説明

加速度計及びGPS受信器を用いた発射体案内

ジャイロを有しない発射体案内システムでは、発射体は、直交物体座標系を有する。発射体は、x、y及びz軸に沿ってそれぞれ測定されたx、y及びz加速度データを供給する3軸加速度計を有する。GPSアンテナ及び受信手段は、地球基準航行座標の機体GPS位置及び速度データを提供する。コンピュータ及びプログラム手段は、時間指標付けされたGPS位置及びGPS速度データを記憶し、アクセスし、物体座標から航行座標に、x、y及びz軸加速度データを変換する。プログラム手段は、対応する時間指標付けされた加速度データと、現在位置の各時間指標反復の局所水準に関する、最適平滑化手法により評価された発射体回転、ピッチ及び偏揺れ角度を計算し、発射体を予め定められた位置に案内する切換え推進手段を作動させる飛行制御システムに出力するためのGPS速度及び位置データとに対応可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、切換え推進手段と、案内システムからの指令に応じて発射体の飛行経路を調整するための空力運動または気体推進を用いた推進手段と、GPS信号のような姿勢判定及び評価手段を含み、発射体の回転角度の評価のための第1及び第2の線形加速度計からの信号、ピッチ角度評価のための追加の第3の加速度計からの情報に対応して構成された案内システムと、を用いた航空機または発射体案内の分野に関する。
【背景技術】
【0002】
解決されるべき通常の問題は、合理的な信頼性を有して最も低い費用で、既知の地理的位置を用いて、目標に発射された発射体を案内する方法である。本出願は、案内システムからの指令に応じて発射体の飛行経路を調整するために、空力運動及び/又は気体推進に基づく種々の切換え推進手段を提供することにより、その問題の一部を扱う。また、本出願は、打上げからの発射体の軌道の評価と、打上げ直後の発射体の初期条件と、打上げまたは発射時の発射体用に計算された理想的な軌道に対する方向及び高度とに基づいて、案内システムが、適切な指令を判別して推進システムに通信することを可能にするための手段を提供する。
【0003】
解決されるべき問題への従来のアプローチは、GPS受信器及び回転計のみに依存する案内システムにより制御される外部空力表面、例えば先尾翼を使用した。しかし、残念なことに、外部表面は、例えば打上げバレル内から、発射体を打ち上げることの困難さを発生させ、GPS信号は、ジャミングに脆弱である可能性がある。したがって、外部空力表面、例えば先尾翼が使用される場合には、打上げ筒(バレル)干渉を最小限にし、発射体加速及び空力抵抗による先尾翼上に印加される大きい力に適応するために、追加の装備がされなければならない。さらに、不正でないGPS信号の信頼性のある受信及び処理、例えばGPS信号の保護を確実にするために、追加の手段が組み込まれることが必要となることがある。
【0004】
空力表面を制御するための追加のアプローチは、GPS受信器、回転計、及びシステムの費用をさらに増加させる3軸ジャイロスコープに依存してきた。しかし、なお、上述した第1のアプローチのように、GPS信号が失われると、その飛行を通じて発射体に作用する可能性のある外力を考慮するいかなる機構も存在しないので、このアプローチは、GPS信号の不正に脆弱なままである。
【0005】
GPS信号妨害に対する脆弱さに関する従来の試みは、GPS信号との干渉を防止するか、または、限定されたGPSデータを用いた演算を可能にすることに、焦点が当てられた。限定されたGPSデータを用いた演算を可能にする試みは、典型的には、発射体機内の慣性装置の性能及び/又は機能を増大させることを含んでいた。例えば、発射体の外力への反応を考慮するための上述した第2のアプローチの不可能性に関して、GPS信号が失われる可能性のあるとき、追加の加速度計が、システムに組み込まれて外力に対する発射体の反応を補償することを可能にする、すなわち、センサパッケージが、完全なIMUを構成する可能性がある。飛行機用のジャイロスコープ装置は、周知で、鉄製ロータ及び同調ロータジャイロ、環状のレーザジャイロ、多発振器ジャイロ、零ロックジャイロ(ZLG)、光ファイバジャイロ、HRGまたは半球または筒状セラミック共鳴ジャイロのような共鳴ジャイロ等のような多数の技術で利用可能である。
【0006】
しかし、残念なことに、追加のジャイロスコープ装置及び/又は加速度計の組み合わせは、パッケージ内に既にあるジャイロのために、非常に費用がかかると考えられる。さらに、そのような装置の使用は、発射体の操作エンベロープに追加の制約を与える。例えば、ジャイロスコープ装置は、典型的には、破壊モード及び15,000〜30,000Gsの範囲の打上げ加速度に関連する不確実性に直面する。さらに、これらの技術の使用は、通常、費用重量及び出力散逸という付随する欠点を伴って、飛行機が、ジンバルを備えた、または、吊り下げられた装置に少なくとも1つのジャイロを保持することを必要とする。
【発明の開示】
【発明が解決しようとする課題】
【0007】
したがって、目標に発射体を案内し、一方、発射体外部の空力表面の依存性を除外し、GPS信号との干渉、例えばジャミングに対するシステム及び処理の脆弱さを最小限にするまたは排除するシステムまたは処理の必要性が存在する。このため、GPS信号妨害及び/又は限定されたGPSデータの存在時に、発射体の案内を提供する、改良され、費用対効果のあるシステム及び処理を有することが有利であろう。
【課題を解決するための手段】
【0008】
本発明のシステム及びプロセスの第1の例示的な実施形態に対応して、ジャイロなしの発射体が、実質的に発射体の内部の切換え推進手段を用いて、目標に向かって案内される。切換え推進手段は、GPS信号と3軸加速度計とに依存する案内システムにより制御される。案内システムは、加速度計の3軸からのデータとともにGPS位置データ及びGPSデルタ速度データに応答してピッチ、回転及び偏揺れの発射体の推定姿勢を判定する、コンピュータ導入プロセスを使用する。GPS受信器により受信されるGPS信号により供給されるデータから知られる発射体の位置を用いて、機体内GPS受信器が必要な数の衛星を追跡した後、コンピュータ導入プロセスは、航行座標における発射体の姿勢を判定し、発射体の軌跡の時間指標記録を生成する。軌跡の時間指標記録のデータは、フィルタにかけられ、滑らかにされる。発射体が回転すると、加速度計は、発射体に作用する力と発射体の回転速度とを測定するために使用される。本発明のいくつかの代替的な実施形態では、GPSは、初期照準及び速度誤差の計算のための、及び打上げ前に発射バレル内に配置されたときの加速度計の較正のためのデータを供給するために使用される。
【0009】
例示的な実施形態では、切換え推進手段は、実質的に発射体内に配置された1以上の空力表面を有する。この実施形態に対応して、例示的な発射体は、上昇された全圧力(動圧)を有するガス供給を受けるように配置された、すなわち発射体の先端表面に配置された1以上の供給口を有する。さらに、発射体は、局所的な静圧が、1以上の供給口で実現される圧力より低い場所に、例えば発射体の側縁または後縁に、ガスを発射体から排出可能にするように配置された1以上の排出口を有する。供給口は、案内システムによりともに制御されるガス計量手段及びガス案内手段を介して、排出口と連通する。供給口を通して受けられたガス量を操作することにより、及び/又は、排出口を通して発射体から排出するガスの方向及び/又は速度を操作することにより、案内システムは、有効に、発射体を目標に案内することが可能である。
【0010】
他の例示的な実施形態では、同様に、発射体は、同様のガス計量手段及びガス案内手段を介してガスチャンバと連通する1以上の排出口を有する。この実施形態に対応して、高圧ガスが、燃焼を介して、あるいは、打上げ前または打上げ中に発射体に予め充填することにより、または圧縮された流体容積を生成する当該分野で知られた他の手段により、実行される化学プロセスを介して供給可能である。ガスチャンバに供給する例示的な方法は、化学反応、すなわち単推進剤、複推進剤、固体推進剤、液体推進剤、及び固体/液体混成推進剤の燃焼を含む。打上げ前の発射体への事前充填のための例示的な方法は、チャンバに圧縮流体を供給し、チャンバが充填されると同時に供給口を閉じることを含む。打上げ中の発射体への事前充填の例示的な方法は、打上げ筒(例えば発射バレル)内部からの高圧ガスがチャンバに流入することを許容するように発射体の口を開放すること、及び発射体が打上げ筒を出る前、または出た直後に口を閉じることを含み、これにより、チャンバに圧縮ガスを充填する。したがって、案内システムは、排出口を通って発射体から排出するガスの方向及び/又は速度を操作して発射体を目標に有効に案内することが可能である。
【0011】
案内システムに関する費用は、必要とされる発射体の飛行精度に依存する、使用されなければならない加速度計の精度に依存する可能性があることが注記されるべきである。費用が減少されるべき場合には、打上げ後のGPS信号へより大きく依存し、より低い精度の加速度計が、使用可能である。それ故、費用を減少する一方で発射体の飛行精度の合理的な水準を保持するために、より大きくGPS信号データに依存しなければならない。このため、本発明の観点は、GPS信号の改良された信頼性を提供する。
【0012】
例示的な実施形態では、GPS信号データは、1以上の衛星から送信され、発射体の1以上のアンテナにより受信されたGPS信号から取得可能である。1以上のGPS信号のジャミングを受ける蓋然性が存在する場合には、各GPS信号を監視し、各GPS信号がジャミングを受けているかどうかを検出するために、1以上の対応するGPS信号ジャミング検出器が、含まれ得る。そのようなジャミングが検出される場合、ジャミング防止器が、GPS信号保護処理に組み込まれるであろう。
【0013】
