ酸塩系ガラス、リン酸塩系ガラス、ゲルマン酸塩系ガラス、亜テルル酸塩ガラス、アルミン酸塩ガラス、バナジン酸塩ガラス等が好ましく用いられるが、この中でもホウ酸塩系ガラスが加工し易いので、更に好ましく用いられる。
【0217】
プラズマ放電処理に用いられる電極は、その裏面側(内側)から、必要に応じて、加熱或いは冷却することが出来るようになっている。電極がベルトの場合には、その裏面より気体で冷却することも出来るが、ロールを用いた回転電極では内部に媒体を供給して電極表面の温度及びハードコート層を有するフィルムの温度を制御することが好ましい。
【0218】
媒体としては、蒸留水、エチレングリコール含有水、油特にシリコンオイル等の絶縁性材料が好ましく用いられる。
【0219】
放電処理の際のハードコート層を塗設したフィルムの温度は処理条件によって異なるが、室温〜200℃以下が好ましく、より好ましくは室温〜120℃以下であり、更に好ましくは50〜110℃である。
【0220】
放電処理の際にハードコート層を有するフィルム面の特に幅手方向で温度むらが生じないようにすることが望ましく、±5℃以内とすることが好ましく、より好ましくは±1℃以内であり、特に好ましくは±0.1℃以内である。
【0221】
本発明において、電極間隙は、固体誘電体の厚さ、印加電圧や周波数、プラズマを利用する目的等を考慮して決定される。上記電極の一方に固体誘電体を設置した場合の固体誘電体と電極の最短距離、上記電極の双方に固体誘電体を設置した場合の固体誘電体どうしの距離としては、いずれの場合も均一な放電プラズマを発生させるという観点から0.5mm〜20mmが好ましく、特に好ましくは1mm±0.5mmである。
【0222】
本発明において、電極間隙の放電部には、ガス発生装置で発生させた混合ガスを流量制御して、反応ガス供給口よりプラズマ放電部に導入される。反応ガスの濃度や流量は適宜調整されるが、ハードコート層を有するフィルムの搬送速度に対して十分な速度で処理用ガスを電極間隙に供給することが好ましい。放電部では供給した反応ガスの大部分が反応して薄膜形成に使われるように流量や放電条件を設定するのが望ましい。
【0223】
放電部に大気が混入したり、反応ガスが装置外に漏れ出ることを防止するために、電極及び移送中のハードコート層を有するフィルムは全体を囲んで外界から遮蔽することが好ましい。本発明において、放電部の気圧は大気圧若しくはその近傍の圧力に維持される。また、反応ガスが気相中で分解されて金属酸化物の微粉を発生することがあるが、その発生が少なくなるように流量や放電条件を設定することが望ましい。
【0224】
ここで大気圧近傍とは、20〜200kPaの圧力を表すが、本発明に記載の効果を好ましく得るためには、93〜110kPaが好ましい。装置外の大気圧力に対して、放電部がやや陽圧であることが好ましくプラズマ装置外の大気圧力+0.1kPa〜5kPaであることがより好ましい。
【0225】
本発明に有用なプラズマ放電処理装置では、一方の電極は電源に接続して電圧を印加し、もう一方の電極はアースに接地し放電プラズマを発生させることが安定したプラズマを発生させるために好ましい。
【0226】
本発明で用いる高周波電源より電極に印加する電圧の値は適宜決定されるが、例えば、電圧が0.5〜10kV程度で、印加する周波数は1kHz〜150MHzに調整し、波形はパルス波であってもサイン波としてもよい。特に周波数を100kHzを超えて50MHz以下の高周波を印加することが好ましい放電部(放電空間)が得られるため好ましい。或いは、1kHz〜200kHzと800kHz〜150MHzの2つの周波数の高周波電圧を同時に印加する方法も好ましく用いられる。
【0227】
放電部における放電密度は5〜1000W・min/mであることが好ましく、特に50〜500W・min/mであることが望ましい。
【0228】
プラズマ放電処理部はパイレックス(登録商標)ガラス製の処理容器等で適宜囲まれていることが望ましく、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミまたは、ステンレスのフレームの内面にポリイミド樹脂等を張り付けても良く、該金属フレームにセラミックス溶射を行い絶縁性をとっても良い。また、放電部や回転電極の側面部、ハードコート層を有するフィルム搬送部等の側面を囲むことによって、反応ガスや排ガスを適切に放電部に供給したり排気することも出来る。
