説明

分散液の作製方法、電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ

【課題】本発明の目的は、結晶転移を生じることなく、粒子サイズの小さなチタニルフタロシアニン結晶を含む分散液の作製方法を提供することである。具体的には簡便な方法により、コンパクトな装置を用い、簡便な方法により大量の分散液を効率よく作製することにある。
【解決手段】直径が1mm以下の分散メディアを用い循環方式のビーズミル分散装置によってチタニルフタロシアニン結晶を含有する分散液を作製する方法において、バインダー樹脂を併用し、該バインダー樹脂を有機溶媒に溶解した樹脂液を循環系に満たした後に、該チタニルフタロシアニンを循環系に投入し、分散を行うことを特徴とする分散液の作製方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、チタニルフタロシアニン結晶を用いた分散液の作製方法に関する。また、そのように作製された分散液を用いて製造した電子写真感光体、ならびにその電子写真感光体を用いた画像形成装置および画像形成装置用プロセスカートリッジに関する。
詳しくは、チタニルフタロシアニン結晶を含有する分散液を、結晶転移を生じさせずに、分散性に優れ、取り扱い性の良好な分散液として作製する方法、ならびに繰り返し使用によっても帯電電位の安定性に優れ、残留電位上昇は殆どなく、地汚れ等の異常画像発生の少ない電子写真感光体、ならびにその電子写真感光体を用いた画像形成装置および画像形成装置用プロセスカートリッジに関する。
【背景技術】
【0002】
有機顔料は比較的以前から塗料用のフィラーとして用いられてきた。特に、その色彩の豊かさは無機顔料には無い利点である。また、近年では有機顔料の応用例として、有機光電変換デバイス用材料として脚光を浴びるようになってから、様々な材料が生み出されている。
有機顔料を含有する電子写真感光体は、一般的に湿式法により形成される。特に大量生産に向いた浸漬塗工方法がドラム状感光体の製造方法の大半をしめる。浸漬塗工方法は、装置・方式が簡便であるため、マスプロダクト方式の製造には最も向いているが、少量の本数を塗工する場合でも、必要最低量の塗工液が必要となる。この最低必要量が、他の塗工方式、例えば、スプレー法、ノズルコートなど塗りきりの方式に比べると極めて多量である。
【0003】
有機顔料の分散方法は種々提案されているが、多量の分散液を作製する場合にはいくつかの制限が生じる。即ち、ボールミル・振動ミルなどにおいては、ポットの容量が作製可能量を決めてしまう。このような観点から、一バッチで多量の分散液作製可能な分散システムとして、循環系の中に分散能を有する部位(分散室)を有する分散システムが提案されている[例えば、特許文献1(特開2000−181104号公報)]。なお、ここにいう分散とは、顔料がビヒクルに対して十分に漏れ、凝集・再分散を繰り返しながら平衡状態に達する状態を指す。
このようなシステムは一般に、大容量のストックタンクに対し、分散室の容量が小さく設計されている。これは、システムをコンパクトにまとめる、省エネ、分散室内に使用する分散メディアを少なくする等の目的によるものである。このような分散方式においては、分散後の顔料粒子径を細かなものにするため、分散室に小径のビーズを用いるビーズミル方式の分散システムが多く使用される。
【0004】
ここで用いられるビーズ径は直径が小さいほど、分散された顔料の到達粒径が小さくなるため、一般には直径1mm以下のものが使用され、好ましくは直径0.5mm以下のものが使用される[特許文献2(特開2001−290292号公報)]。しかし、あまりにも小さい場合には、ビーズの摩耗が大きくなったり、対象とする分散前の顔料粒子を小さくしておく必要があったり、メンテナンス時の取り扱いが悪くなるため、直径0.1mm以上のビーズ(分散メディア)が用いられる。
【0005】
分散液の作製においては、このような小径のビーズを分散室内に存在させ、ローターの回転により顔料粒子を分散させるものであるが、同時に顔料を含有する液を分散室を通過させる必要がある。循環方式でない分散方式においては、分散室(例えばボールミルのポットが相当する)から分散メディアが流失することはないが、本発明で用いるような循環方式の分散機(ビーズミル)では、顔料を含む液の循環と共に分散メディアが分散室から外に流失する可能性がある。このような分散メディアの流失を防ぐために、分散室の出口側には、分散メディア径より小さいフィルター、メッシュなどが設置されている。
【0006】
このフィルターなどの孔径は、ビーズサイズの分布などを考慮して、使用する最小ビーズ径の半分程度に設定されている。分散メディアの直径が1mmを越えるようなものを用いる場合には、孔径が500μm程度で済むため問題になることはあまりないが、ビーズ径が1mm(好ましくは0.5mm)程度より小さい領域になると、分散の初期段階で粗粉砕レベルの顔料粒子が目詰まりを起こす場合がある。極端な場合を除き、目詰まりを起こした顔料は分散室内で徐々に細かくなり、いずれフィルター孔径よりも小さくなって、分散室より排出される。しかしながら、出口側で目詰まりを起こした顔料は、流量に応じた所定時間よりも長い時間分散室にとどまることになるため、目的とする分散エネルギーよりも大きなエネルギーを与えることになってしまい、顔料に対して過度のストレスを与える結果となる。
【0007】
また、一般的な循環式ビーズミルにおいては、循環タンク(分散液を溜めるタンク)から、配管を通じて循環ポンプに液が供給され、分散室に液が供給され、更に配管を通って、循環タンクに液が戻るような仕組みになっている。この様な場合、循環ポンプ内、配管の角の部分、継ぎ手部分等に、顔料の粉末が溜まりやすく、分散不良になる可能性がある。また、配管やポンプを詰まらせる原因となり、このため循環系内の圧力が上昇し、流量が低下し、必要以上の分散エネルギー(過度のストレス)を与えてしまう。
このような場合でも結晶型が非常に安定した有機顔料を用いるのであれば、粒子サイズが小さくなるだけであり、更に分散を進めることにより全体の顔料の粒子サイズは最終的には平均化(均一化)される。しかしながら、結晶型の安定性がそれほど高くない有機顔料を用いた場合には、結晶型が安定型へ変化してしまい、所望の結晶型が維持されず、その結果、塗料における顔料の色、あるいは顔料の有する各種特性を変化させてしまうことになる。
【0008】
有機顔料には同一の構造式で表されるものであっても、結晶型を数多く有する顔料(結晶多型)が存在する。このような顔料は、分子レベルでの化学構造式が同一であっても、分子の集合体としての結晶において、分子配列が異なって存在しているものである。このような場合、顔料の色(吸収スペクトル)、粒子の形態、物性(特性)が結晶型に依存して極端に変化することもよくある。
このように吸収スペクトルや粒子形態が変化してしまうと、例えば塗料として用いる場合に、色目が変化してしまい、所望の色彩を有する塗膜を形成することができない。また、有機顔料を機能材料として使用するような場合、物性値が異なってしまうと、それを用いた素子などが所望の機能を発現しなくなってしまう場合がある。
【0009】
本発明で用いるチタニルフタロシアニン結晶は、典型的な結晶多型の有機顔料である。この中でも、特定の結晶型を示す場合のみ特異的な特性(感光体の電荷発生物質として使用した場合に、極めて高感度な光キャリア発生能を示す)を示すような場合が存在し、その結晶型を維持したままの分散方法・条件が必要であるが、検討された例があまりない。特に、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は、電子写真感光体用の電荷発生物質として極めて高い光キャリア発生効率を示すものであるが、結晶状態として準安定状態であるため、他の結晶型へ容易に転移しやすいものである。
【0010】
この結晶に対して過度のストレスを与えると、ブラッグ角2θの回折ピークとして26.3゜に最大回折ピークを有するチタニルフタロシアニン結晶に結晶転移しやすく、この結晶はキャリア発生効率が先の結晶よりかなり低いため、結晶の一部が転移しただけでも、これを感光体の電荷発生物質に用いると、光感度の低下や繰り返し使用時の残留電位上昇といった問題が発生する。
このような問題は、分散室の循環出口側における顔料の目詰まりに起因する結晶転移の問題に帰属されるものであるが、循環方式のビーズミル分散機を用い、かつ小径の分散メディアを用いた場合には避けて通れない課題である。
【0011】
このような課題に関連して、特許文献3(特開2000−126638号公報)では、湿式分散に供する顔料粒子を、予め分散メディア径の1/2以下にしておく技術が開示されている。この方法の場合には、分散メディア径よりも細かい顔料が用いられるため、分散室出口側での顔料の目詰まりは少なくなる可能性はある。しかしながら、わずかでも分散室内に顔料が所定時間以上滞留した場合には、結晶転移を起こす可能性は残されている。また、顔料粒子を予め乾式分散するか、篩などを用いて粒子サイズを揃える必要があり、顔料のロスが生じたり、工程が増えることに依るコスト高を生じたり、細かい顔料を使用するために取り扱い性が悪化したりするため、大量生産には必ずしも向いていない。
このように、小径の分散メディアを用い、循環方式のビーズミル分散を行う際に、分散効率をほとんど低減させることなく、結晶型の安定と短時間での粒子の微細化を両立させることを簡便的に解決する手段がなかった。
【0012】
一方、特許文献4(特開平11−249324号公報)の実施例1には、ビーズミル分散装置を用いた分散液の作製において、循環ポンプ稼働前に分散室のローターを回転させ、次いで循環ポンプを稼働させた後に、ローター回転数を上げた実施例が記載されている。
しかしながら、この実施例においては、循環ポンプの稼働と同時にローター回転数を上昇させているものであり、特にチタニルフタロシアニンの目詰まりや結晶転移に言及しているものではなく、また循環流量との関連についても記載されていない。
【特許文献1】特開2000−181104号公報
【特許文献2】特開2001−290292号公報
【特許文献3】特開2000−126638号公報
【特許文献4】特開平11−249324号公報
【発明の開示】
【発明が解決しようとする課題】
【0013】
本発明の目的は、結晶転移を生じさせることなく、粒子サイズの小さなチタニルフタロシアニン結晶を含む分散液の作製方法を提供することである。具体的には簡便な方法により、コンパクトな装置を用い、簡便な方法により大量の分散液を効率よく作製することにある。
本発明の別の目的は、高感度を失うことなく繰り返し使用によっても帯電性の低下と残留電位の上昇を生じない安定な電子写真感光体を提供することにある。また、繰り返し使用によっても異常画像の発生の少ない電子写真感光体を提供することにある。
更に本発明の別の目的は、高速プリントが可能で、異常画像の発生が少なく、安定した画像形成が行える画像形成装置および画像形成装置用プロセスカートリッジを提供することにある。
【課題を解決するための手段】
【0014】
本発明者は従来技術の問題点について検討した結果、分散室内に所定時間より長い時間滞留した顔料が過剰の分散エネルギーを与えられた結果生じる結晶転移を防ぐためには、上述のような分散室出口での目詰まりや循環系内での滞留や詰まりを無くすか、或いは、仮にある程度目詰まりを生じたとしても結晶転移を生じさせない条件にすることが重要であることが分かった。
前者の方法では分散室出口におけるフィルター等の孔径よりも全ての顔料粒子が小さいことが必要であり、前記の特開2000−126638号公報(特許文献3)等に記載されているように乾式法によるプレ分散や、篩等による選別が必要となり、工程上好ましくない。このことから、本発明者は後者の方法を選択し、それを実現する方法を探った。
その結果、循環系内に予め樹脂液を充満させ、その後に分散すべきチタニルフタロシアニンを循環分散することにより、配管、ポンプ、フィルター等での顔料のつまりを極端に低減出来ることが分かった。また、この分散室出口でのフィルター等を一度でも通り抜けた顔料粒子や循環系を1周した顔料粒子は、2度と目詰まりを起こさないことも確かめられた。
【0015】
上記の方法を具体的にするために、本発明者は近年一般的に用いられている循環分散システムの欠点を取り除き、安定した分散液作製方法を見いだし、本発明を完成するに至った。
また、本発明はコンパクトな分散装置で多量の分散液を作製することの出来る循環方式のビーズミル分散機を用いて分散液を作製する際の問題点を改良することを目的としてなされた発明である。具体的には、分散後の分散液中に含まれる顔料粒子を細かなものにするために、より小径の分散メディアを用いた場合に生じる問題点を解決するものである。
【0016】
ところで、有機顔料を電荷発生物質として用いた電子写真感光体においては、感光層中の電荷発生物質粒子サイズにより様々な特性が左右される。例えば、光キャリア発生過程において、電荷発生物質により生成された光キャリアを電荷輸送物質に受け渡す前に電荷発生物質粒子サイズが大きいと、粒子内部での失活確率が高くなってしまう。また、光キャリアを電荷輸送物質に受け渡す際に、顔料粒子が大きいと必然的に表面積が小さくなり両者の接触量が小さくなり、キャリア注入効率が低下してしまう。更には、電荷発生物質粒子サイズが大きいと感光層(電荷発生層)の塗膜欠陥の確率が高くなり、これに基づく画像欠陥が発生しやすくなる。
【0017】
このようなことから、感光層(電荷発生層)における電荷発生物質の粒子サイズを出来る限り小さくすることが望まれている。感光層(電荷発生層)は通常、湿式塗工法により形成されるため、感光層における電荷発生物質の粒子サイズを小さくするためには、これを形成する塗工分散液中の電荷発生物質の粒子サイズを小さくする必要がある。
このように感光層(電荷発生層)を塗工するための分散液中の電荷発生物質の粒子サイズを小さくするために、様々な分散方法が提案されているが、いずれも電荷発生物質の凝集構造である二次粒子をいかに一次粒子にまで粉砕・分散するかが大きな課題である。これらの方法においては、分散エネルギーの巨大化、分散時間の延長等により、出来る限り一次粒子に近づける工夫がなされているが、この一次粒子サイズは、電荷発生物質の合成段階で決定されており、通常の方法ではこの一次粒子サイズよりも小さな粒子にすることは困難を要する。
【0018】
一方、古くから用いられているボールミリングなどの方法よりも、更に強い分散エネルギーを与えることの出来る分散方式の提案がなされ、一次粒子を更に砕いてしまうような方法も近年では開発されている。このような場合には、一次粒子が多少大きくても、巨大な分散エネルギーにより結晶そのものを粉砕してしまうことにより、電荷発生物質の粒子サイズを小さなものにしてしまうものである。このような方式は、使用する電荷発生物質の結晶安定性の高い材料に非常に適していると言える。
【0019】
ところが、有機系電荷発生物質の場合、同じ化学構造式で表される材料でも、特定の結晶型のみが特異的な機能を発現する場合も少なくない。このような特定結晶型は化学的なストレス以外に、単純な物理的・機械的なストレスによっても簡単に結晶型が変化してしまう場合がある。このような材料を用いる場合には、上述のように一次粒子そのものを粉砕してしまうような過剰の分散エネルギーを与えることは、粒子を粉砕する作用よりも先に結晶型を変化させてしまう現象が起こってしまう。この結果、特異的な機能を発現する材料を用いたつもりでも、その機能が十分に発揮されない材料に変化してしまうケースが多々存在する。
【0020】
本発明において用いられるチタニルフタロシアニン結晶は、結晶多型の材料であり、特別に光キャリア発生効率の高い結晶型は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有する結晶のみであり、それ以外の結晶型の材料も電荷発生物質としての機能は有するものの、現在の電子写真プロセスの要求する高速化、感光体小径化、繰り返し使用時の高い安定性に満足する特性を有するものではない。従って、前記結晶型は特異的な結晶型であると言える。
【0021】
しかしながら、この少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は、チタニルフタロシアニン結晶としては準安定状態であり、結晶安定性の低い材料である。従って、前述の如き機械的・物理的なストレスを過剰に与えることは、その結晶を安定結晶型である他の結晶型へ転移してしまうものである。このように、電荷発生物質としての高い機能を有するチタニルフタロシアニン結晶であるが、電子写真感光体への適応の際には、粒子の微細化と結晶安定性がトレード・オフの関係になっており、これを容易に解決する方法がなかった。
【0022】
上述の如き課題に対して、本発明者はチタニルフタロシアニン結晶の粉砕・分散工程の解析を試み、以下の知見を得た。
(1)過剰な分散エネルギーは、結晶転移を進行させること
即ち、チタニルフタロシアニン結晶の分散工程において、目的とする粒子サイズまで分散する際に、それよりも大きい粒子を粉砕・分散させることが必要であるが、必要以上の分散エネルギーを与えてしまうと、その過剰のエネルギーが結晶転移のエネルギーになってしまう。
(2)分散時の昇温は、結晶転移を進行させること
チタニルフタロシアニン結晶は温度によっても結晶転移する。また、上述の(1)の様に過剰な分散エネルギーによる結晶転移に際しても、温度が高いほど結晶転移は促進される。即ち、チタニルフタロシアニン結晶の分散工程において、部分的な昇温が結晶転移を起こしたり、あるいは結晶転移を促進してしまう。従って、分散装置中のチタニルフタロシアニン結晶に分散エネルギーがかかる部分においては、昇温が予想される場合には十分な冷却機構が必要となる。
【0023】
以上の2点を考慮すると、特開平4−372955号公報等に記載された分散液を2方向に分岐し、これを衝突させることにより分散を行う方法においては、過剰なエネルギーの付与を抑えることが難しく、また装置全体を冷却したとしても分散液の昇温は避けられない。このことから、この方式は不利であることが分かる。また、特開平5−188614号公報に記載されるような高圧ホモジナイザーを使用する場合にも、先の分散装置と同様に分散液の昇温を押さえることが難しく、この方法も得策ではない。更に、従来より用いられているボールミル方式の分散装置は、ポットを直接回転させるものであるから、基本的に冷却機構を備えることが難しい。従って、この方法も有利な方法ではない。
【0024】
一方、本発明で使用するビーズミル方式は、分散室そのものを冷却することが可能で、分散室の大きさ、回転数等のコントロールにより、分散液の昇温を全く生じさせないことも可能である。また、後述のように循環方式のビーズミル分散装置を使用することにより、循環タンク部での十二分な冷却を行うことにより、わずかな昇温も押さえることが可能である。また、この方式により比較的スケールを大きくすることも可能である。
以上の点から、分散方式としてはビーズミル方式が最も妥当な分散方法であるといえる。
【0025】
更に本発明者は、ビーズミル方式を使用した場合について、チタニルフタロシアニン結晶の粉砕・分散工程の解析を試み、以下の知見を得た。
(1)分散メディア径の大きさにより、分散後の最終到達粒子サイズが決定されること
即ち、分散に使用する分散メディア径は、大きなものほどチタニルフタロシアニン結晶の粗大粒子(一次粒子が凝集したもの)を粉砕する能力が高い。しかしながら、ビーズミルのような分散方式は、もともと粉砕能力が高い方式であるため、分散メディアの大きさ(即ち重量)の助けを必ずしも必要とはしない。むしろ、所定の体積あたりにどれだけの分散メディアを詰め込むことが出来るか(空隙率をいかに小さくするか)ということが重要になる。空隙率を小さくすればするほど、分散後のチタニルフタロシアニン粒子サイズを小さくできることが分かった。実用的には、分散メディア径が1mm以下(好ましくは0.5mm以下)であれば、十分に使用することが出来る。しかしながら、小さいほど分散メディアの摩耗が激しくなり、また清掃時などの取り扱いが非常に煩雑になってしまう。このため下限値は存在し、0.1mm未満の分散メディアは使用すべきではない。
【0026】
(2)小径のメディアを用いる場合には分散室出口側での顔料目詰まりが大きいこと
循環方式の分散を行う場合には、分散室から分散メディアが流失しないように、適当なサイズのフィルターもしくはメッシュなどを設けることにより、流失を防いでいる。しかしながら、分散メディアが小径になればなるほど、この孔径を小さくしなければならず、この際、未分散の顔料粒子がこのフィルターに引っかかり目詰まりを起こす確率が高くなる。目詰まりを起こした場合には、循環用ポンプ等により一定の圧力をかけて液を循環させた場合には、圧力損失が起こり、循環流量が低下する(ひどい場合には循環が出来なくなる)。
この結果、分散室から抜け出せない顔料粒子は、循環流量に応じた分散室の通過時間よりも長い時間、分散室にとどまることになり、過度の分散ストレスを受けることになる。この結果、結晶安定性の低い顔料は、結晶転移を生じてしまう可能性が出てくる。
【0027】
(3)結晶転移が分散室に設置されたローターの回転数に依存すること
分散室が目詰まりを起こした状態を想定して、循環しない状況下で分散を行う実験を行った結果、循環分散を行うローター回転数程度で分散を行ってしまうと、比較的短時間で結晶転移を生じることが分かった。また、分散室における顔料濃度を変えた実験から、濃度が高いほどこの減少は顕著であり、目詰まりを起こした結果、次々に分散室に送られてくる顔料により、定常状態より分散室における顔料濃度が高くなることにより結晶転移を促進していることが分かった。回転数を変化させた実験では、結晶転移のローター回転数依存性は高く、回転をわずかに落としただけでも結晶転移速度を抑えることが出来たが、所定回転数の80%以下にすることにより、確実な効果が得られた。また、30%以下の回転数では、粉砕能力が確実にダウンし、循環流量低下時間が長くなってしまい、分散効率を低下させるだけでなく、逆に結晶転移の可能性を高めてしまうことが分かった。
循環流量に関しては、循環ポンプ等による送液を行った際、所定流量の90%以上に達すれば、目詰まりしている顔料のほとんどが分散室内に滞留することなく流れ出ていることが確認され、流量のモニタリングで目詰まり状況を把握できることを理解した。
【0028】
(4)ポンプ内あるいは配管内では、顔料が直接内壁に触れることにより詰まりやすくなること
配管や送液ポンプの内壁が乾いた状態において顔料粉末が触れた場合、顔料粒子は分散溶媒を取り込み粘性の高い状態になっており、付着しやすく、これがつまりの原因となりやすいことを確認した。また、内壁を樹脂液で覆っておくことにより、顔料粉末が内壁に直接触れることなく循環が行われ、顔料が詰まりやすくなることも分かった。更に、予め循環系内を満たしておく液体が、有機溶媒単独の場合よりも樹脂液の方が粘度も高く、その効果が高いことも分かった。また、機械的なストレスが同じ場合、有機溶媒単独よりも樹脂液の状態の方が、チタニルフタロシアニンの結晶転移速度を抑制出来ることも分かった。
【0029】
しかるに、本発明によれば、前記の課題は下記(1)〜(20)によって達成される。
(1)直径が1mm以下の分散メディアを用い循環方式のビーズミル分散装置によってチタニルフタロシアニン結晶を含有する分散液を作製する方法において、バインダー樹脂を併用し、該バインダー樹脂を有機溶媒に溶解した樹脂液を循環系に満たした後に、該チタニルフタロシアニン結晶を循環系に投入し、分散を行うことを特徴とする分散液の作製方法。
(2)前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有することを特徴とする前記第(1)項に記載の分散液の作製方法。
(3)前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、更に26.3゜にピークを有さず、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.4°以上9.4゜未満の範囲にピークを有さないことを特徴とする前記第(2)項に記載の分散液の作製方法。
【0030】
(4)前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として少なくとも7.0〜7.5゜に最大回折ピークを有し、かつ該回折ピークの半値巾が1゜以上であり、一次粒子の平均粒子径が0.1μm以下である不定形乃至低結晶性チタニルフタロシアニン結晶を水の存在下で有機溶媒を使用して結晶変換を行い、結晶変換後の一次粒子の平均粒子径が0.25μm以下の状態で、濾過することにより得られる結晶変換後のチタニルフタロシアニン結晶である前記第(3)項に記載の分散液の作製方法。
(5)前記分散液の作製方法において、有機溶媒として、少なくともケトン系溶媒、エステル系溶媒、エーテル系溶媒より選ばれる1種を用いることを特徴とする前記第(1)乃至(4)項のいずれかに記載の分散液の作製方法。
(6)前記分散液の作製方法において、チタニルフタロシアニン結晶の分散に際して、水を併用することを特徴とする前記第(1)乃至(5)項のいずれかに記載の分散液の作製方法。
【0031】
(7)導電性支持体上に少なくとも電荷発生層と電荷輸送層を積層してなる電子写真感光体において、該電荷発生層が前記第(1)乃至(6)項のいずれかに記載の方法にて作製した分散液を用いて形成されたものであることを特徴とする電子写真感光体。
(8)前記電荷輸送層が少なくともトリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートを含有することを特徴とする前記第(7)記載の電子写真感光体。
(9)前記電子写真感光体において、電荷輸送層上に保護層を積層したことを特徴とする前記第(7)又は(8)項に記載の電子写真感光体。
(10)前記保護層が比抵抗1010Ω・cm以上の無機顔料又は金属酸化物を含有することを特徴とする前記第(9)項に記載の電子写真感光体。
(11)前記保護層が、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されることを特徴とする前記第(9)項に記載の電子写真感光体。
【0032】
(12)前記感光体の電荷輸送層が、非ハロゲン系溶媒を用いて形成されたものであることを特徴とする前記第(7)乃至(11)項のいずれかに記載の電子写真感光体。
(13)前記非ハロゲン系溶媒として、少なくとも環状エーテル、あるいは芳香族系炭化水素より選ばれる1種を用いることを特徴とする前記第(12)項に記載の電子写真感光体。
(14)前記電子写真感光体の導電性支持体表面が陽極酸化皮膜処理されたものであることを特徴とする前記第(7)乃至(13)項のいずれかに記載の電子写真感光体。
(15)少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成装置において、該電子写真感光体が前記第(7)乃至(14)項のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置。
(16)少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成要素を複数配列した画像形成装置において、該電子写真感光体が前記第(7)乃至(14)項のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置。
(17)前記帯電手段に、接触帯電方式を用いることを特徴とする前記第(15)又は(16)項に記載の画像形成装置。
【0033】
(18)前記帯電手段に、非接触の近接配置方式を用いることを特徴とする前記第(15)又は(16)項に記載の画像形成装置。
(19)前記帯電手段に用いられる帯電部材と、電子写真感光体との間の空隙が10μm以上、100μm以下であることを特徴とする前記第(18)項に記載の画像形成装置。
(20)前記帯電手段に、直流電圧に交流電圧を重畳した電圧を印加することを特徴とする前記第(15)乃至(19)項のいずれかに記載の画像形成装置。
(21)少なくとも電子写真感光体を具備してなる画像形成装置用プロセスカートリッジであって、該電子写真感光体が前記第(7)乃至(14)項のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ。
【発明の効果】
【0034】
本発明に依れば、結晶安定性が低く、微粒子化が困難であるチタニルフタロシアニン結晶の分散に鑑み、循環方式のビーズミル分散装置を用い、分散に先立ち循環系の中に、バインダー樹脂を溶解した有機溶媒(樹脂液)を満たしておき、その後にチタニルフタロシアニン結晶の分散を行うことにより、結晶安定性と微粒子化のトレード・オフの関係を解消することが出来た。この結果、結晶転移を生じることなく、粒子サイズの小さなチタニルフタロシアニン結晶を含む分散液の製造方法が提供される。この分散液は、保存安定性にも富み、成膜性が良好であるだけでなく、チタニルフタロシアニン結晶特有の特性を維持したままの状態で微粒子化が施される。このため、この分散液を用いて作製される感光体は、高感度を失うことなく、繰り返し使用によっても帯電性の低下と残留電位の上昇を生じない安定な電子写真感光体である。また、繰り返し使用によっても異常画像の発生の少ない電子写真感光体が提供される。
更に、高速プリントが可能で、異常画像の発生の少ない、安定な画像形成装置および画像形成装置用プロセスカートリッジが提供される。
【発明を実施するための最良の形態】
【0035】
以下に本発明をさらに詳細に説明する。
初めにチタニルフタロシアニン結晶の合成粗品の合成法について述べる。
フタロシアニン類の合成方法は古くから知られており、Moser等による「Phthalocyanine Compounds」(1963年)、「The Phthalocyanines」(1983年)、特開平6−293769号公報等に記載されている。
例えば、第1の方法としては、無水フタル酸類、金属あるいはハロゲン化金属及び尿素の混合物を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この場合、必要に応じてモリブデン酸アンモニウム等の触媒が併用される。
第2の方法としては、フタロニトリル類とハロゲン化金属を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法は、第1の方法で製造できないフタロシアニン類、例えば、アルミニウムフタロシアニン類、インジウムフタロシアニン類、オキソバナジウムフタロシアニン類、オキソチタニウムフタロシアニン類、ジルコニウムフタロシアニン類等に用いられる。
【0036】
第3の方法としては、無水フタル酸あるいはフタロニトリル類とアンモニアを先ず反応させて、例えば1,3−ジイミノイソインドリン類等の中間体を製造し、次いでハロゲン化金属と高沸点溶媒中で反応させる方法である。
第4の方法としては、尿素等存在下で、フタロニトリル類と金属アルコキシドを反応させる方法である。特に、第4の方法はベンゼン環への塩素化(ハロゲン化)が起こらず、電子写真用材料の合成法としては、極めて有用な方法である。この方法の最大のメリットは、合成されたチタニルフタロシアニン結晶がハロゲン化フリーであることである。チタニルフタロシアニン結晶は不純物としてのハロゲン化チタニルフタロシアニン結晶を含むと、これを用いた感光体の静電特性において光感度の低下や、帯電性の低下といった悪影響を及ぼす場合が多い(Japan Hardcopy ’89論文集 p.103 1989年参照)。本発明においても、特開2001−19871号公報に記載されているようなハロゲン化フリーチタニルフタロシアニン結晶をメインに対象にしているものであり、これらの材料が有効に使用される。
【0037】
次に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の合成法について述べる。
具体的な方法としては、上記の合成粗品を10〜50倍量の濃硫酸に溶解し、必要に応じて不溶物を濾過等により除去し、これを硫酸の10〜50倍量の充分に冷却した水もしくは氷水にゆっくりと投入し、チタニルフタロシアニンを再析出させる。析出したチタニルフタロシアニンを濾過した後、イオン交換水で洗浄及び濾過を行い、濾液が中性になるまで充分にこの操作を繰り返す。最終的に、綺麗なイオン交換水で洗浄した後、濾過を行い、固形分濃度で5〜15質量%程度の水ペーストを得る。
この際、析出したチタニルフタロシアニンをイオン交換水で十分に洗浄し、可能な限り濃硫酸を残さないことが重要である。具体的には、洗浄後のイオン交換水が以下のような物性値を示すことが好ましい。即ち、硫酸の残存量を定量的に表わせば、洗浄後のイオン交換水のpHや比伝導度で表わすことができる。
【0038】
pHで表わす場合には、pHが6〜8の範囲であることが好ましい。この範囲であることにより、感光体特性に影響を与えない硫酸残存量であると判断できる。このpH値は市販のpHメーターで簡便的に測定することができる。