例示的なGPS信号保護処理は、発射体に、発射体の切換え推進手段を介して、回転のような周期的な動作をさせる、または周期的な動作を維持すること、及び発射体の周期的な動作を利用して、ジャミングされたGPS信号を検出し、排除するように、そして例えば選択的かつ周期的にジャミングを示すGPS信号を回避することによりジャミングされない信号の信頼性のある処理を可能にするように、GPS信号を採取することを含み得る。発射体が周期的動作の各サイクル、すなわち各回転旋回を通して進行するとき、各1以上のアンテナは、各1以上の衛星からGPS信号を受信するように周期的に配置されるであろうことが注記されるべきである。このため、衛星からの少なくとも1つのGPS信号が、ジャミングされない条件でアンテナにより受信可能である状態を維持される限り、各1以上のアンテナは、例えば回転姿勢の少なくとも一部の間、周期的にジャミングを受けないであろう。
【0014】
その代わりに、発射体動作が、1以上のアンテナが、発射体がスピンしていないような場合に、ジャミングされないGPS信号を連続して受信するように向けられたままであることを許容する場合、例示的なGPS信号保護処理は、1以上のアンテナにより受信されたGPS信号がジャミングを受けていないかどうかを検出すること、及びGPS受信器を切り換えてジャミングされていない信号のみ使用することを含み得る。例示的な実施形態のような場合には、発射体は、スピンまたは回転されることは必要ではないことが注記されるべきである。したがって、この保護処理は、回転安定化されていない発射体に組み込み可能である。また、この実施形態に対応して、アンテナが、スリップリングのような機構を介して、発射体の本体から解離可能であることが注記されるべきである。したがって、発射体は、スピンまたは回転安定化される一方で、アンテナは、1以上の衛星に関して固定された指向を維持される。同様に、発射体は、静止可能な一方で、アンテナは、1以上の衛星についての、周期的な動き、例えばスピンを受ける。
【発明を実施するための最良の形態】
【0015】
図1は、ジャイロなしの発射体案内システム10の、発射体12の分解斜視図に配置された例示的な実施形態の主要構成要素を模式的に示す。発射体12は、砲(図示せず)から発射された後の飛行を示されている。
【0016】
発射体は、直交物体固定座標系を有して示されている。回転φの回転速度成分は、長手方向の軸X、ピッチ軸Y及び偏揺れ軸Zを有する。図4は、対応する直交物体座標系を有する飛行機を示す。回転φ、ピッチθ及び偏揺れΨの回転速度成分が、図4に規定されている。局所水準の固定された地球航行座標系も、図4に示されている。遊動角が零であるとき、Y軸は、典型的には、子午線に平行であり、真北を向く。X軸は、経線の平行線に平行であり、東を向き、Z軸は、重力ベクトルとして、地表から延びる。角度αは、航行システムで、特異位置に遭遇することなく地極を横断するために使用される。操作中、発射体加速度及び速度のような時間指標データ要素の成分は、下付符号「b」により示される物体座標から、従来の方向余弦行列を用い、符号Nにより示される地球基準座標データ要素に変換される。
【0017】
再度図1を参照して、ジャイロなしの発射体案内システムにより案内される発射体は、3軸加速度計14を有する。3軸は、X軸に沿って測定されたx軸加速度データを提供するx軸加速度計と、Y軸に沿って測定されたy軸加速度データを提供するy軸加速度計と、Z軸に沿って測定されたz軸加速度データを提供するz軸加速度計とを有する。バンド16により表されるGPSアンテナとモジュール18により表されるGPS受信器は、組み合わせて、地球基準航行座標における機体GPS位置データと、高度データと、GPS速度データとを供給する手段を表す。代替的なアンテナパターン88,89は、1以上の衛星78,79からのGPSデータを受信するように構成されている。アンテナパターン88,89とアンテナバンド16のみが示されているが、任意の数、任意の構成、及び/又は、任意の向きのアンテナが、発射体上に包含可能であることが注記されるべきであり、各アンテナは、異なる方向または方向範囲からの信号を受信するように構成され配置されている(例えば各アンテナパターンは異なる方向または方向範囲に向けて配置されたローブを有する)。同様に、1つのGPS受信器18のみが示されているが、発射体に組み込まれた特定の数、構成及び向きのアンテナを介して受信されたGPS信号の処理に適合するように、複数のGPS受信器が組み込み可能であることが注記されるべきである。
【0018】
モジュール20は、時間指標付けされたGPS位置データ及びGPS速度データを記憶し、アクセスするため、ここで説明するGPS信号保護処理を組み込むため、及び、x、y及びz軸加速度データを物体座標から航行座標に変換するための、コンピュータ、メモリ及びプログラム手段の機能を提供する案内プロセッサを表す。加速度データは、配列されて、GPS位置データ及び速度データ用の時間指標と共通の時間指標を有する。回転計22は、地球磁場における発射体の回転の角速度を表す飛行中のac信号を供給する。
【0019】
モジュール26により表され、そのために発射体を予め定められた目標位置に案内する際に使用する飛行制御及び弾道データシステムに現在の位置、速度及び加速度データを供給するプログラムの各時間指標反復のための発射体の地球基準航行座標に関する回転、ピッチ及び偏揺れの時間指標付けされた評価の対応する組を計算し、出力するため、モジュール20上のコンピュータ、メモリ及びプログラム手段は、対応する時間指標付けされた加速度データ、GPS速度データ及び位置データを受信して応答する。
【0020】
目標位置への軌跡上に発射体を維持するため、飛行制御及び弾道データシステムは、外部制御表面、例えば先尾翼28のような切換え推進手段に指令を供給することにより、発射体を制御する。解決されるべき問題への従来のアプローチは、GPS受信器及び回転計のみに依存した案内システムにより制御される、外部空力表面、例えば先尾翼を使用した。上述したように、外部に組み込まれた制御表面は、例えば打上げバレル内部からの、発射体を打ち上げる困難さを発生させることが注記されてきた。したがって、外部空力表面、例えば先尾翼が使用される場合には、打上げ筒(バレル)を最小限にし、発射体加速及び空気力学的抵抗により先尾翼に印加される大きな力に適合するため、追加の装備が、されなければならない。
【0021】
図9は、飛行時の発射体を案内するための外部空力表面を有する発射体の例示的な実施形態を図解する。図9に示すように、空力表面28,30は、発射体の外部表面の周りの種々の位置に配置可能であり、発射体の外部を通過して流れるガスが、発射体の姿勢、すなわち向きを変更するように、または、発射体の飛行経路を変更して目標に発射体を案内するために、制御表面に作用するであろうように、空力表面28,30は、作動可能である。
【0022】
さらに、本発明は、発射体を目標に案内するための、内部に組み込まれた切換え推進手段を提供する。例えば図10a,10b及び10cに示すように、例示的な発射体1000は、実質的に自由流れ方向1002に発射体の先端部を通る流体1001の流れを許容し、流体1001が発射体1000の内部を通過することを許容し、流体1001を変更された方向1003に発射体1000から排出させることにより、案内システムからの指令に応答するように構成可能である。例示的な実施形態では、発射体は、上昇した全圧力(静圧と動圧の組み合わせ)を有する流体1001の供給を受け入れるように配置された、例えば発射体1000の先端部1004に配置された、1以上の供給口1011を有する。さらに、局所的な静圧が1以上の供給口1011で実現される圧力よりも低い場所で、例えば発射体1000の側縁1032または後縁1033で、流体1001が発射体1000から排出することを可能にするように、発射体1000は、1以上の排出口1031を有する。供給口1011は、案内システムによりともに制御される、ガス計量手段1021とガス案内手段1022とを介して、排出口1031と連通している。ガス計量手段1021は、それにより発射体が飛行可能な流体(例えば、空気、水)の流れ速度を(通路の断面積を変更することにより)制御する当該分野で知られた弁を有することが可能であることが注記されるべきである。また、ガス案内手段1022は、内部制御表面、例えば、作動時に、発射体1000に存在する流れを自由流れ方向以外の方向に向けるように、一定の角度で自由流れ方向1002に向けて配置可能である内部先尾翼または流れ管、を有することが可能であることも注記されるべきである。
【0023】
発射体1000内を流れる流体1001の運動量は、発射体1000に入る、すなわち供給口1011における初期状態から、発射体1000から出る、すなわち排出口1031における最終状態まで変更されるので、力が発射体1000に作用して、発射体1000の線形運動量を変化させるであろう。排出口が配置され、排出流れの方向が、発射体の排出口1031と重心1080を排出流れベクトルが通過しないように制御される場合には、モーメントが発射体1000に印加されて発射体1000の角運動量を変化させ、すなわち発射体の回転を変化させる。また、この実施形態に対応して、ガス計量手段1021及びガス案内手段1022の作動は、発射体1000の飛行経路及び/又は向きの所望の変更または変更の組み合わせを達成するように、1以上の所望の発射体1000の向きと一致する時間に設定可能であることが注記されるべきである。したがって、供給口1011を通して受け入れられた流体1001の量を操作し、排出口1031を通って発射体1000から排出する流体1001の方向及び/又は速度を操作し、発射体の重心と並列にまたは並列でなく排出口を配置し、及び/又は、切換え推進手段の作動の時間を合わせることにより、案内システムは、発射体1000を目標に有効に案内可能である。
【0024】