【0229】
本発明の金属酸化物薄膜層の形成方法に用いる反応ガスについて説明する。
【0230】
薄膜層を形成するための反応ガスは、窒素若しくは希ガスを含むことが好ましい。
【0231】
つまり、反応ガスは窒素若しくは希ガスと後述の反応性ガスの混合ガスであることが好ましい。
【0232】
ここで、希ガスとは、周期表の第18属元素、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等であり、本発明においては、中でもヘリウム、アルゴンを好ましく用いることが出来る。これらは混合して用いてもよく、例えばヘリウム3:アルゴン7等の比率で用いてもよい。
【0233】
反応ガス中の希ガスまたは窒素の濃度は90%以上であることが安定したプラズマ放電を発生させるために好ましく、90〜99.99体積%であることが望ましい。
【0234】
希ガスまたは窒素は安定したプラズマ放電を発生させるために用いられ、該プラズマ中で反応性ガスはイオン化或いはラジカル化され、基材表面に堆積或いは付着するなどして薄膜が形成される。
【0235】
本発明に有用な反応ガスは、様々な物質の反応性ガスを添加したものを用いることによって、様々な機能を持った薄膜をハードコート層を有するフィルム上に形成することが出来る。
【0236】
例えば、反応性ガスとして、フッ素含有有機化合物、珪素化合物を用いて反射防止層の低屈折率層或いは防汚層を形成することも出来る。
【0237】
また、Ti、Zr、In、Sn、Zn、Ge、Si或いはその他の金属を含有する有機金属化合物、金属水素化合物、金属ハロゲン化物を用いて、これらの金属酸化物層(金属酸化物窒化物層も含む)または金属窒化物層等を形成することが出来、これらの層は反射防止層の中屈折率層または高屈折率層としたり、或いは導電層または帯電防止層とすることも出来る。
【0238】
また、フッ素含有有機化合物で防汚層や低屈折率層を形成することも出来、珪素化合物でガスバリア層、低屈折率層や防汚層を形成することも出来る。本発明は、高、中屈折率層と低屈折率層を交互に多層を積層して形成される反射防止層の形成に特に好ましく用いられる。
【0239】
形成される金属酸化物層の膜厚としては、1nm〜1000nmの範囲のものが好ましく得られる。
【0240】
大気圧プラズマ処理では原料ガスにフッ素含有有機化合物を用いることでフッ素化合物含有層を形成することも出来る。
【0241】
フッ素含有有機化合物としては、フッ化炭素ガス、フッ化炭化水素ガス等が好ましい。
【0242】
具体的には、フッ素含有有機化合物としては、例えば、四フッ化炭素、六フッ化炭素、四フッ化エチレン、六フッ化プロピレン、八フッ化シクロブタン等のフッ化炭素化合物;
二フッ化メタン、四フッ化エタン、四フッ化プロピレン、三フッ化プロピレン、八フッ化シクロブタン等のフッ化炭化水素化合物;
更に、一塩化三フッ化メタン、一塩化二フッ化メタン、二塩化四フッ化シクロブタン等のフッ化炭化水素化合物のハロゲン化物、アルコール、酸、ケトン等の有機化合物のフッ素置換体等を挙げることが出来る。
【0243】
これらは単独でも混合して用いてもよい。上記のフッ化炭化水素ガスとしては、二フッ化メタン、四フッ化エタン、四フッ化プロピレン、三フッ化プロピレン等の各ガスを挙げることが出来る。
【0244】
更に、一塩化三フッ化メタン、一塩化二フッ化メタン、二塩化四フッ化シクロブタン等のフッ化炭化水素化合物のハロゲン化物やアルコール、酸、ケトン等の有機化合物のフッ素置換体を用いることが出来るが、本発明はこれらに限定されない。
【0245】
また、これらの化合物は分子内にエチレン性不飽和基を有していても良い。また、上記の化合物は混合して用いても良い。
【0246】
反応性ガスとしてフッ素含有有機化合物を用いる場合、プラズマ放電処理によりハードコート層を有するフィルム上に均一な薄膜を形成する観点から、反応ガス中の反応性ガスとしてのフッ素含有有機化合物の含有率は、0.01〜10体積%であることが好ましく、更に好ましくは、0.1〜5体積%である。
【0247】
