説明

光学部品の製造方法

【課題】光学的、物理的特性に優れた光学多層膜を有する光学部品を安定して製造できる製造方法を提供する。
【解決手段】本発明の光学部品の製造方法は、プラスチック基材2と、前記プラスチック基材2上に配設された多層膜を備えた光学部品の製造方法であって、前記多層膜を形成する工程は、低屈折率材料と高屈折率材料とを交互に複数積層し多層構造の第一の屈折層を形成する工程と、前記第一の屈折層上に、この第一の屈折層より低い屈折率の低屈折率材料からなる第二の屈折層を形成する工程と、を有するとともに、前記プラスチック基材2上に前記多層膜を形成するための成膜室32内にガスを導入し、該成膜室32内で前記多層膜を構成する層のうち少なくとも一層を、イオンビームアシストを施しながら成膜を行う工程を有し、前記成膜室内導入ガス、及び前記イオンビームアシストに使用されるガスの少なくとも一種が不活性ガスを含有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学部品の製造方法に関する。
【背景技術】
【0002】
近年、眼鏡レンズでは、軽量で耐衝撃性に優れ、かつ染色しやすいとの利点からプラスチックレンズが多用されている。眼鏡レンズに使用されるプラスチックレンズには、表面反射を防止する目的で、その両面に反射防止膜が通常施されている。眼鏡レンズ用反射防止膜は、一般的に400nm〜700nmの可視領域全域にわたって、低い反射特性(広帯域低反射特性)を有することなどの光学性能に加え、密着性、耐擦傷性、耐熱性、耐薬品性などの物性に関しても高い性能が要求されている。
【0003】
眼鏡レンズ等の光学部品において、例えば特許文献1〜3に開示されているようなプラスチックの基材と、その基材上に配置される反射防止膜とを備えた光学部品が知られている。
【0004】
近年、前記した物性に加えて、高い防汚性能を有した眼鏡レンズが提供されており、市場においても大きな規模を占めるようになっている。本性能を向上させるにあたり、フッ素を多く含有した薬品を眼鏡レンズ最表層へ塗布している。本薬品において、汚れの付きにくさ、除去性は従来製品よりも飛躍的に向上している。
【0005】
しかし、フッ素を多く含有した薬品は帯電し易い特性を持っており、埃等の付着が目立つという難点が存在する。
そのため、帯電を防止するために、表面処理膜中に導電性物質を含有させる対策が施された光学部品が提供されている。導電性物質を含有させる一つの方法として、無機多層膜内にITO(Indium Tin Oxide)など導電性薄膜を形成する方法がある。
【0006】
また、無機多層膜には高屈折率材料として二酸化チタン(TiO)や二酸化ニオブ(Nb)などの酸化物が使用されている。
これらは、成膜時に酸素が不足した場合、吸収を持った不透明な膜となり、その結果、透過率等光学的に不十分な膜となってしまうという難点が存在する。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平11−30703号公報
【特許文献2】特開2006−251760号公報
【特許文献3】特開2007−127681号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
そこで、これらの物質については、成膜時に酸素を供給し、光学的、物理的性能を確保する成膜方法として、イオンビームアシストによる成膜が行われている。
また、屈折率等、光学的性能や物理的性能を確保するためにも、イオンビームアシストによる成膜は行われている。
しかし、効果的なイオンビームアシストの条件は、イオン源の仕様によっては許容範囲が狭く、最適条件が狭い範囲に限られ、再現性が低くなってしまい、光学的、物理的特性に優れた光学多層膜を有する光学部品を安定して製造できない。
【0009】
本発明は、上記事情に鑑みてなされたものであり、光学的、物理的特性に優れた光学多層膜を有する光学部品を安定して製造できる製造方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の光学部品の製造方法は、プラスチック基材と、前記プラスチック基材上に配設された多層膜を備えた光学部品の製造方法であって、前記多層膜を形成する工程は、低屈折率材料と高屈折率材料とを交互に前記プラスチック基材上に複数積層し多層構造の第一の屈折層を形成する工程と、前記第一の屈折層上に、この第一の屈折層より低い屈折率の低屈折率材料からなる第二の屈折層を形成する工程と、を有するとともに、プラスチック基材上に前記多層膜を形成するための成膜室内にガスを導入し、該成膜室内で前記多層膜を構成する層のうち少なくとも一層を、イオンビームアシストを施しながら成膜を行う工程を有し、前記成膜室内導入ガス、及び前記イオンビームアシストに使用されるガスの少なくとも一種が不活性ガスを含有することを特徴とする。