他の例示的な実施形態では、図11a及び11bに示すように、同様に、発射体は、同様のガス計量手段1121とガス案内手段1122とを介して、ガスチャンバと連通する1以上の排出口1131を有する。より詳細には、図11a及び11bは、発射バレルからの打上げ中及び打上げ後、打上げ気体、例えば燃焼された発射粒子または他の推進剤の生成物が、飛行中の発射体1100を案内する際に使用するために発射体1100に事前充填することを許容するように配置された供給口1111を有する例示的な発射体1100を図解する。
【0025】
図11aに示すように、供給口1111は、開放可能な一方で、発射体1100は、バレル1177内にある。したがって、高圧打上げガスは、チャンバ1118に入って加圧することを許容される。次いで、図11aに示すように、供給口1111は、発射体が打上げ筒に存在する前または直後のいずれかに閉じられ、これにより、チャンバ1118内に圧縮ガスの供給を保持する。ここで説明する他の例示的な実施形態と同様に、発射体1100は、同様のガス計量手段1121とガス案内手段1122とを介してガスチャンバ1118と連通する1以上の排出口1131を有することが可能である。したがって、発射体を目標に有効に案内するために、案内システムは、ガス計量手段1121とガス案内手段1122とを作動して排出口1131を通って発射体から排出するガスの方向及び/又は速度を操作可能である。粒子またはその他の望ましくない成分が、発射中に、チャンバ1118に入ることが許容される場合には困難に直面する可能性があることが注記されるべきである。困難、例えば、そのような成分に関連する、詰まり、塞ぎを解消するため、フィルタが、ガス軽量手段1121とガス案内手段1122とに組み入れ可能である。
【0026】
図12a,12b,12c,12d及び12eに示すように、他の代替的な実施形態では、打上げ前または打上げ中に、燃焼を介して、あるいは、発射体1200内のチャンバ1218に予め充填することにより、または、チャンバ1218内の流体の圧縮容積を生成する当該分野で知られた任意の他の手段により、発射体1200内で実行されるその他の化学プロセスを介して、高圧ガスは、チャンバ1218に供給可能である。
【0027】
図12aに示すように、打上げ前にチャンバ1218を予め充填する例示的な方法は、チャンバ1218に圧縮流体を充填すること、及びチャンバ1218が充填されるとすぐに供給口1211を閉じることを含む。したがって、上述したように、案内システムは、排出口1231を通って発射体から排出するガスの方向及び/又は速度を操作して発射体を目標に有効に案内可能である。図12b,12c,12d及び12eに示すように、他の例示的な実施形態に対応して、燃焼を介して、または、流体の圧縮容積を生成する当該分野で知られた任意の他の手段により、発射体1200内で実行されるその他の化学プロセスを介して、高圧ガスは、チャンバ1218に供給可能である。例えば、図12bに示すように、圧縮ガスは、化学反応、例えば単推進剤または複推進剤の燃焼を通じてチャンバ1218に供給される。同様に、図12c,12d及び12eは、圧縮ガスが、化学反応、例えば、固体推進剤、液体推進剤、及び固体/液体混成推進剤の燃焼を通じてチャンバ1218に供給される。
【0028】
カードまたはモジュール26により表される飛行制御及び弾道データシステムの選択及び/又は構成は、設計上の選択であると考えられ、本発明の開示の対象ではない。さらに、発射体が、周期的に動作する、例えば回転する場合には、本発明は、制御表面の向きまたは他の切換え推進手段が、発射体を操縦するのに好適な方向に対応するのを待つことにより、軌跡補正がなし得ることを提供する。
【0029】
また、本発明は、軌跡補正が大きく、発射体案内部が回転安定化される場合には、発射体は、発射体は回転停止可能で、補正がされる一方で、発射体は、回転安定化モードにある、ことを考慮する。そして、補正を完了した後、発射体は、回転する機体の状態に復帰可能である。本発明は、発射体の回転の向きを判定する機構を提供することにより、これらの可能性を与える。例えば、図3cを参照して、発射体の回転の向きは、1)回転ジャイロ、2)起動/停止に伴うGPS衛星の回転位置、3)多アンテナを有するGPS姿勢判定、4)磁気回転計を通じて判定可能である。
【0030】
例示的な実施形態に対応して、GPS信号データは、1以上の衛星78,79から送信されて発射体上の1以上のアンテナ88,89により受信されたGPS信号から取得可能である。さらに図3cを参照して、例示的な実施形態では、複数のGPSアンテナパターン88,89は、RF処理手段98,99を通過したGPS信号を受信してRF処理されたGPS信号3344を生成する。高速較正器3354及び回転参照部3364からの情報は、RF処理されたGPS信号とともにプロセッサ3364に送信される。信号3344,3354及び3364に基づいて、プロセッサ3374は、位置信号3381、速度信号3382、姿勢信号3383を生成する。
【0031】
図3dに示すように、無線器3427により受信される前に、各GPS信号3407は、低ノイズ分離器3417を通して送られることが可能である。また、例示的な実施形態では、各GPS信号3407を観測し、各GPS信号がジャミングを受けているかどうかを検出するために、1以上のGPS信号ジャミング検出器3418が、包まれ得る。そのようなジャミングが検出される場合、ジャミング防止器3419が、例えば、発射体のアンテナ部の周期的な動きに基づいて、ジャミングを示すGPS信号を選択的かつ周期的に回避可能なGPS信号保護処理に組み込み可能である。図3dに示すように、ジャミング検出器3418とジャミング防止器3419とは、回転参照部3467及びGPS受信器3437から情報を受信するシステムプロセッサ3457に信号を送信する。システムプロセッサ3457から受信した信号に基づいて、デジタルフィルタ3428は、S/W無線器3427からGPS信号を受信し、選択的にそれらのGPS信号のジャミングされていない部分をGPS受信器3437に送信する。そして、GPS受信器3437は、予め記憶したデータ3447を使用して、GPS信号を処理してシステムプロセッサ3457に送信する。最後に、システムプロセッサ3457は、回転基準3467とGPS信号を使用して、制御表面及び/又は切換え推進手段3487を作動させる自動操縦装置3477に信号を送信し、これによって発射体を目標に案内する。
【0032】
例示的な実施形態では、GPS信号保護処理は、発射体に周期的な動作をさせ、または周期的な動作(例えばスピン、回転、またはさもなければ振動)を維持すること、及び発射体の周期的動作を用いて、ジャミングされたGPS信号を検出して排除し、ジャミングされていない信号の信頼性のある処理を可能にするように、GPS信号を選択的に採取することを含む。発射体が、その周期的動作の各サイクルを通して(すなわち、各回転またはスピン旋回、振動あるいは他の周期的動作を通して)進行するとき、各1以上のアンテナ88,89は、各1以上の衛星78,79からGPS信号を受信するように周期的に配置されるであろうことが注記されるべきである。このため、衛星からの少なくとも1のGPS信号が1以上のアンテナによりジャミングされない状態で受信可能である限り、各1以上のアンテナは、例えば回転姿勢の少なくとも一部の間、周期的にジャミングを受けないであろう。
【0033】
図8は、周期的動作、例えばスピンを受ける発射体上に組み込まれた3つの対応するGPSアンテナ及び受信手段により受信された3つの例示的な時間依存性GPS信号を示す。図8に示すように、第1のGPS信号は、発射体が概略30度からの向きを通って概略210度の向きまで回転するときにジャミングを示す。同様に、第2のGPS信号は、発射体が概略120度からの向きを通って360度の向きまで回転するときにジャミングを示す。最後に、第3のGPS信号は、概略360度からの向きを通って概略30度の向きまで回転するときにジャミングを示す。したがって、発射体が概略210度と概略30度の間で回転するとき第1のアンテナに切り換え、発射体が概略360度と概略120度の間で回転するとき第2のアンテナに切り換え、発射体が概略30度と概略360度の間で回転するとき第3のアンテナに切り換え、発射体が概略30度と概略210度の間で回転するとき第1のアンテナを切り、発射体が概略120度と概略360度の間で回転するとき第2のアンテナを切り、発射体が概略360度と概略30度の間で回転するとき第3のアンテナを切ることにより、実質的に連続したジャミングされないGPS信号受信可能である。
【0034】
さらに図1を参照して、1つの実施形態では、打上げ後、ジャイロなしの発射体案内システム12からバス32を介して供給される情報を使用して、GPS信号の受信を最適化するように、発射体を回転停止し、発射体の上部を概略空へ配置し、または、さもなければ、アンテナパターン88,89を向けるように、飛行制御及び弾道データシステム26は、予めプログラムされている。この実施形態に対応して、発射体が回転停止された後、加速度計は、解放されて作動される。そして、コンピュータ、メモリ及びプログラム手段は、機体速度の評価を含む状態行列の第1の評価と更新とを実行する。この例示的な実施形態に対応して、発射体の動作が、1以上のアンテナ88,89がジャミングされないGPS信号を連続して受信するように向けられて維持されることを許容するような場合には、ジャミング防止器3419は、1以上のアンテナにより受信されるGPS信号3407がジャミングを受けないことを検出し、1以上のGPS受信器18を切り換えて、またはさもなければ1以上のGPS受信器にジャミングされていない信号のみを使用させることが可能である。このことを達成するために、コンピュータ導入処理、すなわち案内システムは、1以上のアンテナが実質的に連続してジャミングされないGPS信号を受信することを許容するように、発射体にGPSアンテナの向きと受信手段とを維持させるように構成可能である。