また、好ましく用いられるフッ素含有、有機化合物が常温常圧で気体である場合は、反応性ガスの成分としてそのまま使用出来る。
【0248】
また、フッ素含有有機化合物が常温常圧で液体または固体である場合には、気化手段により、例えば加熱、減圧等により気化して使用すればよく、適切な有機溶媒に溶解して用いてもよい。
【0249】
反応性ガスとして有用な珪素化合物としては、例えば、ジメチルシラン、テトラメチルシランなどの有機金属化合物、モノシラン、ジシランなどの金属水素化合物、二塩化シラン、三塩化シラン、四フッ化珪素などの金属ハロゲン化合物、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ヘキサメチルジシロキサンなどのアルコキシシラン、オルガノシラン等を用いることが好ましいがこれらに限定されない。
【0250】
また、これらは適宜組み合わせて用いることが出来る。或いは別の有機化合物を添加して膜の物性を変化或いは制御することも出来る。
【0251】
反応性ガスとして珪素化合物を用いる場合、プラズマ放電処理によりハードコート層を有するフィルム上に均一な薄膜を形成する観点から、反応ガス中の反応性ガスとしての珪素化合物の含有率は、0.01〜10体積%であることが好ましいが、更に好ましくは、0.1〜5体積%である。
【0252】
反応性ガスとして有用な有機金属化合物としては、特に限定されないが、Al、As、Au、B、Bi、Sb、Ca、Cd、Cr、Co、Cu、Fe、Ga、Ge、Hg、In、Li、Mg、Mn、Mo、Na、Ni、Pb、Pt、Rh、Se、Si、Sn、Ti、Zr、Y、V、W、Zn等の金属化合物を形成するための有機金属化合物を好ましく挙げることが出来る。
【0253】
例えば、反射防止層の高屈折率層を形成するには、チタン化合物が好ましく、具体的には、例えば、テトラジメチルアミノチタンなどの有機アミノ金属化合物、モノチタン、ジチタンなどの金属水素化合物、二塩化チタン、三塩化チタン、四塩化チタンなどの金属ハロゲン化合物、テトラエトキシチタン、テトライソプロポキシチタン、テトラブトキシチタンなどの金属アルコキシドなどを挙げることが出来る。
【0254】
前記の珪素化合物、有機金属化合物は、取り扱い上の観点から金属水素化合物、金属アルコキシドが好ましく、腐食性、有害ガスの発生がなく、工程上の汚れなども少ないことから、中でも金属アルコキシドが好ましく用いられる。
【0255】
反応性ガスとして有機金属化合物を用いる場合、プラズマ放電処理によりハードコート層を有するフィルム上に均一な薄膜を形成する観点から、反応ガス中の反応性ガスとしての有機金属化合物の含有率は、0.01〜10体積%であることが好ましいが、更に好ましくは、0.1〜5体積%である。
【0256】
また、珪素化合物、チタン化合物等の金属化合物を放電部へ導入するには、両者は常温常圧で気体、液体または固体いずれの状態であっても使用し得る。
【0257】
気体の場合は、そのまま放電部に導入出来るが、液体や固体の場合は、加熱、減圧、超音波照射等の気化手段により気化させて使用することが出来る。
【0258】
珪素化合物、チタン化合物等の金属化合物を加熱により気化して用いる場合、テトラエトキシシラン、テトライソプロポキシチタンなどのように常温で液体で、かつ、沸点が200℃以下である金属アルコキシドが本発明の金属酸化物薄膜層の形成する方法に好適である。上記金属アルコキシドは、有機溶媒によって希釈して使用しても良く、有機溶媒としては、メタノール、エタノール、n−ヘキサンなどの有機溶媒またはこれらの混合有機溶媒を使用することが出来る。
【0259】
更に、反応ガス中に酸素、水素、二酸化炭素、一酸化炭素、窒素、二酸化窒素、一酸化窒素、水、過酸化水素、オゾン、アンモニア等を0.1〜10体積%含有させることにより薄膜層の硬度、密度等の物性を制御することが出来る。
【0260】
以上の方法により酸化珪素、酸化チタン等の非晶性の金属酸化物層を好ましく作製することが出来る。
【0261】
本発明のハードコート層を有するフィルムは、例えば低屈折率層と高屈折率層を積層した反射防止層を有する光学フィルムまたは導電層、帯電防止層を有する光学フィルム等に好ましく用いることが出来る。
【0262】