また比伝導度で表わせば、8μS/cm以下が好ましく、5μS/cm以下がより好ましく、3μS/cm以下が特に好ましい。比伝導度が8μS/cm以下であれば、感光体特性に影響を与えない硫酸残存量であると判断できる。この比伝導度は市販の電気伝導率計で測定することが可能である。比伝導度の下限値は、洗浄に使用した後のイオン交換水の比伝導度ということになる。いずれの測定においても、上記範囲を逸脱する範囲では、硫酸の残存量が多く、感光体の帯電性が低下したり、光感度が悪化したりする場合がある。
【0039】
このように作製したものが本発明に用いる不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)である。この際、この不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有するものであることが好ましい。特に、その回折ピークの半値巾が1゜以上であることがより好ましい。更に、一次粒子の平均粒子径が0.1μm以下であることが好ましい。
【0040】
次に結晶変換方法について述べる。
結晶変換は、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を所望の結晶型(CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有する結晶型)に変換する工程である。特に、前記結晶型のうち、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.4°以上9.4゜未満の範囲にピークを有さないチタニルフタロシアニン結晶が良好に用いられ、更に26.3゜にピークを有さないチタニルフタロシアニン結晶は特に良好に用いられる。
具体的な方法としては、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を乾燥せずに、水の存在下で有機溶媒と共に混合及び撹拌することにより、前記結晶型を得るものである。
【0041】
この際、使用される有機溶媒は、所望の結晶型を得られるものであれば、いかなる有機溶媒も使用できるが、特にテトラヒドロフラン、トルエン、塩化メチレン、二硫化炭素、オルトジクロロベンゼン、1,1,2−トリクロロエタンの中から選ばれる1種を選択すると、良好な結果が得られる。これら有機溶媒は単独で用いることが好ましいが、これらの有機溶媒を2種以上混合する、あるいは他の溶媒と混合して用いることも可能である。結晶変換に使用される前記有機溶媒の量は、不定形乃至低結晶性チタニルフタロシアニンの質量の10倍以上、好ましくは30倍以上の質量であることが好ましい。これは、結晶変換を素早く十分に起こさせると共に、不定形乃至低結晶性チタニルフタロシアニンに含まれる不純物を十分に取り除く効果が発現されるからである。なお、ここで使用する不定形乃至低結晶性チタニルフタロシアニンは、アシッドペースト法により作製するものであるが、上述のように硫酸を十分に洗浄したものを使用することが好ましい。硫酸が残存するような条件で結晶変換を行うと、結晶粒子中に硫酸イオンが残存し、でき上がった結晶を水洗処理のような操作をしても完全には取り除くことができない。硫酸イオンが残存した場合には、感光体の感度低下、帯電性低下を引き起こすなど、好ましい結果を得られない。例えば、特開平8−110649号公報には、硫酸に溶解したチタニルフタロシアニンをイオン交換水と共に有機溶媒に投入し結晶変換を行う方法が記載されている。この際、本発明で得られるチタニルフタロシアニン結晶のX線回折スペクトルに類似した結晶を得ることができるが、チタニルフタロシアニン中の硫酸イオン濃度が高く、光減衰特性(光感度)が悪いものであるため、本発明のチタニルフタロシアニンの製造方法としては良好なものではない。
以上の結晶変換方法は特開2001−19871号公報に準じた結晶変換方法である。
【0042】
一方、本発明に用いられる電荷発生物質においては、チタニルフタロシアニン結晶の粒子径をより細かく(0.25μm以下)することにより、その効果がより顕著に達成されるものである。以下には、チタニルフタロシアニン粒子径を合成段階より小さく合成する手法について記載する(特開2004−83859号公報)。
【0043】
チタニルフタロシアニン結晶の粒子径をより細かくするため、前述の不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、一次粒径が0.1μm以下(そのほとんどが0.01〜0.05μm程度)であるが(図1参照;後述の顔料作製例1で作製したチタニルフタロシアニン結晶の水ペーストである)、結晶変換に際しては、結晶成長と共に結晶が変換されることが分かった。通常、この種の結晶変換においては、原料の残存をおそれて充分な結晶変換時間を確保し、結晶変換が十二分に行われた後に、濾過を行い、所望の結晶型を有するチタニルフタロシアニン結晶を得るものである。このため、原料として充分に小さな一次粒子を有する原料を用いているにもかかわらず、結晶変換後の結晶としては一次粒子の大きな結晶(概ね0.3〜0.5μm)を得ているものである(図2参照)。なお、図1及び図2中のスケールバーは、いずれも0.2μmである。
【0044】
図2に示されるように作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子径を小さなもの(0.25μm以下)にするため、強いシェアを与えることで分散を行い、更には必要に応じて一次粒子を粉砕する強いエネルギーを与えて分散を行っている。この結果、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移してしまう可能性を有しているものである。
【0045】
この点に関して、合成段階からチタニルフタロシアニン結晶の一次粒子径をコントロールすることにより、小さい径の結晶を得ることにより、この問題を解決する方法が可能であり、本発明には有効に使用される。具体的には、結晶変換に際して結晶成長がほとんど起こらない範囲(図1に観察される不定形チタニルフタロシアニン粒子の径が、結晶変換後において遜色ない小ささ、概ね0.25μm以下に保たれる範囲)で、結晶変換が完了した時点を見極めることで、可能な限り一次粒子径の小さなチタニルフタロシアニン結晶を得ようというものである。結晶変換後の粒子径は、結晶変換時間に比例して大きくなる。
このため前述のように、結晶変換の効率を高くし、短時間で完了させることが重要である。このためには、いくつかの重要なポイントが挙げられる。
【0046】
1つは、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めること。もう1つは、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如く作製した原料:不定形チタニルフタロシアニン)を充分に接触させるために強い撹拌を用いるものである。具体的には、撹拌力の非常に強いプロペラを用いた撹拌、ホモジナイザー(ホモミキサー)のような強烈な撹拌(分散)手段を用いるなどの手法により、短時間での結晶変換を実現させるものである。これらの条件により、原料が残存することなく、結晶変換が充分に行われ、かつ結晶成長が起こらない状態のチタニルフタロシアニン結晶を得ることができる。
この際、結晶変換に使用する有機溶媒量を適正化することが好ましい。具体的には、不定形乃至低結晶性チタニルフタロシアニンの固形分に対して、10倍以上、好ましくは30倍以上の有機溶媒を使用することが好ましい。これにより、短時間での結晶変換を確実なものとするとともに、不定形乃至低結晶性チタニルフタロシアニン中に含まれる不純物を確実に取り除くことができる。
【0047】
また、上述のように結晶粒子径と結晶変換時間は比例関係にあるため、所定の反応(結晶変換)が完了したら、反応を直ちに停止させる方法も有効な手段である。上述のように結晶変換を行った後、直ちに結晶変換の起こりにくい溶媒を大量に添加することが前記手段として挙げられる。結晶変換の起こりにくい溶媒としては、アルコール系、エステル系などの溶媒が挙げられる。これらの溶媒を結晶変換溶媒に対して、10倍程度加えることにより、結晶変換を停止することができる。
【0048】
このようにして作製される一次粒子径は、細かいほど感光体の課題に対しては良好な結果を示すものであるが、顔料作製にかかる次工程(顔料の濾過工程)、分散液での分散安定性を考慮すると、あまり小さすぎても副作用がでる場合がある。即ち、一次粒子が非常に細かい場合には、これを濾過する工程において濾過時間が非常に長くなってしまうという問題が発生する。また、一次粒子が細かすぎる場合には、分散液中での顔料粒子の表面積が大きくなるため、粒子の再凝集の可能性が高くなる。したがって、適切な顔料粒子の粒子径は、およそ0.05μm〜0.2μm程度の範囲である。
【0049】
図3は、短時間で結晶変換を行ったチタニルフタロシアニン結晶のTEM像である。図3中のスケールバーは、0.2μmである。図2の場合とは異なり、粒子径が小さくほぼ均一であり、図2に観察されるような粗大粒子は全く認められない。
図3に示されるように一次粒子が小さい状態で作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子径を小さなもの(0.25μm以下、より好ましくは0.2μm以下)にするためには、一次粒子が凝集(集合)して集まって形成する2次粒子をほぐすだけのシェアを与えることで分散が可能である。この結果、必要以上のエネルギーを与えないため、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移し易い結果は生み出さずに、粒度分布の細かい分散液を容易に作製することが可能である。
【0050】
ここでいう平均粒子径とは、体積平均粒径であり、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものである。この際、累積分布の50%に相当する粒子径(Median径)として算出されたものである。しかしながら、この方法では微量の粗大粒子を検出できない場合があるため、より詳細に求めるには、チタニルフタロシアニン結晶粉末、あるいは分散液を直接、電子顕微鏡にて観察し、その大きさを求めることが重要である。
【0051】
続いて、結晶変換されたチタニルフタロシアニン結晶は直ちに濾過されることにより、結晶変換溶媒と分別される。この濾過に際しては、適当なサイズのフィルターを用いることにより行われる。この際、減圧濾過を用いることが最も適当である。
その後、分別されたチタニルフタロシアニン結晶は、必要に応じて加熱乾燥される。加熱乾燥に使用する乾燥機は、公知のものがいずれも使用可能であるが、大気下で行う場合には送風型の乾燥機が好ましい。更に、乾燥速度を早め、本発明の効果をより顕著に発現させるために減圧下の乾燥も非常に有効な手段である。特に、高温で分解する、あるいは結晶型が変化する様な材料に対しては有効な手段である。特に10mmHgよりも真空度が高い状態で乾燥することが有効である。
【0052】
ここで、本発明で使用する様な高い光キャリア発生能を有する有機顔料は一般的に凝集力が非常に強い。結晶を濾過・分別した後に、上述のように乾燥を行うと、一次粒子が凝集して二次粒子を形成する。これは通常の分散装置により一次粒子まで分散が行えるものであるが、結晶変換溶媒とその後引き続き用いる分散液の分散溶媒が同一のものであれば、敢えて乾燥しなくても良い。その場合には、濾過後のチタニルフタロシアニン結晶のウェットケーキをそのまま、必要に応じてバインダー樹脂を溶解した分散溶媒に直接投入し、分散を実施すればよい。この方法は、二次粒子の大きな塊を分散する必要がなく、本発明の効果をより一層顕著なものとする。
【0053】
このように得られたチタニルフタロシアニン結晶は、電子写真感光体用電荷発生物質として極めて有用である。特に、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有する結晶型は、極めて高い光キャリア発生効率を有するものである。中でもCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.4°以上9.4゜未満の範囲にピークを有さないチタニルフタロシアニン結晶は、極めて高感度であり、繰り返し使用における帯電性低下も小さく、良好な材料である。また、このチタニルフタロシアニン結晶は、26.3°にピークを有さないものがより好ましく、これにより電子写真感光体として一層良好な材料となる。
【0054】
次に、本発明の分散液作製に用いられるビーズミル分散装置について述べる。ビーズミル分散装置は塗料の製造等に一般的に用いられるものであるが、一例として図4のようなものを挙げることが出来る。ここで、71はモーター、72は分散室、73は流量計、74は循環タンク、75は循環ポンプ、76は配管、77は分散室を固定する台である。図示してはいないが、図4において分散室72、循環タンク74の周りに冷却用のジャケットを設けることは、本発明において非常に有効である。
図4中の流量計73は、循環用の配管のいずれの場所に設置されても構わないが、目詰まりを早期に検出するように、循環の出口側近傍に設置されることが望ましい。
【0055】
図5は、図4における分散室72の内部を示したものである。ここで、80は分散メディア、81は分散メディアの流出を防止するためのスリット、82は循環出口側の配管、83は分散室の壁、84はローター、85は循環入り口側の配管、86はモーターに接続されたシャフトである。分散室72の容量とは、図5に示される配管部分の除いた分散室内壁の体積のうち、シャフト86およびローター84で占められた体積を除いた部分である。
図5に示されるローター径は大きいほど強い分散エネルギーを生じさせることが出来る。また、回転数で分散エネルギーを変えることも可能である。しかしながら、本発明で用いられるチタニルフタロシアニン結晶は結晶転移しやすい材料であることは既に述べたとおりであるが、ローター径が大きすぎる場合には、回転数を小さくして対応する必要があるものの、モーターのトルクには限界があって、必要以上にローター径を大きくすることは回転ムラ等を生じて、分散機の動作そのものが不安定になる。このため、適切なローター径としては100mm以下(好ましくは50mm以下)が適当であり、10mm以上が適当である。また、ローターを構成する材質としては、各種金属(例えばステンレス)や各種セラミックス(例えば、アルミナやシルコニア)が挙げられるが、繰り返し使用の耐摩耗性、および分散液中へのコンタミの混入を考慮すると、ジルコニアあるいは組成の一部をイットリウム等で変性した部分安定化ジルコニアなどが好ましく用いられる。
【0056】
分散メディアに関しては、その外径が1.0mm以下であることが望ましく、より好ましくは0.5mm以下である。また、小さすぎる場合には比表面積が大きくなり、研磨しやすい等の問題が生じるため、0.1mm以上であることが好ましい。分散メディアを構成する材料としては、ローターと同様な材料を挙げることが出来るが、分散メディアにおいても、ジルコニアあるいは組成の一部をイットリウム等で変性した部分安定化ジルコニアなどが好ましく用いられる。
ローターの回転数に関しては特に制限があるものではないが、回転数が高いと自ずと分散エネルギー量が大きくなってしまうため、過剰のエネルギーをチタニルフタロシアニン結晶に与えることになる。従って、直径50mmのローターの場合、概ね、5000回転(r.p.m.)以下程度が適当である。
分散時間に関しては、顔料の分散状態から必然的に選ばれるものである。分散時間が余り短い場合には、粒子の粉砕は進むものの、分散安定性が劣る場合がある。分散⇔再凝集の平衡状態が作り出せる最低の時間は確保されるべきである。
【0057】
次に本発明における分散液の作製方法について説明する。
使用される顔料は、前述の如きチタニルフタロシアニン結晶であり、好ましくはCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有する結晶型を有するチタニルフタロシアニン結晶である。更に好ましくは、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、26.3゜にピークを有さず、かつ7.4°以上9.4゜未満の範囲にピークを有さないチタニルフタロシアニン結晶である。これらチタニルフタロシアニン結晶を、バインダー樹脂を溶解した有機溶媒(樹脂液)と共に、前述のビーズミル分散装置に投入し、分散することにより、分散液が作製される。
この際、循環系にフタロシアニン結晶を投入し分散をスタートする前に、予め樹脂液を循環系に満たすため、樹脂液を循環タンクに投入し、循環ポンプにより樹脂液を送液し、分散室を通って、循環タンクに戻るまで循環を続ける。この状態で循環系全体に樹脂液が満たされたら、チタニルフタロシアニン結晶を循環タンクに投入し、分散を行うものである。
【0058】
使用する有機溶媒の量であるが、これにより分散液全体のスケールが決定される。循環用タンクを大きくすることで、その比は任意に設定することが可能である。本発明者の検討に依れば、チタニルフタロシアニン結晶の重量に対して分散エネルギー量(言い換えれば、ローターの回転数、分散メディア径などにより決定される単位時間あたりの分散力と、分散時間との積)が比例関係にあれば、分散状態(到達粒径、分散安定性など)がほぼ同じ状態になることが分かった。従って、使用するチタニルフタロシアニン結晶の重量と分散時間は基本的に比例する関係になる。このため、スケールを大きくする場合には、それだけ分散時間を長くすればよいということになる。
しかしながら、分散時間があまりにも長くなりすぎる、装置がそれだけ大きくなってしまうという問題点が発生する。更に、循環用タンク内には攪拌装置を設けた方が好ましく、循環用タンクの容量を大きくした場合には撹拌能力をそれだけ大きくしなくてはならず、使用するエネルギー(電力等)を大きくしてしまう。
以上のことから、有機溶媒の使用量(体積)と分散室の容量の比は、5:1〜50:1くらいが適当な範囲となる。より好ましくは10:1〜50:1の範囲である。
【0059】
使用する有機溶媒としては、チタニルフタロシアニン結晶を分散することが出来る溶媒であれば、通常使用される有機溶媒がいずれも使用される。例えば、イソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等が挙げられる。中でも、ケトン系溶媒、エステル系溶媒、エーテル系溶媒より選ばれる1種を用いることで良好な結果を得ることが出来る。これら有機溶媒は、単独で使用しても混合して使用しても良い。
【0060】
また、分散に際してはバインダー樹脂が併用される。バインダー樹脂の併用は、チタニルフタロシアニン結晶の結晶転移速度を著しく低下させるため、非常に有効な手段である。使用できるバインダー樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等があげられる。特に、ポリビニルブチラールは最も有効に使用できる。これらバインダー樹脂は予め分散溶媒に溶解された状態で分散に供される。
バインダー樹脂の量は、チタニルフタロシアニン結晶100重量部に対し1〜500重量部、好ましくは10〜300重量部が適当である。
また、樹脂液における有機溶媒とバインダー樹脂の比としては、有機溶媒100重量部に対して、バインダー樹脂0.1〜20重量部程度が適当である。
【0061】
また、分散に際して必要に応じて水が併用される。水の併用は、バインダー樹脂と同様にチタニルフタロシアニン結晶の結晶転移速度を著しく低下させるため、非常に有効な手段である。使用する場合には、不純物を十分に取り除いた蒸留水やイオン交換水が良好に用いられる。あまり大量に用いると、分散性が低下したり、有機溶媒と分離したり、バインダー樹脂を析出させたりする不具合が発生する。このため、使用する有機溶媒の種類にもよるが、疎水性の溶媒の場合には有機溶媒の水の溶解度の上限、親水性の溶媒の場合には有機溶媒の重量に対して2〜3wt%程度が上限である。
【0062】
分散は、図4に示されるような装置の循環タンク74に適当量のバインダー樹脂を溶解した有機溶媒(樹脂液)、チタニルフタロシアニン結晶、必要に応じた水を投入し、撹拌する。使用するバインダー樹脂は、別の装置で予め有機溶媒と混合・溶解させておくことが望ましい。また、水を併用する場合も同様に、別の装置で予め有機溶媒とバインダー樹脂と水を混合・溶解させておくことが望ましい。分散の手順としては、まず、循環タンク74に樹脂液を投入し、循環ポンプ75を稼働し、循環タンク74から分散室72に樹脂液を供給する。樹脂液が分散室72、流量計73等を通って、再び循環タンクに戻ってくるまで循環を継続する(循環系に樹脂液が満たされる)。循環タンクに樹脂液が戻ってきたら、循環ポンプを停止し、循環タンク74にチタニルフタロシアニン結晶を投入する。循環タンク74での撹拌によって、チタニルフタロシアニン結晶は樹脂液に十分に混合される。十分混合された状態になったら、循環ポンプ75を稼働し、循環タンク74から分散室72に分散液を供給する。この際、分散液の送液前に分散室のローターを回転させておくことは、分散室出口での目詰まりを防止する効果が大きく、有効な手段である。
【0063】
次いで、分散室72に供給された分散液に含まれるチタニルフタロシアニン結晶の分散を行うが、分散の初期状態において、ポンプ等の送液に対して所定流量を得ることが出来ない時間がある。この時間帯に、通常の回転数で分散を行ってしまうと、過剰の分散エネルギーをチタニルフタロシアニン結晶に与えてしまうことになり、結晶転移を生じさせてしまう可能性がある。これに対しては、2つの方法で対処することが出来る。
1つは所定流量が得られるまでの時間、ローターの回転数を低減化する方法である。前記の時間は、分散に供されるチタニルフタロシアニン結晶の全てが分散室を1回通過するまでの間であると考えられるが、目詰まりに依存した流量変化は分散ごとに異なる可能性があるので、流量の測定を随時行い、所定流量の90%以上の流量が流れる時間まで、ローター回転数を落とした状態で分散を行う方法である。この際、回転数が定常状態の80%以上であるとその効果が小さく、結晶転移を起こす可能性が残され、また30%以下であると分散効率が極端に低下し、かえって滞留時間を長くしてしまう。従って、分散の初期状態においては、ローターの回転数は分散の定常状態の回転数の30〜80%の範囲が適当である。なお、分散の定常状態とは、ポンプ等の送液により得られる流量が所定量の±10%程度の範囲を維持する場合であり、循環分散の連続運転が可能になった状態を示すものである。
【0064】
いま1つの方法は、所定流量が得られるまでの時間、送液ポンプ等の出力を大きくして、流量を稼ぐ方法である。先の時間は、分散に供されるチタニルフタロシアニン結晶の全てが分散室を1回通過するまでの間であると考えられるが、目詰まりに依存した流量変化は分散ごとに異なる可能性があるので、流量の測定を随時行い、所定流量の90%以上の流量が流れるようになるまで、送液用部材(送液ポンプや送液用攪拌機など)の出力を上げて、流量を落とさない状態で分散を行う方法である。このようにして分散初期状態を過ぎると、送液用部材の出力に応じた流量が確保されるようになり、所定流量をオーバーする状態に向かう。このような状態になったら、流量が送液用部材の出力に対してほぼ一定の関係(定常状態)になるので、所定の出力に落として、分散を継続する。尚、分散の定常状態とは、ポンプ等の送液により得られる流量が所定量の±10%程度の範囲を維持する場合であり、循環分散の連続運転が可能になった状態を示すものである。
【0065】
分散の終了は、所定の条件にて分散を行い、分散時間により管理されるものであるが、分散液の状態を確認しながら行うことが望ましい。例えば、粒子径の測定、あるいは薄膜を形成して塗膜状態を顕微鏡観察するなどが挙げられる。前者の場合には、微量の粗大粒子を計測できない場合があり、感光体の電荷発生層のような薄膜形成用分散液として用いる場合には最適な方法ではなく、後者のように簡便的な方法にて、実使用状態と同等のサンプルにて確認することが望ましい。
【0066】
このような所定の分散時間が終了したら、次いで分散液の払い出しが行われる。一般的に、もちろん各種制約により上限が存在するものの、顔料濃度が高い方が分散効率は高い。
これは分散メディアとの接触確率が高くなることで説明が付く。概ね、顔料濃度として5〜15%程度の範囲で分散が行われる。このように高い顔料濃度では、分散液の取り出しの際にかなりのロスを生じる。特に循環系が長い場合にはこの問題は顕著である。通常は、分散液の濃度と分散液の使用濃度が異なり、前者の方が高い濃度であるから、使用する前には少なくとも希釈工程が存在する。循環分散においては、払い出しと共に希釈を行うことが払い出し効率(回収効率)を高めることが出来、同時に分散装置の洗浄も可能になり、非常に効率的である。簡便的には、分散終了後、送液ポンプ等により分散液(原液)を払い出し、ポンプによる払い出しが行われなくなるか、その直前に希釈用の溶媒を循環タンクに投入し、再びポンプにより払い出す。この際、出来る限り循環させないことが肝要であり、循環タンクに戻ってくる前に払い出してしまうことにより、循環系がきれいになり、払い出しの効率も高くなる。
以上のようにして、チタニルフタロシアニン結晶を含む分散液は作製される。
【0067】
次に、本発明の電子写真感光体を図面に沿って説明する。
図6は、本発明の電子写真感光体を表わす断面図であり、導電性支持体51上に、感光層として電荷発生物質を主成分とする電荷発生層55と電荷輸送物質を主成分とする電荷輸送層57とが設けられている。
図7は、本発明の電子写真感光体の別の構成例を示す断面図であり、電荷発生層55と電荷輸送層57の上に、保護層59が積層された構成をとっている。
【0068】
導電性支持体51としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理した管などを使用することができる。また、特開昭52−36016号公報に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体51として用いることができる。
また、これらの中でも陽極酸化皮膜処理を簡便に行うことのできるアルミニウムからなる円筒状支持体が最も良好に使用できる。ここでいうアルミニウムとは、純アルミ系あるいはアルミニウム合金のいずれをも含むものである。具体的には、JIS A1000番台、3000番台、6000番台のアルミニウムあるいはアルミニウム合金が最も適している。陽極酸化皮膜は各種金属、各種合金を電解質溶液中において陽極酸化処理したものであるが、中でもアルミニウムもしくはアルミニウム合金を電解質溶液中で陽極酸化処理を行ったアルマイトと呼ばれる被膜が本発明に用いる感光体には最も適している。特に、反転現像(ネガ・ポジ現像)に用いた際に発生する点欠陥(黒ポチ、地汚れ)を防止する点で優れている。
【0069】
陽極酸化処理は、クロム酸、硫酸、蓚酸、リン酸、硼酸、スルファミン酸などの酸性浴中において行われる。このうち、硫酸浴による処理が最も適している。一例を挙げると、硫酸濃度:10〜20%、浴温:5〜25℃、電流密度:1〜4A/dm2、電解電圧:5〜30V、処理時間:5〜60分程度の範囲で処理が行われるが、これに限定するものではない。このように作製される陽極酸化皮膜は、多孔質であり、又絶縁性が高いため、表面が非常に不安定な状況である。このため、作製後の経時変化が存在し、陽極酸化皮膜の物性値が変化しやすい。これを回避するため、陽極酸化皮膜を更に封孔処理することが望ましい。
【0070】
封孔処理には、フッ化ニッケルや酢酸ニッケルを含有する水溶液に陽極酸化皮膜を浸漬する方法、陽極酸化皮膜を沸騰水に浸漬する方法、加圧水蒸気により処理する方法などがある。このうち、酢酸ニッケルを含有する水溶液に浸漬する方法が最も好ましい。
封孔処理に引き続き、陽極酸化皮膜の洗浄処理が行われる。これは、封孔処理により付着した金属塩等の過剰なものを除去することが主な目的である。これが支持体(陽極酸化皮膜)表面に過剰に残存すると、この上に形成する塗膜の品質に悪影響を与えるだけでなく、一般的に低抵抗成分が残ってしまうため、逆に地汚れの発生原因にもなってしまう。洗浄は純水1回の洗浄でも構わないが、通常は他段階の洗浄を行う。この際、最終の洗浄液が可能な限りきれい(脱イオンされた)ものであることが好ましい。また、他段階の洗浄工程のうち1工程に接触部材による物理的なこすり洗浄を施すことが望ましい。
以上のようにして形成される陽極酸化皮膜の膜厚は、5〜15μm程度が望ましい。これより薄すぎる場合には陽極酸化皮膜としてのバリア性の効果が十分でなく、これより厚すぎる場合には電極としての時定数が大きくなりすぎて、残留電位の発生や感光体のレスポンスが低下する場合がある。
【0071】
この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したものも、本発明の導電性支持体51として用いることができる。この導電性粉体としては、カーボンブラック、アセチレンブラック、またアルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などがあげられる。また、同時に用いられる結着樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂があげられる。このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
【0072】
更に、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、テフロン(登録商標)などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体31として良好に用いることができる。
【0073】
次に感光層について説明する。
電荷発生層55は、先に説明したチタニルフタロシアニン結晶を主成分とする分散液を用いて形成された層である。好ましくは、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有する結晶型のチタニルフタロシアニン結晶が用いられる。特に、前記結晶型のうち、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.4°以上9.4゜未満の範囲にピークを有さないチタニルフタロシアニン結晶が良好に用いられ、更に26.3゜にピークを有さないチタニルフタロシアニン結晶は特に良好に用いられる。
本発明に係る分散液を、電荷発生層塗工液として用いる場合、分散液中のチタニルフタロシアニン結晶の濃度は、分散液の処方、得ようとする電荷発生層の膜厚等により変わってくるが、塗工液の全重量に対して、チタニルフタロシアニン結晶が3重量%以下程度が好ましい。
分散液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等の方法を用いることができる。電荷発生層55の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。
【0074】
電荷輸送層57は、電荷輸送物質および結着樹脂を適当な溶剤に溶解ないし分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤、レベリング剤、酸化防止剤等を添加することもできる。
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。
電荷輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質が挙げられる。
正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
【0075】
結着樹脂としてはポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。
電荷輸送物質の量は結着樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。
また、電荷輸送層の膜厚は5〜100μm程度とすることが好ましい。
【0076】
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、非ハロゲン系溶媒であるテトロヒドロフラン、ジオキサン等の環状エーテル、トルエン、キシレン等の芳香族炭化水素が良好に用いられる。
これら非ハロゲン系溶媒を電荷輸送層の塗工溶媒として用い、電荷発生物質としてチタニルフタロシアン結晶を用いると、所望の光感度が得られない場合が存在するが、本発明における分散液を用いて形成した場合には、そのようなことが起こらない。その理由としては、微粒子化が進んでおり、かつ結晶転移が少ないためであると推測される。
【0077】
また、電荷輸送層には電荷輸送物質としての機能とバインダー樹脂の機能を持った高分子電荷輸送物質も良好に使用される。これら高分子電荷輸送物質から構成される電荷輸送層は耐摩耗性に優れたものである。高分子電荷輸送物質としては、公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。中でも、(I)〜(X)式で表される高分子電荷輸送物質が良好に用いられ、これらを以下に例示し、具体例を示す。
【0078】
【化1】