【0035】
そのような例示的な実施形態では、発射体は、スピンまたは回転する必要はないことが注記されるべきである。したがって、この保護処理は、回転安定化されていない発射体に組み込み可能である。また、この実施形態に対応して、アンテナは、スリップリングのような機構を介して発射体の本体から分離可能である。したがって、発射体は、スピンまたは回転安定化され得る一方、アンテナは、1以上の衛星に関して、固定された向きに維持されることが注記されるべきである。同様に、発射体は、静止可能な一方で、アンテナは、1以上の衛星に関して、周期的な動作、例えばスピンを受ける。
【0036】
このため、本発明に対応して、例えばアンテナをスリップリングを介して発射体の本体から解離することにより、発射体は、スピンまたは回転安定化のいずれかかが可能である。いかなるジャミングされないGPS信号も実質的に連続して受信不能な場合には、ジャミング防止手段は、発射体に周期的な動作をさせて、ジャミングを示すGPS信号を選択的かつ周期的に回避させるように構成可能である。
【0037】
他の例示的な保護処理は、RF信号からデジタル信号へのGPS信号の直接変換と、自動ゲイン制御の組み込みとを含む。そのような実施形態では、各GPS信号は、高速アナログデジタル変換器により受信されると同時に、または直後に変換可能である。そして、デジタルGPS信号は、デジタル的に組み込まれた自動ゲイン制御回路を通過可能である。アナログデジタル変換器と自動ゲイン制御回路の両者は、GPS無線受信器に組み込み可能である。
【0038】
例示的な実施形態では、システムは、発射前に初期化されるように構成可能である。この実施形態に対応して、発射体の発射前に、システムは、どの衛星が、発射体の軌跡を通じて各アンテナパターン88,89の視界(FOV)にあるか、及びどの衛星78,79の組み合わせが軌跡についての最良のGDOPを与えるかを判定し、メモリに記憶可能である。この情報は、利用可能なその他の補正データとともに受信器18に予め記憶される。
【0039】
例示的な実施形態では、図3dに示すように、GPS信号3407は、低ノイズ増幅器3417を通して、高速アナログデジタル変換器(例えば14ビットの分解能を有する5ギガビット/秒アナログデジタル変換器)を有することが可能な無線受信器3427に送信される。また、無線受信器3427は、デジタル的に組み込まれた自動ゲイン制御回路を有することができる。そして、信号は、一組のデジタルフィルタ3427と1以上のジャミング検出器3418に送られる。分離フィルタ3427が、TOA計算に使用される各予め選択された衛星78,79用に組み込み可能であることが注記されるべきである。また、デジタルフィルタ3427は、各予め選択された衛星の周波数を帯域通過するようにリアルタイムで動的に同調可能である。帯域通過の中心は、発射体と衛星の間のドップラー運動に対して調整されたGPS搬送周波数になるであろう。そして、GPS信号は、GPS受信器3437に送られて、高速デジタル較正器を介して各予め選択された衛星の既知のコードに対して較正され、位置と速度とが判定される。
【0040】
機体が回転する場合、dcまたは定常状態信号から加速度計ac信号を分離することにより、速度情報が抽出される。発射体が回転すると、ピッチ及び偏揺れ加速度計は、正弦波関数として変化する信号を出力する。機体が回転しない場合、データが抽出され、必要に応じてDCM(方向余弦行列)を用いて、物体座標系から地球基準航行座標系に変換される。
【0041】
図2は、発射体を目標に向けて発射する可動砲兵器を示す。示された式で、オーバーアローX(t)Trueは、時間に関数として発射体の計算された真正位置を表すベクトル量である。オーバーアローX(t)Nominalは、理想の軌跡上の発射体の理想位置を表すベクトルである。オーバーアローX(0)Errorは、打上げ前の時間零における発射体の位置誤差を表すベクトルである。オーバーアローX(t)Errorは、航行装置誤差とGPSと誤差から発生する誤差の蓄積による発射体の位置の誤差を表すベクトルである。図は、イベントの順序を示し、機体案内のない従来の砲術を用いた発射体の打上げから発生する可能性のある目標誤差を表す楕円を結ぶ破線の誤差予想範囲を模式的に描く。連続線の漏斗状領域は、漸進的に減少して、機体案内のない軌跡に対する目標誤差より非常に小さい限界値に接近する機上GPSの位置誤差を模式的に示す。本発明のジャイロなしの発射体案内システム10は、3軸加速度計を使用してリアルタイムの物体参照データをコンピュータ、メモリ及びプログラム手段に供給して、GPSからのリアルタイムの位置データを確定し、発射体の姿勢を出力する。出力は、カルマンフィルタにかけられ、図1に示すモジュール26により表される飛行制御及び弾道データシステムに、漏斗状領域により画定される領域に発射体を操縦するのに使用するための補助GPS位置データとともに、連結される。
【0042】
図3a及び3bは、ジャイロなしの発射体案内システム10により使用されるデータフローの実施形態を模式的に示す。破線ブロック300は、初期化プログラムを実行して、目標位置の外部入力、発射体を打ち上げる兵器の地理的位置、発射体タイプ、バレルのピッチ配置、打上げ筒のピッチ角度、物体座標における3つの加速度成分a,a,aからなる3軸の出力、回転角φ、スピン計308からの回転速度オーバードットφ、のようなデータソースから受信されたデータを処理する。発射制御及び弾道コンピュータは、利用可能なデータを処理し、打上げ前に、初期配向角度、物体固定角速度、現在位置及び初期速度成分のような初期状態データを送信する。スピン計308と3軸304は、それぞれ信号経路314,333を介してその出力を直接、初期発射体状態評価に供給する。すべての初期条件は、発射制御及び弾道機能302のような外部ソースから、電気、磁気、または光学リンク、あるいはおそらく機械的リンクを介して発射体に入力されることが最も可能性がある。砲が機体に装備されたと仮定した場合には、初期条件は、機体慣性案内コンピュータからの機体速度、圧、変位のようなデータ、可能であれば砲が初期状態情報を受け取るステーションについての砲の座標を含むように拡張されなければならない。
【0043】
また、発射制御及び弾道機能302は、零基準を提供するため、回転指標情報をスピン計308に供給する。スピン計308は、数度の精度まで、回転角φと回転速度オーバードットφの推定値を供給する。発射制御及び弾道機能302は、発射体に提供される予想弾道軌跡を予備計算する。この弾道情報は、加速度情報、または発射制御及び弾道機能302から直接のデータとともに、評価プロセスの初期に発射体の初期状態ベクトルと姿勢とを判定するために使用される。アルゴリズムは、加速度計とGPSデータの両方が状態評価に利用可能なときに開始される。また、発射制御及び弾道機能302は、発射体の向きと位置についての一組の初期状態を、信号経路320を介して、新規目標状態の評価機能322から、適合試験の誤りの結果として、受け取る。
【0044】
発射制御及び弾道機能302は、初期の物体状態評価、オーバーアローV、オーバーアローxを、信号経路324を介して、平滑化処理機能ブロック344に送信し、一組の姿勢状態評価を、信号経路330を介して、姿勢ファイル332の初期姿勢角度配列の初期状態評価に送信する、初期発射体状態評価に、一組の初期の状態評価を出力する。
【0045】
回転カウントデータを発射制御及び弾道機能302に供給した回転またはスピン計308は、また、回転カウントデータを信号線333を介して初期発射体状態評価機能ブロック312と、発射体の全回転角度φ(n)が蓄積され、時間指標付けされて、経路351を介して姿勢評価アルゴリズム372に送信される機能ブロック350により図3bに示される時間指標スピン計測定データメモリ配列とに供給する。スピン計技術は、成熟した技術である。Alliant Techsystems Companyは、20mmの発射体に適合するのに十分な小さいスピン計を開発したということである。このため、より大きい直径の発射体用の回転計は、本発明のシステムでの使用のために購入可能で困難なく処理可能な製品である。回転計の出力は、地磁気場により発射体が回転するとき正弦波出力である。
【0046】
初期発射体状態機能ブロック312は、方位角Ψ、ピッチ角θ及び回転角φ0に対する初期の姿勢状態評価値を図3bの姿勢ファイル332に初期値として供給する。
【0047】
物体座標の3つの加速度成分a,a及びaからなる3軸304の出力は、信号経路338を介して時間指標物体参照変化を加速度データファイルメモリ配列340に送信するために、ブロック336により表される機能により処理される。加速度データファイルメモリ配列340は、時間指標付け加速度データ要素の配列を平滑化処理機能ブロック344に連結する。
【0048】
ブロック344のフィルタリング及び平滑化処理は、この開示で後の図6,7a及び7bに関連して説明される。平滑化処理は、現在の加速度計データとともに、姿勢、速度及び位置の初期評価を使用して、物体座標の発射体の速度と位置を判定する。平滑化処理の出力は、信号経路346を介して、物体慣性変換機能ブロック348に連結される、速度及び位置に対する状態ベクトル評価、オーバーアローXB(n)、オーバーアローVB(n)である。
【0049】