本発明において、プラズマ放電装置を複数設けることによって、多層の薄膜を連続的に設けることが出来、薄膜のむらもなく多層の積層体を形成することが出来る。
【0263】
例えば、ハードコート層を有するフィルム上に反射防止層を有する反射防止フィルムを作製する場合、屈折率1.6〜2.3の高屈折率層及び屈折率1.3〜1.5の低屈折率層をハードコート層を有するフィルム表面に連続して積層し、効率的に作製することが出来る。
【0264】
低屈折率層としては、含フッ素有機化合物を含むガスをプラズマ放電処理により形成された含フッ素化合物層、或いはアルコキシシラン等の有機珪素化合物を用いてプラズマ放電処理により形成された主に酸化珪素を有する層が好ましく、高屈折率層としては、有機金属化合物を含むガスをプラズマ放電処理により形成された金属酸化物層、例えば酸化チタン、酸化ジルコニウムを有する層が好ましい。
【0265】
上述した薄膜化の方法があるが、本発明はこれらに限定されるものではなく、層構成もこれらに限定されるものではない。例えば、最表面にフッ素含有有機化合物ガス存在下で大気圧若しくはその近傍の圧力下でのプラズマ放電処理して防汚層を設けてもよい。
【0266】
上記の方法により、本発明においては、多層の薄膜を積層することが出来、各層の膜厚むらもなく、均一な反射防止フィルムを得ることが出来る。
【0267】
(偏光板)
本発明に係わる光学フィルムは偏光板保護フィルムとして極めて優れている。偏光板は一般的な方法で作製することが出来る。本発明においても同様に、本発明の光学フィルムをアルカリ鹸化処理した偏光板用保護フィルムを、沃素溶液中に浸漬延伸して作製した偏光膜の両面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせる。本発明の光学フィルムとした後に、セルロースエステルフィルムの片面を鹸化処理してもよい。
【0268】
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明に係わる多層構造のセルロースエステルフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせるが、本発明に係わる光学フィルムは透湿性が低く耐久性、平面性に優れている。
【0269】
〔画像表示装置〕
本発明の光学フィルム或いは本発明の偏光板を画像表示装置に組み込むことによって、種々の画像表示装置を作製することが出来る。画像表示装置としては、液晶画像表示装置(反射型、半透過型、透過型)、有機電解発光素子、プラズマディスプレー等がある。例えば、高温高湿条件下での強制劣化処理において、画像表示装置についても本発明の光学フィルムまたは偏光板を用いたものは光学フィルム起因の問題は認められなかった。
【実施例】
【0270】
以下、本発明を実施例を挙げて具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。
【0271】
長さ2600m、幅1333〜1480mm、膜厚80μmのセルロースエステルフィルムを下記のように作製した。この透明長尺基材フィルムに、下記に示すような第1ナーリング部を設けた。次いで基材フィルムの一方の面にバックコート層を設け、更にバックコート層とは反対の面にハードコート層を巻き取らずに連続的に設け、更に下記反射防止層を塗設して光学フィルムNo.1〜10を作製した。
【0272】
(セルロースエステルフィルムの作製)
〈ドープAの調製〉
セルローストリアセテート(アセチル基置換度2.9) 100質量部
トリフェニルホスフェイト 10質量部
ビフェニルジフェニルホスフェイト 2質量部
チヌビン326 0.5質量部
アエロジル R972V(日本アエロジル(株)製) 0.2質量部
メチレンクロライド 405質量部
エタノール 45質量部
以上を密閉型の溶解釜に投入し、攪拌しながら70℃で完全に溶解し、冷却後、安積濾紙(株)製の安積濾紙No.244を使用して濾過してドープAを得た。調製したドープAをステンレスベルト上に流延した。ステンレスベルト上で、溶媒を蒸発させ、ステンレスベルト上からウェブを剥離した。剥離したウェブをテンター乾燥機に導入し、両端をクリップで把持して幅方向に1.1倍延伸しながら80℃で乾燥させ、110℃、次いで125℃の各乾燥ゾーンを有するロール乾燥機内に配置された多数のロールを通して搬送させながら乾燥を終了させセルロースエステルフィルムを作製した。