(I)式中、R1,R2,R3はそれぞれ独立して置換もしくは無置換のアルキル基又はハロゲン原子、R4は水素原子又は置換もしくは無置換のアルキル基、R5,R6は置換もしくは無置換のアリール基、o,p,qはそれぞれ独立して0〜4の整数、k,jは組成を表し、0.1≦k≦1、0≦j≦0.9、nは繰り返し単位数を表し5〜5000の整数である。Xは脂肪族の2価基、環状脂肪族の2価基、または下記一般式で表される2価基を表す。尚、(I)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0079】
【化2】

101,R102は各々独立して置換もしくは無置換のアルキル基、アリール基またはハロゲン原子を表す。l,mは0〜4の整数、Yは単結合、炭素原子数1〜12の直鎖状、分岐状もしくは環状のアルキレン基、−O−、−S−、−SO−、−SO2−、−CO−、−CO−O−Z−O−CO−(式中Zは脂肪族の2価基を表す。)または、
【化3】

(aは1〜20の整数、bは1〜2000の整数、R103,R104は置換または無置換のアルキル基又はアリール基を表す)を表す。ここで、R101とR102、R103とR104は、それぞれ同一でも異なってもよい。)
【0080】
【化4】

(II)式中、R7,R8は置換もしくは無置換のアリール基、Ar1,Ar2,Ar3は同一又は異なるアリーレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(II)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0081】
【化5】

(III)式中、R9,R10は置換もしくは無置換のアリール基、Ar4,Ar5,Ar6は同一又は異なるアリーレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(III)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0082】
【化6】

(IV)式中、R11,R12は置換もしくは無置換のアリール基、Ar7,Ar8,Ar9は同一又は異なるアリーレン基、pは1〜5の整数を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(IV)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0083】
【化7】

(V)式中、R13,R14は置換もしくは無置換のアリール基、Ar10,Ar11,Ar12は同一又は異なるアリーレン基、X1,X2は置換もしくは無置換のエチレン基、又は置換もしくは無置換のビニレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(V)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0084】
【化8】

(VI)式中、R15,R16,R17,R18は置換もしくは無置換のアリール基、Ar13,Ar14,Ar15,Ar16は同一又は異なるアリーレン基、Y1,Y2,Y3は単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表し同一であっても異なってもよい。X,k,jおよびnは、(I)式の場合と同じである。尚、(VI)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0085】
【化9】

(VII)式中、R19,R20は水素原子、置換もしくは無置換のアリール基を表し、R19とR20は環を形成していてもよい。Ar17,Ar18,Ar19は同一又は異なるアリーレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(VII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0086】
【化10】

(VIII)式中、R21は置換もしくは無置換のアリール基、Ar20,Ar21,Ar22,Ar23は同一又は異なるアリーレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(VIII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0087】
【化11】

(IX)式中、R22,R23,R24,R25は置換もしくは無置換のアリール基、Ar24,Ar25,Ar26,Ar27,Ar28は同一又は異なるアリーレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(IX)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0088】
【化12】