【発明の効果】
【0011】
本発明の光学部品の製造方法によれば、光学的、物理的特性に優れた光学多層膜を有する光学部品を安定して提供することが可能となる。
【図面の簡単な説明】
【0012】
【図1】第1実施形態に係る光学部品の一例を示す模式図である。
【図2】第1実施形態に係る蒸着装置の一例を示す模式図である。
【図3】第1実施形態に係る成膜装置の一例を示す模式図である。
【発明を実施するための形態】
【0013】
以下、本発明を実施形態によって詳しく説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
【0014】
本発明の光学部品の製造方法の一実施形態について説明する。
図1は、本実施形態により製造される光学部品1を模式的に示す側断面図であり、本実施形態において、光学部品1は眼鏡レンズ用の光学部品である。
【0015】
図1に示すように、本実施形態の光学部品1の製造方法は、プラスチック基材2に対して従来と同様の方法で機能性薄膜4(プライマー層5、ハードコート層6)を形成する工程と、プラスチック基材2を加熱する工程と、加熱によってプラスチック基材2を所定温度(例えば70℃)に調整した後、このプラスチック基材2上に無機多層膜3を形成する工程を備える。
【0016】
プラスチック基材2は、例えば透明なプラスチックであるアクリル系樹脂、チオウレタン系樹脂、メタクリル系樹脂、アリル系樹脂、エピスルフィド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、エピスルフィド樹脂、ポリエ−テルサルホン樹脂ポリ4−メチルペンテン−1樹脂、ジエチレングリコールビスアリルカーボネート樹脂(CR−39)、ポリ塩化ビニル樹脂、ハロゲン含有共重合体、イオウ含有共重合体等によって形成されたものである。
また、本実施形態では、プラスチック基材2の屈折率(nd)としては、例えば1.50、1.60、1.67、及び1.74のうちから選択されたものが用いられる。なお、プラスチック基材2の屈折率を1.6以上にする場合、プラスチック基材2としては、アリルカーボネート系樹脂、アクリレート系樹脂、メタクリレート系樹脂、及びチオウレタン系樹脂等を使用することが好ましい。
【0017】
機能性薄膜4は、プラスチック基材2と無機多層膜3との間に配置されたもので、プラスチック基材2に接して配設されたプライマー層5と、このプライマー層5に接し、かつ無機多層膜3に接して配設されたハードコート層6とからなっている。
プライマー層5は、プラスチック基材2とハードコート層6との密着性を良好にするためのもので、密着層として機能するようになっている。また、光学部品1に対する衝撃を吸収するためのものでもあり、衝撃吸収層としても機能するようになっている。
【0018】
このプライマー層5は、ポリウレタン系樹脂を主成分とするもので、本実施形態では、ポリウレタン系樹脂に例えば無機材料の微粒子を含有させたものである。なお、プライマー層5は、アクリル系樹脂、メタクリル系樹脂、及び有機珪素系樹脂の少なくとも一種を含んでいてもよい。プライマー層5の厚みについては、0.5μm以上1.0μm以下程度とするのが好ましい。
【0019】
このようなプライマー層5は、プライマー層5の形成材料液にプラスチック基材2を浸漬し、その後引き上げて乾燥することにより、プラスチック基材2上に所定の厚さで形成することができる。プライマー層5の形成材料液としては、例えば水又はアルコール系の溶媒に、前記したプライマー層5となる樹脂と無機酸化物微粒子ゾルとを分散又は溶解し、混合した液を用いることができる。
【0020】
ハードコート層6は、プラスチック基材2を保護し、プラスチック基材2の損傷を抑制する機能を有するもので、耐擦傷性膜として機能するようになっている。
ハードコート層6は、例えばオルガノシロキサン系ハードコート層からなっている。オルガノシロキサン系ハードコート層は、オルガノシロキサン系樹脂に無機酸化物の微粒子を分散させたものである。無機酸化物としては、例えばルチル型の酸化チタンや、ケイ素、錫、ジルコニウム、及びアンチモンの酸化物が好適に用いられる。また、ハードコート層6として、例えば特公平4−55615号公報に開示されているような、コロイド状シリカ含有の有機ケイ素系樹脂であってもよい。ハードコート層6の厚みについては、2μm以上4μm以下程度とするのが好ましい。
【0021】