【0273】
(バックコート層の塗設)
下記のバックコート層塗布組成物をウェット膜厚13μmとなるようにダイコートし、乾燥温度90℃にて乾燥させバックコート層を塗設した。
【0274】
〈バックコート層塗布組成物〉
アセトン 30質量部
酢酸エチル 45質量部
イソプロピルアルコール 10質量部
ジアセチルセルロース 0.5質量部
超微粒子シリカ2%アセトン分散液(アエロジル200V) 0.2質量部
(日本アエロジル(株)製)
(ハードコート層の塗設)
前記バックコート層とは反対の面に下記ハードコート層塗布組成物をダイコートし、80℃で5分間乾燥した後160mJ/cmの紫外線を照射し、下記反射防止層との乾燥膜厚の合計が5μmとなるようにハードコート層を設け、ハードコートフィルムを作製した。
【0275】
〈ハードコート層塗布組成物〉
多官能性アクリレート系樹脂(旭電化工業(株)製、商品名アデカオプトマーKR−566) 100質量部
トルエン 150質量部
ハードコート層の鉛筆硬度を測定したところ3Hの硬度を示し、耐擦り傷性効果を示した。
【0276】
〔反射防止フィルムの作製〕
反射防止層は、下記塗布型と大気圧プラズマ法の2種類によって表1に示すように塗設し、塗設の後に下記第2ナーリング部を作製した。
【0277】
(塗布型反射防止層形成)
前記で作製したハードコートフィルム上に反射防止層を形成した。
【0278】
ハードコートフィルムの上に、下記記中屈折率層用塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ、中屈折率層(屈折率1.72)を形成した。その上に、下記高屈折率層用塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ、高屈折率層(屈折率1.9)を形成した。更にその上に、下記低屈折率層用塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化して低屈折率層(屈折率1.45)を形成し、反射防止フィルムを作製した。
【0279】
〈中屈折率層/高屈折率層/低屈折率層の作製〉
(二酸化チタン分散物の調製)
二酸化チタン(1次粒子質量平均粒径:50nm、屈折率:2.70)30質量部、アニオン性ジアクリレートモノマー(PM21、日本化薬(株)製)4.5質量部、カチオン性メタクリレートモノマー(DMAEA、興人(株)製)0.3質量部及びメチルエチルケトン65.2質量部を、サンドグラインダーにより分散し、二酸化チタン分散物を調製した。
【0280】
(中屈折率層用塗布液の調製)
シクロヘキサノン151.9g及びメチルエチルケトン37.0gに、光重合開始剤(イルガキュア907、チバガイギー社製)0.14g及び光増感剤(カヤキュアーDETX、日本化薬(株)製)0.04gを溶解した。更に、上記の二酸化チタン分散物6.1g及びジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)2.4gを加え、室温で30分間攪拌した後、孔径0.4μmのポリプロピレン製フィルターで濾過して、中屈折率層用塗布液を調製した。この塗布液をセルロースエステルフィルムに塗布乾燥し紫外線硬化後の屈折率を測定したところ、屈折率1.72、乾燥膜厚85nmの中屈折率層が得られた。
【0281】
(高屈折率層用塗布液の調製)
シクロヘキサノン1152.8g及びメチルエチルケトン37.2gに、光重合開始剤(イルガキュア907、チバガイギー社製)0.06g及び光増感剤(カヤキュアーDETX、日本化薬(株)製)0.02gを溶解した。更に、上記の二酸化チタン分散物及びジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)の二酸化チタン分散物の比率を増加させ、高屈折率層の屈折率となるように量を調節して、室温で30分間攪拌した後、孔径0.4μmのポリプロピレン製フィルターで濾過して、高屈折率層用塗布液を調製した。この塗布液を、セルロースエステルフィルムに塗布、乾燥し紫外線硬化後の屈折率を測定したところ、屈折率1.9、乾燥膜厚68nmの高屈折率層が得られた。