(X)式中、R26,R27は置換もしくは無置換のアリール基、Ar29,Ar30,Ar31は同一又は異なるアリーレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(X)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
【0089】
また、電荷輸送層に使用される高分子電荷輸送物質として、上述の高分子電荷輸送物質の他に、電荷輸送層の成膜時には電子供与性基を有するモノマーあるいはオリゴマーの状態で、成膜後に硬化反応あるいは架橋反応をさせることで、最終的に2次元あるいは3次元の架橋構造を有する重合体も含むものである。
これら電子供与性基を有する重合体から構成される電荷輸送層、あるいは架橋構造を有する重合体は耐摩耗性に優れたものである。通常、電子写真プロセスにおいては、帯電電位(未露光部電位)は一定であるため、繰り返し使用により感光体の表面層が摩耗すると、その分だけ感光体にかかる電界強度が高くなってしまう。この電界強度の上昇に伴い、地汚れの発生頻度が高くなるため、感光体の耐摩耗性が高いことは、地汚れに対して有利である。これら電子供与性基を有する重合体から構成される電荷輸送層は、自身が高分子化合物であるため成膜性に優れ、低分子分散型高分子からなる電荷輸送層に比べ、電荷輸送部位を高密度に構成することが可能で電荷輸送能に優れたものである。このため、高分子電荷輸送物質を用いた電荷輸送層を有する感光体には高速応答性が期待できる。
【0090】
その他の電子供与性基を有する重合体としては、公知単量体の共重合体や、ブロック重合体、グラフト重合体、スターポリマーや、また、例えば特開平3−109406号公報、特開2000−206723号公報、特開2001−34001号公報等に開示されているような電子供与性基を有する架橋重合体などを用いることも可能である。この場合にも、先の移動度を満足できるような材料が有効に使用出来る。
【0091】
本発明において電荷輸送層57中に可塑剤やレベリング剤を添加してもよい。
可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、結着樹脂に対して0〜30重量%程度が適当である。
レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいは、オリゴマーが使用され、その使用量は結着樹脂に対して、0〜1重量%が適当である。
【0092】
本発明の電子写真感光体には、導電性支持体51と感光層との間に下引き層を設けることができる。下引き層は一般には樹脂を主成分とするが、これらの樹脂はその上に感光層を溶剤で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。
【0093】
また、下引き層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてもよい。
これらの下引き層は前述の感光層の如く適当な溶媒、塗工法を用いて形成することができる。更に本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の下引き層には、Al23を陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物やSiO2、SnO2、TiO2、ITO、CeO2等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。下引き層の膜厚は0〜5μmが適当である。
【0094】
本発明の電子写真感光体には、感光層保護の目的で、保護層が感光層の上に設けられることもある。近年、日常的にコンピュータの使用が行なわれるようになり、プリンタによる高速出力とともに、装置の小型化も望まれている。したがって、保護層を設け、耐久性を向上させることによって、本発明の高感度で異常欠陥のない感光体を有用に用いることができる。
保護層に使用される材料としてはABS樹脂、ACS樹脂、オレフィン−ビニルモノマー共重合体、塩素化ポリエーテル、アリル樹脂、フェノール樹脂、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアクリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリアリレート、ポリエーテルスルホン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、アクリル樹脂、ポリメチルベンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、ポリスチレン、AS樹脂、ブタジエン−スチレン共重合体、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ樹脂等の樹脂が挙げられる。中でも、ポリカーボネートもしくはポリアリレートが最も良好に使用できる。
【0095】
保護層にはその他、耐摩耗性を向上する目的でポリテトラフルオロエチレンのような弗素樹脂、シリコーン樹脂、及びこれらの樹脂に酸化チタン、酸化錫、チタン酸カリウム、シリカ等の無機フィラー、また有機フィラーを分散したもの等を添加することができる。
また、感光体の保護層に用いられるフィラー材料のうち有機性フィラー材料としては、ポリテトラフルオロエチレンのようなフッ素樹脂粉末、シリコーン樹脂粉末、a−カーボン粉末等が挙げられ、無機性フィラー材料としては、銅、スズ、アルミニウム、インジウムなどの金属粉末、シリカ、酸化錫、酸化亜鉛、酸化チタン、酸化インジウム、酸化アンチモン、酸化ビスマス、アンチモンをドープした酸化錫、錫をドープした酸化インジウム等の金属酸化物、無機顔料、チタン酸カリウムなどの無機材料が挙げられる。特に、フィラーの硬度の点からは、この中でも無機材料を用いることが有利である。特に、シリカ、酸化チタン、アルミナが有効に使用できる。
【0096】
保護層中のフィラー濃度は使用するフィラー種により、また感光体を使用する電子写真プロセス条件によっても異なるが、保護層の最表層側において全固形分に対するフィラーの比で5重量%以上、好ましくは10重量%以上、50重量%以下、より好ましくは30重量%以下程度が良好である。
また、使用するフィラーの体積平均粒径は、0.1μm〜2μmの範囲が良好に使用され、好ましくは0.3μm〜1μmの範囲である。この場合、平均粒径が小さすぎると耐摩耗性が充分に発揮されず、大きすぎると塗膜の表面性が悪くなったり、塗膜そのものが形成できなかったりするからである。
なお、本発明におけるフィラーの平均粒径とは、特別な記載のない限り体積平均粒径であり、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものである。この際、累積分布の50%に相当する粒子径(Median径)として算出されたものである。また、同時に測定される各々の粒子の標準偏差が1μm以下であることが重要である。これ以上の標準偏差の値である場合には、粒度分布が広すぎて、本発明の効果が顕著に得られなくなってしまう場合がある。
【0097】
また、本発明で使用するフィラーのpHも解像度やフィラーの分散性に大きく影響する。その理由の一つとしては、フィラー、特に金属酸化物は製造時に塩酸等が残存することが考えられる。その残存量が多い場合には、画像ボケの発生は避けられず、またそれは残存量によってはフィラーの分散性にも影響を及ぼす場合がある。
もう一つの理由としては、フィラー、特に金属酸化物の表面における帯電性の違いによるものである。通常、液体中に分散している粒子はプラスあるいはマイナスに帯電しており、それを電気的に中性に保とうとして反対の電荷を持つイオンが集まり、そこで電気二重層が形成されることによって粒子の分散状態を安定化している。粒子から遠ざかるに従いその電位(ゼータ電位)は徐々に低くなり、粒子から充分に離れて電気的に中性である領域の電位はゼロとなる。したがって、ゼータ電位の絶対値の増加によって、粒子の反発力が高くなることによって安定性は高くなり、ゼロに近づくに従い凝集しやすく不安定になる。一方、系のpH値によってゼータ電位は大きく変動し、あるpH値において電位はゼロとなり等電点を持つことになる。したがって、系の等電点からできるだけ遠ざけて、ゼータ電位の絶対値を高めることによって分散系の安定化が図られることになる。
【0098】
本発明の構成においては、フィラーとしては前述の等電点におけるpHが、少なくとも5以上を示すものが画像ボケ抑制の点から好ましく、より塩基性を示すフィラーであるほどその効果が高くなる傾向があることが確認された。等電点におけるpHが高い塩基性を示すフィラーは、系が酸性であった方がゼータ電位はより高くなることにより、分散性及びその安定性は向上することになる。
ここで、本発明におけるフィラーのpHは、ゼータ電位から等電点におけるpH値を記載した。この際、ゼータ電位の測定は、大塚電子製のレーザーゼータ電位計にて測定した。
【0099】
更に、画像ボケが発生しにくいフィラーとしては、電気絶縁性が高いフィラー(比抵抗が1010Ω・cm以上)が好ましく、フィラーのpHが5以上を示すものやフィラーの誘電率が5以上を示すものが特に有効に使用できる。また、pHが5以上のフィラーあるいは誘電率が5以上のフィラーを単独で使用することはもちろん、pHが5以下のフィラーとpHが5以上のフィラーとを2種類以上を混合したり、誘電率が5以下のフィラーと誘電率が5以上のフィラーとを2種類以上混合したりして用いることも可能である。また、これらのフィラーの中でも高い絶縁性を有し、熱安定性が高い上に、耐摩耗性が高い六方細密構造であるα型アルミナは、画像ボケの抑制や耐摩耗性の向上の点から特に有用である。
【0100】
本発明において使用するフィラーの比抵抗は以下のように定義される。フィラーのような粉体は、充填率によりその比抵抗値が異なるので、一定の条件下で測定する必要がある。
本発明においては、特開平5−94049号公報(図1)、特開平5−113688号公報(図1)に示された測定装置と同様の構成の装置を用いて、フィラーの比抵抗値を測定し、この値を用いた。測定装置において、電極面積は4.0cm2である。測定前に片側の電極に4kgの荷重を1分間かけ、電極間距離が4mmになるように試料量を調節する。測定の際は、上部電極の重量(1kg)の荷重状態で測定を行ない、印加電圧は100Vにて測定する。105Ω・cm以上の領域は、HIGH RESISTANCE METER(横河ヒューレットパッカード)、それ以下の領域についてはデジタルマルチメーター(フルーク)により測定した。これにより得られた比抵抗値を本発明の云うところの比抵抗値と定義するものである。
【0101】
フィラーの誘電率は以下のように測定した。上述のような比抵抗の測定と同様なセルを用い、荷重をかけた後に、静電容量を測定し、これより誘電率を求めた。静電容量の測定は、誘電体損測定器(安藤電気製)を使用した。
【0102】
更に、これらのフィラーは少なくとも一種の表面処理剤で表面処理させることが可能であり、そうすることがフィラーの分散性の面から好ましい。フィラーの分散性の低下は残留電位の上昇だけでなく、塗膜の透明性の低下や塗膜欠陥の発生、さらには耐摩耗性の低下をも引き起こすため、高耐久化あるいは高画質化を妨げる大きな問題に発展する可能性がある。
【0103】
表面処理剤としては、従来用いられている表面処理剤すべてを使用することができるが、フィラーの絶縁性を維持できる表面処理剤が好ましい。例えば、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤、高級脂肪酸等、あるいはこれらとシランカップリング剤との混合処理や、Al23、TiO2、ZrO2、シリコーン、ステアリン酸アルミニウム等、あるいはそれらの混合処理がフィラーの分散性及び画像ボケの点からより好ましい。シランカップリング剤による処理は、画像ボケの影響が強くなるが、上記の表面処理剤とシランカップリング剤との混合処理を施すことによりその影響を抑制できる場合がある。表面処理量については、用いるフィラーの平均一次粒径によって異なるが、3〜30wt%が適しており、5〜20wt%がより好ましい。表面処理量がこれよりも少ないとフィラーの分散効果が得られず、また多すぎると残留電位の著しい上昇を引き起こす。これらフィラー材料は単独もしくは2種類以上混合して用いられる。フィラーの表面処理量に関しては、上述のようにフィラー量に対する使用する表面処理剤の重量比で定義される。
これらフィラー材料は、適当な分散機を用いることにより分散できる。また、保護層の透過率の点から使用するフィラーは1次粒子レベルまで分散され、凝集体が少ない方が好ましい。
【0104】
また、保護層には残留電位低減、応答性改良のため、電荷輸送物質を含有しても良い。電荷輸送物質は、電荷輸送層の説明のところに記載した材料を用いることができる。電荷輸送物質として、低分子電荷輸送物質を用いる場合には、保護層中における濃度傾斜を設けても構わない。耐摩耗性向上のため、表面側を低濃度にすることは有効な手段である。
ここでいう濃度とは、保護層を構成する全材料の総重量に対する低分子電荷輸送物質の重量の比を表わし、濃度傾斜とは上記重量比において表面側において濃度が低くなるような傾斜を設けることを示す。
また、高分子電荷輸送物質を用いることは、感光体の耐久性を高める点で非常に有利である。
保護層の形成法としては通常の塗布法が採用される。なお保護層の厚さは0.1〜10μm程度が適当である。
【0105】
次に、保護層のバインダー構成として、架橋構造からなる保護層について説明する(以下、架橋型保護層と呼ぶ)。
架橋構造の形成に関しては、1分子内に複数個の架橋性官能基を有する反応性モノマーを使用し、光や熱エネルギーを用いて架橋反応を起こさせ、3次元の網目構造を形成するものである。この網目構造がバインダー樹脂として機能し、高い耐摩耗性を発現するものである。
【0106】
また、上記反応性モノマーとして、全部もしくは一部に電荷輸送能を有するモノマーを使用することは非常に有効な手段である。このようなモノマーを使用することにより、網目構造中に電荷輸送部位が形成され、保護層としての機能を十分に発現することが可能となる。電荷輸送能を有するモノマーとしては、トリアリールアミン構造を有する反応性モノマーが有効に使用される。
このような網目構造を有する保護層は、耐摩耗性が高い反面、架橋反応時に体積収縮が大きく、あまり厚膜化するとクラックなどを生じる場合がある。このような場合には、保護層を積層構造として、下層(感光層側)には低分子分散ポリマーの保護層を使用し、上層(表面側)に架橋構造を有する保護層を形成しても良い。
【0107】
架橋型保護層の中でも下記のような特定の構成からなる保護層は、特に有効に使用される。
特定の架橋型保護層とは、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成される保護層である。3官能以上のラジカル重合性モノマーを硬化した架橋構造を有するため3次元の網目構造が発達し、架橋密度が非常に高い高硬度且つ高弾性な表面層が得られ、かつ均一で平滑性も高く、高い耐摩耗性、耐傷性が達成される。この様に感光体表面の架橋密度すなわち単位体積あたりの架橋結合数を増加させることが重要であるが、硬化反応において瞬時に多数の結合を形成させるため体積収縮による内部応力が発生する。この内部応力は架橋型保護層の膜厚が厚くなるほど増加するため保護層全層を硬化させると、クラックや膜剥がれが発生しやすくなる。この現象は初期的に現れなくても、電子写真プロセス上で繰り返し使用され帯電、現像、転写、クリーニングのハザード及び熱変動の影響を受けることにより、経時で発生しやすくなることもある。
【0108】
この問題を解決する方法としては、(1)架橋層及び架橋構造に高分子成分を導入する、(2)1官能及び2官能のラジカル重合性モノマーを多量に用いる、(3)柔軟性基を有する多官能モノマーを用いる、などの硬化樹脂層を柔らかくする方向性が挙げられるが、いずれも架橋層の架橋密度が希薄となり、飛躍的な耐摩耗性が達成されない。これに対し、本発明の感光体は、電荷輸送層上に3次元の網目構造が発達した架橋密度の高い架橋型保護層を好ましくは1μm以上、10μm以下の膜厚で設けることで、上記のクラックや膜剥がれが発生せず、且つ非常に高い耐摩耗性が達成される。かかる架橋型保護層の膜厚を2μm以上、8μm以下の膜厚にすることにより、さらに上記問題に対する余裕度が向上することに加え、更なる耐摩耗性向上に繋がる高架橋密度化の材料選択が可能となる。
【0109】
本発明の感光体がクラックや膜剥がれを抑制できる理由としては、架橋型保護層を薄膜化できるため内部応力が大きくならないこと、下層に感光層もしくは電荷輸送層を有するため表面の架橋型保護層の内部応力を緩和できることなどによる。このため架橋型保護層に高分子材料を多量に含有させる必要がなく、この時生ずる、高分子材料とラジカル重合性組成物(ラジカル重合性モノマーや電荷輸送性構造を有するラジカル重合性化合物)の反応より生じた硬化物との不相溶が原因の傷やトナーフィルミングも起こりにくい。さらに、保護層全層にわたる厚膜を光エネルギー照射により硬化する場合、電荷輸送性構造による吸収から内部への光透過が制限され、硬化反応が十分に進行しない現象が起こることがある。本発明の架橋型保護層においては、好ましくは10μm以下の薄膜とすることにより内部まで均一に硬化反応が進行し、表面と同様に内部でも高い耐摩耗性が維持される。また、本発明の架橋型保護層の形成においては、上記3官能性ラジカル重合性モノマーに加え、さらに1官能の電荷輸送性構造を有するラジカル重合性化合物を含有しており、これが上記3官能以上のラジカル重合性モノマー硬化時に架橋結合中に取り込まれる。これに対し、官能基を有しない低分子電荷輸送物質を架橋表面層中に含有させた場合、その相溶性の低さから低分子電荷輸送物質の析出や白濁現象が起こり、架橋表面層の機械的強度も低下する。一方、2官能以上の電荷輸送性化合物を主成分として用いた場合は複数の結合で架橋構造中に固定され架橋密度はより高まるが、電荷輸送性構造が非常に嵩高いため硬化樹脂構造の歪みが非常に大きくなり、架橋型保護層の内部応力が高まる原因となる。
【0110】
更に、本発明の感光体は良好な電気的特性を有し、このため繰り返し安定性に優れており高耐久化並びに高安定化が実現される。これは架橋型保護層の構成材料として1官能の電荷輸送性構造を有するラジカル重合性化合物を用い、架橋結合間にペンダント状に固定化したことに起因する。上記のように官能基を有しない電荷輸送物質は析出、白濁現象が起こり、感度の低下、残留電位の上昇等繰り返し使用における電気的特性の劣化が著しい。2官能以上の電荷輸送性化合物を主成分として用いた場合は複数の結合で架橋構造中に固定されるため、電荷輸送時の中間体構造(カチオンラジカル)が安定して保てず、電荷のトラップによる感度の低下、残留電位の上昇が起こりやすい。これらの電気的特性の劣化は、画像濃度低下、文字細り等の画像として現れる。さらに、本発明の感光体においては、下層の電荷輸送層として従来感光体の電荷トラップの少ない高移動度な設計が適応可能で、架橋型保護層の電気的副作用を最小限に抑えることができる。
【0111】
更に、本発明の上記架橋型保護層形成において、架橋型保護層が有機溶剤に対し不溶性にすることにより、特にその飛躍的な耐摩耗性が発揮される。本発明の架橋型保護層は電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、層全体としては3次元の網目構造が発達し高い架橋密度を有するが、上記成分以外の含有物(例えば、1または2官能モノマー、高分子バインダー、酸化防止剤、レベリング剤、可塑剤などの添加剤及び下層からの溶解混入成分)や硬化条件により、局部的に架橋密度が希薄になったり、高密度に架橋した微小な硬化物の集合体として形成されることがある。このような架橋型保護層は、硬化物間の結合力は弱く有機溶剤に対し溶解性を示し、且つ電子写真プロセス中で繰り返し使用されるなかで、局部的な摩耗や微小な硬化物単位での脱離が発生しやすくなる。本発明のように架橋型保護層を有機溶剤に対し不溶性にせしめることにより、本来の3次元の網目構造が発達し高い架橋度を有することに加え、連鎖反応が広い範囲で進行し硬化物が高分子量化するため、飛躍的な耐摩耗性の向上が達成される。
【0112】
次に、本発明の架橋型保護層塗布液の構成材料について説明する。
本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を3個以上有するモノマーを指す。このラジカル重合性官能基とは、炭素−炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。これらラジカル重合性官能基としては、例えば、下記に示す1−置換エチレン官能基、1,1−置換エチレン官能基等が挙げられる。
【0113】
(1)1−置換エチレン官能基としては、例えば以下の式で表される官能基が挙げられる。
CH2=CH−X1−・・・・式10
(ただし、式10中、X1は、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、−CO−基、−COO−基、−CON(R10)−基(R10は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表す。)、または−S−基を表す。)
これらの官能基を具体的に例示すると、ビニル基、スチリル基、2−メチル−1,3−ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリロイルアミド基、ビニルチオエーテル基等が挙げられる。
【0114】
(2)1,1−置換エチレン官能基としては、例えば以下の式で表される官能基が挙げられる。
CH2=C(Y)−X2−・・・・式11
(ただし、式11中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、−COOR11基(R11は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または−CONR1213(R12およびR13は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表し、互いに同一または異なっていてもよい。)、また、X2は上記式10のX1と同一の置換基及び単結合、アルキレン基を表す。ただし、Y、X2の少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。)
これらの官能基を具体的に例示すると、α−塩化アクリロイルオキシ基、メタクリロイルオキシ基、α−シアノエチレン基、α−シアノアクリロイルオキシ基、α−シアノフェニレン基、メタクリロイルアミノ基等が挙げられる。
【0115】
なお、これらX、X、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
【0116】
これらのラジカル重合性官能基の中では、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用であり、3個以上のアクリロイルオキシ基を有する化合物は、例えば水酸基がその分子中に3個以上ある化合物とアクリル酸(塩)、アクリル酸ハライド、アクリル酸エステルを用い、エステル反応あるいはエステル交換反応させることにより得ることができる。また、3個以上のメタクリロイルオキシ基を有する化合物も同様にして得ることができる。また、ラジカル重合性官能基を3個以上有する単量体中のラジカル重合性官能基は、同一でも異なっても良い。
【0117】
電荷輸送性構造を有しない3官能以上の具体的なラジカル重合性モノマーとしては、以下のものが例示されるが、これらの化合物に限定されるものではない。
すなわち、本発明において使用する上記ラジカル重合性モノマーとしては、例えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、トリメチロールプロパンアルキレン変性トリアクリレート、トリメチロールプロパンエチレンオキシ変性(以後EO変性)トリアクリレート、トリメチロールプロパンプロピレンオキシ変性(以後PO変性)トリアクリレート、トリメチロールプロパンカプロラクトン変性トリアクリレート、トリメチロールプロパンアルキレン変性トリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、グリセロールトリアクリレート、グリセロールエピクロロヒドリン変性(以後ECH変性)トリアクリレート、グリセロールEO変性トリアクリレート、グリセロールPO変性トリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールカプロラクトン変性ヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル化ジペンタエリスリトールペンタアクリレート、アルキル化ジペンタエリスリトールテトラアクリレート、アルキル化ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、リン酸EO変性トリアクリレート、2,2,5,5,−テトラヒドロキシメチルシクロペンタノンテトラアクリレートなどが挙げられ、これらは、単独又は2種類以上を併用しても差し支えない。
【0118】
また、本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとしては、架橋型保護層中に緻密な架橋結合を形成するために、該モノマー中の官能基数に対する分子量の割合(分子量/官能基数)は250以下が望ましい。また、この割合が250より大きい場合、架橋型保護層は柔らかく耐摩耗性が幾分低下する傾向が出てくるため、上記例示したモノマー等中、EO、PO、カプロラクトン等の変性基を有するモノマーにおいては、極端に長い変性基を有するものを単独で使用することは好ましくはない。また、架橋型保護層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合は、架橋型保護層全量に対し20〜80重量%、好ましくは30〜70重量%である。モノマー成分が20重量%未満では架橋型保護層の3次元架橋結合密度が少なく、従来の熱可塑性バインダー樹脂を用いた場合に比べ飛躍的な耐摩耗性向上が達成しにくくなる傾向がある。また、80重量%を超えると電荷輸送性化合物の含有量が低下し、電気的特性の劣化が生じる傾向がある。使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本感光体の架橋型保護層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
【0119】
本発明の架橋型保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物とは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しており、且つ1個のラジカル重合性官能基を有する化合物を指す。このラジカル重合性官能基としては、先のラジカル重合性モノマーで示したものが挙げられ、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用である。また、電荷輸送性構造としてはトリアリールアミン構造が高い効果を有し、中でも下記一般式(1)又は(2)の構造で示される化合物を用いた場合、感度、残留電位等の電気的特性が良好に持続される。
【0120】
【化13】