ハードコート層6は、ハードコート層6の形成材料液に、プライマー層5を形成したプラスチック基材2を浸漬し、その後引き上げて乾燥することにより、プラスチック基材2上のプライマー層5上に所定の厚さで形成することができる。ハードコート層6の形成材料液としては、例えば水又はアルコール系の溶媒に、前記したハードコート層6となる樹脂と無機酸化物微粒子ゾルとを分散又は溶解し、混合した液を用いることができる。
【0022】
これらプライマー層5及びハードコート層6を含む機能性薄膜4については、その屈折率と、プラスチック基材2の屈折率とがほぼ同じであれば、機能性薄膜4とプラスチック基材2との界面での反射で生じる干渉縞の発生及び透過率の低下を抑制することができる。したがって、プラスチック基材2の屈折率に応じて、機能性薄膜4の屈折率を調整するのが望ましい。機能性薄膜4(プライマー層5、ハードコート層6)の屈折率の調整については、機能性薄膜4の主成分となる樹脂の種類(物性)を選択すること、あるいは、その主成分となる樹脂に添加する微粒子の種類(物性)を選択すること等によって行うことができる。
【0023】
なお、本実施形態においては、機能性薄膜4がプライマー層5及びハードコート層6を含んで形成されているが、例えばプライマー層5とハードコート層6とのうち、いずれか一方、あるいは両方が省略されていてもよい。
【0024】
無機多層膜3は、前記プラスチック基材2に、低屈折率無機材料と高屈折率無機材料とが交互に複数積層されてなる多層構造の第一の屈折層7を有し、該第一の屈折層7上に、この第一の屈折層7より低い屈折率の低屈折率無機材料からなる第二の屈折層13を有した複層構成のもので、この無機多層膜3は、入射した光の反射を防止する反射防止膜としての機能を有したものである。
また、本実施形態においては、多層膜として無機多層膜を用いているが、本発明の効果を損なわない限り、有機多層膜を用いてもよい。
【0025】
第一の屈折層7は、本実施形態では、前記プラスチック基材2側に設けられた低屈折率無機材料よりなる第1層9と、該第1層9上に設けられた高屈折率無機材料よりなる第2層10と、該第2層10上に設けられた低屈折率無機材料よりなる第3層11と、該第3層11上に設けられた高屈折率無機材料よりなる第4層8と、からなる。
【0026】
第1層9は、ハードコート層6に接して設けられたもので、屈折率が1.47の二酸化珪素(SiO)からなっている。なお、第1層9を構成する低屈折率無機材料としては、SiO以外にも、例えば屈折率が1.36のMgFを用いることができる。
【0027】
第2層10は、第1層9に接して設けられたもので、屈折率が2.0の二酸化ジルコニウム(ZrO)からなっている。なお、第2層10を構成する高屈折率無機材料としては、ZrO以外にも、例えば二酸化チタン(TiO)、二酸化タンタル(Ta)、二酸化ニオブ(Nb)を用いることもできる。そして、第一の屈折層7は、二酸化ジルコニウム、二酸化チタン、及び二酸化タンタルから選ばれる少なくとも一種を含むことが好ましい。さらには、ジルコニウム、チタン、タンタルの複数種からなる合金の酸化物によって形成することもできる。また、これら以外にも、例えば酸化アルミニウム(Al)、二酸化イットリウム(Y)、二酸化ハフニウム(HfO)を用いることもできる。
【0028】
第3層11は、第2層10に接して設けられたもので、第1層9と同様に二酸化珪素(SiO)からなっている。
【0029】
第4層8は、第3層11に接して設けられたもので、第2層10と同様に二酸化ジルコニウム(ZrO)からなっている。なお、この第4層8についても、第2層10と同様に、ZrO以外の高屈折率無機材料によって形成することもできる。
また、第一の屈折層7については、第1層9、第2層10、第3層11、第4層8の4層構造で形成することなく、3層以下、あるいは5層以上で構成することもできる。
【0030】
無機多層膜3を構成する第一の屈折層7と後述する第二の屈折層13との間に、ITO(Indium Tin Oxide)からなる誘電体膜12を配設する。
誘電体膜12は、金属膜であってもよく、インジウム、スズ、亜鉛、及びチタンから選ばれる少なくとも一種の酸化物からなる層であればよい。尚、誘電体膜12の厚さは、20nm以下であり、10nm以下であってもよい。
【0031】
無機多層膜3を形成する工程は、低屈折率無機材料と高屈折率無機材料とを交互に複数積層して多層構造の第一の屈折層7を形成する工程と、この第一の屈折層7上に、低屈折率無機材料からなる第二の屈折層13を形成する工程と、を有している。これら各層の形成には、真空蒸着法が好適に用いられる。
【0032】
図2は、無機多層膜3の各層を形成するための蒸着装置30の一例を示す図である。図2に示すように蒸着装置30は、第1成膜室31と第2成膜室32と第3成膜室とを備えて構成されている。これら第1、第2、第3成膜室31、32、33は、それぞれの内部がほぼ真空に減圧され、その状態に保持されるようになっている。また、蒸着装置30は、図示しない温調手段により、第1、第2、第3成膜室31、32、33のそれぞれの内部温度が調整可能になっている。