【0282】
(低屈折率層用塗布液の調製)
平均粒径15nmのシリカ微粒子のメタノール分散液(メタノールシリカゾル、日産化学(株)製)200gにシランカップリング剤(KBM−503、信越シリコーン(株)製)3g及び0.1mol/L塩酸2gを加え、室温で5時間攪拌した後、3日間室温で放置して、シランカップリング処理したシリカ微粒子の分散物を調製した。分散物35.04gに、イソプロピルアルコール58.35g及びジアセトンアルコール39.34gを加えた。また、光重合開始剤(イルガキュア907、チバガイギー社製)1.02g及び光増感剤(カヤキュアーDETX、日本化薬(株)製)0.51gを772.85gのイソプロピルアルコールに溶解した溶液を加え、更に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)25.6gを加えて溶解した。得られた溶液67.23gを、上記分散液、イソプロピルアルコール及びジアセトンアルコールの混合液に添加した。混合物を20分間室温で攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して、低屈折率層用塗布液を調製した。この塗布液をセルロースエステルフィルムに塗布、乾燥し紫外線硬化後の屈折率を測定したところ、屈折率は1.45、乾燥膜厚100nmであった。
【0283】
(大気圧プラズマ法反射防止層形成)
前記作製したハードコート層の上に図6の大気圧プラズマ放電処理によって、中屈折率層、高屈折率層を順に設けた。ロール電極には、シリコンオイルによる温度調整機能を有するステンレス製ジャケットロール母材(温度調整機能は図6には図示していない)を用いた。これにセラミックス溶射によりアルミナを1mm被覆し、その上にテトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させて封孔処理を行いRmax3μmの誘電体を有するロール電極を製作しアース(接地)した。一方、対向電極としてはチタン製とし内部に温度調整のための媒体の循環流路を設け、上記同様の誘電体を同条件にて被覆し、相対する電極群とし、第1のプラズマ放電処理装置を中屈折率層用に、第2のそれを高屈折率層用に、更に第3のそれを低屈折率層用として、それぞれ必要な膜厚が各々得られるように調整した。また、第1、2及び3のプラズマ放電処理装置の電源は高周波電源(パール工業製)を使用し、連続周波数を2MHzとし、3W/cmの電力を供給した。ロール電極は、ドライブを用いて基材フィルムの搬送に同期して回転させた。尚、電極間隙は1.2mm、反応ガスの圧力を大気圧+1kPaとして行った。プラズマ放電処理に用いた反応ガスの組成を以下に記す。液体の反応ガス成分は気化器を用いて気化させて不活性ガスと混合してプラズマ放電処理装置に導入した。各々の反応ガスは80℃で放電部に供給された。
【0284】
(酸化錫層(中屈折率層)形成用反応ガス)
不活性ガス(ヘリウム) 99.4体積%
反応ガス(酸素ガス) 0.3体積%
反応ガス(テトラブチル錫蒸気) 0.3体積%
(酸化チタン層(高屈折率層)形成用反応ガス)
不活性ガス(ヘリウム) 99.4体積%
反応ガス(酸素ガス) 0.3体積%
反応ガス(テトライソプロポキシチタン蒸気) 0.3体積%
連続的に大気圧プラズマ処理して、順に酸化錫層(屈折率1.7、膜厚76nm)、酸化チタン層(屈折率2.14、膜厚112nm)を形成した。
【0285】
その上に更に下記の反応ガスを使用して低屈折率層である酸化珪素層(屈折率1.46、膜厚87nm)を設けた。
【0286】
(酸化珪素層(低屈折率層)形成用反応ガス)
不活性ガス(ヘリウム) 99.5体積%
反応ガス(酸素) 0.2体積%
反応ガス(テトラエトキシシラン蒸気) 0.3体積%
《ナーリング部の作製》
セルロースエステルフィルム、及び上記ハードコート層/反射防止層を塗設したフィルムに加熱したエンボスロールを押し当ててナーリング部を以下のように作製した。
【0287】
(光学フィルムNo.1)