GPS測定データ機能ブロック356は、周期的に、時間指標付け速度及び位置データ、オーバーアローV(n)及びオーバーアローX(n)を受け取り、該データを、信号経路358を介して、機能ブロック360として示すコンピュータ、メモリ及びプログラム手段メモリの時間指標付け配列に送信される。GPS速度及び位置データは、信号経路362を介して、機能ブロック364により表されるカルマンフィルタに送信される。カルマンフィルタは、発射体の評価された現在位置及び速度ベクトルのフィルタにかけた値を、信号経路368を介して、適合誤差試験機能ブロック370と、姿勢評価アルゴリズム機能ブロック372とに送信する。姿勢ファイル332は、時間指標付けされ評価された姿勢角度及び姿勢角速度データを、信号経路374を介して、姿勢評価アルゴリズム機能ブロック372に、送信経路378を介して弾道評価機能ブロック376に地球基準航行座標で送信する。弾道評価は、経路375を介した補正された初期位置及び初期速度情報と、経路378からのすべての過去の姿勢及び姿勢速度の履歴とをともに、発射体の既知のモデル特性を使用して、現在の位置及び速度データのモデル化された評価を、経路382を介して、姿勢評価アルゴリズム372に供給する。
【0050】
フィルタにかけられた直交物体座標系の物体ベクトル評価、オーバーアローオーバーキャップXB(n)ベクトル、オーバーアローオーバーキャップVB(n)ベクトルは、信号経路346を介して、物体慣性変換ブロック348に送信される。物体慣性変換ブロック348は、信号経路384,386を介して評価された姿勢角度及び姿勢角速度を受け取り、状態ベクトル評価を直交物体座標系での記述から地球基準航行座標系のベクトルに、地球基準航行座標系の位置及び速度評価まで、Academic Pressにより1993年に出版された、「航空アビオニクスシステム、現代的統合」という題名のGeorge Siourisによるテキストで説明されたような従来の方向余弦変換を用いて処理する。この評価プロセスは、測定した回転カウンタデータを用いて、及び新規の初期状態情報に基づく新規の弾道軌跡を計算することにより、簡略化され改良され得る。
【0051】
物体慣性変換ブロック348は、地球基準航行座標の評価された位置及び速度状態ベクトル評価を、信号経路388を介して、状態ベクトル評価がカルマンフィルタにかけられたGPS位置及び速度と比較される適合誤差試験機能ブロック370に出力する。統計学的意味で、評価プロセスをGPS位置及び速度とGPSについての誤差より良好に適合させることは可能ではない。2つの状態ベクトルの間の差の誤差が、GPS誤差の1倍または2倍より小さい場合には、アルゴリズムは、適合が、「統計学的に十分良好」であることを宣言して停止し、測定されたデータ点が到着するのを待機する。試験が通過すると、位置、速度、姿勢及び姿勢速度の評価が使用されて、評価された位置のn−1番目の位置と姿勢時間指標付けメモリ配列とを更新する。
【0052】
試験が失敗すると、アルゴリズムは、初期発射体状態の新規な一組を摂動アルゴリズムを介して評価し、解が、予め定められた適合誤差基準内に収束するまで、評価プロセスを再度繰り返す。試験が失敗すると、初期の位置、速度、姿勢及び姿勢速度を調整し、評価した状態データの改良された組を、信号経路320を介して、初期発射体状態評価機能ブロック312に、追加のサイクルのために連結する、新規の初期目標状態の評価機能ブロック322に、フェール信号は、経路390を介して連結される。反復は、初期条件が調整されて1秒後にGPSデータを用いた次の反復が続く機能ブロック370からのパス信号を取得するまで継続する。
【0053】
以前に説明したように、GPS及びGPS信号の保護への過剰な依存を回避するため、より高速に実行する慣性装置(例えば、100マイクロgより良好な水準で実行する慣性装置)が使用可能である。HoneywellのVBA加速度計と、出願人、カリフォルニア州91637、ウッドランド ヒルズ、Northrop Grumman Inc.のLitton Guidance&Control Systems Div.から供給されるシリコン加速度計とが、そのような能力を有する。
【0054】
Alliant TechsystemsのGPS受信器は、本発明のシステム及びプロセスでの使用のために利用可能である。Alliant GPSは、十分な処理能力を有するタイプ509プロセッサと、ユーザソフトウェアを記憶するために使用可能な別体のメモリと、この用途のシステムプロセッサとを使用する。Alliant受信器は、マルチRFフロントエンドを用いて構成されて、発射体が回転するときのGPS信号を保護する手段としてマルチアンテナ入力に適合する。また、GPS509プロセッサは、データを処理し、慣性データをGPSで積分するために使用可能であり、カウンタデータを変換する。ソフトウェアは、509プロセッサに組み入れられて、3軸加速度計から速度情報を抽出し、センサからのデータを積分する。
【0055】
その代わりに、費用が削減されなければならない場合には、非常により低い精度の加速度計が、打上げ後のGPS信号へのより大きい依存性を伴って使用可能である。上述したように、例示的な実施形態では、GPS信号データは、1以上の衛星78,79から送信され、1以上のアンテナ88,89により受信されたたGPS信号から取得可能である。各GPS信号3407を観測し、各GPS信号3407がジャミングを受けているかどうかを検出するために、1以上のGPS信号ジャミング検出器3418が、含まれ得る。そのようなジャミングが検出された場合、ジャミング防止器3419は、図3dに示すように、システムプロセッサ3457に存するGPS信号保護処理を組み込み可能である。
【0056】
例えば、ジャミング防止器3419は、システムプロセッサ3457に、発射体が、回転またはスピンのような周期的な動作をする、または周期的な動作を維持するようにさせることができる。周期的動作の各サイクルを通して、すなわち各回転旋回を通して、発射体が進行するとき、各1以上のアンテナ88,89は、各1以上の衛星78,79からGPS信号を受信するように配置可能である。このため、衛星からの少なくとも1つのGPS信号が、ジャミングされない状態で、1以上のアンテナにより可能に維持される限り、各1以上のアンテナは、周期的に、例えば回転姿勢の少なくとも一部の間、ジャミングを受けないであろう。
【0057】
その代わりに、ジャミング検出器3418が、1以上のGPS信号で、ジャミングを検出しない、または、実質的なジャミングの欠如を検出する場合、ジャミング防止器3419は、GPS信号3407の受信を最適化するようにシステムプロセッサ3457に、発射体を回転停止させて、発射体の上面を空へ概略向けさせ、あるいは、さもなければアンテナパターン88,89を向ける。この実施形態に対応して、発射体が回転停止された後、加速度計は、解放されて作動される。そして、コンピュータ、メモリ及びプログラム手段が、機体速度の評価を含む状態行列の第1の評価と更新とを実行する。この例示的な実施形態に対応して、ジャミング防止器3419は、1以上のGPS受信器18を切り換え、または、さもなければ、1以上のGPS受信器またはシステムプロセッサ3457に、ジャミングされない1以上のアンテナにより受信されたジャミングされないGPS信号のみを使用させる。
【0058】
案内される発射体の回転角度は、典型的には、ジャイロまたはジャイロプラットフォームにより提供される。発射体の回転角度を特徴付ける回転角度信号は、飛行制御システムが、先尾翼のような飛行制御表面を駆動し、必要に応じて発射体を左または右に回転させ、揚力表面からの揚力を使用して発射体の飛行方位を目標に向けられたものに変更することを可能にする。ジャイロからの信号なしに、3軸からの加速度計出力とGPSからの位置及び速度信号とを使用して、発射体の回転角度を生成する、機械的、及びそれ故、コンピュータプログラム可能なプロセスを提供することが、本開示の目的である。
【0059】
この技術的な説明は、以下の表記を使用する。オーバーバーxは、分解のいかなる特定の基準フレームも有しないベクトルを示す。オーバーバーxは、物体フレームまたは発射体フレームと称される座標フレームに分解されたベクトルを示す。物体フレーム座標を含む、ここで説明するすべての座標フレームは、重心のような発射体の本体の一定の位置、または、基準点「O」として示された原点から延び、前方または正の「x」軸方向、右または正の「y」軸方向及び正の「z」軸方向の下方に延びる直交3軸を形成するx、y及びz軸を有する右手直交フレームである。少なくとも2つの加速度計が、y軸及びz軸に沿った物体フレームに固定されて並列に配置される。b−フレームの主軸は、慣性センサの出力軸と一致し、原点「O」を横切る。対象である第2の座標フレームは、図4の下部に示すように、東、北及び上方向に一致するX,Y及びZ主軸を有する地理的または地球基準航行座標系またはフレームである。
【0060】
ベクトルの下付記号は、ベクトルの特定の特性または識別を示すために使用される。行列は、大文字で示される。下付N上付bCは、ベクトルをN−フレームまたは航行フレームから物体フレームに変換する、すなわちオーバーアローx=下付N上付bCオーバーアローX、方向余弦行列(DCM)を示す。量の時間依存性は、時間変数または指数の周囲の丸括弧で示される。例えば、下付N上付bC(t)は、航行座標から時間tにおける物体フレーム座標への変換のためのDCMの値を示す。下付N上付bC(t)の転置は、物体座標から時間tにおける航行フレーム座標への変換のためのDCM、下付b上付NC(t)を提供する。
【0061】
変数の増分は、記号Δで示される。例えば、Δオーバーバーxは、予め定められた時間間隔にわたるベクトルオーバーバーxの増分を示す。変数の誤差は、記号δで示される。例えば、δオーバーバーxは、ベクトルオーバーバーxの誤差を示す。=記号は、概略または実質的に等価であることを示す。
【0062】
センサ及び配向
【0063】
2つの加速度装置では、第1の加速度計は、物体の右側から外側に延びるy物体軸の沿った加速度を感知するように配置される。第2の加速度計は、原点から下方に延びて偏揺れ軸を形成するz物体軸に沿った加速度を感知するように配置される。回転変数の計算には必要ではないが、第3の加速度計は、xまたは前方軸に沿った加速度を感知するように配置される。
【0064】
回転角度計算
【0065】
加速度計出力は、以下の式に応じて、物体座標から航行座標値に分解される。
【数1】