【0033】
蒸着装置30は、第1、第2、第3成膜室31、32、33のそれぞれの内部空間に、保持部材34を備えている。保持部材34は、その上面(保持面)が曲面状になっており、かつ、回転可能に構成されており、この上面上に複数のプラスチック基材2を保持するようになっている。
【0034】
蒸着装置30の蒸着源35は、第2成膜室32の内側の空間に配置されている。蒸着源35は、二酸化珪素(SiO)を含む第1蒸着源35A及び酸化ジルコニウム(ZrO)を含む第2蒸着源35Bを含む。また、第2成膜室32には、蒸着源35にビームを照射可能な光源装置36が配置されている。光源装置36から射出されたビームが蒸着源35に照射されることによって、その蒸着源35から、無機多層膜3を形成するための材料(ガス)が放出される。例えば、光源装置36が第1蒸着源35Aにビームを照射することによって、ガス化されたSiOがその第1蒸着源35Aから放出され、保持部材34に保持されているプラスチック基材2に供給される。これにより、無機多層膜3の第一の屈折層7における第1層9と第3層11と第二の屈折層13を形成することができる。同様に、光源装置36が第2蒸着源35Bにビームを照射することによって、ガス化されたZrOがその第2蒸着源35Bから放出され、保持部材34に保持されているプラスチック基材2に供給される。これにより、無機多層膜3の第一の屈折層7における第2層10と第4層8を形成することができる。
【0035】
すなわち、第1蒸着源35Aに対するビームの照射と第2蒸着源35Bに対するビームの照射とを交互に行うことにより、保持部材34に保持されているプラスチック基材2上に、低屈折率無機材料からなる層と高屈折率無機材料からなる層とを交互に形成し積層することができる。
なお、第2蒸着源35Bとして酸化ジルコニウム(ZrO)からなる蒸着源を用い、第2成膜室32の内部空間に酸素を導入しながら第2蒸着源35Bにビームを照射し、二酸化ジルコニウム(ZrO)からなる高屈折率無機材料層を形成するようにしてもよい。
【0036】
本実施形態においては、無機多層膜3を形成される前のプラスチック基材2が、第1成膜室31の内側の空間に配置されている保持部材34に保持され、その第1成膜室31内において温度調整される。
第1成膜室31では、プラスチック基材2を約70℃に加熱する。第1成膜室31内のプラスチック基材2を加熱する処理が実行されているとき、第2成膜室32において、先に第1成膜室31内で加熱する処理が実行されたプラスチック基材2に対して無機多層膜3を形成する処理が実行される。
第2成膜室32内のプラスチック基材2に対する無機多層膜3を形成する処理が終了すると、そのプラスチック基材2を保持した保持部材34が、第3成膜室33に移動するとともに、第1成膜室31内で加熱処理を終えたプラスチック基材2を保持した保持部材34が、第2成膜室32に移動する。蒸着装置30は、第2成膜室32に移動されたプラスチック基材2に対する無機多層膜3を形成する処理を開始する。また、第2成膜室32内から第3成膜室33へ移動された保持部材34に保持されているプラスチック基材2は、第3成膜室33から搬出された後、必要に応じて、別の処理を施される。
【0037】
図3は、イオンビームアシストを施すための成膜装置30’の一例を示す図である。成膜装置30’は、図2で示された成膜装置30の第2成膜室にイオンガン37が備え付けられた構成となっている。図3において、図2に示した成膜装置30と同じ構成要素には、同一の符号を付して説明を省略する。
本実施形態においては、無機多層膜3を構成する第一の屈折層7と第二の屈折層13との間に、ITOからなる誘電体膜12を配設する際に、イオンビームアシストを施しながら成膜を行う。なお、成膜室32内で無機多層膜3を構成する層のうち少なくとも一層を、イオンビームアシストを施しながら成膜を行えばよく、イオンビームアシストを施す対象は、誘電体膜12に限定されない。
【0038】
本実施形態において、この成膜装置30’の第2成膜室は、プラスチック基材2上に第一の屈折層7が成膜された基材を保持する保持部材34と、蒸着源35’と、蒸着源35’と離間して配置されたイオンガン37と、光源装置36を主体として構成されている。
また、成膜装置30’はその内部がほぼ真空に減圧され、プラスチック基材2の周囲を真空雰囲気に保持できるようになっている。更に成膜装置30’には、ガスボンベ等の雰囲気ガス供給源が接続されていて、真空容器の内部を真空等の低圧状態で、かつ、酸素ガス、アルゴンガス、またはその他の不活性ガス雰囲気、あるいは、酸素を含む不活性ガス雰囲気にすることができるようになっている。