幅1333mmのセルロースエステルフィルムの両端部に高さ7μm、幅10mmの第1ナーリング部を設けた。セルロースエステルフィルムを巻き取った後、バックコート層を塗設する際に第1ナーリング部の高さを測定したところ、4〜6μmの範囲でばらついていた。更に塗布型で反射防止層を塗設した光学フィルムには第2ナーリング部を設けなかった。
【0288】
(光学フィルムNo.2)
幅1333mmのセルロースエステルフィルムの両端部に高さ7μm、幅10mmの第1ナーリング部を設け、更に塗布型で反射防止層を塗設した光学フィルムに、第1ナーリング部より内側に高さ5μm、幅10mmの第2ナーリング部を設けた。
【0289】
(光学フィルムNo.3)
幅1450mmセルロースエステルフィルムの両端部に高さ7μm、幅10mmの第1ナーリング部を設け、更に大気圧プラズマ法で反射防止層を塗設した光学フィルムに、第1ナーリング部より内側に高さ5μm、幅10mmの第2ナーリング部を設けた。
【0290】
(光学フィルムNo.4)
幅1450mmセルロースエステルフィルムの両端部に高さ8μm、幅10mmの第1ナーリング部を設けた。更に塗布型で反射防止層を塗設した光学フィルムには第2ナーリング部は設けなかった。セルロースエステルフィルムを巻き取った後、バックコート層を塗設する際に第1ナーリング部の高さを測定したところ、5〜7μmの範囲でばらついていた。
【0291】
(光学フィルムNo.5)
幅1333mmのセルロースエステルフィルムの両端部に高さ7μm、幅10mmの第1ナーリング部を設け、更に塗布型で反射防止層を塗設した光学フィルムに、第1ナーリング部より内側に高さ7μm、幅10mmの第2ナーリング部を設けた。
【0292】
(光学フィルムNo.6)
幅1365mmのセルロースエステルフィルムの両端部に高さ7μm、幅10mmの第1ナーリング部を設け、更に塗布型で反射防止層を塗設した後に、既設の第1ナーリング部をスリッターにより切除し、新たに高さ7μm、幅10mmの第2ナーリング部をフィルム端部に設けた。光学フィルムは第1ナーリング部を切除したために1333mm幅になった。
【0293】
(光学フィルムNo.7)
幅1365mmのセルロースエステルフィルムの両端部に高さ7μm、幅10mmの第1ナーリング部を設け、更に大気圧プラズマ法で反射防止層を塗設した後に、既設の第1ナーリング部をスリッターにより切除し、新たに高さ7μm、幅10mmの第2ナーリング部をフィルム端部に設けた。光学フィルムは第1ナーリング部を切除したために1333mm幅になった。
【0294】
(光学フィルムNo.8)
幅1450mmセルロースエステルフィルムの両端部に高さ7μm、幅10mmの第1ナーリング部を設けた。更に塗布型で反射防止層を塗設した後に、高さ7μm、幅10mmの第2ナーリング部をフィルム端部及び中央部に設けた。
【0295】
(光学フィルムNo.9)
幅1480mmのセルロースエステルフィルムの両端部に高さ7μm、幅10mmの第1ナーリング部を設け、更に塗布型で反射防止層を塗設した後に、既設の第1ナーリング部をスリッターにより切除し、新たに高さ7μm、幅10mmの第2ナーリング部をフィルム端部及び中央部に設けた。光学フィルムは第1ナーリング部を切除したために1450mm幅になった。
【0296】
(光学フィルムNo.10)
予めフィルム端部にナーリング部を有するセルロースエステルフィルム2600mを、300N/mの張力で巻き取った際の巻き芯付近のナーリング部にかかる圧力を、ニッタ株式会社製圧力センサーシートF−SCANにて測定した。その結果、ナーリング部には、3500N/cmの圧力が加わっていることが分かった。
【0297】
幅1333mmのセルロースエステルフィルムの両端部に12μm、幅10mmの第1ナーリング部を設け、更に図3、4で示した金属ロール2本一組で構成されたナーリング部高さ調整装置を用い、ナーリング部高さが7μmになるように間隙dを調整し、5000N/cmで加圧した。その後に、ハードコート層及び大気圧プラズマ法で反射防止層を塗設した。
【0298】
以上の詳細を表1に纏めた。
【0299】
《評価》
(ブラックバンド評価)
上記のようにして作製した光学フィルムNo.1〜10を各々2600m巻き取り、巻き状態からブラックバンドの発生を下記基準にて目視で評価した。
【0300】
〈ブラックバンド目視評価基準〉
5:ブラックバンドが見えない
4:ブラックバンドがハンドランプで照らしてようやく見える
3:ブラックバンドがハンドランプ無しでうっすらと見える
2:ブラックバンドがはっきりと見える
1:フィルムの変形を伴い、ブラックバンドがはっきりと見える
実用上、評価基準4以上が使用出来るレベルである。
【0301】
〈巻きの変形〉
5:巻きの変形がまったくない
4:巻きの変形が殆どない
3:巻きがやや変形している
2:巻きの変形がはっきり分かる
1:巻きに大きな変形が見られる
実用上、評価基準4以上が使用出来るレベルである。
【0302】
結果を下記表1に示す
【0303】
【表1】

【0304】
比較例である光学フィルムNo.1は第1ナーリング部にばらつきがあり、かつ第2ナーリング部を設けていないため、ブラックバンドの発生及びフィルムの変形が見られた。また、比較例である光学フィルムNo.2、3はハードコート層を含む光学機能層の膜厚に対して、第2ナーリング部の高さが不十分であるため、ブラックバンドの発生及びフィルムの変形が見られた。更に、光学フィルムNo.3、4よりフィルム幅が広幅化することや、大気圧プラズマ法による光学機能層の形成によりブラックバンドの発生及びフィルムの変形が更に劣化することが分かった。
【0305】
それらに対して、参考例の反射防止フィルムNo.5〜9は、ブラックバンドの発生が顕著に改善されることが分かった。特に、No.6、7、9において、第1ナーリング部を切除した後に第2ナーリング部を設けること、光学フィルムNo.8、9において第2ナーリング部をフィルム端部のみではなく、フィルム内側にも設けることにより広幅でも優れた改善効果が得られることが分かった。
【0306】
また、光学フィルムNo.10のように、第1ナーリング部を加圧して所望のナーリング部の高さに調整する方法は、ナーリング部の高さのばらつきもなく、ブラックバンドの発生及びフィルムの変形に対して優れた改善効果が認められた。
【符号の説明】
【0307】
1 第1のナーリング部
2 第2のナーリング部
3 ハードコート層を含む光学機能層
4 ロールカッター
A 加圧ロール
B ナーリング部高さ調整用ロール
F ハードコート層を有するフィルム
G 反応ガス
G′ 排ガス
10A、10B、110 回転電極
11A、11B、11C、11D Uターンロール
20、21 ガイドロール
30 反応ガス供給部
40、140 ガス排気口
50、150 放電部
51 整流板
80、180 電源
81、82、181、182 電圧供給手段
111 固定電極
120、121 ガイドロール
122、123 ニップロール
124、125 仕切板
130 給気管
131 反応ガス発生装置
190 プラズマ放電処理容器

【特許請求の範囲】
【請求項1】
フィルム端部にナーリング部を有する透明長尺基材フィルムの少なくとも一方の面にハードコート層を含む光学機能層を塗設した光学フィルムの製造方法において、該ナーリング部の高さが該ハードコート層を含む光学機能層の膜厚よりも1μm以上高くなるように予め加圧することを特徴とする光学フィルムの製造方法。
【請求項2】
前記加圧が、目標とするナーリング部の高さになるように一定の間隙を有し配置された、一組以上の加圧ロール間を通し、かつ巻き取り時に前記光学フィルムが受ける応力以上の圧力で加圧することを特徴とする請求項1に記載の光学フィルムの製造方法。
【請求項3】
請求項1または2に記載の光学フィルムの製造方法によって製造したことを特徴とする光学フィルム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−282529(P2009−282529A)
【公開日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2009−152291(P2009−152291)
【出願日】平成21年6月26日(2009.6.26)
【分割の表示】特願2003−331211(P2003−331211)の分割
【原出願日】平成15年9月24日(2003.9.24)
【出願人】(303000408)コニカミノルタオプト株式会社 (3,255)
【Fターム(参考)】