ここで、Aは、物体座標の加速度ベクトルを表し、括弧付きH,P及びR演算子{H}、{P}、{R}は、それぞれ、機体または発射体固定座標系の回転、xについて、ピッチ、yについて、飛行方位または偏揺れ、zについて、に対する物体から航行座標への正回転DCM変換ステップの転置を表し、その順序で、固定航行または地球基準の東、X、北、Y、及び上、Z軸に沿った成分を有する航行座標の機体加速度の要素として、加速度ベクトルAを得る。
【0066】
DCM{T}は、北、東、下系から東、北、上フレームへ、物体基準加速度データを変換するユニタリ行列であり、以下のように定義される。
【数2】




【0067】
発射体の加速度系の3軸からの加速度Aのデータ要素は、1秒のような予め定められた時間増分にわたって積分されて、以下の式に応じて、航行座標の速度の変化分を得る。
【数3】

【0068】
加速度計データに基づく速度の変化分の各計算と同時に、GPSデータが、速度の変化分を計算するために使用される。GPSデータは、既に航行座標である。以下の式が用いられる。
【数4】

【0069】
二重積分が、物体の航行フレーム変換とともに、物体加速度計データについて実行されて、以下の式を用いて、物体フレームから変換された加速度計データに基づいて位置の変化を得る。
【数5】

【0070】
加速度計データに基づく位置の変化分、ΔPの各計算では、GPSデータは、位置の実質的に等価なGPS変化分を計算するために使用される。以下の式が用いられる。
【数6】

【0071】
式群
【0072】
DCM行列とその転置行列の生成物は、単位行列である。したがって、
【数7】




【0073】
式3から、以下のように、GPSデータからの速度成分の変化、または加速度成分の変化を、加速度計データからの加速度成分に関連付けることが可能である。
【数8】

【0074】
式5から、以下のように、GPSデータからの位置成分、または速度成分の変化を、加速度計データからの速度成分に関連付けることが可能である。
【数9】

【0075】
ピッチ、飛行方位及びユニタリ変換DCMが、群化され、または多重化されて単一のDCM、{Q}を形成する場合には、時間増分は、簡単のために、1秒となるように選択される(しかし、任意の時間増分が式で使用可能であることが理解されるべきである)。
【数10】

【0076】
式7aのΔTに1を、式7bのΔTに1を代入して、式7a及び7bの両辺にユニタリ、飛行方位及びピッチDCMの転置行列を、その順序で掛け合わせると、以下の式を提供する。
【数11】



【0077】
Cosθを表すCP、Sinθを表すSP、CosΨを表すCH、SinΨを表すSH、Cosφを表すCR、Sinφを表すSRを用いて、物体から航行座標への回転変換のための6つのDCMは、
【数12】

【0078】
物体が砲から発射された発射体である場合、ピッチ角度は、発射時のバレルの角度であり、飛行方位は、バレルが発射時の真北を用いて作り出す角度Ψである。両者は、システムからの初期化から利用可能であり、時間についての標準軌跡に近似することが予想され、従って形式的に知られている。
【0079】
{Q}の要素は、8a,10a及び10bから知られ、緩やかに変化すると考えられ、そこで{Q}を
【数13】





と置く。
【0080】
式9a及び9bを書き換え、{P}{H}{T}に対する結果の{Q}に、ΔT=1秒及びΔT=1秒を代入して、
【数14】




を与える。
【0081】
左辺と右辺を置き換える。
【数15】




【0082】
回転DCMは、10cで特徴付けられ、加速度計データは、ベクトルであるので、
【数16】





【数17】


ここで、オーバーキャップx、オーバーキャップy及びオーバーキャップzは、物体軸に沿う単位ベクトルである。
【0083】
式13a及び13bは、以下のように書き換えられる。
【数18】









【0084】
GPSからの増分加速度計及び速度データは、固定航行座標で使用可能にされて2つの3要素ベクトルを形成する。
【数19】




ここで、オーバーキャップx、オーバーキャップy及びオーバーキャップzは、東、北及び上座標フレーム系の基本単位ベクトルである。
【0085】
15a及び15bの{Q}に対する行列は、以下のように16a及び16bのベクトルと掛け合わされる。
【数20】









【0086】
17a及び17bの左辺が掛け合わされて左辺に3×1行列を形成する。
【数21】










【0087】
すなわち、式18a及び18bの左辺のベクトルの第1要素aは、回転角度成分を有さず、何故なら、それは、機体の長手方向の軸下方の加速度を表すからであり、そのため、第2及び第3行の式を残して削除される。式18a及び18bから、
【数22】









【0088】
19a及び19bの左辺は、書き換え可能で、以下のように2×2行列掛ける2×1行列を形成する。
【数23】

【0089】
20aと20bを結合して
【数24】

を得る。
【0090】
回転角度の計算は、以下の定義を使用する。
【数25】






は、加速度計係数行列である。
【数26】






は、ピッチ/飛行方位係数行列である。
【数27】









は、GPS情報ベクトルであり、
【数28】



は、未知の回転量である。式20cを書き換えて、
【数29】


を与える。
【0091】
α1行列は、4×2行列である。オーバーバーχは、2×1ベクトルである。式21をオーバーバーχについて解くと、式21は、2つの未知数(CR,SR)の4つの式を表すことがわかり、続けて式21の両辺にαを掛け合わせて、
【数30】


を与える。
【0092】
両辺に、ααの生成物の逆行列を前から掛け合わせて、
【数31】


を与える。
【0093】
したがって、
【数32】




ので、回転角度は、
【数33】

である。
【0094】
この手順は、続いて、追加の採取時間に対して、以下のように、重複決定された(overdetermined)システムを再度解く。t=tの場合、2つの未知数(cosR,sinR)を有する8つの式が存在し、t=tの場合、2つの未知数(cosR,sinR)を有する4nの式が存在することになる。
【0095】
反復解は、以下のように式を重ねる(すなわち、t=tの場合)ことにより見出される。
【数34】




ここで、α,β及びオーバーバーMは、上で定義されている。新たな変数α,β及びオーバーバーMは、t=tにおける値を表す以外、α,β及びオーバーバーMと同一の構成を有する。また、オーバーバーχは、cosR,sinRの値を表して2つのデータサンプルにわたって変数を使用する。したがって、t=tにおける解は、以前のようにつまり以下のように得られる。
【数35】








【0096】
同様にt=tにおいてnデータサンプルについて
【数36】







【0097】
一般化された発射体または機体について、我々は、ピッチ及び飛行方位係数行列用のデータを必要とする。飛行方位及ピッチ(ジャイロなし)は、地上航跡(arctanVn/Ve)と、飛行経路角度(垂直速度の逆正接または高度の変化速度、及び、デルタP北とHoneywellから入手可能なデルタコンパスとから決定されるような地上速度)からのピッチとから近似可能である。上空風が既知である場合、上空風は、飛行方位を補正するために使用可能であり、迎え角が既知である場合には、迎え角は、ピッチ角度を補正するために使用可能である。
【0098】
図5は、ブロック図であり、図5は、回転角度の計算に必要なプロセス機能の概略を模式的に提供するブロック図である。GPS受信器、ブロック500は、位置採取器502及び速度採取器504を介して位置及び速度データを提供する内部コンピュータで示される。各採取器は、各々の採取器遅延器506,508を有する。採取器の出力は、Δ位置及びΔ速度であり、このデータは、回転評価(反復解)機能ブロック510に連結される。加速度計ブロック512は、以前に説明した物体軸と並んで配置された加速度計3軸を表す。加速度aの成分は、図1に示すように、発射体の長手方向の軸と並列に配置される。加速度aの成分は、1秒から次の1秒の飛行中、非常に緩やかに変化する。加速度aの成分は、横航跡加速度であり、aは、上軸に沿った加速度の成分であり、両者は、図1に示される。ピッチ飛行方位係数行列514は、a及びa加速度計データを用いて初期化される。データ処理は、三角法の値に対して、現在のピッチ評価及び飛行方位評価を使用する。入力ΔTは、1秒の望ましい値を有するように示される。ピッチ飛行方位係数行列は、回転評価機能ブロック510によるGPSΔ位置及びΔ速度入力とともに用いられて、回転角度φ出力を、図1のブロック26を含む飛行制御ブロック516に供給する。
【0099】
平滑化
【0100】
図3aのブロック344により参照される平滑化処理は、これから、図6,7a及び7bの説明と関連して説明される。加速度計とGPS受信器とを有する本発明の発射体案内システムは、その飛行を通じて、打上げから現在位置までの発射体の過去の軌跡の平滑化された評価を、図1に示す飛行制御ブロック26に、飛行制御ブロック26が飛行方位または既知の目標位置までの発射体の地上航跡を調整することを許容する姿勢角度とともに、出力する。
【0101】
図6は、前進平滑器の実施形態を提供する。示された実施形態は、カルマンフィルタを使用する。図3bのブロック364のカルマンフィルタは、時間t2,....,tにおいてn測定値{y,y,y,...,y}が存在しているようなフィルタである。
【0102】
時間tにおける測定値は、装置からの加速度データ、または速度、または位置データの一部、またはデルタVデータのような、またはGPS入力から若しくは加速度計データからの速度または位置データのサンプル、を含むことが可能で、これらの値は、{y,y,y,...,y}のようなyベクトルの値として配列される。
【0103】
処理は、1Hzのサンプル速度で、GPS情報に時間指標付けまたはサンプル指標付けされる。GPSサンプルの間で、システムは、測定値指標カウンタまたはkカウンタを用いてすべての過去のサンプル及び状態を再処理して、1からnまで計数される指標を供給する。
【0104】
処理は、以前のサンプル時間tkにおけるシステム状態ベクトルの知識に基づく評価を取得するのに間に合うように戻るという目的を有する。GPS位置データのような測定データは、1からkのサンプルとして取得または受信されたときに指標付けされ、受信された最後のサンプルが、サンプルnとして指標付けされた測定値である。
【0105】
図6は、開始時のプロセスの初期状態の知識に基づくt=tにおける共分散行列P(0)=P(t)の初期化により、ブロック600にて開始する。ブロック602は、次いで、サンプル指標カウンタ、kカウンタが、1に設定されることを示し、そしてブロック604が、tがtより大きいかどうか検査する試験をする。時間がtより小さいか等しい場合には、試験は、ブロック606に進み、指標カウンタを1だけ増加する。
【0106】
ブロック608は、システム状態ベクトルまたは評価した状態ベクトルを時間tk−1から時間tに伝搬するステップを表す。記号φk−1は、システム式または伝達関数を表す。伝達関数φk−1は、システムの状態ベクトルxを時間k−1から時間kに伝搬する。状態行列「x」として表された状態ベクトルは、次元が1×「m」である列行列である。共分散行列Pは、次元が「m」×「m」である。
【0107】
処理は、ブロック610に進む。このステップでは、フローチャートは、共分散行列Pをtk−1から時間tに、式
【数37】