【0039】
蒸着源35’は、ITOを含むものである。光源装置36が蒸着源35’にビームを照射することによって、ガス化されたITOがその蒸着源35’から放出され、保持部材34に保持されているプラスチック基材2に供給される。これにより、第一の屈折層7の上にITOからなる誘電体膜12を形成することができる。
【0040】
イオンガン37は、第2成膜室32の内部に、イオン化させるガスを導入し、正面に引き出し電極を備えて構成されている。そして、ガスの原子または分子の一部をイオン化し、そのイオン化した粒子を引き出し電極で発生させた電界で制御してイオンビームとして照射する装置である。
【0041】
光源装置36は、イオンガン37と同等の構成をなし、蒸着源35’に対して電子を照射して蒸着源35’の構成粒子を叩き出すことができるものである。なお、本装置では蒸着源35’の構成粒子を叩き出すことができることが重要であるので、蒸着源35’に高周波コイル等で電圧を印加して蒸着源35’の構成粒子を叩き出し可能なように構成し、光源装置36を省略しても良い。
【0042】
次に前記構成の成膜装置30’を用いてプラスチック基材2上の第一の屈折層7上にITOからなる誘電体膜12を形成する場合について説明する。ITOからなる誘電体膜12を形成するには、ITOの蒸着源35’を用いるとともに、イオンガン37から照射されるイオンを保持部材34の上面に照射できるようにする。次にプラスチック基材2を収納している成膜室32の内部を真空引きして減圧雰囲気とする。そして、イオンガン37と光源装置36を作動させる。
光源装置36から蒸着源35’に電子を照射すると、蒸着源35’の構成粒子が叩き出されて第一の屈折層7上に飛来する。そして、第一の屈折層7上に、蒸着源35’から叩き出した構成粒子を堆積させると同時に、イオンガン37からアルゴンイオンを照射する。
【0043】
本実施形態において、イオンビームアシストを施しながら成膜を行う際、成膜室32にガスを導入する。成膜室内32に導入するガス(成膜室導入ガス)は、酸素ガス、不活性ガス、及び酸素ガスと不活性ガスの混合ガスから選ばれるものであることが好ましい。
かかる成膜室内導入ガス、及びイオンビームアシストに使用されるガスの少なくとも一種が不活性ガスを含有することが必須である。これにより、イオンビームアシストを施す際の加速電圧、及び加速電流が低いままでも、光学的性能に優れた無機多層膜3を得ることができる。
加速電圧、及び加速電流を低く抑えたまま、イオンビームアシストを行うことは、プラスチック基材2及びイオンガン37に余計なダメージを与えるおそれのない点から優れている。
成膜室内導入ガス、及びイオンビームアシストに使用されるガスの組合せとしては、成膜室内導入ガスが酸素ガスであり、イオンビームアシストに使用されるガスが不活性ガスである場合や、成膜室内導入ガスが不活性ガスであり、イオンビームアシストに使用されるガスが酸素ガス、又は酸素ガスと不活性ガスの混合ガスである場合が挙げられる。また、上記のように不活性ガスはアルゴンであることが好ましい。
【0044】
また、前記成膜室内導入ガスの導入圧力は、1.0×10−3Pa〜5.0×10−2Paの範囲であることが好ましい。
該圧力が1.0×10−3Pa以上の場合には、誘電体膜12の膜厚がより均一となる傾向が高く、5.0×10−2以下の場合には、イオンガン37にかかる負荷がより低くなる。
【0045】
このようにして無機多層膜3を形成したら、無機多層膜3の上、すなわち前記プラスチック基材2から最も遠い無機多層膜3の最外層(第二の屈折層13)の上に、フッ素置換アルキル基含有有機ケイ素化合物を含む撥水撥油膜14を設ける。
この撥水撥油膜14は、フッ素置換アルキル基含有有機ケイ素化合物を主成分とするもので、撥液性(撥水性、撥油性)を有するものである。すなわち、この撥水撥油膜14は、光学部品の表面エネルギーを低下させ、水やけ防止、汚れ防止の機能を発揮するとともに、光学部品表面のすべり性能を向上させ、その結果として、耐擦傷性を向上させることができる。
【0046】
撥水撥油膜14の形成方法としては、ディッピング法、スピンコート法、スプレー法などの湿式法、あるいは真空蒸着法などの乾式法がある。
湿式法の中では、ディッピング法が一般的であり、よく用いられる。この方法は、フッ素置換アルキル基含有有機ケイ素化合物を有機溶剤に溶解した液中に、無機多層膜3まで形成し光学部品を浸漬し、一定条件で引き上げ、乾燥させて成膜する方法である。有機溶剤としては、パーフルオロヘキサン、パーフルオロ−4−メトキシブタン、パーフルオロ−4−エトキシブタン、メタキシレンヘキサフルオライドなどが使用される。