{式中、R1は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR7(R7は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR89(R8及びR9は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar1、Ar2は置換もしくは無置換のアリーレン基を表わし、同一であっても異なってもよい。Ar3、Ar4は置換もしくは無置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。}
【0121】
以下に、一般式(1)、(2)の具体例を示す。
前記一般式(1)、(2)において、R1の置換基中、アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。
1の置換基のうち、特に好ましいものは水素原子、メチル基である。
【0122】
Ar3、Ar4は置換もしくは無置換のアリール基を表わし、本発明においては該アリール基としては縮合多環式炭化水素基、非縮合環式炭化水素基及び複素環基が含まれる。
該縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。
【0123】
該非縮合環式炭化水素基としては、ベンゼン、ジフェニルエーテル、ポリエチレンジフェニルエーテル、ジフェニルチオエーテル及びジフェニルスルホン等の単環式炭化水素化合物の1価基、あるいはビフェニル、ポリフェニル、ジフェニルアルカン、ジフェニルアルケン、ジフェニルアルキン、トリフェニルメタン、ジスチリルベンゼン、1,1−ジフェニルシクロアルカン、ポリフェニルアルカン、及びポリフェニルアルケン等の非縮合多環式炭化水素化合物の1価基、あるいは9,9−ジフェニルフルオレン等の環集合炭化水素化合物の1価基が挙げられる。
該複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オキサジアゾール、及びチアジアゾール等の1価基が挙げられる。
【0124】
また、前記Ar3、Ar4で表わされるアリール基は例えば以下に示すような置換基を有してもよい。
(1)ハロゲン原子、シアノ基、ニトロ基等。
(2)アルキル基、好ましくは、C1〜C12とりわけC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチル基、エチル基、n−ブチル基、i−プロピル基、t−ブチル基、s−ブチル基、n−プロピル基、トリフルオロメチル基、2−ヒドロキシエチル基、2−エトキシエチル基、2−シアノエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−フェニルベンジル基等が挙げられる。
(3)アルコキシ基(−OR2)であり、R2は(2)で定義したアルキル基を表わす。具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
【0125】
(4)アリールオキシ基であり、アリール基としてはフェニル基、ナフチル基が挙げられる。これは、C1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メトキシフェノキシ基、4−メチルフェノキシ基等が挙げられる。
(5)アルキルメルカプト基またはアリールメルカプト基であり、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。
【0126】
(6)
【化14】

(式中、R3及びR4は各々独立に水素原子、前記(2)で定義したアルキル基、またはアリール基を表わす。アリール基としては、例えばフェニル基、ビフェニル基又はナフチル基が挙げられ、これらはC1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。R3及びR4は共同で環を形成してもよい。)
具体的には、アミノ基、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(トリール)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。
【0127】
(7)メチレンジオキシ基、又はメチレンジチオ基等のアルキレンジオキシ基又はアルキレンジチオ基等が挙げられる。
(8)置換又は無置換のスチリル基、置換又は無置換のβ−フェニルスチリル基、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等。
【0128】
前記Ar1、Ar2で表わされるアリーレン基としては、前記Ar3、Ar4で表されるアリール基から誘導される2価基である。
前記Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。
置換もしくは無置換のアルキレン基としては、C1〜C12、好ましくはC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n−ブチレン基、i−プロピレン基、t−ブチレン基、s−ブチレン基、n−プロピレン基、トリフルオロメチレン基、2−ヒドロキシエチレン基、2−エトキシエチレン基、2−シアノエチレン基、2−メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4−クロロフェニルエチレン基、4−メチルフェニルエチレン基、4−ビフェニルエチレン基等が挙げられる。
【0129】
置換もしくは無置換のシクロアルキレン基としては、C5〜C7の環状アルキレン基であり、これらの環状アルキレン基にはフッ素原子、水酸基、C1〜C4のアルキル基、C1〜C4のアルコキシ基を有していても良い。具体的にはシクロヘキシリデン基、シクロへキシレン基、3,3−ジメチルシクロヘキシリデン基等が挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ、プロピレンオキシ、エチレングリコール、プロピレングリコール、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコールを表わし、アルキレンエーテル基アルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。
【0130】
ビニレン基は、
【化15】

で表わされ、R5は水素、アルキル基(前記(2)で定義されるアルキル基と同じ)、アリール基(前記Ar3、Ar4で表わされるアリール基と同じ)、aは1または2、bは1〜3を表わす。
【0131】
前記Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。
置換もしくは無置換のアルキレン基としては、前記Xのアルキレン基と同様なものが挙げられる。
置換もしくは無置換のアルキレンエーテル2価基としては、前記Xのアルキレンエーテル2価基が挙げられる。
アルキレンオキシカルボニル2価基としては、カプロラクトン2価変性基が挙げられる。
【0132】
また、本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物として更に好ましくは、下記一般式(3)の構造の化合物が挙げられる。
【化16】

(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、
【化17】

を表わす。)
上記一般式で表わされる化合物としては、Rb、Rcの置換基として、特にメチル基、エチル基である化合物が好ましい。
【0133】
本発明で用いる上記一般式(1)及び(2)特に(3)の1官能性の電荷輸送性構造を有するラジカル重合性化合物は、炭素−炭素間の二重結合が両側に開放されて重合するため、末端構造とはならず、連鎖重合体中に組み込まれ、3官能以上のラジカル重合性モノマーとの重合で架橋形成された重合体中では、高分子の主鎖中に存在し、かつ主鎖−主鎖間の架橋鎖中に存在(この架橋鎖には1つの高分子と他の高分子間の分子間架橋鎖と、1つの高分子内で折り畳まれた状態の主鎖のある部位と主鎖中でこれから離れた位置に重合したモノマー由来の他の部位とが架橋される分子内架橋鎖とがある)するが、主鎖中に存在する場合であってもまた架橋鎖中に存在する場合であっても、鎖部分から懸下するトリアリールアミン構造は、窒素原子から放射状方向に配置する少なくとも3つのアリール基を有し、バルキーであるが、鎖部分に直接結合しておらず鎖部分からカルボニル基等を介して懸下しているため立体的位置取りに融通性ある状態で固定されているので、これらトリアリールアミン構造は重合体中で相互に程よく隣接する空間配置が可能であるため、分子内の構造的歪みが少なく、また、電子写真感光体の表面層とされた場合に、電荷輸送経路の断絶を比較的免れた分子内構造を採りうるものと推測される。
【0134】
本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物の具体例を以下に示すが、これらの構造の化合物に限定されるものではない。
【化18】