を用いて伝搬する。この式では、項Pは、状態ベクトルオーバキャップxのフィルタにかけられた評価に関する誤差共分散である。伝達関数φk−1及びその転置行列φk−1は、上で導入されている。項Qk−1は、プロセスノイズの共分散行列である。
【0108】
ブロック612では、処理は、時間t=tに対するカルマンフィルタゲインを計算する。記号Gは、カルマンゲインを表す。項Hは、時間t=tにおける測定または観測行列であり、Hは、時間t=tにおける測定値行列の転置行列を表す。測定値行列は、典型的には、Vx,Vyのような要素から形成される。yベクトルまたは測定値ベクトルは、H行列と状態ベクトルxの生成物から形成され、該生成物は、測定値ノイズ行列に加えられる。
【0109】
ブロック612の記載の括弧内で、誤差共分散行列Pは、測定値行列の転置行列Hを掛け合わされる。そして、2つの生成物は、測定値行列Hを掛け合わされる。生成物の結果は、R,測定値ノイズベクトルの共分散行列に加えられる。
【0110】
行列は、システム技術者により経験に基づく試験を通して集められた情報から得られる。システム技術者は、各測定変数についての履歴的なノイズデータを集めることにより、どのノイズが、各センサと対応するのか判定する。H行列は、所与であり、ハードウェア及び装置に依存する。カルマンゲインが決定され、そしてブロック614の状態ベクトルの評価を更新するために使用される。各測定が行われるとき、カルマンゲインは、それ自体、状態の組み合わせの関数である。例えば、発射体の速度は、x及びy速度成分の結果であり得る。結果は、各測定値の線形の組み合わせである。
【0111】
処理は、ブロック614に進み、システム状態評価ベクトルが、時間tに対して、式
【数38】


を用いて更新される。項Hは、項オーバーキャップxに掛け合わされる。結果は、yから減算される。結果は、カルマンゲインと掛け合わされて以前に評価した状態ベクトルオーバーキャップxに加えられた観測可能な差である。
【0112】
オーバーキャップxのマイナス記号は、それが、k番目の更新の少し前の状態を表すことを示す。サンプル指標「k」は、1からnまでの値の範囲であり得て、ここでnは直近の更新の時間指標である。上付き文字のない状態変数は、状態変数値が更新直後に存在する値であることを示す。記号オーバーキャップxは、状態ベクトルxのk番目の評価を表す。y測定がされると、k番目の更新が、y測定値に対して実行される。測定指標「k」は、移動指標である。
【0113】
時間t=tにおける状態ベクトルを、ブロック614の式を評価することにより更新した後、処理は、ブロック616の式に進む。
【数39】


は、共分散行列Pを更新するために使用される。行列Iは、単位行列である。その要素のすべては、1である主対角要素を除いてゼロである。単位行列の次元は、GとH行列の生成物に合致する。共分散行列の計算に必要な値のすべては、以前のステップから利用可能である。
【0114】
行列の計算後、処理は、ブロック616を離れ、判別ブロック604に移動して戻り再度t>tかどうかを検査する試験をする。時間がtに達すると、測定値のすべては、処理されている。いかなる追加の測定もなされないはずである。結果「yes」は、処理をシナリオ完了ブロック618に移動させて、作業は完了する。飛行が100秒継続され、GPSに位置測定を1秒に1回提供させた場合、100GPSサンプルが存在するはずであり、サンプル指標kは、1から100まで増加されたはずである。指標「k」は、100を超えることはできない。
【0115】
図7a及び7bは、固定間隔平滑器を形成し、図7aは、前進経路を提供し、図7bは、後退経路を提供する。図7aは、ブロック700を除いて図6のブロックと機能が同一であるように見える。処理は、ブロックを出て、図7bの上にも見られるブロック702に進む。処理がサンプル指標カウンタ、すなわちkカウンタをnの現在の指標値に設定するとき、後退掃引が、ブロック704で開始する。図7bの後退掃引処理の目的は、測定値指標カウンタ「k」が、k=n,n−1,n−2,...,1に減少されるとき、平滑器評価x(k)=オーバーキャップx(k|n)と平滑器誤差共分散P(k)=P(k|n)を、すべてのn測定値を用いて計算することである。x(k)の記述及びP(k)の記述の下付き文字「s」は、平滑化された変数を示す。
【0116】
処理は、ブロック706に進み平滑器ゲインを計算する。
【数40】


【0117】
(k|k)のような項の「k」に続く垂直バーは、行列が、k番目の測定を含みk番目の測定までのすべての測定に対して評価されることを意味する。後退掃引は、前進掃引の完了後にのみ開始する。すべてのk測定値は、前進掃引の完了時に利用可能である。すべてのkデータ点は、固定された間隔を形成し、tからtに戻るすべてのn測定値は、後退掃引中に使用される。
【0118】
共分散行列P(k|k)は、時間t=kにおける伝達関数φの転置行列と掛け合わされる。
【0119】
ブロック706の最も右の項は、すべてのk測定値を用いて、時間tk+1における共分散行列P(k+1|k)の逆行列である。「k」に続く垂直バーは、kまでの測定に対するデータのすべてが使用されるべきであることを示す。
【0120】
そして、処理は、ブロック708に進む。ブロック708の式の目的は、すべてのn測定値を用いて平滑化状態ベクトルオーバーキャップx(k|n)を計算することである。ブロック708の式は、
【数41】


である。
【0121】
ゲイン行列A(k)は、ブロック706から利用可能である。等号後の第1項は、測定kまでのすべての測定データを用いたk番目の状態ベクトル評価である。括弧内の第1項、項オーバーキャップx(k+1|n)は、測定nまでのすべての測定値を用いた、時間k+1における状態ベクトルの評価を表す。括弧内の第2項オーバーキャップx(k+1|k)は、時間tまでのすべての測定値を用いた、時間k+1における状態ベクトルの評価である。差は、第2項が第1項から差し引かれて計算される。結果は、ゲイン行列と掛け合わせられ、生成物は、オーバーキャップx(k|k)に加えられる。
【0122】
そして、処理は、ブロック710に進んで平滑化共分散行列を式
【数42】


から計算する。
【0123】
等号後の第1の共分散P(k|k)は、k番目の更新までのすべてのデータを使用する。括弧内の第1の共分散項P(k+1|n)は、測定nまでの測定からのデータのすべてを使用する。括弧内の第2の共分散項P(k+1|k)は、k番目の更新までのデータそれぞれのみを使用する。共分散差は、括弧内の共分散項から計算される。そして、共分散差項は、ゲイン行列と掛け合わされて、結果は、P(k|k)に加えられる。
【0124】
平滑化共分散評価が計算された後、処理は、ブロック712に進み、測定値指標カウンタをkからk−1に減少させる。そして、処理は、ブロック714に進み、測定値指標行列kが1より大きいかどうかを判定する試験がされる。ループまたはサイクルが継続し、各「no」判別に、ブロック706への戻りサイクルがk=1まで続く。k=1のとき、ブロック714での試験は、「yes」判別の結果となり、処理は、ブロック716、後退掃引完了ブロックに進む。ブロック716は、発射体がその目標近傍にあるとき、プログラムの完了を送信する。
【0125】
当業者は、本発明の観点及び精神から逸脱しないで、望ましい実施形態の種々の応用及び変形が構成可能であることを理解するであろう。したがって、添付のクレームの範囲内で、本発明は、ここで特別に説明したようなもの以外にも実行可能であることが理解されるべきである。
【図面の簡単な説明】
【0126】
【図1】機内GPS受信器、機体フレームに結合された一組の加速度計、複数のアンテナ、及び本発明のプロセスを実行するための機内コンピュータカードを装備した発射体または無人飛行装置の斜視分解図である。
【図2】打上げ機、及び軌跡周りの飛行誤差エンベロープ領域を有する所望の軌跡を示す。
【図3a】飛行軌跡の評価のための加速度計及びGPSデータを処理するブロック図を示す。
【図3b】飛行軌跡の評価のための加速度計及びGPSデータを処理するブロック図を示す。
【図3c】飛行軌跡の評価のための加速度計及びGPSデータを処理するブロック図を示す。
【図3d】飛行軌跡の評価のための加速度計及びGPSデータを処理するブロック図を示す。
【図4】典型的な座標系を示し、回転角を規定する飛行機の斜視模式図である。
【図5】回転角計算における機能ステップについてのブロック図である。
【図6】典型的なカルマンフィルタにおけるステップ及び交互回転角を計算するためのフローチャートである。
【図7a】図7aは、典型的な平滑器における前進フィルタステップのフローチャートである。
【図7b】図7bは、典型的な平滑器における後退フィルタステップのフローチャートである。
【図8】GPS信号ジャミングの存在時の回転する発射体上の複数のアンテナにより受信された時間依存性のGPS信号を図解する。
【図9】発射体を航路に案内するための外部空力表面を有する発射体を図解する。
【図10】図10a,10b及び10cは、それぞれ、本発明の例示的な実施形態にかかる、1以上の供給口と、1以上の排出口とを有する発射体の側面、上面及び上面図を示す。
【図11】図11a及び11bは、本発明の例示的な実施形態にかかる、発射バレルから打上げ中、打上げ後の、飛行中に発射体を案内するのに使用するために、打上げガスを発射体に事前充填することを許容するように配置された供給口を有する発射体を図解する。
【図12】図12a,12b,12c,12d及び12eは、本発明の例示的な実施形態にかかる発射体を図解する。

【特許請求の範囲】
【請求項1】
発射体に装備され、回転、ピッチ、方位軸加速度データを提供する3軸加速度計を有する発射体と、
前記発射体に装備され、現在の位置データを提供し、更新するためのGPSアンテナ及び受信手段と、
前記発射体に装備され、案内プログラムを実行するコンピュータ及びメモリと、
切換え推進手段と、
を備え、
前記案内プログラムは、前記回転、ピッチ及び方位軸加速度データと、時間指標付けされた回転、ピッチ及び方位軸角度、時間指標付けされた現在位置及び速度を計算して、前記発射体を予め定められた目標位置に案内する飛行制御システムに出力するための採取された現在位置データとに対応可能であり、
前記切換え推進手段は、前記案内プログラムに対応可能である、
加速度計とGPS受信器とを有する発射体案内システム。
【請求項2】
前記切換え推進手段は、前記発射体の外部に配置された1以上の制御表面を有する、請求項1の発射体案内システム。
【請求項3】
前記切換え推進手段は、該案内システムからの指令に応答して前記発射体の姿勢を変更するように構成された、請求項1の発射体案内システム。
【請求項4】
前記切換え推進手段は、該案内システムからの指令に応答して前記発射体の飛行経路を変更する、請求項1の発射体案内システム。
【請求項5】
前記切換え推進手段は、前記発射体の内部に配置された、請求項1の発射体案内システム。
【請求項6】
前記切換え推進手段は、ガス計量手段を有する、請求項5の発射体案内システム。
【請求項7】
前記切換え推進手段は、ガス案内手段を有する、請求項6の発射体案内システム。
【請求項8】
前記切換え推進手段は、前記発射体の先端部に配置された1以上の供給口を有する、請求項5の発射体案内システム。
【請求項9】
前記切換え推進手段は、前記発射体の側面に配置された1以上の排出口を有する、請求項5の発射体案内システム。
【請求項10】
前記切換え推進手段は、前記発射体の尾部に配置された1以上の排出口を有する、請求項5の発射体案内システム。
【請求項11】
前記切換え推進手段は、圧縮ガスを貯蔵するチャンバと前記チャンバに圧縮ガスを供給する手段とを有する、請求項6の発射体案内システム。
【請求項12】
圧縮ガスを供給する前記手段は、前記発射体の打上げ中に、高圧の打上げガスを受け入れるように配置された供給口を有し、前記供給口は、打上げ中に、打上げガスの進入を許容し、打上げ後に、前記打上げガスを保持するように構成された、請求項11の発射体案内システム。
【請求項13】
前記ガス計量手段は、フィルタを有する、請求項12の発射体案内システム。
【請求項14】
前記ガス案内手段は、フィルタを有する、請求項7の発射体案内システム。
【請求項15】
圧縮ガスを供給する前記手段は、前記発射体の打上げ前に、高圧の打上げガスを受け入れるように配置された供給口を有し、前記供給口は、打上げ前に、打上げガスの進入を許容し、打上げ後に、前記打上げガスを保持するように構成された、請求項11の発射体案内システム。
【請求項16】
圧縮ガスを供給する前記手段は、固体推進材を燃焼する燃焼装置を有する、請求項11の発射体案内システム。
【請求項17】
圧縮ガスを供給する前記手段は、液体推進材を燃焼する燃焼装置を有する、請求項11の発射体案内システム。
【請求項18】
圧縮ガスを供給する前記手段は、液体推進材と固体推進材の組み合わせを燃焼する燃焼装置を有する、請求項11の発射体案内システム。
【請求項19】
回転測定のための長手方向の軸またはx軸、ピッチ測定のためのy軸、及び偏揺れ測定のためのz軸を有する直交物体座標系を有する、打上げ後飛行中の発射体と、前記発射体は、前記x軸に沿って測定されたx軸加速度データを供給するx加速度計、前記y軸に沿って測定されたy軸加速度データを供給する加速度計、及び前記z軸に沿って測定されたz軸加速度データを供給するz加速度計を有する3軸加速度計を少なくとも有し、
地球基準航行座標の機体GPS位置及びGPS速度データを供給するためのGPSアンテナ及び受信手段と、
時間指標付けされたGPS位置及びGPS速度データを記憶し、アクセスし、物体座標から航行座標に、前記x、y及びz軸加速度データを変換するコンピュータ及びメモリ及びプログラム手段と、前記加速度データは、配列されて、前記GPS位置及び速度データと共通の時間指標を有し、
切換え推進手段と、
を備え、
前記プログラム手段は、対応する時間指標付けされた加速度データと、現在の位置、速度及び加速度データの各時間指標反復の局所水準について評価された発射体回転、ピッチ及び偏揺れ角度を計算して、前記発射体を予め定められた目標位置に案内する飛行制御システムに出力するためのGPS速度及び位置データとに対応可能であり、
案内プログラムは、前記回転、ピッチ及び方位軸加速度データと、時間指標付けされた回転、ピッチ及び方位軸角度、時間指標付けされた現在位置及び速度を計算して、前記発射体を予め定められた目標位置に案内する飛行制御システムに出力するための採取された現在位置データとに対応可能であり、
前記切換え推進手段は、前記案内プログラムに対応可能である、
ジャイロを有しない発射体案内システム。
【請求項20】
ジャイロを有しない機体または発射体の案内のための発射体案内システム処理であって、前記機体は、打ち上げられて、回転測定のための長手方向の軸またはx軸、ピッチ測定のためのy軸、及び偏揺れ測定のためのz軸を有する直交座標系と、x、y及びz軸加速度を出力する3軸加速度計と、地球基準航行座標のGPS位置及びGPS速度データを供給するためのGPSアンテナ及び受信手段とを有し、
プログラムを実行して一組の状態方程式の機能として前記発射体の軌跡を計算するコンピュータ及びメモリ手段を用いて、対応するx、y及びz軸加速度データとともに、GPS位置及び速度データを受信し、指標付けし、記憶し、
前記プログラムが、前記x、y及びz軸加速度データを局所水準の航行基準系に変換し、
前記プログラムが、時間指標付けされた状態方程式を解いて前記システムの評価された状態を更新し、
局所水準の座標の時間指標付けされたピッチ、回転及び偏揺れ角度を計算し、
前記プログラムが、対応する時間指標付けされた現在位置とともに、局所水準の座標の前記時間指標付けされたピッチ、回転及び偏揺れ角度を、前記発射体を目的地に案内する飛行制御システムに出力し、
前記飛行制御システムが、切換え推進手段を制御して、前記機体または発射体を案内する、
ステップを備える発射体案内システム処理。

【図1】
image rotate

【図2】
image rotate

【図3a】
image rotate

【図3b】
image rotate

【図3c】
image rotate

【図3d】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7a】
image rotate

【図7b】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公表番号】特表2006−515055(P2006−515055A)
【公表日】平成18年5月18日(2006.5.18)
【国際特許分類】
【出願番号】特願2005−507652(P2005−507652)
【出願日】平成15年11月12日(2003.11.12)
【国際出願番号】PCT/US2003/035850
【国際公開番号】WO2005/015115
【国際公開日】平成17年2月17日(2005.2.17)
【出願人】(505113724)ノースロップ グルーマン コーポレーション (6)