【0047】
有機溶剤による希釈濃度は、0.01〜0.5質量%が好ましく、0.03〜0.1質量%がより好ましい。濃度が低すぎると十分な膜厚の撥水撥油層14が得られず、また、濃度が高すぎると塗布むらが発生しやすく、材料コストも高くなってしまう。
乾式法の中では、真空蒸着法がよく用いられる。この方法は、フッ素置換アルキル基含有有機ケイ素化合物を真空槽内で加熱して蒸発させ、撥水撥油膜14を形成する方法である。
【0048】
本実施形態においては、成膜室内導入ガス及びイオンビームアシストに使用されるガスの少なくとも一種が不活性ガスを含有することで、光学的、物理的特性に優れた光学多層膜を安定して形成できる。
このとき、イオンビームアシストの条件を幅広く設定できるので、例えば、加速電流及び加速電圧を低く設定することもでき、成膜装置に与える負荷を大きく軽減することができ、実用性が高い。
【実施例】
【0049】
以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0050】
合成樹脂基材上に、屈折率1.50のハードコート、及び屈折率1.50のプライマーコートを加熱硬化にて形成してレンズとし、以下に示すように無機多層膜を真空蒸着法により基材片面へ成膜し、物理的特性として帯電性能、光学性能として透過率及びYellow Indexの評価を下記にて行った。
【0051】
(帯電防止性能評価)
下記表面抵抗率計にて、各評価品の表面抵抗率を測定し比較した。
表面抵抗率計:三菱化学アナリテック製 ハイレスタUP MCP−HT450
判定基準を表1に示す。
【0052】
(透過率及びYellow index)
下記分光光度計にて、各評価品の透過率及びYellow indexを測定し比較した。
分光光度計:日立製 分光光度計 U−4100
判定基準を表1に示す。
【0053】
【表1】

【0054】
≪実験1≫
<実施例1>
レンズを真空槽内に設けられた回転するドームにセットし、真空槽内の温度を70度に加熱し、圧力が1.0×10−3Paになるまで排気し、加速電圧500V、加速電流100mAの条件でアルゴンガスイオンビームクリーニングを60秒間施した後、基材側から順次、第1層SiO(屈折率1.47)を光学的膜厚0.060λ、第2層ZrO(屈折率2.00)を光学的膜厚0.130λ、第3層SiO(屈折率1.47)を光学的膜厚0.060λ、第4層ZrO(屈折率2.00)を光学的膜厚0.250λ、第5層ITO (屈折率2.10)を光学的膜厚0.014λ、第6層SiO(屈折率1.47)を光学的膜厚0.28λで積層した。
尚、λは設計の中心波長で500nmとした。また、第5層はイオンビームアシストを加速電圧500V、加速電流200mA、アルゴンガス導入量:14SCCMの条件にて実施した。同時に、成膜室内に酸素ガスを4.0×10−2Paにて導入した。
【0055】
<実施例2>
レンズを真空槽内に設けられた回転するドームにセットし、真空槽内の温度を70度に加熱し、圧力が1.0×10−3Paになるまで排気し、加速電圧500V、加速電流100mAの条件でアルゴンガスイオンビームクリーニングを60秒間施した後、基材側から順次、第1層SiO(屈折率1.47)を光学的膜厚0.060λ、第2層ZrO(屈折率2.00)を光学的膜厚0.130λ、第3層SiO(屈折率1.47)を光学的膜厚0.060λ、第4層ZrO(屈折率2.00)を光学的膜厚0.250λ、第5層ITO (屈折率2.10)を光学的膜厚0.014λ、第6層SiO(屈折率1.47)を光学的膜厚0.28λで積層した。
尚、λは設計の中心波長で500nmとした。また、第5層はイオンビームアシストを加速電圧500V、加速電流200mA、アルゴンガス導入量:14SCCMの条件にて実施した。同時に、成膜室内に酸素ガスを3.0×10−2Paにて導入した。
【0056】
<実施例3>
レンズを真空槽内に設けられた回転するドームにセットし、真空槽内の温度を70度に加熱し、圧力が1.0×10−3Paになるまで排気し、加速電圧500V、加速電流100mAの条件でアルゴンガスイオンビームクリーニングを60秒間施した後、基材側から順次、第1層SiO(屈折率1.47)を光学的膜厚0.060λ、第2層ZrO(屈折率2.00)を光学的膜厚0.130λ、第3層SiO(屈折率1.47)を光学的膜厚0.060λ、第4層ZrO(屈折率2.00)を光学的膜厚0.250λ、第5層ITO (屈折率2.10)を光学的膜厚0.014λ、第6層SiO(屈折率1.47)を光学的膜厚0.28λで積層した。
尚、λは設計の中心波長で500nmとした。また、第5層はイオンビームアシストを加速電圧500v、加速電流200mA、アルゴンガス導入量:14SCCMの条件にて実施した。同時に、成膜室内に酸素ガスを9.0×10−3Pa にて導入した。