【0135】
【化19】

【0136】
【化20】

【0137】
【化21】

【0138】
【化22】

【0139】
【化23】

【0140】
【化24】

【0141】
【化25】

【0142】
【化26】

【0143】
【化27】

【0144】
【化28】

【0145】
【化29】

【0146】
また、本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物は、架橋型保護層の電荷輸送性能を付与するために重要で、この成分は架橋型保護層に対し20〜80重量%、好ましくは30〜70重量%である。この成分が20重量%未満では架橋型保護層の電荷輸送性能が充分に保てず、繰り返しの使用で感度低下、残留電位上昇などの電気特性の劣化が現れる傾向がある。また、80重量%を超えると電荷輸送性構造を有しない3官能モノマーの含有量が低下し、架橋結合密度の低下を招き高い耐摩耗性が発揮しにくい傾向がある。使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本発明の感光体の架橋型保護層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
【0147】
本発明の電子写真感光体を構成する架橋型保護層は、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、これ以外に塗工時の粘度調整、架橋型保護層の応力緩和、低表面エネルギー化や摩擦係数低減などの機能付与の目的で1官能及び2官能のラジカル重合性モノマー、機能性モノマー及びラジカル重合性オリゴマーを併用することができる。これらのラジカル重合性モノマー、オリゴマーとしては、公知のものが利用できる。
【0148】
1官能のラジカルモノマーとしては、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマーなどが挙げられる。
【0149】
2官能のラジカル重合性モノマーとしては、例えば、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ビスフェノールA−EO変性ジアクリレート、ビスフェノールF−EO変性ジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられる。
【0150】
機能性モノマーとしては、例えば、オクタフルオロペンチルアクリレート、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2−パーフルオロイソノニルエチルアクリレートなどのフッ素原子を置換したもの、特公平5−60503号公報、特公平6−45770号公報記載のシロキサン繰り返し単位:20〜70のアクリロイルポリジメチルシロキサンエチル、メタクリロイルポリジメチルシロキサンエチル、アクリロイルポリジメチルシロキサンプロピル、アクリロイルポリジメチルシロキサンブチル、ジアクリロイルポリジメチルシロキサンジエチルなどのポリシロキサン基を有するビニルモノマー、アクリレート及びメタクリレートが挙げられる。
【0151】
ラジカル重合性オリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。
但し、1官能及び2官能のラジカル重合性モノマーやラジカル重合性オリゴマーを多量に含有させると架橋型保護層の3次元架橋結合密度が実質的に低下し、耐摩耗性の低下を招く。このためこれらのモノマーやオリゴマーの含有量は、3官能以上のラジカル重合性モノマー100重量部に対し50重量部以下、好ましくは30重量部以下であればより好ましい。
【0152】
また、本発明の架橋型保護層は少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、必要に応じてこの硬化反応を効率よく進行させるために架橋型保護層塗布液中に重合開始剤を含有させても良い。
熱重合開始剤としては、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(パーオキシベンゾイル)ヘキシン−3、ジ−t−ブチルベルオキサイド、t−ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイド、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシ)プロパンなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4,4’−アゾビス−4−シアノ吉草酸などのアゾ系開始剤が挙げられる。
【0153】
光重合開始剤としては、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−2−モルフォリノ(4−メチルチオフェニル)プロパン−1−オン、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、などのアセトフェノン系またはケタール系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、などのベンゾインエーテル系光重合開始剤、ベンゾフェノン、4−ヒドロキシベンゾフェノン、o−ベンゾイル安息香酸メチル、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルフェニールエーテル、アクリル化ベンゾフェノン、1,4−ベンゾイルベンゼン、などのベンゾフェノン系光重合開始剤、2−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン、などのチオキサントン系光重合開始剤、その他の光重合開始剤としては、エチルアントラキノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,4−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、メチルフェニルグリオキシエステル、9,10−フェナントレン、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、が挙げられる。また、光重合促進効果を有するものを単独または上記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4,4’−ジメチルアミノベンゾフェノン、などが挙げられる。
【0154】
これらの重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100重量部に対し、0.5〜40重量部、好ましくは1〜20重量部である。
【0155】
更に、本発明の架橋型保護層形成用塗工液は必要に応じて各種可塑剤(応力緩和や接着性向上の目的)、レベリング剤、ラジカル反応性を有しない低分子電荷輸送物質などの添加剤が含有できる。これらの添加剤は公知のものが使用可能であり、可塑剤としてはジブチルフタレート、ジオクチルフタレート等の一般の樹脂に使用されているものが利用可能で、その使用量は塗工液の総固形分に対し20重量%以下、好ましくは10重量%以下に抑えられる。また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが利用でき、その使用量は塗工液の総固形分に対し3重量%以下が適当である。
【0156】
本発明の架橋型保護層は、少なくとも上記の電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を含有する塗工液を前述の感光層あるいは電荷輸送層上に塗布、硬化することにより形成される。かかる塗工液はラジカル重合性モノマーが液体である場合、これに他の成分を溶解して塗布することも可能であるが、必要に応じて溶媒により希釈して塗布される。このとき用いられる溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラヒドロフラン、ジオキサン、プロピルエーテルなどのエーテル系、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系、ベンゼン、トルエン、キシレンなどの芳香族系、メチルセロソルブ、エチルセロソルブ、セロソルブアセテートなどのセロソルブ系などが挙げられる。これらの溶媒は単独または2種以上を混合して用いてもよい。溶媒による希釈率は組成物の溶解性、塗工法、目的とする膜厚により変わり、任意である。塗布は、浸漬塗工法やスプレーコート、ビードコート、リングコート法などを用いて行うことができる。
【0157】
本発明においては、かかる架橋型保護層塗工液を塗布後、外部からエネルギーを与え硬化させ、架橋型保護層を形成するものであるが、このとき用いられる外部エネルギーとしては熱、光、放射線等がある。熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用い塗工表面側あるいは支持体側から加熱することによって行われる。加熱温度は100℃以上、170℃以下が好ましく、100℃未満では反応速度が遅く、完全に硬化反応が終了しない傾向がある。170℃を超える高温では硬化反応が不均一に進行し架橋型保護層中に大きな歪みや多数の未反応残基、反応停止末端が発生する。硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、更に100℃以上に加温し反応を完結させる方法も有効である。光のエネルギーとしては主に紫外光領域に発光波長をもつ高圧水銀灯やメタルハライドランプなどのUV照射光源が利用できるが、ラジカル重合性含有物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。照射光量は50mW/cm2以上、1000mW/cm2以下が好ましく、50mW/cm2未満では硬化反応に時間を要する。1000mW/cm2より強いと反応の進行が不均一となり、架橋型保護層表面に局部的な皺が発生したり、多数の未反応残基、反応停止末端が生ずる。また、急激な架橋により内部応力が大きくなり、クラックや膜剥がれの原因となる。放射線のエネルギーとしては電子線を用いるものが挙げられる。これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さから熱及び光のエネルギーを用いたものが有用である。
【0158】
本発明の架橋型保護層の膜厚は、好ましくは1μm以上、10μm以下、さらに好ましくは2μm以上、8μm以下である。10μmより厚い場合、前述のようにクラックや膜剥がれが発生しやすくなり、8μm以下ではその余裕度がさらに向上するため架橋密度を高くすることが可能で、さらに耐摩耗性を高める材料選択や硬化条件の設定が可能となる。一方、ラジカル重合反応は酸素阻害を受けやすく、すなわち大気に接した表面では酸素によるラジカルトラップの影響で架橋が進まなかったり、不均一になりやすい。この影響が顕著に現れるのは表層1μm未満の場合で、この膜厚以下の架橋型保護層は耐摩耗性の低下や不均一な摩耗が起こりやすい。また、架橋型保護層塗工時において下層の電荷輸送層成分の混入が生じ、特に、架橋型保護層の塗布膜厚が薄いと層全体に混入物が拡がり、硬化反応の阻害や架橋密度の低下をもたらす。これらの理由から、本発明の架橋型保護層は1μm以上の膜厚で良好な耐摩耗性、耐傷性を有するが、繰り返しの使用において局部的に下層の電荷輸送層まで削れた部分できるとその部分の摩耗が増加し、帯電性や感度変動から中間調画像の濃度むらが発生しやすい。従って、より長寿命、高画質化のためには架橋型保護層の膜厚を2μm以上にすることが望ましい。
【0159】
本発明の電子写真感光体の下引き層、感光層(電荷発生層、電荷輸送層)、架橋型保護層を順次積層した構成において、最表面の架橋型保護層が有機溶剤に対し不溶性である場合、飛躍的な耐摩耗性、耐傷性が達成されることを特徴としている。この有機溶剤に対する溶解性を試験する方法としては、感光体表面層上に高分子物質に対する溶解性の高い有機溶剤、例えば、テトラヒドロフラン、ジクロロメタン等を1滴滴下し、自然乾燥後に感光体表面形状の変化を実体顕微鏡で観察することで判定できる。溶解性が高い感光体は液滴の中心部分が凹状になり周囲が逆に盛り上がる現象、電荷輸送物質が析出し結晶化による白濁やくもり生ずる現象、表面が膨潤しその後収縮することで皺が発生する現象などの変化がみられる。それに対し、不溶性の感光体は上記のような現象がみられず、滴下前と全く変化が現れない。
【0160】
本発明の構成において、架橋型保護層を有機溶剤に対し不溶性にするには、(1)架橋型保護層塗工液の組成物、それらの含有割合の調整、(2)架橋型保護層塗工液の希釈溶媒、固形分濃度の調整、(3)架橋型保護層の塗工方法の選択、(4)架橋型保護層の硬化条件の制御、(5)下層の電荷輸送層の難溶解性化など、これらをコントロールすることが重要であるが、一つの因子で達成される訳ではない。
【0161】
架橋型保護層塗工液の組成物としては、前述した電荷輸送性構造を有しない3官能以上のラジカル重合性モノマー及び1官能の電荷輸送性構造を有するラジカル重合性化合物以外に、ラジカル重合性官能基を有しないバインダー樹脂、酸化防止剤、可塑剤等の添加剤を多量に含有させると、架橋密度の低下、反応により生じた硬化物と上記添加物との相分離が生じ、有機溶剤に対し可溶性となる傾向が高い。具体的には塗工液の総固形分に対し上記総含有量を20重量%以下に抑えることが重要である。また、架橋密度を希薄にさせないために、1官能または2官能のラジカル重合性モノマー、反応性オリゴマー、反応性ポリマーにおいても、総含有量を3官能ラジカル重合性モノマーに対し20重量%以下とすることが望ましい。さらに、2官能以上の電荷輸送性構造を有するラジカル重合性化合物を多量に含有させると、嵩高い構造体が複数の結合により架橋構造中に固定されるため歪みを生じやすく、微小な硬化物の集合体となりやすい。このことが原因で有機溶剤に対し可溶性となることがある。化合物構造によって異なるが、2官能以上の電荷輸送性構造を有するラジカル重合性化合物の含有量は1官能の電荷輸送性構造を有するラジカル重合性化合物に対し10重量%以下にすることが好ましい。
【0162】
架橋型保護層塗工液の希釈溶媒に関しては、蒸発速度の遅い溶剤を用いた場合、残留する溶媒が硬化の妨げとなったり、下層成分の混入量を増加させることがあり、不均一硬化や硬化密度低下をもたらす。このため有機溶剤に対し、可溶性となりやすい。具体的には、テトラヒドロフラン、テトラヒドロフランとメタノール混合溶媒、酢酸エチル、メチルエチルケトン、エチルセロソルブなどが有用であるが、塗工法と合わせて選択される。また、固形分濃度に関しては、同様な理由で低すぎる場合、有機溶剤に対し可溶性となりやすい。逆に膜厚、塗工液粘度の制限から上限濃度の制約をうける。具体的には、10〜50重量%の範囲で用いることが望ましい。架橋型保護層の塗工方法としては、同様な理由で塗工膜形成時の溶媒含有量、溶媒との接触時間を少なくする方法が好ましく、具体的にはスプレーコート法、塗工液量を規制したリングコート法が好ましい。また、下層成分の混入量を抑えるためには、電荷輸送層として高分子電荷輸送物質を用いること、感光層(もしくは電荷輸送層)と架橋型保護層の間に、架橋型保護層の塗工溶媒に対し不溶性の中間層を設けることも有効である。
【0163】
架橋型保護層の硬化条件としては、加熱または光照射のエネルギーが低いと硬化が完全に終了せず、有機溶剤に対し溶解性があがる。逆に非常に高いエネルギーにより硬化させた場合、硬化反応が不均一となり未架橋部やラジカル停止部の増加や微小な硬化物の集合体となりやすい。このため有機溶剤に対し溶解性となることがある。有機溶剤に対し不溶性化するには、熱硬化の条件としては100〜170℃、10分〜3時間が好ましく、UV光照射による硬化条件としては50〜1000mW/cm2、5秒〜5分で且つ温度上昇を50℃以下に制御し、不均一な硬化反応を抑えることが望ましい。
【0164】
本発明の電子写真感光体を構成する架橋型保護層を有機溶剤に対し不溶性にする手法について例示すると、例えば、塗工液として、3つのアクリロイルオキシ基を有するアクリレートモノマーと、一つのアクリロイルオキシ基を有するトリアリールアミン化合物を使用する場合、これらの使用割合は7:3〜3:7であり、また、重合開始剤をこれらアクリレート化合物全量に対し3〜20重量%添加し、さらに溶媒を加えて塗工液を調製する。例えば、架橋型保護層の下層となる電荷輸送層において、電荷輸送物質としてトリアリールアミン系ドナー、及びバインダー樹脂として、ポリカーボネートを使用し、表面層をスプレー塗工により形成する場合、上記塗工液の溶媒としては、テトラヒドロフラン、2−ブタノン、酢酸エチル等が好ましく、その使用割合は、アクリレート化合物全量に対し3倍量〜10倍量である。
【0165】
次いで、例えば、アルミシリンダー等の支持体上に、下引き層、電荷発生層、上記電荷輸送層を順次積層した感光体上に、上記調製した塗工液をスプレー等により塗布する。その後、自然乾燥又は比較的低温で短時間乾燥し(25〜80℃、1〜10分間)、UV照射あるいは加熱して硬化させる。
UV照射の場合、メタルハライドランプ等を用いるが、照度は50mW/cm2以上、1000mW/cm2以下、時間としては5秒から5分程度が好ましく、ドラム温度は50℃を越えないように制御する。
熱硬化の場合、加熱温度は100〜170℃が好ましく、例えば加熱手段として送風型オーブンを用い、加熱温度を150℃に設定した場合、加熱時間は20分〜3時間である。
硬化終了後は、さらに残留溶媒低減のため100〜150℃で10分〜30分加熱して、本発明の感光体を得る。
【0166】
また、以上のほかに真空薄膜作成法にて形成したa−C、a−SiCなど公知の材料を保護層として用いることができる。
上述したように、感光層(電荷輸送層)に高分子電荷輸送物質を使用したり、あるいは感光体の表面に保護層を設けることは、各々の感光体の耐久性(耐摩耗性)を高めるだけでなく、後述のようなタンデム型フルカラー画像形成装置中で使用される場合には、モノクロ画像形成装置にはない新たな効果をも生み出すものである。
フルカラーの画像の場合、様々な形態の画像が入力されるが、逆に定型的な画像も入力される場合がある。例えば、日本語の文書等における検印の存在などである。検印のようなものは通常、画像領域の端の方に位置され、また使用される色も限定される。ランダムな画像が常に書き込まれているような状態においては、画像形成要素中の感光体には、平均的に画像書き込み、現像、転写が行なわれることになるが、上述のように特定の部分に数多くの画像形成が繰り返されたり、特定の画像形成要素ばかり使用された場合には、その耐久性のバランスを欠くことにつながる。
このような状態で表面の耐久性(物理的・化学的・機械的)の小さな感光体が使用された場合には、この差が顕著になり、画像上の問題になりやすい。一方、感光体を高耐久化した場合には、このような局所的な変化量が小さく、結果的に画像上の欠陥として現われにくくなるため、高耐久化を実現すると共に、出力画像の安定性をも増すことになり、非常に有効である。
【0167】
本発明の電子写真感光体においては、感光層と保護層との間に中間層を設けることも可能である中間層には、一般にバインダー樹脂を主成分として用いる。これら樹脂としては、ポリアミド、アルコール可溶性ナイロン、水溶性ポリビニルブチラール、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。中間層の形成法としては、前述のごとく通常の塗布法が採用される。なお、中間層の厚さは0.05〜2μm程度が適当である。
【0168】
次に図面を用いて本発明の画像形成装置を詳しく説明する。
本発明の画像形成装置は、少なくとも静電潜像形成手段(帯電手段と露光手段)、現像手段、転写手段、及び電子写真感光体からなり、該電子写真感光体が本発明の電子写真感光体である。更に必要に応じて適宜選択したその他の手段、例えば、定着手段、除電手段、クリーニング手段、リサイクル手段、制御手段等を有してなる。
−静電潜像形成手段−
前記静電潜像の形成は、例えば、前記電子写真感光体(静電潜像担持体とも称す)の表面を一様に帯電させた後、像様に露光することにより行うことができ、静電潜像形成手段により行うことができる。
前記静電潜像形成手段は、例えば、前記静電潜像担持体の表面を一様に帯電させる帯電器と、前記静電潜像担持体の表面を像様に露光する露光器とを少なくとも備える。
【0169】
前記帯電器としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、導電性又は半導電性のロール、ブラシ、フィルム、ゴムブレード等を備えたそれ自体公知の接触帯電器、コロトロン、スコロトロン等のコロナ放電を利用した非接触帯電器(感光体表面と帯電器との間に200μm以下の空隙を有する近接方式の非接触帯電器を含む)、などが挙げられる。
前記帯電器により静電潜像担持体に印加される電界強度としては、20〜60V/μmが好ましく、30〜50V/μmがより好ましい。感光体に印加される電界強度は高いほどドット再現性が良好になるが、電界強度が高すぎると感光体の絶縁破壊や現像時のキャリア付着等の問題が発生する場合がある。
【0170】
なお、前記電界強度は、下記数式(1)で表される。
<数式(1)>
電界強度(V/μm)=SV/G
ただし、前記数式(1)中、SVは、現像位置における静電潜像担持体の未露光部における表面電位(V)を表す。Gは、少なくとも感光層(電荷発生層及び電荷輸送層)を含む感光層の膜厚(μm)を表す。
【0171】
前記露光は、例えば、前記露光器を用いて前記静電潜像担持体の表面を像様に露光することにより行うことができる。前記露光器の種類としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、複写光学系、ロッドレンズアレイ系、レーザー光学系、液晶シャッタ光学系、などの各種露光器が挙げられる。なお、本発明においては、前記静電潜像担持体の裏面側から像様に露光を行う光背面方式を採用してもよい。
【0172】
前記露光器の光源としては、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの高輝度が確保できる光源が使用される。
使用する光源(書き込み光)の解像度により、形成される静電潜像ひいてはトナー像の解像度が決定され、解像度が高いほど鮮明な画像が得られる。しかしながら、解像度を高くして書き込みを行うとそれだけ書き込みに時間がかかることになるため、書き込み光源が1つであると書き込みがドラム線速(プロセス速度)の律速になってしまう。従って、書き込み光源が1つの場合には2400dpi程度の解像度が上限となる。書き込み光源が複数の場合には、それぞれが書き込み領域を負担すれば良く、実質的には「2400dpi×書き込み光源個数」が上限となる。これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、良好に使用される。
【0173】
また、露光器の光源波長として、450nmよりも短波長の光源を用いることにより、より精細な静電潜像が形成されるため、本発明においては有効に使用される。このような波長範囲にレーザー発振させる技術としては第2高調波発生(SHG)を用いてレーザー光の波長を2分の1にする方法や、ワイドギャップ半導体を用いるものが挙げられる。近年では、400〜410nmの波長領域にレーザー発振するLDも開発され、これを用いた光学系が開発されており、本発明にも有益に用いることができる。現在の書き込み光の使用できる波長下限値は、電荷輸送層や保護層を構成する材料によって異なるが、概ね350nm程度である。新たな材料、レーザーの開発によってこの下限値は短波長化するものである。
【0174】
−現像手段−
前記現像は、前記静電潜像をトナーを用いて現像して可視像を形成することにより行うことができる。前記トナーは、感光体の帯電極性と同極性のトナーを用いられ、反転現像(ネガ・ポジ現像)によって、静電潜像が現像される。また、トナーのみで現像を行う1成分方式と、トナー及びキャリアからなる2成分現像剤を使用した2成分方式の2通りの方法があるが、いずれの場合にも良好に使用できる。
【0175】
−転写手段−
前記転写手段は、前記可視像を記録媒体に転写する手段であるが、感光体表面から記録媒体に可視像を直接転写する方法と、中間転写体を用い、該中間転写体上に可視像を一次転写した後、該可視像を前記記録媒体上に二次転写する方法がある。いずれの態様も良好に使用することができるが、高画質化に際して転写による悪影響が大きいような場合には、転写回数が少ない前者(直接転写)の方法が好ましい。
前記転写は、例えば、前記可視像を転写帯電器を用いて前記静電潜像担持体(感光体)を帯電することにより行うことができ、前記転写手段により行うことができる。なお、転写手段としては、特に制限はなく、目的に応じて公知の転写手段の中から適宜選択することができ、例えば、記録媒体の搬送も同時に行うことのできる転写搬送ベルト等が好適に挙げられる。
【0176】
前記転写手段(前記第一次転写手段、前記第二次転写手段)は、前記静電潜像担持体(感光体)上に形成された前記可視像を前記記録媒体側へ剥離帯電させる転写器を少なくとも有するのが好ましい。前記転写手段は、1つであってもよいし、2以上であってもよい。前記転写器としては、コロナ放電によるコロナ転写器、転写ベルト、転写ローラ、圧力転写ローラ、粘着転写器、などが挙げられる。なお、前記記録媒体としては、特に制限はなく、公知の記録媒体(記録紙)の中から適宜選択することができる。
また、転写チャージャーは転写ベルト、転写ローラを用いることも可能であるが、オゾン発生量の少ない転写ベルトや転写ローラ等の接触型を用いることが望ましい。なお、転写時の電圧/電流印加方式としては、定電圧方式、定電流方式のいずれの方式も用いることが可能であるが、転写電荷量を一定に保つことができ、安定性に優れた定電流方式がより望ましい。このような転写部材は、構成上、本発明の構成を満足できるものであれば、公知のものを使用することができる。
【0177】
前述の通り、転写後の感光体表面電位(除電部に突入する差異の表面電位)によって、画像形成1サイクルあたりの感光体通過電荷量が大きく異なる。これが大きいほど、繰り返し使用における感光体の静電疲労に大きな影響を及ぼす。
この通過電荷量とは、感光体の膜厚方向を流れる電荷量に相当する。感光体の画像形成装置中の動作として、メイン帯電器により所望の帯電電位に帯電され(ほとんどの場合負帯電される)、原稿に応じた入力信号に基づき光書き込みが行われる。この際、書き込みが行われた部分は光キャリアが発生し、表面電荷を中和する(電位減衰する)。この時、光キャリア発生量に依存した電荷量が感光体膜厚方向に流れる。一方、光書き込みが行われない領域(非書き込み部)は、現像工程及び転写工程を経て、除電工程に進む(必要に応じて、その前にクリーニング工程が施される)。ここで、感光体の表面電位がメイン帯電により施された電位に近い状態(暗減衰分は除く)であると、光書き込みが行われた領域とほぼ同じ量の電荷量が感光体膜厚方向に流れることになる。一般的に、現在の原稿は書き込み立が低いため、この方式であると、繰り返し使用における感光体の通過電荷量は除電工程で流れる電流がほとんどと言うことになる(書き込み率が10%であるとすると、除電工程で流れる電流は、全体の9割を占めることになる)。
【0178】
この通過電荷は、感光体を構成する材料の劣化を引き起こす等、感光体静電特性に大きく影響を及ぼす。その結果、通過電荷量に依存して、特に感光体の残留電位を上昇させる。感光体の残留電位が上昇すると、本発明で使用されるネガ及びポジ現像では、画像濃度が低下することになり、大きな問題となる。従って、画像形成装置内での感光体の長寿命化(高耐久化)を狙うためには、如何に感光体の通過電荷量を小さくするかという課題が存在する。
【0179】
これに対して、光除電を行わないという考え方もあるが、メイン帯電器の帯電器能力が大きくないと、帯電の安定化が図れず、残像のような問題を生じる場合がある。感光体の通過電荷は、感光体表面に帯電された電位(これにより生じた電界)により、光照射が行われることにより、発生した光キャリアが移動することにより生じる。従って、感光体表面電位を光以外の手段で減衰させることが出来れば、感光体1回転(画像形成1サイクル)あたりの通過電荷量を低減することができる。
このためには、転写工程において転写バイアスを調整することにより、感光体通過電荷量を調整することが有効である。即ち、メイン帯電により帯電され、書き込みが行われない非書き込み部は、暗減衰量を除き、帯電された電位に近い状態で転写工程に突入する。この際、メイン帯電器により帯電された極性側の絶対値として100V以下まで低減することにより、引き続く除電工程に突入しても光キャリア発生がほとんど行われず、通過電荷が生じない。この値は、0Vより近いほど好ましい。
【0180】
更には、転写バイアスの調整により、メイン帯電により施される帯電極性とは逆極性に感光体表面電位が帯電するように転写バイアスを印加させることにより、光キャリアが絶対に発生しないため、より望ましい。但し、逆極性にまで帯電するような転写条件では、場合により転写チリを多く発生させたり、次の画像形成プロセス(サイクル)のメイン帯電が追いつかない場合が出てくる。その場合には、残像のような不具合が発生する場合があるため、逆極性の絶対値として100V以下であることが好ましい。
以上のような制御を加えることは、本発明における効果を顕著なものとして、有効に使用できるものである。
【0181】
−定着手段−
前記定着は、記録媒体に転写された可視像を、定着装置を用いて定着され、各色のトナーに対し前記記録媒体に転写する毎に行ってもよいし、各色のトナーに対しこれを積層した状態で一度に同時に行ってもよい。
前記定着装置としては、特に制限はなく、目的に応じて適宜選択することができるが、公知の加熱加圧手段が好適である。前記加熱加圧手段としては、加熱ローラと加圧ローラとの組み合わせ、加熱ローラと加圧ローラと無端ベルトとの組み合わせ、などが挙げられる。前記加熱加圧手段における加熱は、通常、80℃〜200℃が好ましい。なお、本発明においては、目的に応じて、前記定着工程及び定着手段と共にあるいはこれらに代えて、例えば、公知の光定着器を用いてもよい。
【0182】
−除電手段−
前記除電手段としては、前記静電潜像担持体に対し除電を行うことが出来れば良く、公知の除電器の中から適宜選択することができ、例えば、半導体レーザー(LD)、エレクトロルミネッセンス(EL)等が好適に挙げられる。
半導体レーザー(LD)、エレクトロルミネッセンス(EL)等の光源には、半導体レーザー(LD)、エレクトロルミネッセンス(EL)等、あるいは蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、キセノンランプ等と適当な光学フィルターと組み合わせたもの等を用いることができる。前記光学フィルターとは、所望の波長域の光を照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
【0183】
−その他−
前記クリーニング手段としては、特に制限はなく、前記静電潜像担持体上に残留する前記電子写真トナーを除去することができればよく、公知のクリーナの中から適宜選択することができ、例えば、磁気ブラシクリーナ、静電ブラシクリーナ、磁気ローラクリーナ、ブレードクリーナ、ブラシクリーナ、ウエブクリーナ等が好適に挙げられる。
前記リサイクル手段は、前記クリーニング手段により除去した前記電子写真用カラートナーを前記現像手段にリサイクルさせる工程であり、例えば、公知の搬送手段等が挙げられる。
前記制御手段は、前記各工程を制御する工程であり、制御手段により好適に行うことができる。
前記制御手段としては、前記各手段の動きを制御することができる限り特に制限はなく、目的に応じて適宜選択することができ、例えば、シークエンサー、コンピュータ等の機器が挙げられる。
【0184】
ここで、本発明の画像形成装置の一の態様について、図8を参照しながら説明する。
図8は、本発明の画像形成装置を説明するための概略図であり、後に示すような変形例も本発明の範疇に属するものである。
図8において、静電潜像担持体としての感光体(1)は支持体上に少なくとも前記特定結晶型を有するチタニルフタロシアニン結晶を含有する電荷発生層と、電荷輸送層からなる積層感光層が設けられてなる。感光体(1)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
帯電器(3)には、ワイヤー方式の帯電器やローラ形状の帯電器が用いられる。高速帯電が必要とされる場合にはスコロトロン方式の帯電器が良好に使用され、コンパクト化や後述の感光体を複数使用するタンデム方式の画像形成装置においては、酸性ガス(NOx、SOx等)やオゾン発生量の少ないローラ形状の帯電器が有効に使用される。この帯電器により、感光体には帯電が施されるが、感光体に印加される電界強度は高いほどドット再現性が良好になるため、20V/μm以上の電界強度が印加されることが望ましい。しかしながら、感光体の絶縁破壊や現像時のキャリア付着の問題を生み出す可能性があり、上限値は概ね60V/μm以下、より好ましくは50V/μm以下である。
【0185】
ローラ形状の帯電部材は、感光体に対し接触もしくは近接配置したものが良好に用いられる。また、帯電部材により感光体に帯電を施す際、帯電部材に直流成分に交流成分を重畳した電界により感光体に帯電を与えることにより、帯電ムラを低減することが可能で効果的である。ここでいう接触方式の帯電部材とは、感光体表面に帯電部材の表面が接触するタイプのものであり、帯電ローラ、帯電ブレード、帯電ブラシの形状がある。中でも帯電ローラや帯電ブラシが良好に使用される。
【0186】
また、近接配置した帯電部材とは、感光体表面と帯電部材表面の間に200μm以下の空隙(ギャップ)を有するように非接触状態で近接配置したタイプのものである。空隙の距離から、コロトロン、スコロトロンに代表される公知の帯電器とは区別されるものである。本発明において使用される近接配置された帯電部材は、感光体表面との空隙を適切に制御できる機構のものであればいかなる形状のものでも良い。例えば、感光体の回転軸と帯電部材の回転軸を機械的に固定して、適正ギャップを有するような配置にすればよい。中でも、帯電ローラの形状の帯電部材を用い、帯電部材の非画像形成部両端にギャップ形成部材を配置して、この部分のみを感光体表面に当接させ、画像形成領域を非接触配置させる、あるいは感光体に非画像形成部両端ギャップ形成部材を配置して、この部分のみを帯電部材表面に当接させ、画像形成領域を非接触配置させる様な方法が、簡便な方法でギャップを安定して維持できる方法である。特に特開2002−148904号公報、特開2002−148905号公報に記載された方法は良好に使用できる。帯電部材側にギャップ形成部材を配置した近接帯電機構の一例を第9図に示す。
感光体表面と帯電部材表面の間の空隙(ギャップ)は10μm以上、100μm以下が好ましい。
【0187】
また、画像露光部(5)には、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの高輝度が確保でき、高解像度(600dpi以上の解像度)で書き込むことのできる光源が使用される。光源(書き込み光)の解像度により、形成される静電潜像ひいてはトナー像の解像度が決定され、解像度が高いほど鮮明な画像が得られる。しかしながら、解像度を高くして書き込みを行うとそれだけ書き込みに時間がかかることになるため、書き込み光源が1つであると書き込みがドラム線速(プロセス速度)の律速になってしまう。従って、書き込み光源が1つの場合には2400dpi程度の解像度が上限となる。書き込み光源が複数の場合には、それぞれが書き込み領域を負担すれば良く、実質的には「2400dpi×書き込み光源個数」が上限となる。これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、良好に使用される。
【0188】
現像手段は、少なくとも1つの現像スリーブを有する。現像ユニット(6)では、感光体の帯電極性と同極性のトナーが使用され、反転現像(ネガ・ポジ現像)によって、静電潜像が現像される。先の画像露光部に使用する光源によっても異なるが、近年使用するデジタル光源の場合には、一般的に画像面積率が低いことに対応して、書込部分にトナー現像を行う反転現像方式が光源の寿命等を考慮すると有利である。また、トナーのみで現像を行う1成分方式と、トナー及びキャリアからなる2成分現像剤を使用した2成分方式の2通りの方法があるが、いずれの場合にも良好に使用できる。
また、転写チャージャー(10)は転写ベルト、転写ローラを用いることも可能であるが、オゾン発生量の少ない転写ベルトや転写ローラ等の接触型を用いることが望ましい。なお、転写時の電圧/電流印加方式としては、定電圧方式、定電流方式のいずれの方式も用いることが可能であるが、転写電荷量を一定に保つことができ、安定性に優れた定電流方式がより望ましい。特に、転写部材に電荷を供給する電源供給用部材(高圧電源)から出力された電流のうち、転写部材に関連する部分に流れ、感光体に流れ込まない電流を差し引くことにより、感光体への電流値を制御する方法が好ましい。
【0189】
転写電流は、感光体に静電的に付着しているトナーを引きはがし、被転写体(転写紙もしくは中間転写体など)へ移行させるために与える必要電荷量に基づく電流である。転写残などの転写不良を回避するためには、転写電流を大きくすれば良いことになるが、ネガ及びポジ現像を用いた場合には、感光体の帯電極性と逆極性の帯電を与えることになり、感光体の静電疲労が著しいものとなる。転写電流は大きいほど、感光体−トナー間の静電付着力を上回る電荷量を与えられるため有利であるが、ある閾値を越えると転写部材−感光体間で放電現象を生じてしまい、微細に現像されたトナー像を散らせる結果になる。このため、上限値としてはこの放電現象を起こさない範囲ということになる。この閾値は転写部材−感光体間の空隙(距離)、両者を構成する材料などによって変わるものであるが、概ね200μA以下程度で使用することにより、放電現象を回避できる。従って、転写電流の上限値は200μA程度である。
【0190】
また、感光体上の形成されたトナー像は、転写紙に転写されることで転写紙上の画像となるものであるが、この際、2つの方法がある。1つは図8に示すような感光体表面に現像されたトナー像を転写紙に直接転写する方法と、もう1つはいったん感光体から中間転写体にトナー像が転写され、これを転写紙に転写する方法である。いずれの場合にも本発明において用いることができる。
このような転写部材は、構成上、本発明の構成を満足できるものであれば、公知のものを使用することができる。また、前述のように転写電流を制御することで、転写後の感光体表面電位(書き込み光の未露光部)を低下させておくことは、画像形成1サイクルあたりの感光体通過電荷量を低減することが出来、本発明においては有効に使用される。
【0191】
除電ランプ(2)等の光源には、前記静電潜像担持体に対し除電を行うことが出来れば良く、公知の除電器の中から適宜選択することができ、例えば、半導体レーザー(LD)、エレクトロルミネッセンス(EL)等が好適に挙げられる。
半導体レーザー(LD)、エレクトロルミネッセンス(EL)等の光源には、半導体レーザー(LD)、エレクトロルミネッセンス(EL)等、あるいは蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、キセノンランプ等と適当な光学フィルターと組み合わせたもの等を用いることができる。前記光学フィルターとは、所望の波長域の光を照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。図8中、8はレジストローラ、11は分離チャージャー、12は分離爪である。
【0192】
また、現像ユニット(6)により感光体(1)上に現像されたトナーは、転写紙(9)に転写されるが、感光体(1)上に残存するトナーが生じた場合、ファーブラシ(14)及びブレード(15)により、感光体より除去される。クリーニングは、クリーニングブラシだけで行われることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。
【0193】
次に、図10は、本発明のタンデム型のフルカラー画像形成装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
図10において、符号(16Y)、(16M)、(16C)、(16K)はドラム状の感光体であり、感光体は支持体上に少なくとも前記特定結晶型を有するチタニルフタロシアニン結晶を含有する電荷発生層と、電荷輸送層からなる積層感光層が設けられてなる。
この感光体(16Y)、(16M)、(16C)、(16K)は図10中の矢印方向に回転可能であり、その周りに少なくとも回転順に帯電器(17Y)、(17M)、(17C)、(17K)、少なくとも1つの現像スリーブを有する現像手段(19Y)、(19M)、(19C)、(19K)、クリーニング部材(20Y)、(20M)、(20C)、(20K)、光を照射する除電手段(27Y)、(27M)、(27C)、(27K)が配置されている。帯電器(17Y)、(17M)、(17C)、(17K)は、感光体表面を均一に帯電するための帯電装置を構成する帯電器である。この帯電器(17Y)、(17M)、(17C)、(17K)と現像手段(19Y)、(19M)、(19C)、(19K)の間の感光体表面側より、露光器(18Y)、(18M)、(18C)、(18K)からのレーザー光が照射され、感光体(16Y)、(16M)、(16C)、(16K)に静電潜像が形成されるようになっている。そして、このような感光体(16Y)、(16M)、(16C)、(16K)を中心とした4つの画像形成要素(25Y)、(25M)、(25C)、(25K)が、転写材搬送手段である転写搬送ベルト(22)に沿って並置されている。転写搬送ベルト(22)は各画像形成ユニット(25Y)、(25M)、(25C)、(25K)の現像手段(19Y)、(19M)、(19C)、(19K)とクリーニング部材(20Y)、(20M)、(20C)、(20K)の間で感光体(16Y)、(16M)、(16C)、(16K)に当接しており、転写搬送ベルト(22)の感光体側の裏側に当たる面(裏面)には転写バイアスを印加するための転写ブラシ(21Y)、(21M)、(21C)、(21K)が配置されている。各画像形成要素(25Y)、(25M)、(25C)、(25K)は現像装置内部のトナーの色が異なることであり、その他は全て同様の構成となっている。
【0194】
図10に示す構成のフルカラー画像形成装置において、画像形成動作は次のようにして行われる。まず、各画像形成要素(25Y)、(25M)、(25C)、(25K)において、感光体(16Y)、(16M)、(16C)、(16K)に静電潜像が形成されるようになっている。そして、このような感光体(16Y)、(16M)、(16C)、(16K)が回転し、帯電器(17Y)、(17M)、(17C)、(17K)により、感光体が帯電される。この際、高精細の潜像を形成するためには、感光体の電界強度が20V/μm以上(60Vμm以下、好ましくは50V/μm以下)になるように帯電が施される。
次に、感光体の外側に配置された露光部(18Y)、(18M)、(18C)、(18K)でレーザー光により、1200dpi以上(好ましくは2400dpi以上)の解像度で書き込みが行われ、作成する各色の画像に対応した静電潜像が形成される。この書き込み光源としては前述の様に、任意の感光体に適した光源が用いられる。この場合にも書き込み光源1つに対して2400dpiの書き込みが概ね上限となる。この場合にも、上述のように発振波長が、450nm以下のレーザー光を用いることは有効な手段である。
【0195】
次に、現像手段(19Y)、(19M)、(19C)、(19K)により潜像を現像してトナー像が形成される。現像手段(19Y)、(19M)、(19C)、(19K)は、それぞれY(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)のトナーで現像を行う現像手段で、4つの感光体(16Y)、(16M)、(16C)、(16K)上で作られた各色のトナー像は転写紙上で重ねられる。転写紙(26)は給紙コロ(図示せず)によりトレイから送り出され、一対のレジストローラ(23)で一旦停止し、上記感光体上への画像形成とタイミングを合わせて転写搬送ベルト(22)に送られる。転写搬送ベルト(22)上に保持された転写紙(26)は搬送されて、各感光体(16Y)、(16M)、(16C)、(16K)との当接位置(転写部)で各色トナー像の転写が行われる。
【0196】
感光体上のトナー像は、転写部材(21Y)、(21M)、(21C)、(21K)に印加された転写バイアスと感光体(16Y)、(16M)、(16C)、(16K)との電位差から形成される電界により、転写紙(26)上に転写される。そして4つの転写部を通過して4色のトナー像が重ねられた記録紙(26)は定着装置(24)に搬送され、トナーが定着されて、図示しない排紙部に排紙される。また、転写部で転写されずに各感光体(16Y)、(16M)、(16C)、(16K)上に残った残留トナーは、クリーニング装置(20Y)、(20M)、(20C)、(20K)で回収される。続いて、除電部材(27Y)、(27M)、(27C)、(27K)により、感光体上の余分な残留電荷が除去される。この後再び、帯電器で均一に帯電が施されて、次の画像形成が行われる。
【0197】
なお、図10の例では画像形成要素は転写紙搬送方向上流側から下流側に向けて、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の色の順で並んでいるが、この順番に限るものではなく、色順は任意に設定されるものである。また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素((25Y)、(25M)、(25C))が停止するような機構を設けることは本発明に特に有効に利用できる。また、先に述べたように転写後の感光体表面が、主帯電器により帯電させた極性側に100V以下に帯電させることが好ましく、逆極性側に帯電させることがより好ましく、逆極性側に100V以下に帯電させることが特に好ましい。これにより、感光体の繰り返し使用における残留電位の上昇を低減化することができる。
【0198】
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。
プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図11に示すものが挙げられる。感光体(101)は支持体上に少なくとも前記特定結晶型を有するチタニルタロシアニン結晶を含有する電荷発生層と、電荷輸送層からなる積層感光層が設けられてなる。画像露光部(103)には、前述のように好ましくは600dpi以上の解像度で書き込みが行うことのできる光源が用いられ、帯電器(102)には、任意の帯電器が用いられる。図11中、104は少なくとも1つの現像スリーブを有する現像手段、105は転写体、106は転写手段、107はクリ−ニング手段、108は除電部材である。
【実施例】
【0199】
以下、本発明を実施例を挙げて説明するが、本発明が実施例により制約を受けるものではない。なお、部はすべて重量部である。
まず、ブラッグ角2θの最大回折ピークが27.2°±0.2°にある結晶型のチタニルフタロシアニン顔料の具体的な合成例を述べる。
【0200】
(顔料作製例1)
1,3−ジイミノイソインドリン292部とスルホラン1800部を混合し、窒素気流下でチタニウムテトラブトキシド204部を滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行った。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。
得られた熱水洗浄処理した粗チタニルフタロシアニン顔料のうち60部を96%硫酸1000部に3〜5℃下撹拌、溶解し、濾過した。得られた硫酸溶液を氷水35000部中に撹拌しながら滴下し、析出した結晶を濾過、ついで洗浄液が中性になるまで水洗を繰り返し、チタニルフタロシアニン顔料の水ペーストを得た。
【0201】
この水ペーストにテトラヒドロフラン1500部を加え、室温下で撹拌し、ペーストの濃紺色の色が淡い青色に変化したら、撹拌を停止し、直ちに減圧濾過を行った。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキ98部を得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶78部を得た。これを顔料1とする。
顔料作製例1で得られた水ペーストの一部を80℃の減圧下(5mmHg)で、2日間乾燥して、低結晶性チタニルフタロシアニン粉末を得た。
【0202】
上述のように得られた水ペーストの乾燥粉末と、顔料作製例1で得られたチタニルフタロシアニン結晶(顔料1)についてのX線回折スペクトルを以下に示す条件で測定した。スペクトル測定には理学電機(RINT100)を用いた。
X線管球:Cu 電圧 :40kV 電流 :20mA
走査速度:1°/分 走査範囲:3°〜40° 時定数:2秒
水ペーストの乾燥粉末のX線回折スペクトルを図12に、顔料1のX線回折スペクトルを図13に示す。図12より、水ペーストは7.0〜7.5°に最大回折ピークを有し、該ピークの半値幅が1°以上であることが分かる。図13より、顔料1は、27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.4°以上9.4゜未満の範囲にピークを有さず、また26.3゜にピークを有さない結晶型を有するチタニルフタロシアニン結晶であることが分かる。
【0203】
(顔料作製例2)
顔料作製例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、次のように結晶変換を行い、顔料作製例1よりも一次粒子の小さなフタロシアニン結晶を得た。
顔料作製例1で得られた結晶変換前の水ペースト60質量部にテトラヒドロフラン400質量部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行った。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶8.5質量部を得た。これを顔料2とする。顔料作製例1の原材料には、ハロゲン含有化合物を使用していない。前記ウェットケーキの固形分濃度は、15質量%であった。結晶変換溶媒は、前記ウェットケーキに対する質量比で44倍の量を用いた。
【0204】
顔料作製例1で作製された結晶変換前チタニルフタロシアニン(水ペースト)の一部をイオン交換水でおよそ1質量%になるように希釈し、表面を導電性処理した銅製のネットですくい取り、チタニルフタロシアニンの粒子径を透過型電子顕微鏡(TEM、日立:H−9000NAR)にて、75000倍の倍率で観察を行った。平均粒子径として、以下のように求めた。
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。測定した30個体の長径の算術平均を求めて、平均粒子径とした。以上の方法により求められた顔料作製例1における水ペースト中の平均粒子径は、0.06μmであった。
【0205】
また、顔料作製例1及び顔料作製例2における濾過直前の結晶変換後チタニルフタロシアニン結晶を、テトラヒドロフランでおよそ1質量%になるように希釈し、上の方法と同様に観察を行った。上記のようにして求めた平均粒子径を表1に示す。なお、顔料作製例1及び顔料作製例2で作製されたチタニルフタロシアニン結晶は、必ずしも全ての結晶の形が同一ではなかった(三角形に近い形、四角形に近い形など)。このため、結晶の最も大きな対角線の長さを長径として、計算を行った。
【0206】
【表1】

顔料作製例2で作製した顔料2は、先程と同様の方法でX線回折スペクトルを測定した。その結果、合顔料作製例2で作製した顔料2のX線回折スペクトルは、顔料作製例例1で作製した顔料1のスペクトルと一致した。
【0207】
(顔料作製例3)
特開平1−299874号(特許第2512081号)公報の「実施例1」に記載の方法に準じて、顔料を作製した。すなわち、先の顔料作製例1で作製したウェットケーキを乾燥し、乾燥物200gをポリエチレングリコール1000gに加え、20000gのガラスビーズと共に、サンドミルを行なった。結晶転移後、希硫酸、水酸化アンモニウム水溶液で順次洗浄し、乾燥して顔料を得た(これを顔料3とする)。
【0208】
(顔料作製例4)
特開平3−269064号(特許第2584682号)公報の「製造例1」に記載の方法に準じて、顔料を作製した。すなわち、先の顔料作製例1で作製したウェットケーキを乾燥し、乾燥物200gをイオン交換水2000gとモノクロルベンゼン200gの混合溶媒中で1時間撹拌(50℃)した後、メタノールとイオン交換水で洗浄し、乾燥して顔料を得た(これを顔料4とする)。
【0209】
(顔料作製例5)
特開平2−8256号(特公平7−91486号)公報の「製造例」に記載の方法に準じて、顔料を作製した。すなわち、フタロジニトリル196gと1−クロロナフタレン1500mlを撹拌混合し、窒素気流下で四塩化チタン44mlを滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200℃〜220℃の間に保ちながら3時間撹拌して反応を行なった。反応終了後、放冷し130℃になったところ熱時濾過し、次いで1−クロロナフタレンで粉体が青色になるまで洗浄、次にメタノールで数回洗浄し、更に80℃の熱水で数回洗浄した後、乾燥し顔料を得た(これを顔料5とする)。
【0210】
(顔料作製例6)
特開昭64−17066号(特公平7−97221号)公報の「合成例1」に記載の方法に準じて、顔料を作製した。すなわち、α型TiOPc200部を食塩400gおよびアセトフェノン200gと共にサンドグラインダーにて100℃にて10時間結晶変換処理を行なった。これをイオン交換水及びメタノールで洗浄し、希硫酸水溶液で精製し、イオン交換水で酸分がなくなるまで洗浄した後、乾燥して顔料を得た(これを顔料6とする)。
【0211】
(顔料作製例7)
特開平11−5919号(特許第3003664号)公報の「実施例1」に記載の方法に準じて、顔料を作製した。すなわち、o−フタロジニトリル204部、四塩化チタン部76部をキノリン500部中で200℃にて2時間加熱反応後、水蒸気蒸留で溶媒を除き、2%塩酸、続いて2%水酸化ナトリウム水溶液で精製し、メタノール、N,N−ジメチルホルムアミドで洗浄後、乾燥し、チタニルフタロシアニンを得た。このチタニルフタロシアニン200部を5℃の98%硫酸40部の中に少しずつ溶解し、その混合物を約1時間、5℃以下の温度を保ちながら攪拌する。続いて硫酸溶液を高速攪拌した8000部の氷水中に、ゆっくりと注入し、析出した結晶を濾過する。結晶を酸が残量しなくなるまで蒸留水で洗浄し、ウエットケーキを得る。そのケーキをTHF10000部中で約5時間攪拌を行ない、濾過、THFによる洗浄を行ない乾燥後、顔料を得た(これを顔料7とする)。
【0212】
(顔料作製例8)
特開平3−255456号(特許第3005052号)公報の「合成例2」に記載の方法に準じて、顔料を作製した。すなわち、先の顔料作製例1で作製したウェットケーキ400部を塩化ナトリウム600部とジエチレングリコール280部に混合し、80℃の加熱下で自動乳鉢により60時間ミリング処理を行なった。次に、この処理品に含まれる塩化ナトリウムとジエチレングリコールを完全に除去するために充分な水洗を行なった。これを減圧乾燥した後にシクロヘキサノン8000部と直径1mmのガラスビーズを加えて、30分間サンドミルにより処理を行ない、顔料を得た(これを顔料8とする)。
【0213】
以上の顔料作製例3〜8で作製した顔料3〜8は、前記と同様の方法でX線回折スペクトルを測定し、それぞれの公報に記載のスペクトルと同様であることを確認した。表2にそれぞれのX線回折スペクトルと顔料作製例1及び2で得られた顔料のX線回折スペクトルのピーク位置の特徴を示す。
【0214】
【表2】

【0215】
(実施例1)
下記組成の分散液を下に示す条件のビーズミリングにより作製した。
顔料作製例1で作製したチタニルフタロシアニン結晶(顔料1) 240部
ポリビニルブチラール(積水化学製:BX−1) 160部
2−ブタノン 3600部
市販のビーズミル分散機(VMA−GETZMANN GMBH製:DISPERMAT SL、ローターの直径は50mm、分散室容量は125ml)に直径0.5mmのジルコニアボールを用いた。始めにポリビニルブチラールを溶解した2−ブタノン溶液を循環タンクに投入し、循環を行い、樹脂液が循環系に満たされ、循環タンクに戻ってくるのを確認した。次いで、顔料を循環タンクに全て投入し、循環タンクで撹拌を行った後、ローター回転数3000r.p.m.にて、300分間循環分散を行った。尚、分散初期における分散室内でのチタニルフタロシアニン結晶の結晶転移(出口側でのつまり)を防ぐため、分散スタート後1分間、送液量を約10%大きくした。
分散終了後、ビーズミル分散機よりミルベースを払い出し、更に10300部の2−ブタノンを投入し、希釈と同時に分散機に残ったミルベースをすべて払い出し、分散液を作製した(分散液1とする)。尚、分散時間は先の条件における分散時間と粒子サイズ・結晶転移有無の関係を予め実験的に求めておき、最適な時間として決定した。
【0216】
(比較例1)
実施例1において、樹脂液を予め循環せずに、ポリビニルブチラールを溶解した2−ブタノン溶液および顔料を全て投入し、循環タンクで撹拌を行った後、ローター回転数3000r.p.m.にて、300分間循環分散を行った。
分散終了後、ビーズミル分散機よりミルベースを払い出し、更に10300部の2−ブタノンを投入し、希釈と同時に分散機に残ったミルベースをすべて払い出し、分散液を作製した(分散液2とする)。
【0217】
(実施例2)
実施例1において、分散メディアを直径0.8mmのジルコニアボールに変更した以外は、実施例1と同様に分散を行ない、分散液を作製した(これを分散液3とする)。
【0218】
(比較例2)
実施例1において、分散メディアを直径1.5mmのジルコニアボールに変更した以外は、実施例1と同様に分散を行ない、分散液を作製した(これを分散液4とする)。
【0219】
以上のように作製した分散液1〜4は、以下の評価を行った。結果を表3に示す。
・平均粒径:
堀場製作所:CAPA700にて体積平均粒径を評価した。
・粗大粒子の観察:
分散液をスライドガラスに塗布し、観察用のサンプルを作製した。続いて、市販の光学顕微鏡(50〜100倍)にて、塗膜の観察を行ない、粗大粒子の有無を観察した。
・X線回折スペクトル:
分散液を乾固し、粉末にしたものを前述と同様にX線回折スペクトルを測定した。
・成膜性の評価:
分散液を洗浄したアルミ板に浸漬塗工法により成膜して、塗膜の状態を観察した。
【0220】
【表3】

【0221】
なお、結晶の一部が結晶転移してしまった場合(比較例1)のX線回折スペクトルを図14に示す。図中の矢印が、図13の結晶には認められない新たなピーク(26.3゜)である。
顔料を循環分散する前に樹脂液を循環した(実施例1、2)においては良好な分散液が得られた。一方、樹脂液を循環しなかった場合(比較例1)、結晶の一部が結晶転移した。また、分散メディアが1mmよりも大きい場合(比較例2)、粗大粒子が残存し、良好な分散液が得られなかった。
【0222】
(実施例3)
実施例1の分散液に使用した溶媒を、2−ブタノンからn−酢酸ブチルに変更した以外は、実施例1と同様に分散液を作製した(これを分散液5とする)。
(実施例4)
実施例1の分散液に使用した溶媒を、2−ブタノンからn−ブタノールに変更した以外は、実施例1と同様に分散液を作製した(これを分散液6とする)。
【0223】
(実施例5)
実施例1の分散液の組成を下記組成のものに変更した以外は、実施例1と同様に分散液を作製した(これを分散液7とする)。
顔料作製例1で作製したチタニルフタロシアニン結晶(顔料1) 240部
ポリビニルブチラール(積水化学製:BX−1) 160部
テトラヒドロフラン 3600部
イオン交換水 36部
【0224】
(実施例6)
実施例5の分散液より、イオン交換水を除いた以外は、実施例5と同様に分散液を作製した(これを分散液8とする)。
(比較例3)
実施例1の分散液より、ポリビニルブチラールを除いた以外は、実施例1と同様に分散液を作製した(これを分散液9とする)。
【0225】
以上のように作製した分散液5〜9を、分散液1〜4の場合と同様に評価を行った。実施例1の結果と併せて表4に示す。
【表4】

【0226】
表4から分かるように、分散溶媒として2−ブタノン(ケトン系溶媒)、n−酢酸ブチル(エステル系溶媒)、テトラヒドロフラン(エーテル系溶媒)を用いた場合には良好な特性を有する分散液が得られたが、その他の溶媒であるn−ブタノール(アルコール系溶媒)を用いた場合には、やや分散安定性に劣る結果となった。
また、イオン交換水を添加しない場合や、バインダー樹脂を添加しない場合においては、結晶安定性に劣る場合が認められた。
【0227】
(実施例7)
実施例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料2を用いた以外は、実施例1と同様に分散液を作製した(これらを分散液10とする)。
(比較例4)
比較例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料2を用いた以外は、比較例1と同様に分散液を作製した(これらを分散液11とする)。
【0228】
(実施例8)
実施例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料3を用いた以外は、実施例1と同様に分散液を作製した(これらを分散液12とする)。
(比較例5)
比較例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料3を用いた以外は、比較例1と同様に分散液を作製した(これらを分散液13とする)。
【0229】
(実施例9)
実施例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料4を用いた以外は、実施例1と同様に分散液を作製した(これらを分散液14とする)。
(比較例6)
比較例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料4を用いた以外は、比較例1と同様に分散液を作製した(これらを分散液15とする)。
【0230】
(実施例10)
実施例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料5を用いた以外は、実施例1と同様に分散液を作製した(これらを分散液16とする)。
(比較例7)
比較例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料5を用いた以外は、比較例1と同様に分散液を作製した(これらを分散液17とする)。
【0231】
(実施例11)
実施例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料6を用いた以外は、実施例1と同様に分散液を作製した(これらを分散液18とする)。
(比較例8)
比較例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料6を用いた以外は、比較例1と同様に分散液を作製した(これらを分散液19とする)。
【0232】
(実施例12)
実施例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料7を用いた以外は、実施例1と同様に分散液を作製した(これらを分散液20とする)。
(比較例9)
比較例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料7を用いた以外は、比較例1と同様に分散液を作製した(これらを分散液21とする)。
【0233】
(実施例13)
実施例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料8を用いた以外は、実施例1と同様に分散液を作製した(これらを分散液22とする)。
(比較例10)
比較例1で使用したチタニルフタロシアニン結晶(顔料1)の代わりに、顔料8を用いた以外は、比較例1と同様に分散液を作製した(これらを分散液23とする)。
【0234】
以上のように作製した分散液10〜23は、実施例1の場合と同様に評価し、実施例1の結果と併せて表5に示す。
【表5】

【0235】
表5から分かるように、顔料1とは結晶型の異なるチタニルフタロシアニン結晶を用いた場合においても、顔料を分散する前に、樹脂液を分散型に満たしておくことにより、結晶転移を起こさず、粗大粒子のない分散安定性の高い分散液を作製することが出来た(実施例7〜13)。一方、樹脂液を満たさなかった場合(比較例4〜10)、結晶転移を生じた。
【0236】
(実施例14)
直径60mmのアルミニウムシリンダー(JIS1050)に、下記組成の下引き層塗工液、電荷発生層塗工液、および電荷輸送層塗工液を、順次塗布・乾燥し、3.5μmの下引き層、0.2μmの電荷発生層、19μmの電荷輸送層を形成し、積層感光体を作製した(これを感光体1とする)。
(下引き層塗工液)
酸化チタン(CR−EL:石原産業社製) 70部
アルキッド樹脂(ベッコライトM6401−50−S
(固形分50%)、大日本インキ化学工業製) 15部
メラミン樹脂(スーパーベッカミンL−121−60
(固形分60%)、大日本インキ化学工業製) 10部
2−ブタノン 100部
(電荷発生層塗工液)
前記の分散液1を用いた。
【0237】
(電荷輸送層塗工液)
ポリカーボネート(ユーピロンZ300:三菱ガス化学社製) 10部
下記構造式の電荷輸送物 7部
【化30】

テトラヒドロフラン 80部
【0238】
(実施例15〜26、比較例11〜20)
実施例14における電荷発生層塗工液として、分散液1の代わりに分散液2〜23を用いた以外は、実施例1と同様に感光体を作製した(これらを感光体2〜23とする)。使用した分散液番号は、感光体番号と同一であり、表6に記載する。
【0239】
(実施例27〜39および比較例21〜30)
以上のように作製した感光体1〜23を市販の普通紙複写機(リコー製:imagioMF4550)に搭載した。AC電源として複写機本体外に別の電源を用意した。
画像露光光源は780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)とした。
帯電部材としては、図9に示すような非接触近接配置方式の帯電ローラ(両端の非画像部には、厚さ50μmの絶縁テープを巻き付け、感光体表面と帯電ローラ表面の間に、50μmの空隙を有するように配置した)を用い、下記の帯電条件で画像を出力した。
帯電条件:
DCバイアス:−900V
ACバイアス:2.3kV(peaktopeak)、周波数2kHz
書き込み率6%のチャートを用い、連続して5000枚の印刷を行い、初期及び5000枚後の画像を評価した。画像評価は、初期及び5000枚後に白ベタ画像を出力し、地肌汚れの評価を行った(下記ランクで評価した)。また、4隅および中央に直径1cmの黒丸(黒ベタ)を含むハーフトーン画像を初期及び5000枚後に出力し画像評価を行った。
結果を表6に示す。
【0240】
【表6】

白ベタ画像地汚れランク:
5:地汚れほとんど無し、4:わずかにあり、3:実使用限界レベル、2以下:実使用には耐えないレベル
【0241】
(実施例40)
実施例20における電荷輸送層塗工液を下記組成のものに変更した以外は、実施例20と同様に感光体を作製した(これを感光体24とする)。
(電荷輸送層塗工液)
下記組成の高分子電荷輸送物質
(重量平均分子量:約140000) 10部
【化31】

下記構造の添加剤 0.5部
【化32】

テトラヒドロフラン 100部
【0242】
(実施例41)
実施例20における電荷輸送層の膜厚を17μmとし、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、2μmの保護層を設けた以外は実施例20同様に感光体を作製した(これを感光体25とする)。
(保護層塗工液)
ポリカーボネート(ユーピロンZ300:三菱ガス化学社製) 10部
下記構造式の電荷輸送物質 7部
【化33】

アルミナ微粒子(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
4部
シクロヘキサノン 500部
テトラヒドロフラン 150部
【0243】
(実施例42)
実施例20における電荷輸送層の膜厚を17μmとし、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、2μmの保護層を設けた以外は実施例20と同様に感光体を作製した(これを感光体26とする)。
(保護層塗工液)
下記構造式の高分子電荷輸送物質
(重量平均分子量:約140000) 17部
【化34】

アルミナ微粒子(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
4部
シクロヘキサノン 500部
テトラヒドロフラン 150部
【0244】
(実施例43)
実施例42における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、実施例42と同様に感光体を作製した(これを感光体27とする)。
酸化チタン微粒子(比抵抗:1.5×1010Ω・cm、平均一次粒径:0.5μm)
4部
(実施例44)
実施例42における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、実施例42と同様に感光体を作製した(これを感光体28とする)。
酸化錫−酸化アンチモン粉末(比抵抗:106Ω・cm、平均1次粒径0.4μm)
4部
【0245】
(実施例45)
実施例41における保護層塗工液を下記のものに変更した以外は、実施例41と同様に感光体を作製した(これを感光体29とする)。
(保護層塗工液)
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
【化35】

光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
保護層は、スプレー塗工してから20分間自然乾燥した後、メタルハライドランプ:160W/cm、照射強度:500mW/cm2、照射時間:60秒の条件で光照射を行うことによって塗布膜を硬化させた。
【0246】
(実施例46)
実施例20における電荷輸送層塗工液を下記組成のものに変更した以外は、実施例20と同様に感光体を作製した(これを感光体30とする)。
(電荷輸送層塗工液)
ポリカーボネート(ユーピロンZ300:三菱ガス化学社製) 10部
下記構造式の電荷輸送物質 7部
【化36】

トルエン 80部
【0247】
(実施例47)
実施例20における電荷輸送層塗工液を下記組成のものに変更した以外は、実施例20と同様に感光体を作製した(これを感光体31とする)。
(電荷輸送層塗工液)
ポリカーボネート(ユーピロンZ300: 三菱ガス化学社製) 10部
下記構造式の電荷輸送物質 7部
【化37】

塩化メチレン 80部
【0248】
(実施例48)
実施例20におけるアルミニウムシリンダー(JIS1050)を以下の陽極酸化皮膜処理を行ない、次いで下引き層を設けずに、実施例20と同様に電荷発生層、電荷輸送層を設け、感光体を作製した(これを感光体32とする)。
(陽極酸化皮膜処理)
支持体表面の鏡面研磨仕上げを行ない、脱脂洗浄、水洗浄を行なった後、液温20℃、硫酸15vol%の電解浴に浸し、電解電圧15Vにて30分間陽極酸化皮膜処理を行なった。更に、水洗浄を行なった後、7%の酢酸ニッケル水溶液(50℃)にて封孔処理を行なった。その後純水による洗浄を経て、7μmの陽極酸化皮膜が形成された支持体を得た。
【0249】
(実施例49〜58)
以上のように作製した感光体10、24〜32を市販の普通紙複写機(リコー製:imagioMF4550)に搭載した。AC電源として複写機(ポリゴン・ミラーによる画像書き込み)とした。
帯電部材としては、図9に示すような非接触近接配置方式の帯電ローラ(両端の非画像部には、厚さ50μmの絶縁テープを巻き付け、感光体表面と帯電ローラ表面の間に、50μmの空隙を有するように配置した)を用い、下記の帯電条件で画像を出力した。
帯電条件:
DCバイアス:−900V
ACバイアス:2.3kV(peak to peak)、周波数2kHz
書き込み率6%のチャートを用い、連続して50000枚の印刷を行い、初期及び50000枚後の画像を評価した。画像評価は、初期及び50000枚後に白ベタ画像を出力し、地肌汚れの評価を行った(下記ランクで評価した)。また、4隅および中央に直径1cmの黒丸(黒ベタ)を含むハーフトーン画像を初期及び50000枚後に出力し画像評価を行った。結果を表7に示す。
【0250】
【表7】

白ベタ画像地汚れランク:
5:地汚れほとんど無し、4:わずかにあり、3:実使用限界レベル、2以下:実使用には耐えないレベル
【0251】
(実施例59)
実施例49の評価において、帯電条件を以下の条件に変更した以外は、実施例49と同様に評価を行った。結果を表8に示す。
帯電条件:
DCバイアス:−1700V
(感光体表面の未露光部電位が−900Vになるように設定)
【0252】
(実施例60)
実施例49の評価において、使用する帯電ローラを接触方式(ローラ材質等は同じであり、両端の絶縁テープを巻き付けない)に変更し、下記の帯電条件で画像を出力した以外は、実施例49と同様に評価を行った。結果を表8に示す。
帯電条件:
DCバイアス:−1650V
(感光体表面の未露光部電位が−900Vになるように設定)
【0253】
(実施例61)
実施例49の評価において、使用する帯電ローラを接触方式(ローラ材質等は同じであり、両端の絶縁テープを巻き付けない)に変更し、下記の帯電条件で画像を出力した以外は、実施例49と同様に評価を行った。結果を表8に示す。
帯電条件:
DCバイアス:−900V
ACバイアス:2.3kV(peak to peak)、周波数2kHz
【0254】
(実施例62)
実施例49の評価において、絶縁テープの厚みを変えて、空隙を90μmに変更した以外は実施例49と同様に評価を行った。結果を表8に示す。
(実施例63)
実施例49の評価において、絶縁テープの厚みを変えて、空隙を150μmに変更した以外は実施例49と同様に評価を行った。結果を表8に示す。
【0255】
(実施例64)
実施例49の評価において、使用する帯電部材としてスコロトロンチャージャーを用いた以外は、実施例49と同様に評価を行った。結果を表8に示す。この際、試験に用いる複写機はスコロトロンチャージャーを搭載できるように改造を施した。
帯電条件:
DCバイアス:−6.5kV
【0256】
【表8】

白ベタ画像地汚れランク:
5:地汚れほとんど無し、4:わずかにあり、3:実使用限界レベル、2以下:実使用には耐えないレベル
【0257】
(実施例65)
実施例20において使用した支持体を、直径30mmのアルミニウムシリンダー(JIS1050)に変更した以外は実施例20と同様に感光体を作製した(これを感光体33とする)。
(比較例31)
実施例65において、使用した分散液10の代わりに分散液2を用いた以外は、実施例65と同様に感光体を作製した(これを感光体34とする)。
(比較例32)
実施例65において、使用した分散液10の代わりに分散液4を用いた以外は、実施例65と同様に感光体を作製した(これを感光体35とする)。
【0258】
(実施例66および比較例33、34)
以上のように作製した感光体33〜35を、図11に示すような画像形成装置用カートリッジに装着し、図10に示すようなタンデム方式のフルカラー画像形成装置に搭載し(すべての画像形成要素に同じ感光体を搭載した)、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)として、帯電部材として図9に示すような帯電ローラの両端部に厚さ50μmの絶縁テープを巻き付けた近接配置用の帯電部材(感光体と帯電部材表面間の空隙が50μm)を用い、下記の帯電条件で画像を出力した。
帯電条件:
DCバイアス:−800V
ACバイアス:2.2kV(peak to peak)、周波数:1.5kHz
書き込み率6%のフルカラーチャートを用い、連続して5000枚の印刷を行い、初期及び5000枚後の画像を評価した。画像評価は、初期及び5000枚後に白ベタ画像を出力し、地肌汚れの評価を行った。また、色再現性を評価するチャートにて、5000枚後の色再現性を評価した。結果を表9に示す。
【0259】
【表9】

地汚れランク:
5:地汚れほとんど無し、4:わずかにあり、3:実使用限界レベル、2以下:実使用には耐えないレベル
【0260】
続いて、本発明で使用するチタニルフタロシアニン結晶の特徴であるブラッグ角θの最低角ピークである7.3°について、公知材料の最低角7.5°と同一であるか否かについて検証する。
(顔料作製例9)
顔料作製例1における結晶変換溶媒をテトラヒドロフランから2−ブタノンに変更した以外は、顔料作製例1と同様に処理を行ない、チタニルフタロシアニン結晶を得た。
図13の場合と同様に、顔料作製例9で作製したチタニルフタロシアニン結晶のXDスペクトルを測定した。これを図15に示す。図15より、顔料作製例9で作製されたチタニルフタロシアニン結晶のXDスペクトルにおける最低角は、顔料作製例1で作製されたチタニルフタロシアニンの最低角(7.3°)とは異なり、7.5°に存在することが判る。
【0261】
(測定例1)
顔料作製例1で得られた顔料(最低角7.3°)に特開昭61−239248号公報に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例1のX線回折スペクトルを図16に示す。
(測定例2)
顔料作製例9で得られた顔料(最低角7.5°)に特開昭61−239248号公報に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例2のX線回折スペクトルを図17に示す。
図16のスペクトルにおいては、低角側に7.3°と7.5°の2つの独立したピークが存在し、少なくとも7.3°と7.5°のピークは異なるものであることが判る。一方、図17のスペクトルにおいては、低角側のピークは7.5°のみに存在し、図16のスペクトルとは明らかに異なっている。
以上のことから、本願発明のチタニルフタロシアニン結晶における最低角ピークである7.3°は、公知のチタニルフタロシアニン結晶における7.5°のピークとは異なるものであることが判る。
【図面の簡単な説明】
【0262】
【図1】不定形チタニルフタロシアニンのTEM像である。図中のスケール・バーは、0.2μmである。
【図2】結晶変換後のチタニルフタロシアニンのTEM像である。図中のスケール・バーは、0.2μmである。
【図3】短時間で結晶変換を行なったチタニルフタロシアニン結晶のTEM像である。図中のスケール・バーは、0.2μmである。
【図4】本発明の分散液作製に用いられるビーズミル分散装置の概略図である。
【図5】図4に示すビーズミル分散装置の分散室72の内部を示す図である。
【図6】本発明の電子写真感光体の一例の構成例を示す図である。
【図7】本発明の電子写真感光体の別の構成例を示す図である。
【図8】本発明の電子写真プロセスおよび画像形成装置を説明するための概略図である。
【図9】画像形成装置の帯電部剤側にギャップ形成部材を配置した近接帯電機構の一例を示す図である。
【図10】本発明のタンデム方式のフルカラー画像形成装置を説明するための概略図である。
【図11】本発明の画像形成装置用プロセスカートリッジを説明するための図である。
【図12】顔料作製例1で得られた水ペーストの乾燥粉末のXDスペクトルを表わした図である。
【図13】顔料1のX線回析スペクトルである。
【図14】比較例1(結晶の一部が結晶転移している)のX線回析スペクトルである。
【図15】顔料作製例9で作製したチタニルフタロシアニン結晶のX線回析スペクトルである。
【図16】測定例1のX線回析スペクトルである。
【図17】測定例2のX線回析スペクトルである。
【符号の説明】
【0263】
1 感光体
2 除電ランプ
3 帯電部材
5 画像露光部
6 現像ユニット
8 レジストローラ
9 転写紙
10 転写チャージャー
11 分離チャージャー
12 分離爪
14 ファーブラシ
15 クリーニングブレード
【0264】
16C、16M、16Y、16K 感光体
17C、17M、17Y、17K 帯電部材
18C、18M、18Y、18K レーザー光
19C、19M、19Y、19K 現像部材
20C、20M、20Y、20K クリーニング部材
21C、21M、21Y、21K 転写部材
22 転写搬送ベルト
23 レジストローラ
24 定着装置
25C、25M、25Y、25K 画像形成要素
26 転写紙
27C、27M、27Y、27K 除電部材
29 感光体
30 帯電ローラー
31 ギャップ形成部材
32 金属シャフト
33 画像形成領域
34 非画像形成領域
51 導電性支持体
55 電荷発生層
57 電荷輸送層
59 保護層
【0265】
71 モーター
72 分散室
73 流量計
74 循環タンク
75 循環ポンプ
76 配管
77 分散室固定台
80 分散メディア
81 スリット
82 循環出口側配管
83 分散室の壁
84 ローター
85 循環入り口側配管
86 モーター
【0266】
101 感光体
102 帯電手段
103 露光
104 現像手段
105 転写体
106 転写手段
107 クリーニング手段
108 除電手段

【特許請求の範囲】
【請求項1】
直径が1mm以下の分散メディアを用い循環方式のビーズミル分散装置によってチタニルフタロシアニン結晶を含有する分散液を作製する方法において、バインダー樹脂を併用し、該バインダー樹脂を有機溶媒に溶解した樹脂液を循環系に満たした後に、該チタニルフタロシアニン結晶を循環系に投入し、分散を行うことを特徴とする分散液の作製方法。
【請求項2】
前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有することを特徴とする請求項1記載の分散液の作製方法。
【請求項3】
前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、更に26.3゜にピークを有さず、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.4°以上9.4゜未満の範囲にピークを有さないことを特徴とする請求項2記載の分散液の作製方法。
【請求項4】
前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として少なくとも7.0〜7.5゜に最大回折ピークを有し、かつ該回折ピークの半値巾が1゜以上であり、一次粒子の平均粒子径が0.1μm以下である不定形乃至低結晶性チタニルフタロシアニン結晶を水の存在下で有機溶媒を使用して結晶変換を行い、結晶変換後の一次粒子の平均粒子径が0.25μm以下の状態で、濾過することにより得られる結晶変換後のチタニルフタロシアニン結晶である請求項3に記載の分散液の作製方法。
【請求項5】
前記分散液の作製方法において、有機溶媒として、少なくともケトン系溶媒、エステル系溶媒、エーテル系溶媒より選ばれる1種を用いることを特徴とする請求項1〜4のいずれかに記載の分散液の作製方法。
【請求項6】
前記分散液の作製方法において、チタニルフタロシアニン結晶の分散に際して、水を併用することを特徴とする請求項1〜5のいずれかに記載の分散液の作製方法。
【請求項7】
導電性支持体上に少なくとも電荷発生層と電荷輸送層を積層してなる電子写真感光体において、該電荷発生層が請求項1〜6のいずれかに記載の方法にて作製した分散液を用いて形成されたものであることを特徴とする電子写真感光体。
【請求項8】
前記電荷輸送層が少なくともトリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートを含有することを特徴とする請求項7記載の電子写真感光体。
【請求項9】
前記電子写真感光体において、電荷輸送層上に保護層を積層したことを特徴とする請求項7又は8記載の電子写真感光体。
【請求項10】
前記保護層が比抵抗1010Ω・cm以上の無機顔料又は金属酸化物を含有することを特徴とする請求項9記載の電子写真感光体。
【請求項11】
前記保護層が、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されることを特徴とする請求項9に記載の電子写真感光体。
【請求項12】
前記感光体の電荷輸送層が、非ハロゲン系溶媒を用いて形成されたものであることを特徴とする請求項7〜11のいずれかに記載の電子写真感光体。
【請求項13】
前記非ハロゲン系溶媒として、少なくとも環状エーテル、あるいは芳香族系炭化水素より選ばれる1種を用いることを特徴とする請求項12記載の電子写真感光体。
【請求項14】
前記電子写真感光体の導電性支持体表面が陽極酸化皮膜処理されたものであることを特徴とする請求項7〜13のいずれかに記載の電子写真感光体。
【請求項15】
少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成装置において、該電子写真感光体が請求項7〜14のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置。
【請求項16】
少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成要素を複数配列した画像形成装置において、該電子写真感光体が請求項7〜14のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置。
【請求項17】
前記帯電手段に、接触帯電方式を用いることを特徴とする請求項15又は16記載の画像形成装置。
【請求項18】
前記帯電手段に、非接触の近接配置方式を用いることを特徴とする請求項15又は16記載の画像形成装置。
【請求項19】
前記帯電手段に用いられる帯電部材と、電子写真感光体との間の空隙が10μm以上、100μm以下であることを特徴とする請求項18記載の画像形成装置。
【請求項20】
前記帯電手段に、直流電圧に交流電圧を重畳した電圧を印加することを特徴とする請求項15〜19のいずれかに記載の画像形成装置。
【請求項21】
少なくとも電子写真感光体を具備してなる画像形成装置用プロセスカートリッジであって、該電子写真感光体が請求項7〜14のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ。

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−275802(P2008−275802A)
【公開日】平成20年11月13日(2008.11.13)
【国際特許分類】
【出願番号】特願2007−117874(P2007−117874)
【出願日】平成19年4月27日(2007.4.27)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】