【0057】
<比較例1>
レンズを真空槽内に設けられた回転するドームにセットし、真空槽内の温度を70度に加熱し、圧力が1.0×10−3Paになるまで排気し、加速電圧500V、加速電流100mAの条件でアルゴンガスイオンビームクリーニングを60秒間施した後、基材側から順次、第1層SiO(屈折率1.47)を光学的膜厚0.060λ、第2層ZrO(屈折率2.00)を光学的膜厚0.130λ、第3層SiO(屈折率1.47)を光学的膜厚0.060λ、第4層ZrO(屈折率2.00)を光学的膜厚0.250λ、第5層ITO (屈折率2.10)を光学的膜厚0.014λ、第6層SiO(屈折率1.47)を光学的膜厚0.28λで積層した。
尚、λは設計の中心波長で500nmとした。また、第5層はイオンビームアシストを加速電圧500V、加速電流200mA、酸素ガス導入量:20SCCMの条件にて実施した。
【0058】
実施例1〜3、比較例1における各成膜層の詳細を表2に、評価判定結果を表3に示す。
【0059】
【表2】

【0060】
【表3】

【0061】
実施例1〜3の結果から、アルゴンガスイオンビームアシストの使用及び酸素ガスの成膜室導入により、光学的、物理的性能が良好な膜が得られることが確認された。
【0062】
≪実験2≫
<実施例4>
レンズを真空槽内に設けられた回転するドームにセットし、真空槽内の温度を70度に加熱し、圧力が1.0×10−3Paになるまで排気し、加速電圧500V、加速電流100mAの条件でアルゴンガスイオンビームクリーニングを60秒間施した後、基材側から順次、第1層SiO(屈折率1.47)を光学的膜厚0.060λ、第2層ZrO(屈折率2.00)を光学的膜厚0.130λ、第3層SiO(屈折率1.47)を光学的膜厚0.060λ、第4層ZrO(屈折率2.00)を光学的膜厚0.250λ、第5層ITO(屈折率2.10)を光学的膜厚0.014λ、第6層SiO(屈折率1.47)を光学的膜厚0.28λで積層した。
尚、λは設計の中心波長で500nmとした。また、第5層はイオンビームアシストを加速電圧300V、加速電流140mA、アルゴンガス導入量:14SCCMの条件にて実施した。同時に、成膜室内に酸素ガスを4.0×10−2Pa にて導入した。
【0063】
<比較例2>
レンズを真空槽内に設けられた回転するドームにセットし、真空槽内の温度を70度に加熱し、圧力が1.0×10−3Paになるまで排気し、加速電圧500V、加速電流100mAの条件でアルゴンガスイオンビームクリーニングを60秒間施した後、基材側から順次、第1層SiO(屈折率1.47)を光学的膜厚0.060λ、第2層ZrO(屈折率2.00)を光学的膜厚0.130λ、第3層SiO(屈折率1.47)を光学的膜厚0.060λ、第4層ZrO(屈折率2.00)を光学的膜厚0.250λ、第5層ITO(屈折率2.10)を光学的膜厚0.014λ、第6層SiO(屈折率1.47)を光学的膜厚0.28λで積層した。
尚、λは設計の中心波長で500nmとした。また、第5層はイオンビームアシストを加速電圧300V、加速電流140mA、酸素ガス導入量:20SCCMの条件にて実施した。
【0064】
実施例1、4、比較例1、2における各成膜層の詳細を表4に、評価判定結果を表5に示す。
【0065】
【表4】

【0066】
【表5】

【0067】
成膜室にガスを導入せず、イオンビームアシストにアルゴンガスを用いない場合には、比較例2で示されるように、イオンビームアシストの加速電圧及び加速電流が小さくなると、膜性能が低下してしまうことが確認された。
一方、イオンビームアシストにアルゴンガスを用いた場合には、実施例4で示されるように、イオンビームアシストの加速電圧及び加速電流が小さい場合であっても膜性能が低下しないことが確認された。
【0068】
≪実験3≫
<実施例5>
レンズを真空槽内に設けられた回転するドームにセットし、真空槽内の温度を70度に加熱し、圧力が1.0×10−3Paになるまで排気し、加速電圧500V、加速電流100mAの条件でアルゴンガスイオンビームクリーニングを60秒間施した後、基材側から順次、第1層SiO(屈折率1.47)を光学的膜厚0.060λ、第2層ZrO(屈折率2.00)を光学的膜厚0.130λ、第3層SiO(屈折率1.47)を光学的膜厚0.060λ、第4層ZrO(屈折率2.00)を光学的膜厚0.250λ、第5層ITO(屈折率2.10)を光学的膜厚0.014λ、第6層SiO(屈折率1.47)を光学的膜厚0.28λで積層した。
尚、λは設計の中心波長で500nmとした。また、第5層はイオンビームアシストを加速電圧500V、加速電流200mA、酸素導入量:18SCCM、アルゴンガス導入量:2SCCMの条件にて実施した。同時に、成膜室内にアルゴンガスを4.0×10−2Pa にて導入した。
【0069】
<実施例6>
レンズを真空槽内に設けられた回転するドームにセットし、真空槽内の温度を70度に加熱し、圧力が1.0×10−3Paになるまで排気し、加速電圧500V、加速電流100mAの条件でアルゴンガスイオンビームクリーニングを60秒間施した後、基材側から順次、第1層SiO(屈折率1.47)を光学的膜厚0.060λ、第2層ZrO(屈折率2.00)を光学的膜厚0.130λ、第3層SiO(屈折率1.47)を光学的膜厚0.060λ、第4層ZrO(屈折率2.00)を光学的膜厚0.250λ、第5層ITO(屈折率2.10)を光学的膜厚0.014λ、第6層SiO(屈折率1.47)を光学的膜厚0.28λで積層した。
尚、λは設計の中心波長で500nmとした。また、第5層はイオンビームアシストを加速電圧500V、加速電流200mA、酸素導入量:20SCCMの条件にて実施した。同時に、成膜室内にアルゴンガスを4.0×10−2Pa にて導入した。
【0070】
実施例5、6における各成膜層の詳細を表6に、評価判定結果を表7に示す。
【0071】
【表6】

【0072】
【表7】

【0073】
実施例5及び6の結果から、成膜室にアルゴンガスを導入し、イオンビームアシストに、酸素ガス、又は酸素ガスとアルゴンガスの混合ガスを用いた場合には、光学的、物理的性能が良好な膜が得られることが確認された。
【0074】
以上の結果から、本発明によれば、光学的、物理的特性に優れた光学部品を安定し提供できることが明らかである。
【符号の説明】
【0075】
1…光学部品、2…プラスチック基材、3…無機多層膜、4…機能性薄膜、5…プライマー層(機能性薄膜)、6…ハードコート層(機能性薄膜)、7…第一の屈折層、12…誘電体膜、13…第二の屈折層、9…第1層、10…第2層、11…第3層、8…第4層、14…撥水撥油膜

【特許請求の範囲】
【請求項1】
プラスチック基材と、前記プラスチック基材上に配設された多層膜を備えた光学部品の製造方法であって、
前記多層膜を形成する工程は、低屈折率材料と高屈折率材料とを交互に前記プラスチック基材上に複数積層し多層構造の第一の屈折層を形成する工程と、前記第一の屈折層上に、この第一の屈折層より低い屈折率の低屈折率材料からなる第二の屈折層を形成する工程と、を有するとともに、
前記プラスチック基材上に前記多層膜を形成するための成膜室内にガスを導入し、該成膜室内で前記多層膜を構成する層のうち少なくとも一層を、イオンビームアシストを施しながら成膜を行う工程を有し、
前記成膜室内導入ガス、及び前記イオンビームアシストに使用されるガスの少なくとも一種が不活性ガスを含有することを特徴とする光学部品の製造方法。
【請求項2】
前記成膜室内導入ガス、及び前記イオンビームアシストに使用されるガスは、それぞれ独立に、酸素ガス、不活性ガス、及び酸素ガスと不活性ガスの混合ガスから選ばれるガスである請求項1に記載の光学部品の製造方法。
【請求項3】
前記成膜室内導入ガスが酸素ガスであり、前記イオンビームアシストに使用されるガスが不活性ガスである請求項1又は2に記載の光学部品の製造方法。
【請求項4】
前記成膜室内導入ガスが不活性ガスであり、前記イオンビームアシストに使用されるガスが酸素ガス、又は酸素ガスと不活性ガスの混合ガスである請求項1又は2に記載の光学部品の製造方法。
【請求項5】
前記不活性ガスはアルゴンである請求項1〜4のいずれか一項に記載の光学部品の製造方法。
【請求項6】
前記成膜室内導入ガスの導入圧力が1.0×10−3Pa〜5.0×10−2Paの範囲である請求項1〜5のいずれか一項に記載の光学部品の製造方法。
【請求項7】
前記多層膜を形成する工程に、真空蒸着法を用いる請求項1〜6記載の光学部品の製造方法。
【請求項8】
前記多層膜を構成する第一の屈折層と第二の屈折層との間に、インジウム、スズ、亜鉛、及びチタンから選ばれる少なくとも一種の酸化物からなる層を含む請求項1〜7のいずれか一項に記載の光学部品の製造方法。
【請求項9】
前記第一の屈折層は、二酸化ジルコニウム、二酸化チタン、及び二酸化タンタルから選ばれる少なくとも一種を含み、
前記第二の屈折層は、二酸化珪素を含む請求項1〜8のいずれか一項に記載の光学部品の製造方法。
【請求項10】
前記多層膜は、4層以上の多層膜である請求項1〜9のいずれか一項に記載の光学部品の製造方法。
【請求項11】
前記光学部品は眼鏡レンズである請求項1〜10のいずれか一項に記載の光学部品の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate