説明

原子炉によって生成されたエネルギーを蓄熱するための方法、システム、および装置

原子炉によって生成されたエネルギーを蓄熱するための方法、システム、および装置は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、予備熱貯蔵器へ迂回させる工程と、停止事象に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち一部を供給する工程と、を含む。

【発明の詳細な説明】
【発明の詳細な説明】
【0001】
〔背景〕
本出願は、原子炉によって生成されたエネルギーを蓄熱する方法、システム、および装置に関する。
【0002】
〔関連する出願についての相互参照〕
本願は、以下に挙げられている出願(“関連出願”)に基づく最先の有効出願日の利益に関連しており、その利益を主張する。例えば、本願は、仮特許出願以外の最先の有効な優先日を主張するか、または仮特許出願、関連出願の任意のすべての親出願、その親出願、さらにその親出願などに対して、35USC§119(e)に基づく利益を主張する。
【0003】
〔関連出願〕
米国特許商標庁(USPTO)の特別な法的要件のために、本願は、「METHOD, SYSTEM, AND APPARATUS FOR THE THERMAL STORAGE OF NUCLEAR REACTOR GENERATED ENERGY(原子炉によって生成されたエネルギーを蓄熱する方法、システム、および装置)」と題する米国特許出願第12/660,025号の一部継続出願(発明者:RODERICK A. HYDE, MURIEL Y. ISHIKAWA, CLARENCE T. TEGREENE, JOSHUA C. WALTER, LOWELL L. WOOD, JR., AND VICTORIA Y. H. WOOD、出願日:2010年2月18日、現在同時係属)を構成しているか、または、現在同時係属している出願にこの出願日の利益を得る権利が付与される出願である。
【0004】
USPTOの特別な法的要件のために、本願は、「METHOD, SYSTEM, AND APPARATUS FOR THE THERMAL STORAGE OF NUCLEAR REACTOR GENERATED ENERGY(原子炉によって生成されたエネルギーを蓄熱する方法、システム、および装置)」と題する米国特許出願第12/660,157号の一部継続出願(発明者:RODERICK A. HYDE, MURIEL Y. ISHIKAWA, CLARENCE T. TEGREENE, JOSHUA C. WALTER, LOWELL L. WOOD, JR., AND VICTORIA Y. H. WOOD、出願日:2010年2月19日、現在同時係属)を構成しているか、または、現在同時係属している。
【0005】
USPTOの特別な法的要件のために、本願は、「METHOD, SYSTEM, AND APPARATUS FOR THE THERMAL STORAGE OF ENERGY GENERATED BY MULTIPLE NUCLEAR REACTOR SYSTEMS(マルチ原子炉システムによって生成されたエネルギーを蓄熱する方法、システム、および装置)」と題する米国特許出願第12/804,894号の一部継続出願(発明者:RODERICK A. HYDE, MURIEL Y. ISHIKAWA, CLARENCE T. TEGREENE, JOSHUA C. WALTER, LOWELL L. WOOD, JR., AND VICTORIA Y. H. WOOD、出願日:2010年7月30日、現在同時係属)を構成しているか、または、現在同時係属している。
【0006】
USPTOの特別な法的要件のために、本願は、「METHOD, SYSTEM, AND APPARATUS FOR THE THERMAL STORAGE OF ENERGY GENERATED BY MULTIPLE NUCLEAR REACTOR SYSTEMS(マルチ原子炉システムによって生成されたエネルギーを蓄熱する方法、システム、および装置)」と題する米国特許出願第12/804,950号の一部継続出願(発明者:RODERICK A. HYDE, MURIEL Y. ISHIKAWA, CLARENCE T. TEGREENE, JOSHUA C. WALTER, LOWELL L. WOOD, JR., AND VICTORIA Y. H. WOOD、出願日:2010年8月2日、現在同時係属)を構成しているか、または、現在同時係属している。
【0007】
USPTOは、USPTOのコンピュータプログラムにおいて特許出願人が整理番号を参照し、出願が継続中であるか、一部継続中であるかを示すことを必要とすることに関する通知を発表した。これは「先願の利益」と題されたStephen G.Kuninによる通知(2003年3月18日付USPTO官報)であり、http://www.uspto.gov/web/offices/com/sol/og/2003/week11/patbene.htm.で閲覧可能である。本願の出願団体(以下、「出願人」)は、法令に則って優先権が主張されている出願に対する特定の参照を上で示している。出願人は、法令の示す具体的な参照についての文言は一義的であり、米国特許出願の優先権を主張するために整理番号または「継続中」もしくは「一部継続中」等のいかなる特徴も必要としないと理解している。しかしながら、出願人は、USPTOのコンピュータプログラムが一定のデータ入力要件を有すると理解しているので、上記のように本願はその親出願の一部継続であること表示するが、このような表示は、本願がその親出願に含まれる事項に加えて何らかの新規事項を含んでいるかどうかについて、何らかの注釈および/または自認をするものというように解釈されるべきではない。
【0008】
〔技術分野〕
本開示は、概して、原子炉によって生成されたエネルギーを蓄熱し、その後これを利用することに関する。
【0009】
〔概要〕
一態様では、方法は、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回(流用)させる工程と、停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給する工程とを含むが、これらに限定されない。これに加えて、他の方法の態様も、本開示の一部を構成する特許請求の範囲、図面、および、文章に記載されている。
【0010】
1つ以上の種々の態様では、関連するシステムは、ここに記載する方法の態様を実施するための回路および/またはプログラムを含むが、これらに限定されない。回路および/またはプログラムは、実際には、システム設計者の設計選択に応じて、ここに記載の方法の態様を実施するように構成されたハードウェア、ソフトウェア、および/または、ファームウェアの任意の組み合わせであってよい。
【0011】
一態様では、システムは、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるための手段と、停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給する手段とを含むが、これらに限定されない。これに加えて、他のシステムの態様も、本開示の一部を構成する特許請求の範囲、図面、および、文章に記載されている。
【0012】
一態様では、装置は、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるためのエネルギー伝達システムと、停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するための熱供給システムとを含むが、これらに限定されない。これに加えて、他のシステムの態様も、本開示の一部を構成する特許請求の範囲、図面、および、文章に記載されている。
【0013】
これに加えて、他の種々の方法、および/または、システム、および/または、プログラムプロダクトの態様が、本開示の教示、例えば、文章(例えば、特許請求の範囲、および/または、詳細な説明)、および/または、図面に説明および記載されている。
【0014】
上記の説明は概要であって、従って、細部の簡略化、一般化、含有、および/または、省略を含む。すなわち、この概要は単に説明のためのものであり、決して、限定することを意図するものではないことは、当業者には明らかであろう。ここに記載の装置、および/または、プロセス、および/または、他の主題の、他の態様、特徴、および利点は、ここに記載の教示において明らかとなろう。
【0015】
〔図面の簡単な説明〕
図1は、原子炉によって生成されたエネルギーを蓄熱するためのシステムを示す概略的な図である。
【0016】
図2Aは、予備熱貯蔵器に伝達されるエネルギーを生成するために適した原子炉の種類を示すフローチャートである。
【0017】
図2Bは、原子炉によって生成されたエネルギーを予備熱貯蔵器へ供給する際の使用に適した原子炉冷却材の種類を示すフローチャートである。
【0018】
図3は、熱エネルギーを、予備熱貯蔵器から原子炉システムの種々のエネルギー変換システムに伝達するために適したシステムを示す概略的な図である。
【0019】
図4Aは、エネルギーを予備熱貯蔵器に蓄熱するために適した蓄熱材の種類を示すフローチャートである。
【0020】
図4Bは、予備熱貯蔵器の種々の蓄熱材を収容するために適した、貯蔵器収容システムの種類を示すフローチャートである。
【0021】
図4Cは、熱エネルギーの貯蔵に適した蓄熱材への熱力学的変化を示すフローチャートである。
【0022】
図4Dは、予備熱貯蔵器を監視するために適した蓄熱体監視システムの種類を示すフローチャートである。
【0023】
図5Aは、エネルギーを原子炉システムから予備熱貯蔵器に伝達するために適したエネルギー伝達システムの種類を示すフローチャートである。
【0024】
図5Bは、予備熱貯蔵器を、熱伝達システムを介して、原子炉システムの熱源に熱的に結合させることを示す概略的な図である。
【0025】
図5Cは、予備熱貯蔵器システムを、原子炉システム熱伝達の主要冷却材システムに熱的に結合させることを示す概略的な図である。
【0026】
図5Dは、予備熱貯蔵器を、原子炉システムの主要冷却材システムと、副冷却材システムとに熱的に結合することを示す概略的な図である。
【0027】
図6は、熱供給システムにおいて用いられる熱伝達部材の種類を示すフローチャートである。
【0028】
図7は、予備熱貯蔵器に、付加的なエネルギー源からの付加的なエネルギーを補充することを示す概略的な図である。
【0029】
図8Aおよび図8Bは、原子炉システムからのエネルギーが予備熱貯蔵器に迂回を開始した時に、エネルギー伝達システムが反応する条件の種類を示すフローチャートである。
【0030】
図8Cは、原子炉システムからの原子炉システムの余剰エネルギーを、予備熱貯蔵器へ迂回させることを示す、フローチャートである。
【0031】
図9Aおよび図9Bは、予備熱貯蔵器内に貯蔵されている熱エネルギーの、原子炉システムのエネルギー変換システムへの伝達が開始された時に、熱供給システムが反応する停止事象および停止条件の種類を示すフローチャートである。
【0032】
図10は、原子炉において生成された熱を、予備熱貯蔵器の中に蓄熱する方法のハイレベルフローチャートである。
【0033】
図11〜図63は、図10の他の実施例を示すハイレベルフローチャートである。
【0034】
〔詳細な説明〕
以下の詳細な説明では、添付の図面を参照する。図面は、本明細書の一部を形成するものである。上記図面において、類似の記号は、特に断りがない限り、類似の構成要素を一般的に特定している。詳細な説明、図面および特許請求の範囲に説明されている例証的な実施形態は、限定することを意図されていない。他の実施形態が利用され得、他の変更は、本明細書に示されている事項の精神または範囲から逸脱することなくなされ得る。
【0035】
図1〜9Bを一般的に参照しながら、本開示に係る、原子炉において生成された熱の選択された一部を貯蔵および利用するためのシステム100を説明する。1つ以上のエネルギー伝達システム104が、原子炉システム101の一部、例えば、原子炉102またはエネルギー変換システム110からのエネルギー(例えば、熱エネルギー106または電気エネルギー108)を、予備熱貯蔵器112の1つ以上の蓄熱材116へ迂回させる。その後、原子炉システム101の停止事象(例えば、計画的停止、または、緊急時停止)を受けて、熱供給システム114が、1つ以上の予備熱貯蔵器112に貯蔵された一部の熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給する。エネルギー変換システム110によって生成された電気エネルギーは、その後、外部負荷装置118(例えば、外部送電網)または内部負荷装置(例えば、原子炉システム120の操作システム)に供給される。
【0036】
図2Aに示される実施形態では、原子炉システム101の原子炉102は、熱スペクトル原子炉202、高速スペクトル原子炉204、マルチスペクトル原子炉206、増殖型原子炉208、または進行波炉210を含むが、これらに限定されない。例えば、熱スペクトル原子炉202によって生成されたエネルギーが、エネルギー伝達システム104によって、熱スペクトル原子炉202から予備熱貯蔵器112に迂回される。その後、原子炉システム101の熱スペクトル原子炉202の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、熱スペクトル原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給する。さらなる例として、進行波原子炉210によって生成されたエネルギーが、エネルギー伝達システム104によって、進行波原子炉210から予備熱貯蔵器112に迂回される。その後、原子炉システム101の進行波原子炉210の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、進行波原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給する。
【0037】
図2Bに示される実施形態では、原子炉102は、液状冷却材212を備える原子炉を含んでいてもよい。例えば、原子炉102の液状冷却材212は、液体金属塩冷却材214(例えば、フッ化リチウム、フッ化ベリリウム、または他のフッ化塩)、液体金属冷却材216(例えば、ナトリウム、鉛、または鉛ビスマス)、液体有機冷却材218(例えば、ジフェニル酸化物を有するジフェニル)、または液体冷却水220を含むが、これらに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の、液体ナトリウムで冷却された原子炉の一部からのエネルギーを、予備熱貯蔵器112へ迂回させる。他の例では、エネルギー伝達システム104は、原子炉システム101の、水で冷却された原子炉220の一部からのエネルギーを、予備熱貯蔵器112に迂回させてよい。さらなる例では、エネルギー伝達システム104は、原子炉システム101の、フッ化リチウムで冷却された原子炉の一部からのエネルギーを、予備熱貯蔵器112に迂回させてよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0038】
さらなる一実施形態では、原子炉102は、加圧ガス冷却材222を備える原子炉を含んでいてもよい。例えば、加圧ガス冷却材222は、加圧ヘリウムガスまたは加圧炭酸ガスを含んでいてもよいが、これらに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の、加圧ヘリウムで冷却された原子炉222の一部からのエネルギーを、予備熱貯蔵器112へ迂回させる。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0039】
他の実施形態では、原子炉102は、混合相冷却材224を備える原子炉を含んでいてもよい。例えば、混合相冷却材224は、ガス‐液体混合相材料(例えば、水蒸気−水)を含んでいてもよいが、これに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の、水蒸気−水で冷却された原子炉224の一部からのエネルギーを、予備熱貯蔵器112へ迂回させる。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給する。
【0040】
図3に示されるさらなる一実施形態では、エネルギー変換システム110は、主要エネルギー変換システム302、補助エネルギー変換システム304、または緊急エネルギー変換システム306を含んでいてもよいが、これらに限定されない。例えば、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つの所要エネルギー変換システム302に供給してよい。例えば、主要エネルギー変換システム302は、電力を原子炉システム101の主要負荷装置118(例えば、送電網)へ供給するために使用される発電機に結合された、タービン312を含んでいてもよい。さらなる例として、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つの補助エネルギー変換システム304に供給してよい。例えば、補助エネルギー変換システム304は、主要エネルギー変換サイクル302の出力を補完または置換するエネルギー変換システムを含んでいてもよい。例えば、補助エネルギー変換システム304は、補完的またはバックアップ用の電力を原子炉システム101の主要負荷装置118に提供するために使用される発電機に結合された、タービン312を備えていてよい。
【0041】
さらなる一例として、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つの緊急エネルギー変換システム306に供給してよい。例えば、緊急エネルギー変換システムは、原子炉システム101の運転システム120(例えば、監視システム、安全システム、制御システム、冷却材システム、または安全システム)に電力を供給するために用いられる発電機に結合された、タービン312を備えていてよい。当業者には、緊急エネルギー変換システム306が、主要エネルギー変換システム302の動作温度よりも低い温度において動作するように構成されていてよいことは明らかであろう。こうすることによって、送電網の電力が利用できないような緊急状態に、緊急エネルギー変換システム306が、原子炉システム101の種々の運転システム120に、電気エネルギーを供給することが可能になる。
【0042】
さらなる一実施形態では、エネルギー変換システム110は、原子炉システム101のタービン312を備えていてよいが、これに限定されない。例えば、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのタービン312に供給してもよい。さらなる例として、熱供給システム114は、原子炉システム101の停止事象に反応して、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのタービン312の作動流体320に供給してもよい。例えば、熱供給システム114は、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのタービン312の加圧蒸気作動流体320に供給してもよい。当業者には、予備熱貯蔵器112から、熱供給システム114を介して、原子炉システム101のタービン312の作動流体320に供給された熱エネルギーを用いて、原子炉システムの原子炉102からタービン312の作動流体320に供給された熱エネルギーを増大させることが可能であることは、明らかであろう。
【0043】
他の一実施形態では、エネルギー変換システム110は、原子炉システム101のトッピングサイクル314、原子炉システム101のボトミングサイクル316、または、原子炉システム101の低温ダンプ318を含んでいてもよいが、これに限定されない。例えば、熱供給システム114は、原子炉システム101の停止事象に反応して、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのトッピングサイクル314に供給してもよい。他の例としては、熱供給システム114は、原子炉システム101の停止事象に反応して、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのボトミングサイクル316に供給してもよい。さらなる例として、熱供給システム114は、原子炉システム101の停止事象に反応して、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つの低温ダンプに供給してもよい。
【0044】
さらなる一実施形態では、熱供給システム114は、原子炉システム101の停止事象に反応して、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム110の沸騰ループ322に供給してよい。ここで、原子炉システムの沸騰ループ322は、原子炉システム101のエネルギー変換システム110に熱的に連通している。例えば、熱供給システム114は、原子炉システム101の停止事象に反応して、予備熱貯蔵器112の蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システムのタービン312に熱的に連通している沸騰ループ322に供給してよい。さらなる例として、沸騰ループ322は、原子炉システム101の、トッピングサイクル314、ボトミングサイクル316、または、低温ダンプ318に熱的に連通していてもよい。当業者には、予備熱貯蔵器112から原子炉システム101の沸騰ループ322に供給された熱エネルギーを用いて、原子炉システム101の原子炉102から沸騰ループに供給された熱エネルギーを増大させることが可能であることは、明らかであろう。
【0045】
図4Aに示される実施形態では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112の液体蓄熱材402へ迂回させることが可能である。例えば、液体蓄熱材402は、液体有機物404(例えば、ジフェニル酸化物を有するジフェニル)、液体金属塩406(例えば、フッ化リチウム、フッ化ベリリウム、または他のフッ化塩)、液体金属408(例えば、ナトリウム、鉛、または鉛ビスマス)、または水410を含んでいてもよいが、これらに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、液体ナトリウムの集合体に迂回させてよい。他の例では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、水410の集合体に迂回させてよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の液体蓄熱材402内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0046】
他の一実施形態では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112の加圧ガス蓄熱材412に迂回させてよい。例えば、蓄熱に適した加圧ガス材料412は、加圧ヘリウムガスまたは加圧炭酸ガスを含んでいてもよいが、これらに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、加圧ヘリウムの集合体に迂回させてもよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の加圧ガス材料412内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0047】
さらなる一実施形態では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112の固体蓄熱材414に迂回させてもよい。一態様では、固体蓄熱材414は、固形物体416を構成する連続した固形物を含んでいてもよい。例えば、蓄熱に適した固形物体416は、立体的な一体物(例えば、レンガ)、立体的な多孔性物体(例えば、流体が流れるのに適した孔を有するレンガ)、溝が形成された立体的な物体(例えば、流体が流れるのに適した溝を有するレンガ)、または立体的な加工物体(例えば、熱伝達を向上させるためのハニカムパターンが加工された物体)を含んでいてもよいが、これらに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、1つ以上の固体の一体物、例えば、レンガ状、ロッド状、またはシート状の材料に迂回させてもよい。他の例では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、固体の加工物体、例えば、熱容量が高いハニカム構造の材料から成る物体に迂回させてもよい。さらに、固形物体416は、炭化物セラミックス(例えば、炭化チタンまたは炭化珪素)またはホウ化物セラミックなどのセラミック固形物体、金属固体(例えば、鉄または鋼)物体、または、自然に存在する固体(例えば、岩または石)物体を含んでいてもよいが、これらに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、セラミック固形物体に迂回させてもよい。さらなる例として、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、原子炉システム101の近傍に位置する、自然界に元から存在する岩または石構造物に迂回させてもよい。
【0048】
他の態様では、固体蓄熱材414は、粒子状の固形物418を含んでいてもよい。例えば、粒子状の固形物418は、粒状材料(例えば、砂)または紛状材料を含んでいてもよいが、これらに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、砂の集合体( a mass of )に迂回させてもよい。また、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、ヒートパイプを介して、砂の集合体に迂回させてもよい。ここで、ヒートパイプの第1の部分は、原子炉102の一部に熱的に連通しており、ヒートパイプの第2の部分は、砂の容積に埋め込まれている。当業者であれば、砂などの固形物の容積は、必ずしも、貯蔵器収容システム122の容積に押し込められている必要はないことは分かるであろう。従って、原子炉システム101を取り囲む、収容されていない砂や石などの熱を捕獲する材料が、好適な蓄熱材116として機能し得る。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の固体蓄熱材414内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0049】
さらなる一実施形態では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112の混合相蓄熱材420に迂回させてもよい。例えば、蓄熱に適した混合相材料420は、ガス‐液体混合相材料(例えば、水蒸気−水)または液体−固体混合相材料(例えば、液体ナトリウム−固体ナトリウム)を含んでいてもよいが、これらに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、水蒸気−水の集合体に迂回させてもよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の混合相蓄熱材420内に貯蔵されている熱エネルギーの一部を、原子炉システム101のエネルギー変換システム110へ供給することが可能である。
【0050】
他の一実施形態では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112の動作温度422の範囲内で相転移する蓄熱材の集合体に迂回させてもよい。例えば、約100℃において相転移する蓄熱材116を有する予備熱貯蔵器112は、相転移温度100℃の上下の温度において、連続的に動作することが可能である。このため、当業者であれば、蓄熱体の温度が、蓄熱材116の相転移温度である時、および、該温度の上下の温度である時に、熱供給システム114が、予備熱貯蔵器112からの熱エネルギーを原子炉システム101のエネルギー変換システム110に供給可能であることは分かるであろう。例えば、ナトリウムの溶融温度が約97.7℃とすると、ナトリウムベースの予備熱貯蔵器112は、液相では、97.7℃よりも上の温度において動作し、固相では、97.7℃よりも下の温度において動作する。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112の動作温度422の範囲内で相転移する蓄熱材116に貯蔵された熱エネルギーの一部を、原子炉システム101のエネルギー変換システム110へ供給することが可能である。
【0051】
図4Bに示される他の一実施形態では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、貯蔵器収容システム424内に収容された蓄熱材116の集合体へ迂回させる。例えば、貯蔵器収容システム424は、外部容器426または外部プール432を含んでいてもよいが、これに限定されない。さらなる例として、外部容器426は、外部液体容器428または外部高圧ガス容器430を含んでいてもよいが、これに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、外部液体容器428内に収容された液体金属408(例えば、液体ナトリウム)の集合体に迂回させてよい。他の例では、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、外部高圧容器430内に収容された加圧ガス412(例えば、加圧ヘリウム)の集合体に迂回させてもよい。さらなる例として、外部プール432は、液体プール434を含んでいてもよいが、これに限定されない。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、外部液体プール434内に収容された液体金属408(例えば、液体ナトリウム)の集合体に迂回させてよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、貯蔵器収容システム424内に収容された蓄熱材116に貯蔵されている熱エネルギーの一部を、原子炉システム101のエネルギー変換システム110に供給してよい。
【0052】
図4Cに示される他の一実施形態では、予備熱貯蔵器112は、原子炉システム101の一部から迂回されたエネルギーを、予備熱貯蔵器112の蓄熱材116内の温度変化436の形で貯蔵する。例えば、原子炉システム101から予備熱貯蔵器112の蓄熱材116に迂回されたエネルギーは、蓄熱材116の温度を上昇させることが可能である。例えば、原子炉システム101から予備熱貯蔵器112の蓄熱材116に迂回されたエネルギーは、液体金属408(例えば、液体ナトリウム)などの蓄熱材116の温度を、約100℃の初期温度から約500℃の温度まで上昇させ得る。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、温度上昇として蓄熱材116内に貯蔵されている熱エネルギーの一部を、原子炉システム101のエネルギー変換システム110に供給してよい。
【0053】
他の一実施形態では、予備熱貯蔵器112は、原子炉システム101の一部から迂回されたエネルギーを、予備熱貯蔵器112の蓄熱材116内の相変化438の形で、貯蔵してもよい。例えば、蓄熱材116内の相変化438には、固体−液体相変化440または液体−気体相変化442が含まれる。一態様では、原子炉システム101から予備熱貯蔵器112の固体蓄熱材414に迂回されたエネルギーは、蓄熱材116を溶融することによって、蓄熱材116内に貯蔵され得る。例えば、原子炉システム101から固体ナトリウムの集合体に迂回されたエネルギーは、このナトリウムの集合体を、約97.7℃における融解転移を介して液化し、これによって、迂回されたエネルギーの一部を、液相のナトリウムの集合体において貯蔵する。当業者には、蓄熱材116を、1つの相(例えば、固体)から新たな相(例えば、液体)に転移させるために必要なエネルギーは、転移熱(すなわち“潜熱”)であることは、明らかであろう。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、蓄熱材116内に熱エネルギーとして貯蔵された転移熱の一部を、原子炉システム101のエネルギー変換システム110へ供給することが可能である。
【0054】
図4Dに示されるような、さらなる一実施形態では、予備熱貯蔵器の動作状態が、1つ以上の蓄熱体監視システム444を用いて監視される。例えば、蓄熱体監視システム444は、温度監視システム446、圧力監視システム448、蓄熱体に貯蔵されたエネルギーの量を算出するシステム450、または、蓄熱体の利用可能なエネルギー容量の量を算出するシステム452を含んでいてもよい。例えば、蓄熱体に貯蔵されたエネルギーの量を算出する上記システム450は、コンピュータシステムと連結された温度監視装置および圧力監視装置を備えていてよい。このコンピュータシステムは、規定の、温度および圧力に関連するアルゴリズム(例えば、規定の当該蓄熱材の状態方程式)を、蓄熱材(例えば、液体金属または加圧ガス)の内部エネルギーに適用するためのものである。
【0055】
他の一実施形態では、予備熱貯蔵器112の温度は、蓄熱体温度制御システム454を用いて制御してもよい。例えば、蓄熱体温度制御システム454を用いて、予備熱貯蔵器112の温度を上昇または低減させることが可能である。例えば、予備熱貯蔵器の内部温度が所定の動作限界外のレベルに達した状態において、蓄熱体温度制御システム454は、熱供給システム114に信号して、予備熱貯蔵器112に貯蔵されている熱エネルギーの一部を、原子炉システム101のエネルギー変換システム110に伝達することが可能である。
【0056】
図5Aに示されるような、さらなる一実施形態では、エネルギー伝達システム104は、原子炉システム101の一部からの熱エネルギー106を予備熱貯蔵器112へ迂回させるために適したエネルギー伝達システムを含んでいてもよいが、これに限定されない。例えば、原子炉システム101の一部(例えば主要冷却材システム)からの熱エネルギー106を予備熱貯蔵器112へ迂回させるために適したエネルギー伝達システムは、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0057】
さらなる一実施形態では、原子炉システム101の一部からの熱エネルギー106を予備熱貯蔵器112へ迂回させるために適したエネルギー伝達システムは、熱伝達システム504を含んでいてもよいが、これに限定されない。例えば、熱伝達システム504は、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達することが可能である。例えば、熱伝達システム504は、熱対流506(例えば、自然対流、または冷却材ポンプを介した強制対流)を介して、原子炉システム101の一部からの熱エネルギーを予備熱貯蔵器112に伝達してよい。他の例では、熱伝達システム504は、熱伝導508(例えば、熱交換器)を介して、原子炉システム101の一部からの熱エネルギーを予備熱貯蔵器112に伝達してもよい。当業者であれば、熱伝達システム504は、原子炉システム101の一部からの熱エネルギーを、熱伝導506および熱対流508の両方を用いて、予備熱貯蔵器112に伝達するように構成されていてもよいことは、理解できるであろう。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0058】
さらなる一実施形態では、熱伝達システム504は、直接流体交換熱伝達システム510を含んでいてもよいが、これに限定されない。例えば、直接流体交換熱伝達システム510は、原子炉システム101の一部からの熱エネルギーを予備熱貯蔵器112に伝達してよい。直接流体交換熱伝達システム510は、原子炉102の冷却材を、貯蔵器収容システム122内に収容された流体状の蓄熱材116と混合するためのシステムを備えていてよい。例えば、流体運搬ループが、原子炉システム101の主要冷却材システムと、蓄熱体流体収容システム122とを結合して、これによって、これら2つの流体を混合することを可能にしてもよい。原子炉冷却材−蓄熱体流体の混合比は、直接流体交換移送システム510によって制御可能である。例えば、弁システムおよび/または流体ポンプ(例えば、機械ポンプまたは電磁流体ポンプ)を用いて、原子炉冷却材システムと蓄熱体流体収容システム122との間の材料交換を容積的に制限することが可能である。また、蓄熱体流体および原子炉冷却材は、同一または実質的に類似の材料から構成されていてよい。例えば、蓄熱体流体および原炉冷却材のどちらも、同一の液体金属、例えば、液体ナトリウムから構成されていてよい。また、蓄熱体流体および原子炉冷却材は、異なる材料から構成されていてもよい。例えば、蓄熱体流体が、ジフェニル酸化物を有するジフェニルなどの液体有機物から構成され、原子炉冷却材が液体ナトリウムから構成されていてもよい。
【0059】
さらなる一実施形態では、熱伝達システム504は、原子炉−蓄熱体熱交換器514を備えていてよいが、これに限定されない。例えば、原子炉−蓄熱体熱交換器514は、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。例えば、原子炉−蓄熱体熱交換器514は、熱交換器515を備えていてよく、熱交換器515は、原子炉システム101の主要冷却材システムに熱的に連通している第1の部分と、予備熱貯蔵器112に熱的に連通している第2の部分とを有していてよい。さらに、熱伝達システム504は、1つ以上の原子炉−蓄熱体熱交換器514を備えていてよい。例えば、第1の熱交換器の第1の部分が、原子炉システム101の主要冷却材システムに熱的に連通していてよく、第1の熱交換器の第2の部分が、熱交換ループに熱的に連通していてよい。さらに、第2の熱交換器の第1の部分が予備熱貯蔵器112に熱的に連通していてよく、第2の熱交換器の第2の部分が、熱交換ループに熱的に連通していてよい。集合的に、第1の熱交換器‐熱交換ループ‐第2の熱交換器システムは、原子炉システム101の主要冷却材システムからの熱エネルギーを、予備熱貯蔵器112に伝達するように機能している。
【0060】
さらなる一実施形態では、エネルギー伝達システム104は、原子炉システム101の一部からの電気エネルギー108を予備熱貯蔵器112に伝達するために適したエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、原子炉システム101の一部からの電気エネルギー108を予備熱貯蔵器112へ迂回させるために適したエネルギー伝達システムは、原子炉システム101の一部(例えば、エネルギー変換システム110)からの電気エネルギーを、予備熱貯蔵器112に伝達してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0061】
さらなる一実施形態では、原子炉システム101の一部からの電気エネルギー108を予備熱貯蔵器112に伝達するためのエネルギー伝達システムは、電気エネルギー/熱エネルギー変換システム516を含んでいてもよい。例えば、電気エネルギー/熱エネルギー変換システム516(加熱コイル518を含むが、これに限定されない)は、エネルギー変換システム110によって生成された電気エネルギーの一部を、熱エネルギーに変換することが可能である。当業者であれば、原子炉システム101の一部からの電気エネルギー108を予備熱貯蔵器112に伝達するためのシステムを用いて、原子炉システム101のエネルギー変換システム110によって生成された余剰電気エネルギーを熱エネルギーに変換してもよいことは、理解できるであろう。続いて、この熱エネルギーの一部は、予備熱貯蔵器112に伝達され、該予備熱貯蔵器において貯蔵される。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101のエネルギー変換システム110へ供給することが可能である。
【0062】
図5Bに示されるさらなる一実施形態では、熱伝達システム504が、原子炉システム101の熱源522に熱的に連通している、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。例えば、熱伝達システム504は、原子炉心524に熱的に連通している、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。さらに、原子炉心524に熱的に連通している、原子炉システム101の一部は、主要冷却材システム526の一部(例えば、主要冷却材ループ528の一部、または、主要冷却材プール530の一部)を含んでいてもよいが、これに限定されない。例えば、熱伝達システム504は、原子炉システム101の主要冷却材システム526からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0063】
図5Cに示されるさらなる一実施形態では、熱伝達システム504は、原子炉システム101の主要冷却材システム526からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。ここで、主要冷却材システム526は、予備熱貯蔵器112に熱的に連通していない副冷却材システム532に、熱的に連通している(例えば、主要冷却材システム−副冷却材システム熱交換器536を介して、熱的に連通している)。例えば、予備熱貯蔵器112は、熱伝達システム504を介して、主要冷却材システム526の主要冷却材ループ528に熱的に結合されていてよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0064】
図5Dに示されるさらなる一実施形態では、熱伝達システム504は、原子炉システム101の主要冷却材システム526からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。ここで、主要冷却材システム526および副冷却材システム532は、どちらも、予備熱貯蔵器112に熱的に連通している。例えば、予備熱貯蔵器112は、主要冷却材システム526の主要冷却材ループ528と副冷却材システム532の副冷却材ループ534とに、熱的に結合されており、主要冷却材ループ526、予備熱貯蔵器112、および副冷却材ループ532を結合させる熱経路が、主要冷却材ループ526、主要−副冷却材システム熱交換器536、および副冷却材ループ532を結合させる熱経路と平行になっている。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0065】
図6に示される他の一実施形態では、熱供給システム114は、熱交換ループ602を含んでいてもよい。例えば、熱交換ループ602の第1の部分は、予備熱貯蔵器112の一部に熱的に連通し、熱交換ループ602の第2の部分は、原子炉システム101のエネルギー変換システム110に熱的に連通していてよい。その後、原子炉システム101の停止事象に反応して、熱交換ループ602は、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0066】
さらに、熱供給システム114は、1つ以上のヒートパイプ604を備えていてよい。例えば、ヒートパイプ604の第1の部分は、予備熱貯蔵器112の一部に熱的に連通し、ヒートパイプ604の第2の部分は、原子炉システム101のエネルギー変換システム110に熱的に連通していてよい。その後、原子炉システム101の停止事象に反応して、ヒートパイプ604は、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0067】
さらに、熱供給システム114は、1つ以上の熱交換器606を備えていてよい。例えば、第1の熱交換器608の第1の部分は、予備熱貯蔵器112の一部に熱的に連通し、第1の熱交換器606の第2の部分は、原子炉システム101のエネルギー変換システム110に熱的に連通していてよい。例えば、その後、原子炉システム101の停止事象に反応して、ヒートパイプ604は、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0068】
さらに、熱供給システム114は、1つ以上のヒートパイプ604を備えていてよい。例えば、ヒートパイプ604の第1の部分は、予備熱貯蔵器112の一部に熱的に連通し、ヒートパイプ604の第2の部分は、原子炉システム101のエネルギー変換システム110に熱的に連通していてよい。その後、原子炉システム101の停止事象に反応して、ヒートパイプ604は、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0069】
当業者であれば、熱交換ループ602、熱交換器606、およびヒートパイプ604を共に組み合わせて用いて、予備熱貯蔵器112からの熱を原子炉システム101のエネルギー変換システム110に供給してもよいことは分かるであろう。例えば、多数のヒートパイプ604を備える第1の熱交換器606を用いて、予備熱貯蔵器112と、熱交換ループ602の第1の部分とを熱的に結合させてもよい。さらに、同じく多数のヒートパイプ604を備える第2の熱交換器606を用いて、エネルギー変換システム110の一部を、熱交換ループ602に熱的に結合させてもよい。その後、原子炉システム101の停止事象に反応して、予備熱貯蔵器112から、熱エネルギーが、熱ループ熱交換器循環路を介して、エネルギー変換システム110に供給され得る。
【0070】
図6に示される他の一実施形態では、熱供給システム114は、1つ以上の熱電装置608を備えていてよい。例えば、熱電装置608の第1の部分(例えば、p型/n型半導体熱電接合部)を、予備熱貯蔵器112に熱的に連通し、熱電装置608の第2の部分を、原子炉システム101の蓄冷体(例えば、自然の貯蔵所または予備熱貯蔵器よりも低い温度の原子炉システムの任意の部分)に熱的に連通して配置してもよい。その後、原子炉システム101の停止事象に反応して、予備熱貯蔵器内に貯蔵されている熱エネルギーの熱電変換によって生成された電力を用いて、原子炉システムのエネルギー変換システム110の電気出力を補完するかまたは置き換えることが可能である。
【0071】
図7に示されるさらなる一実施形態では、付加的なエネルギー源702が、予備熱貯蔵器112に付加的なエネルギーの一部を補充する。例えば、エネルギー変換システム110からの余剰エネルギーを用いて、追加エネルギーを、予備熱貯蔵器112に提供することが可能である。例えば、エネルギー変換システム110が余剰電力を生成することを送電網が求めている場合には、電気−熱エネルギー変換プロセス(例えば加熱コイル)を介して、余剰電力を熱エネルギーに変換し、予備熱貯蔵器112に伝達する。こうすることによって、通常運転の間に、予備熱貯蔵器112に伝達されたエネルギーを、エネルギー伝達システム104を介して補充する。他の例としては、付加的な原子炉システム704からのエネルギーを用いて、追加エネルギーを予備熱貯蔵器112に提供してもよい。例えば、第2の原子炉システム704によって生成された熱エネルギーを、第2のエネルギー伝達システム706を介して予備熱貯蔵器112に伝達し、これによって、通常運転の間に、予備熱貯蔵器112に伝達されたエネルギーを、第1のエネルギー伝達システム104を介して補充する。当業者であれば、付加的なエネルギー源によって予備熱貯蔵器112に供給された追加エネルギーを用いて、予備熱貯蔵器の蓄熱体材料を、通常運転が可能な温度以上の温度まで過熱できることは、明らかであろう。
【0072】
図8Aに示されるさらなる一実施形態では、エネルギー伝達システム104は、ある状態802に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。このエネルギー伝達システムが反応する状態802は、原子炉運転状態(例えば、温度、温度の変化速度、圧力、または、圧力の変化速度)、原子炉の電力要件(例えば、送電網の電力要件)、または、原子炉安全状態(例えば、ヒートシンク状況または冷却材ポンプ状況)を含んでよいが、これらに限定されない。例えば、冷却材ポンプの誤動作に反応して、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112へ迂回させることが可能である。さらなる例として、原子炉システム101の一部(例えば、原子炉心または原子炉冷却材流体)が特定の動作温度である場合、または、該温度に近い温度である場合、エネルギー伝達システム104は、原子炉102からの熱エネルギーを予備熱貯蔵器112に伝達することを開始する。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0073】
さらなる一実施形態では、エネルギー伝達システム104は、原子炉容量が過剰であるという判定803に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、原子炉システム101が、原子炉システム101のエネルギー変換システム110の負荷装置(例えば、外部送電網)が求める量よりも多い量のエネルギーを生成している場合に、エネルギー伝達システム104は、原子炉システム101の一部からの熱または電気エネルギーを、予備熱貯蔵器112に伝達することが可能である。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0074】
さらなる一実施形態では、エネルギー伝達システム104は、原子炉システム101の運転システム804に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、運転システム804に反応するエネルギー伝達システムは、運転システムからの信号806に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、運転システムからの信号806に反応するエネルギー伝達システムは、原子炉システム101の運転システム(例えば、停止システム、警告システム、または安全システム)からの信号、例えば、遠隔無線信号(例えば、無線周波数信号)、または、遠隔有線信号(例えば、銅線信号または光ファイバーケーブル信号)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始することが可能である。さらに、運転システム804に反応するエネルギー伝達システムは、監視システム(例えば、温度監視システムまたは圧力監視システム)808に反応するエネルギー伝達システム、制御システム810に反応するエネルギー伝達システム、または、安全システム812に反応するエネルギー伝達システムを備えていてよいが、これらに限定されない。例えば、原子炉システム101の監視システムからの信号に反応して、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。他の例では、エネルギー伝達システム104は、原子炉システム101の制御システム810からの信号に反応して、原子炉システム101の一部からのエネルギーを予備熱貯蔵器112に伝達することを開始してよい。さらに、エネルギー伝達システム104は、原子炉システム101の安全システム812からの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0075】
さらなる一実施形態では、エネルギー伝達システム104は、原子炉システム101の操作者/操作体814からの信号に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、操作者/操作体814からの信号に反応するエネルギー伝達システムは、操作者/操作体(例えば、ユーザ(人)または人が制御するシステム(例えばプログラムされたコンピュータシステム))からの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。例えば、操作者/操作体814からの信号に反応するエネルギー伝達システムは、操作者/操作体によって制御されたコンピュータ端末からの有線または無線信号などの遠隔信号に反応して、原子炉102からの熱エネルギーを予備熱貯蔵器112に伝達することを開始してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0076】
さらなる一実施形態では、エネルギー伝達システム104は、予め選択された迂回開始時間816に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、予め選択された迂回開始時間は、特定の事象(例えば、停止事象や、送電網需要が満たされている場合)に関する経過時間、または絶対時間を含んでいてもよい。例えば、予め選択された迂回開始時間816に反応するエネルギー伝達システムは、予め選択された絶対時間(例えば、午前2:00(東部標準時))において、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。当業者であれば、従来の送電網の電力需要データを利用して、原子炉によって生成されたエネルギーの予備熱貯蔵器112への迂回を開始する適切な時間を決定可能であることは、分かるであろう。他の例では、予め選択された迂回開始時間816に反応するエネルギー伝達システムは、特定の事象、例えば、原子炉の停止、または外部からの需要よりも過剰に電力が生成された場合が発生した後に予め選択された時間が経過すると、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0077】
さらなる一実施形態では、エネルギー伝達システム104は、予備熱貯蔵器112の蓄熱体運転システム818に反応するエネルギー伝達システムを含んでいてもよいが、これに限定されない。例えば、蓄熱体運転システム818に反応するエネルギー伝達システムは、蓄熱体運転システムからの信号820に反応するエネルギー伝達システムを含んでいてもよいが、これに限定されない。例えば、蓄熱体運転システムからの信号820に反応するエネルギー伝達システムは、予備熱貯蔵器112の蓄熱体運転システムからの遠隔無線信号(例えば、無線周波数信号)または遠隔有線信号(例えば、銅線信号または光ファイバーケーブル信号)などの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。さらに、蓄熱体運転システム818に反応するエネルギー伝達システムは、蓄熱体監視システム(例えば、温度監視システム、圧力監視システム、貯蔵されたエネルギーの量を監視するシステム、または、利用可能な貯蔵容量を監視するシステム)822に反応するエネルギー伝達システム、蓄熱体制御システム824に反応するエネルギー伝達システム、または、蓄熱体安全システム826に反応するエネルギー伝達システムを備えていてよいが、これらに限定されない。例えば、蓄熱体監視システム822に反応するエネルギー伝達システムは、蓄熱体監視システムからの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。他の例では、蓄熱体制御システム824に反応するエネルギー伝達システムは、蓄熱体制御システム824からの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。さらに、蓄熱体安全システム826に反応するエネルギー伝達システムは、蓄熱体安全システムからの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0078】
図8Bに示されるさらなる一実施形態では、エネルギー伝達システム104は、原子炉システムの停止事象828に反応するエネルギー伝達システムを含んでいてもよいが、これに限定されない。例えば、原子炉システムの停止事象828に反応するエネルギー伝達システムは、原子炉システム101の計画的停止事象830に反応するエネルギー伝達システム、または、原子炉システムの緊急停止事象832に反応するエネルギー伝達システムを備えていてよいが、これらに限定されない。例えば、計画的停止事象830に反応するエネルギー伝達システムは、計画的停止事象(例えば、定期点検)に反応して、原子炉システム101の一部からのエネルギーを予備熱貯蔵器112に伝達することを開始してよい。他の例では、緊急停止事象832に反応するエネルギー伝達システムは、緊急停止事象(例えば、SCRAM)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。当業者であれば、原子炉システム101の停止事象に反応して、原子炉102の停止前および停止中に、原子炉システム101の停止を容易にするために必要な準備ステップの一部として、原子炉システム101の一部からのエネルギーを予備熱貯蔵器112に迂回させてもよいことは分かるであろう。
【0079】
さらなる一実施形態では、エネルギー伝達システム104は、原子炉システムと予備熱貯蔵器との間に熱的連通834を形成するために適したエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、原子炉システムと予備熱貯蔵器との間の熱的連通834を形成するために適したエネルギー伝達システムは、ある状態に反応して、原子炉102の一部(例えば、主要冷却材システム)と予備熱貯蔵器112との間に熱経路を形成することが可能である。例えば、直接流体交換熱伝達システム510の場合には、制御弁を用いて、原子炉冷却材と蓄熱体流体とを混合することを開始してよい。他の例として、原子炉−蓄熱体熱交換器514を使用する熱伝達システムの場合には、制御弁を用いて、原子炉冷却材を熱交換器に流すようにしてもよい。
【0080】
さらなる一実施形態では、エネルギー伝達システム104は、予備熱貯蔵器内に貯蔵されているエネルギーの量の算出836に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、予備熱貯蔵器内に貯蔵されているエネルギーの量の算出836に反応するエネルギー伝達システムは、予備熱貯蔵器112内に現在貯蔵されているエネルギーの算出に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。さらに、予備熱貯蔵器内に貯蔵されているエネルギーの量の算出836に反応するエネルギー伝達システムは、予備熱貯蔵器内に貯蔵されているエネルギーの、エネルギー全体の貯蔵容量に対する比率の算出838に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、予備熱貯蔵器内に貯蔵されているエネルギーの、エネルギー全体の貯蔵容量に対する比率の算出838に反応するエネルギー伝達システムは、貯蔵されたエネルギーの設定された比率のレベル(例えば、エネルギー貯蔵容量の25%が利用される)の算出に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始する。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0081】
さらなる一実施形態では、エネルギー伝達システム104は、予備熱貯蔵器の利用可能な貯蔵容量の量の算出840に反応するエネルギー伝達システムを備えていてよいが、これに限定されない。例えば、予備熱貯蔵器の利用可能な貯蔵容量の量の算出840に反応するエネルギー伝達システムは、利用可能なエネルギー貯蔵容量の算出に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。さらに、予備熱貯蔵器の利用可能な貯蔵容量の量の算出840に反応するエネルギー伝達システムは、予備熱貯蔵器内の利用可能なエネルギー貯蔵容量の比率の算出842に反応するエネルギー伝達システムを備えていてよい。例えば、予備熱貯蔵器内の利用可能なエネルギー貯蔵容量の比率の算出842に反応するエネルギー伝達システムは、利用可能なエネルギー貯蔵の設定されたレベル(例えば、貯蔵容量を75%維持したレベル)の算出に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。その後、原子炉システム101の停止事象に反応して、熱供給システム114が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110へ供給することが可能である。
【0082】
図8Cに示されるさらなる一実施形態では、エネルギー伝達システム104は、原子炉システムの余剰エネルギーを予備熱貯蔵器へ迂回させるために適したエネルギー伝達システム844を備えていてよいが、これに限定されない。例えば、原子炉システムの余剰エネルギーを予備熱貯蔵器へ迂回させるために適したエネルギー伝達システム844は、エネルギー変換システム846の運転需要を超えるエネルギーを伝達してよい。例えば、タービン/発電機システムが、送電網需要を超えて、電力を生成している場合には、エネルギー伝達システム104は、エネルギー(例えば熱エネルギーまたは電気エネルギー)を、原子炉システムの一部から予備熱貯蔵器112に伝達してよい。さらに、エネルギー伝達システム104は、原子炉システムの所定の割合のエネルギー出力を予備熱貯蔵器へ迂回させるために適したエネルギー伝達システム848を備えていてよい。例えば、制御システムまたは操作者/操作体が、原子炉システム101の予め選択された割合の出力を伝達し、該エネルギーの少なくとも一部を、予備熱貯蔵器112に伝達するように、選択してもよい。当業者であれば、予備熱貯蔵器に伝達される、予め選択されたレベルのエネルギー出力は、時間に応じて変動し、従来の外部電力需要曲線から算出可能であることは分かるであろう。例えば、制御システムまたは操作者/操作体は、従来、一日または一年のうちで比較的低い送電網需要を示す時に、原子炉システム101全体の出力を、需要が高い期間において伝達される割合よりも高い比率で、予備熱貯蔵器へ迂回させるように選択してよい。
【0083】
図9Aに示されるさらなる一実施形態では、停止事象に反応する熱供給システム114は、緊急停止事象に反応する熱供給システム902、または、計画的停止事象に反応する熱供給システム904を含むが、これに限定されない。例えば、緊急停止事象に反応する熱供給システム902は、緊急停止事象(例えば、SCRAM)に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110に供給してよい。他の例としては、計画的停止事象に反応する熱供給システム904は、計画的停止事象(例えば、定期点検)に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を、原子炉システム101の少なくとも1つのエネルギー変換システム110に供給してよい。当業者であれば、原子炉システム101の停止事象に反応して、原子炉102の停止の前、間、および後に、原子炉システム101の停止を容易にするために必要なステップの一部として、予備熱貯蔵器112内に貯蔵されている熱エネルギーを予備熱貯蔵器112から原子炉システム101のエネルギー変換システム110まで伝達してもよいことは、分かるであろう。
【0084】
さらなる一実施形態では、停止事象に反応する熱供給システム114は、停止事象を示す状態に反応する熱供給システム906を備えていてよいが、これに限定されない。例えば、停止事象を示す状態に反応する熱供給システム906は、停止事象を示す状態(例えば、停止を示す原子炉運転システム用の信号、または、停止を示す操作者/操作体からの信号)に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。
【0085】
他の一実施形態では、停止事象を示す状態に反応する熱供給システム906は、原子炉システム101の運転システムからの信号に反応する熱供給システム908を備えていてよいが、これに限定されない。例えば、運転システムからの信号に反応する上記熱供給システム908は、原子炉システム101の運転システム(例えば、制御システム、安全システム、監視システム、停止システム、警告システム、または安全システム)からの、遠隔無線信号(例えば、無線周波数信号)または遠隔有線信号(例えば、銅線信号または光ファイバーケーブル信号)といった信号に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。例えば、原子炉システム101の運転システムからの信号に反応する熱供給システム908は、原子炉システム101の停止を示す、原子炉の監視システムからの信号を受信すると、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。
【0086】
他の一実施形態では、停止事象を示す状態に反応する熱供給システム906は、予備熱貯蔵器112の蓄熱体運転システムからの信号に反応する熱供給システム910を含んでいてもよいが、これに限定されない。例えば、蓄熱体運転システムからの信号に反応する上記熱供給システム910は、予備熱貯蔵器の蓄熱体運転システム(例えば、制御システム、安全システム、監視システム)からの、遠隔無線信号(例えば、無線周波数信号)または遠隔有線信号(例えば、銅線信号または光ファイバーケーブル信号)といった信号に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。例えば、蓄熱体運転システムからの信号に反応する熱供給システム910は、原子炉システム101の停止(例えば、エネルギーが既に蓄熱体に向けられていない状態)を示す、予備熱貯蔵器112の監視システムからの信号を受信すると、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。

さらなる一実施形態では、停止事象を示す状態に反応する熱供給システム906は、原子炉システム101の操作者/操作体からの信号に反応する熱供給システム912を含んでいてもよいが、これに限定されない。例えば、操作者/操作体からの信号に反応する上記熱供給システム912は、操作者/操作体(例えば、ユーザ(人)または人が制御するシステム(例えばプログラムされたコンピュータシステム))からの信号に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。例えば、操作者/操作体からの信号に反応する上記熱供給システム912は、操作者/操作体によって制御されたコンピュータ端末からの、有線または無線信号といった遠隔信号に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。
【0087】
さらなる一実施形態では、停止事象を示す状態に反応する熱供給システム906は、停止後の予め選択された経過時間に反応する熱供給システム914を含んでいてもよいが、これに限定されない。例えば、予め選択された経過時間は、特定の事象(例えば、停止事象)に対する経過時間、または絶対時間を含んでいてもよい。例えば、停止後の予め選択された経過時間に反応する熱供給システム914は、予め選択された絶対時間(例えば、午前2:00(東部標準時))において、1つ以上の予備熱貯蔵器112内に貯蔵された熱エネルギーを原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。当業者であれば、従来の送電網の電力需要データを用いて、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始する適切な時間を算出可能であることは、分かるであろう。他の例では、停止後の予め選択された経過時間に反応する熱供給システム914は、原子炉停止といった特定の事象から予め選択された量の時間が経過すると、停止後の予め選択された経過時間に反応する熱供給システム914は、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。
【0088】
他の一実施形態では、停止事象に反応する熱供給システム114は、運転システムによって確定された停止事象に反応する熱供給システム916を含んでいてもよいが、これに限定されない。例えば、運転システムによって確定された停止事象に反応する熱供給システム916は、原子炉システム101の運転システム(例えば、停止システム)によって確定された停止事象に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。さらなる例として、原子炉制御システムによって確定された停止事象に反応する熱供給システム918が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。さらに、原子炉制御システムは、原子炉安全システムからの信号に反応する原子炉制御システム920を含んでいてもよい。例えば、安全システムからの信号に反応する原子炉制御システムによって確定された停止事象に反応する熱供給システム920が、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してもよい。さらに、安全システムは、原子炉システムの検知された1つ以上の状態(例えば、外部状態または内部状態)に反応する安全システム922を含んでいてもよい。例えば、原子炉システム101の安全システムは、ヒートシンクの損失を検知すると、原子炉制御システムに信号を送信することが可能である。原子炉制御システムは、原子炉システムの停止を確定し、対応する信号を、原子炉制御システムによって確定された停止事象に反応する熱供給システム918に送信してよい。その後、原子炉制御システムによって確定された停止事象に反応する熱供給システム918は、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。
【0089】
図9Bに示される他の一実施形態では、停止事象に反応する熱供給システム114は、予備熱貯蔵器内に貯蔵されているエネルギー量の算出に反応する熱供給システム924を含んでいてもよいが、これに限定されない。例えば、予備熱貯蔵器内に貯蔵されているエネルギー量の算出に反応する熱供給システム924は、予備熱貯蔵器112内に現在貯蔵されているエネルギーの算出に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。さらに、予備熱貯蔵器内に貯蔵されているエネルギー量の算出に反応する熱供給システム924は、予備熱貯蔵器に貯蔵されているエネルギーの、全貯蔵容量に対する比率の算出に反応する熱供給システム926を含んでいてもよい。例えば、貯蔵されたエネルギーの比率の算出に反応する熱供給システム926は、貯蔵されたエネルギーの設定された比率レベル(例えば、エネルギー貯蔵容量の80%が利用される)の算出に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。
【0090】
さらなる一実施形態では、停止事象に反応する熱供給システム114は、予備熱貯蔵器内の利用可能な貯蔵容量の算出に反応する熱供給システム928を含んでいてもよいが、これに限定されない。例えば、予備熱貯蔵器内の利用可能な貯蔵容量の算出に反応する熱供給システム928は、利用可能なエネルギー貯蔵容量の算出に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。さらに、予備熱貯蔵器内の利用可能な貯蔵容量の算出に反応する熱供給システム928は、予備熱貯蔵器内の利用可能なエネルギー貯蔵容量の比率の算出に反応する熱供給システム930を含んでいてもよい。例えば、利用可能なエネルギー貯蔵容量の比率の算出に反応する熱供給システム930は、利用可能なエネルギー貯蔵の設定された比率レベル(例えば、貯蔵容量の20%が残っているレベル)の算出に反応して、1つ以上の予備熱貯蔵器112内に貯蔵されている熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達することを開始してよい。
【0091】
さらなる一実施形態では、停止事象に反応する熱供給システム114は、予備熱貯蔵器内に貯蔵されたエネルギーの特定の一部をエネルギー変換システムへ供給するために適した熱供給システム932を含んでいてもよいが、これに限定されない。例えば、予備熱貯蔵器内に貯蔵されたエネルギーの特定の一部をエネルギー変換システムへ供給するために適した熱供給システム932を利用して、1つ以上の予備熱貯蔵器112内に貯蔵されている特定の量の熱エネルギーを、原子炉システム101の少なくとも1つのエネルギー変換システム110に伝達してよい。例えば、予備熱貯蔵器112からエネルギー変換システム110に伝達されるエネルギーの量は、現在の負荷需要(例えば、送電網需要)に基づいていてよく、ここで、制御システムまたは操作者/操作体は、エネルギー変換システムの現在の需要のレベルに基づいて、エネルギー変換システムに伝達されるエネルギーの量を選択することが可能である。さらに、予備熱貯蔵器内に貯蔵されているエネルギーの特定の一部を、エネルギー変換システムへ供給するために適した熱供給システム932は、蓄熱体内に貯蔵されている所定の割合のエネルギーをエネルギー変換システムへ供給するために適した熱供給システム934を備えていてよい。例えば、蓄熱体内に貯蔵されている所定の割合のエネルギーをエネルギー変換システムへ供給するために適した熱供給システム934を利用して、制御システムまたは操作者/操作体によって、予備熱貯蔵器112内に貯蔵された、選択された割合のエネルギー(例えば、貯蔵されたエネルギーの50%)が、原子炉システム101のエネルギー変換システム110に伝達されるようにしてもよい。
【0092】
以下に、実施例を示す一連のフローチャートについて説明する。理解を容易にするために、これらのフローチャートは、最初のフローチャートが一実施例による形態を示し、その後に続くフローチャートは、他の実施例、および/または、最初のフローチャートの拡大を示すように構成されており、該拡大は、先に示された1つ以上のフローチャートを形成するサブ部材の動作またはさらなる部材の動作として、示されるものである。当業者には、ここで利用される表示の形態(例えば、一実施例を示すフローチャートの説明を最初に行い、その後、続くフローチャートにおいて、追加的および/またはさらなる詳細を提供する)は、概して、種々のプロセス実施例の迅速かつ容易な理解を可能にするものであることは、明らかであろう。当業者であれば、ここで利用される表示の形態は、モジュール式および/またはオブジェクト指向のプログラム設計パラダイムに良好に適応することもさらに理解するであろう。
【0093】
図10は、原子炉によって生成されたエネルギーの選択された一部の蓄熱および利用に関する動作例を示す動作フロー1000である。動作フローの種々の例を含む図10およびそれ以降の図面では、上述の図1〜9の例、および/または、他の例および内容を参照して検討および説明する。しかし、動作フローは、多数の環境および内容において、および/または、図1〜9の変形例において実行されてよいことは、理解されよう。また、種々の動作フローが、図示された順番で説明されるが、種々の動作を図示された順番以外の順番で行ってもよいし、または、同時に行ってもよいことは理解されよう。
【0094】
開始動作の後、動作フロー1000は、迂回動作1010に移る。迂回動作1010は、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達してよい。
【0095】
その後、供給動作1020は、停止事象に反応して、迂回されたエネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するステップを示す。例えば、図1〜9Bに示されるように、停止事象に反応して、熱供給システム114は、予備熱貯蔵器112内に貯蔵されている熱エネルギーの一部を原子炉システム101のエネルギー変換システム110に供給してよい。
【0096】
図11は、図10の動作フロー1000の一例である他の実施形態を示す図である。図11は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1102、動作1104、および/または、動作1106を含んでいてもよい。
【0097】
動作1102は、少なくとも1つの原子炉システムの一部から、余剰エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からの余剰エネルギーを、予備熱貯蔵器112に伝達することが可能である。
【0098】
さらに、動作1104は、少なくとも1つのエネルギー変換システムの運転需要を上回る少なくとも一部のエネルギーを、原子炉システムの一部から少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、エネルギー変換システムの運転需要を上回るエネルギー(例えば、送電網要件を上回るエネルギー)を、原子炉システム101の一部から予備熱貯蔵器112に伝達することが可能である。
【0099】
動作1106は、少なくとも1つの原子炉システムの一部の、所定の割合のエネルギー出力を、少なくとも1つの原子炉システムの一部から、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、少なくとも1つの原子炉システム101の一部(例えば、原子炉心、または、原子炉心に熱的に連通している原子炉の一部)の所定の割合のエネルギー出力を、原子炉システム101の一部から予備熱貯蔵器112に伝達することが可能である。
【0100】
図12は、図10の動作フロー1000の一例である他の実施形態を示す図である。図12は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1202、動作1204、動作1206、および/または、動作1208を含んでいてもよい。
【0101】
動作1202は、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つのエネルギー伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達してよい。
【0102】
さらに、動作1204は、少なくとも1つの原子炉システムの一部からの熱エネルギーの選択された一部を、少なくとも1つのエネルギー伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、エネルギー伝達システム104は、熱エネルギー106を伝達するために適している。例えば、図5Aに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0103】
さらに、動作1206は、少なくとも1つの原子炉システムの一部からの熱エネルギーの選択された一部を、少なくとも1つの熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、エネルギー伝達システム104は、熱伝達システム504を備えていてよい。例えば、熱伝達システム504は、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0104】
さらに、動作1208は、少なくとも1つの原子炉システムの一部からの熱エネルギーの選択された一部を、熱伝導を介して、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、熱伝達システム504は、原子炉システム101の一部からの熱エネルギーを、熱伝導を介して、予備熱貯蔵器112に伝達してよい。
【0105】
図13は、図10の動作フロー1000の一例である他の実施形態を示す図である。図13は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1302を含んでいてもよい。
【0106】
動作1302は、少なくとも1つの原子炉システムの一部からの熱エネルギーの選択された一部を、対流を介して、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、熱伝達システム504は、原子炉システム101の一部からの熱エネルギーを、熱対流506を介して、予備熱貯蔵器112に伝達してよい。
【0107】
図14Aおよび図14Bは、図10の動作フロー1000の一例である他の実施形態を示す図である。図14Aおよび図14Bは、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1402、動作1404、動作1406、および/または、動作1408を含んでいてもよい。
【0108】
動作1402は、少なくとも1つの原子炉システムの少なくとも1つの熱源に熱的に連通している少なくとも1つの原子炉システムの一部からの、熱エネルギーの選択された一部を、少なくとも1つの熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Bに示されるように、熱は、原子炉システム101の少なくとも1つの熱源522に熱的に連通している原子炉102の一部から、予備熱貯蔵器112に伝達される。例えば、図5Bに示されるように、熱伝達システム504は、原子炉システム101の熱源522に熱的に連通している原子炉システム101の一部(例えば、原子炉システムの冷却材システム)からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0109】
さらに、動作1404は、少なくとも1つの原子炉システムの少なくとも1つの原子炉心に熱的に連通している少なくとも1つの原子炉システムの一部からの、熱エネルギーの選択された一部を、少なくとも1つの熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Bに示されるように、熱源522は、原子炉システム101の原子炉心524を含んでいてもよい。例えば、熱伝達システム504は、原子炉システム101の原子炉心524に熱的に連通している原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0110】
さらに、動作1406は、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部からの、熱エネルギーの選択された一部を、少なくとも1つの熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Bに示されるように、原子炉心524に熱的に連通している原子炉システム101の一部は、原子炉システム101の主要冷却材システム526の一部を含んでいてもよい。例えば、図5Bに示されるように、熱伝達システム504は、原子炉システム101の主要冷却材システム526の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0111】
さらに、動作1408は、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材ループの一部からの、熱エネルギーの選択された一部を、少なくとも1つの熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Bに示されるように、原子炉システム101の主要冷却材システムの一部は、原子炉システムの主要冷却材ループ528の一部を含んでいてもよい。例えば、熱伝達システム504が、原子炉システム101の主要冷却材ループ528の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0112】
図15Aおよび図15Bは、図10の動作フロー1000の一例である他の実施形態を示す図である。図15Aおよび図15Bは、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1502を含んでいてもよい。
【0113】
動作1502は、少なくとも1つの原子炉システムの少なくとも1つの冷却材プールからの、熱エネルギーの選択された一部を、少なくとも1つの熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Bに示されるように、原子炉システム101の主要冷却材システムの一部は、原子炉システム101の冷却材プール530を含んでいてもよい。例えば、図5Bに示されるように、熱伝達システム504は、原子炉システム101の冷却材プール530の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0114】
図16Aおよび図16Bは、図10の動作フロー1000の一例である他の実施形態を示す図である。図16Aおよび図16Bは、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1602を含んでいてもよい。
【0115】
動作1602は、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部からの、熱エネルギーの選択された一部を、少なくとも1つの熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。ここで、上記少なくとも1つの主要冷却材システムは、少なくとも1つの予備熱貯蔵器と、原子炉システムの少なくとも1つの副冷却材システムとに熱的に連通しているが、上記少なくとも1つの予備熱貯蔵器と上記少なくとも1つの副冷却材システムとは、熱的に連通していない。例えば、図5Cに示されるように、主要冷却材システム526には、予備熱貯蔵器112と原子炉システム101の副冷却材システム532とに熱的に連通している主要冷却材システム526が含まれる。ここで、予備熱貯蔵器112と少なくとも1つの副冷却材システム532とは、熱的に連通していない。例えば、熱伝達システム504は、原子炉システム101の主要冷却材システム526の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。ここで、主要冷却材システム526は、予備熱貯蔵器112と原子炉システム101の副冷却材システム532とに熱的に連通しているが、予備熱貯蔵器112と少なくとも1つの副冷却材532システムとは、熱的に連通していない。
【0116】
図17Aおよび図17Bは、図10の動作フロー1000の一例である他の実施形態を示す図である。図17は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1702を含んでいてもよい。
【0117】
さらに、動作1702は、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部からの、熱エネルギーの選択された一部を、少なくとも1つの熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。ここで、少なくとも1つの予備熱貯蔵器は、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムに熱的に連通していると共に、該原子炉システムの少なくとも1つの副冷却材システムに熱的に連通している。例えば、図5Dに示されるように、主要冷却材システム526は、予備熱貯蔵器112と原子炉システム101の副冷却材システム532との両方に熱的に連通している、主要冷却材システムを含んでいてもよい。ここで、予備熱貯蔵器112は、原子炉システム101の主要冷却材システム526に熱的に連通していると共に、原子炉システム101の副冷却材システム532に熱的に連通している。例えば、熱伝達システム504は、原子炉システム101の主要冷却材システム526の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。ここで、予備熱貯蔵器112は、原子炉システム101の主要冷却材システム526と、原子炉システム101の副冷却材システム532との両方に熱的に連通している。
【0118】
図18Aおよび図18Bは、図10の動作フロー1000の一例である他の実施形態を示す図である。図18Aおよび図18Bは、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1802、動作1804、および/または、動作1806を含んでいてもよい。
【0119】
動作1802は、少なくとも1つの直接流体交換熱伝達システムを用いて、少なくとも1つの原子炉システムの一部からの熱エネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、エネルギー伝達システム104は、直接流体交換熱伝達システム510を含んでいてもよい。例えば、直接流体交換システム510が、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0120】
さらに、動作1804は、少なくとも1つの直接流体交換熱伝達システムを用いて、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体流体と、少なくとも1つの原子炉システムの少なくとも1つの冷却材とを混合するステップを示している。例えば、図5Aに示されるように、直接流体交換システム510は、予備熱貯蔵器112の蓄熱体と原子炉102の冷却材とを混合するためのシステム511を含んでいてもよい。例えば、蓄熱体流体と原子炉冷却材とを混合するためのシステム511が、これら2つの流体を直接混合することによって、原子炉システム101からの熱エネルギーを、予備熱貯蔵器112に伝達させてよい。
【0121】
さらに、動作1806は、少なくとも1つの直接流体交換熱伝達システムを用いて、実質的に類似した、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体流体と、少なくとも1つの原子炉システムの少なくとも1つの冷却材とを混合するステップを示している。例えば、図5Aに示されるように、予備熱貯蔵器流体と原子炉の冷却材とは、実質的に類似していてよい(512)。例えば、蓄熱体流体および原子炉冷却材はどちらも、同じ液体金属、例えば、液体ナトリウム、液体鉛、または液体鉛ビスマスなどを含んでいてもよい。他の例では、蓄熱体流体および原子炉冷却材はどちらも、同じ液体有機体、例えば、ジフェニル酸化物を有するジフェニルを含んでいてもよい。
【0122】
図19Aおよび図19Bは、図10の動作フロー1000の一例である他の実施形態を示す図である。図19Aおよび図19Bは、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作1902を含んでいてもよい。
【0123】
動作1902は、少なくとも1つの直接流体交換熱伝達システムを用いて、互いに異なる、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体流体と、少なくとも1つの原子炉システムの少なくとも1つの冷却材とを混合するステップを示している。例えば、図5Aに示されるように、予備熱貯蔵器流体および原子炉の冷却材は、異なっていてよい(513)。例えば、蓄熱体流体は、液体有機流体(例えば、ジフェニル酸化物を有するジフェニル)を含むが、原子炉冷却材は、液体金属冷却材(例えば、液体ナトリウム、鉛、または、鉛ビスマス)を含んでいてもよい。同様に、蓄熱体流体は、液体ナトリウムなどの第1の液体金属冷却材を含むが、原子炉冷却材は、液体鉛などの第2の液体金属冷却材を含んでいてもよい。
【0124】
図20は、図10の動作フロー1000の一例である他の実施形態を示す図である。図20は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2002、および/または、動作2004を含んでいてもよい。
【0125】
動作2002は、少なくとも1つの原子炉システムの一部からの熱エネルギーの選択された一部を、少なくとも1つの熱交換器を用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、熱エネルギー106を伝達するために適したエネルギー伝達システムは、1つ以上の、原子炉−蓄熱体の熱交換器514を用いて、原子炉システム101の一部からの熱エネルギーを、予備熱貯蔵器112に伝達してよい。
【0126】
さらに、動作2004は、少なくとも1つの原子炉システムの一部からの熱エネルギーの選択された一部を、少なくとも1つの熱交換器を用いて、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。ここで、少なくとも1つの熱交換器の第1の部分は、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部に熱的に連通しており、少なくとも1つの熱交換器の第2の部分は、少なくとも1つの予備熱貯蔵器の一部に熱的に連通している。例えば、原子炉−蓄熱体の熱交換514は、熱交換器515を含んでいてもよい。熱交換器515は、原子炉システムの主要冷却材システムに熱的に連通している第1の部分と、予備熱貯蔵器112に熱的に連通している第2の部分とを有している。例えば、熱エネルギー106を伝達するために適したエネルギー伝達システムは、原子炉システムの主要冷却材システムに熱的に連通している第1の部分と、予備熱貯蔵器112に熱的に連通している第2の部分とを有する熱交換器515を用いて、原子炉システム101からのエネルギーを、予備熱貯蔵器112に伝達してよい。
【0127】
図21は、図10の動作フロー1000の一例である他の実施形態を示す図である。迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2102、動作2104、および/または、動作2106を含んでいてもよい。
【0128】
動作2102は、少なくとも1つのエネルギー伝達システムを用いて、少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、エネルギー伝達システム104は、原子炉システム101の一部(例えば、原子炉システム110のエネルギー変換システム)からの電気エネルギー108を、予備熱貯蔵器112に伝達することに適したエネルギー伝達システムを含んでいてもよい。例えば、原子炉システム101からの電気エネルギー108を予備熱貯蔵器112に伝達することに適したエネルギー伝達システムを用いて、原子炉システム101の一部からの電気エネルギーを、予備熱貯蔵器112に伝達してよい。当業者であれば、予備熱貯蔵器112に貯蔵するためには、変換プロセスにおいて、原子炉システム101の一部に由来する電気エネルギーを熱エネルギーに変換する必要があることは、分かるであろう。
【0129】
さらに、動作2104は、少なくとも1つの電気/熱変換システムを用いて、少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、原子炉システム101からの電気エネルギー108を予備熱貯蔵器112に伝達するために適したエネルギー伝達システムは、電気エネルギー/熱エネルギー変換装置516を含んでいてもよい。例えば、電気エネルギー/熱エネルギー変換装置516を用いて、原子炉システム101の一部によって生成された電気エネルギーを、熱エネルギーに変換することが可能であり、その後、熱エネルギーは、予備熱貯蔵器112に伝達される。
【0130】
さらに、動作2106は、少なくとも1つの電気/熱変換システムを用いて、少なくとも1つの原子炉システムの少なくとも1つのエネルギー変換システムからの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、原子炉システム101からの電気エネルギー108を予備熱貯蔵器112に伝達するために適したエネルギー伝達システムは、原子炉システム101のエネルギー変換装置110からの電気エネルギーを予備熱貯蔵器112に伝達するための電気エネルギー/熱エネルギー変換装置519を含んでいてもよい。例えば、エネルギー変換装置110からの電気エネルギーを予備熱貯蔵器112に伝達するために適した、電気エネルギー/熱エネルギー変換装置519を用いて、原子炉システム101のエネルギー変換装置(例えば、タービン/発電機システム)の電気出力からの電気エネルギーを、熱エネルギーに変換してよい。その後、熱エネルギーは、予備熱貯蔵器112に伝達される。
【0131】
図22は、図10の動作フロー1000の一例である他の実施形態を示す図である。図22は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2202、および/または、動作2204を含んでいてもよい。
【0132】
動作2202は、少なくとも1つの抵抗加熱装置を用いて、少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップが示されている。例えば、図5Aに示されるように、電気エネルギー/熱エネルギー変換装置は、1つ以上の抵抗加熱装置517を含んでいてもよい。例えば、抵抗加熱装置517を用いて、原子炉システム101の一部からの電気エネルギーを、熱エネルギーに変換してよい。その後、熱エネルギーは、予備熱貯蔵器112に伝達され得る。
【0133】
さらに、動作2204は、少なくとも1つの加熱コイルを用いて、少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図5Aに示されるように、抵抗加熱装置517は、1つ以上の加熱コイルを備えていてよい。例えば、加熱コイル518を用いて、原子炉システム101の一部からの電気エネルギーを、熱エネルギーに変換してよい。その後、熱エネルギーは、予備熱貯蔵器112に伝達される。
【0134】
図23は、図10の動作フロー1000の一例である他の実施形態を示す図である。図23は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2302、動作2304、動作2306、および/または、動作2308を含んでいてもよい。
【0135】
動作2302は、少なくとも1つの状態に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、状態802(例えば、原子炉システムへの電力需要、予備熱貯蔵器の準備状態、原子炉の熱特性、または、蓄熱体の熱特性)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0136】
さらに、動作2304は、少なくとも1つの原子炉システムの余剰容量の判定に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、少なくとも1つの原子炉システムの容量が過剰であるという判定(例えば、現在の原子炉の電力生成が、現在の送電網需要を上回っているという判定)に反応して、原子炉システム101の一部からのエネルギーを予備熱貯蔵器112に伝達することを開始してよい。
【0137】
動作2306は、少なくとも1つの原子炉システムの少なくとも1つの運転システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の運転システム804(例えば、警告システム、安全システム、または停止システム)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0138】
さらに、動作2308は、少なくとも1つの原子炉システムの少なくとも1つの運転システムからの少なくとも1つの信号に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、運転システムからの信号806に反応するエネルギー伝達システムは、原子炉システム101の運転システムからの少なくとも1つの信号806(例えば、デジタル有線信号、アナログ有線信号、デジタル無線信号、またはアナログ無線信号)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0139】
図24は、図10の動作フロー1000の一例である他の実施形態を示す図である。図24は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2402を含んでいてもよい。
【0140】
動作2402は、少なくとも1つの原子炉システムの少なくとも1つの監視システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、監視システム808に反応するエネルギー伝達システムは、原子炉システム101の監視システムからの少なくとも1つの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0141】
図25は、図10の動作フロー1000の一例である他の実施形態を示す図である。図25は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2502を含んでいてもよい。
【0142】
動作2502は、少なくとも1つの原子炉システムの少なくとも1つの制御システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、制御システム810に反応するエネルギー伝達システムは、原子炉システム101の制御システムからの少なくとも1つの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0143】
図26は、図10の動作フロー1000の一例である他の実施形態を示す図である。図26は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2602を含んでいてもよい。
【0144】
動作2602は、少なくとも1つの原子炉システムの少なくとも1つの安全システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、原子炉システムの安全システム812に反応するエネルギー伝達システムは、原子炉システム101の制御システムからの少なくとも1つの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0145】
図27は、図10の動作フロー1000の一例である他の実施形態を示す図である。図27は迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2702、および/または、動作2704を含んでいてもよい。
【0146】
動作2702は、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体運転システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、蓄熱体運転システム818に反応するエネルギー伝達システムは、予備熱貯蔵器112の少なくとも1つの運転システム(例えば、監視システム、警告システム、制御システム、または、安全システム)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0147】
さらに、動作2704は、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体運転システムからの少なくとも1つの信号に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、蓄熱体運転システムからの信号820に反応するエネルギー伝達システムは、予備熱貯蔵器112の運転システムからの少なくとも1つの信号(例えば、デジタル有線信号、アナログ有線信号、デジタル無線信号、または、アナログ無線信号)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0148】
図28は、図10の動作フロー1000の一例である他の実施形態を示す図である。図28は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2802を含んでいてもよい。
【0149】
動作2802は、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体監視システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、蓄熱体監視システム822に反応するエネルギー伝達システムは、予備熱貯蔵器112の少なくとも1つの監視システム(例えば、熱監視システム、圧力監視システム、エネルギー貯蔵容量の監視システム)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0150】
図29は、図10の動作フロー1000の一例である他の実施形態を示す図である。図29は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作2902を含んでいてもよい。
【0151】
動作2902は、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体制御システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、蓄熱体制御システム824に反応するエネルギー伝達システムは、予備熱貯蔵器112の少なくとも1つの制御システム(例えば、熱制御システム)に反応して、原子炉システム101の一部からのエネルギーを予備熱貯蔵器112に伝達することを開始してよい。
【0152】
図30は、図10の動作フロー1000の一例である他の実施形態を示す図である。図30は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3002を含んでいてもよい。
【0153】
動作3002は、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体安全システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、蓄熱体安全システム826に反応するエネルギー伝達システムは、予備熱貯蔵器112の少なくとも1つの安全システムに反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0154】
図31は、図10の動作フロー1000の一例である他の実施形態を示す図である。図31は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3102を含んでいてもよい。
【0155】
動作3102は、少なくとも1つの原子炉システムの少なくとも1人/1つの操作者/操作体からの少なくとも1つの信号に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、操作者/操作体(例えば、ユーザ(人)または人が制御するプログラマブルなコンピュータシステム)814からの信号(例えば、無線信号または有線信号)に反応するエネルギー伝達システムは、原子炉システム101および/または蓄熱体システム112の操作者/操作体からの少なくとも1つの信号に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0156】
図32は、図10の動作フロー1000の一例である他の実施形態を示す図である。図32は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3202を含んでいてもよい。
【0157】
動作3202は、予め選択された迂回開始時間に、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、予め選択された迂回開始時間816に反応するエネルギー伝達システムは、予め選択された迂回開始時間(例えば、所定の事象の発生に関する絶対時間または経過時間)に、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0158】
図33は、図10の動作フロー1000の一例である他の実施形態を示す図である。図33は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3302、動作3304、および/または、動作3306を含んでいてもよい。
【0159】
動作3302は、停止事象に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、停止事象828に反応するエネルギー伝達システムは、原子炉システム101の停止事象に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0160】
さらに、動作3304は、計画的停止事象に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、計画的停止事象830に反応するエネルギー伝達システムは、原子炉システム101の計画的停止事象(例えば、定期点検)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0161】
さらに、動作3306は、緊急停止事象に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、緊急停止事象832に反応するエネルギー伝達システムは、原子炉システム101の緊急停止事象(例えば、SCRAM)に反応して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0162】
図34は、図10の動作フロー1000の一例である他の実施形態を示す図である。図34は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3402、および/または、動作3404を含んでいてもよい。
【0163】
動作3402は、停止事象に反応して、少なくとも1つの原子炉システムの一部と少なくとも1つの予備熱貯蔵器との間に、熱的連通を確立するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止事象に反応して、エネルギー伝達システム104は、原子炉システムの一部(例えば、主要冷却材システム)と予備熱貯蔵器112との間に、熱的連通を確立してよい。
【0164】
さらに、動作3404は、原子炉の停止に先行して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止事象828に反応するエネルギー伝達システムは、原子炉102の停止に先行して、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0165】
図35は、図10の動作フロー1000の一例である他の実施形態を示す図である。図35は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3502を含んでいてもよい。
【0166】
動作3502は、原子炉が停止している間に、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止事象828に反応するエネルギー伝達システムは、原子炉102が停止している間に、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0167】
図36は、図10の動作フロー1000の一例である他の実施形態を示す図である。図36は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3602、および/または、動作3604を含んでいてもよい。
【0168】
動作3602は、少なくとも1つの予備熱貯蔵器内に貯蔵されているエネルギーの量の算出に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、予備熱貯蔵器内に貯蔵されているエネルギーの量の算出836に反応するエネルギー伝達システムが、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0169】
また、動作3604は、少なくとも1つの予備熱貯蔵器内に貯蔵されているエネルギーの比率の算出に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、予備熱貯蔵器において使用されるエネルギー容量の比率の算出838に反応するエネルギー伝達システムが、原子炉システム101の一部からのエネルギーを予備熱貯蔵器112に伝達することを開始してよい。
【0170】
図37は、図10の動作フロー1000の一例である他の実施形態を示す図である。図37は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3702、および/または、動作3704を含んでいてもよい。
【0171】
動作3702は、少なくとも1つの予備熱貯蔵器の利用可能なエネルギー貯蔵容量の量の算出に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、予備熱貯蔵器に残っているエネルギー容量の量の算出840に反応するエネルギー伝達システムが、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0172】
さらに、動作3704は、利用可能なエネルギー貯蔵容量の比率の算出に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、予備熱貯蔵器に残っているエネルギー容量の比率の算出842に反応するエネルギー伝達システムは、原子炉システム101の一部からのエネルギーを、予備熱貯蔵器112に伝達することを開始してよい。
【0173】
図38は図10の動作フロー1000の一例である他の実施形態を示す図である。図38は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3802、動作3804、および/または、動作3806を含んでいてもよい。
【0174】
動作3802は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における蓄熱材116の集合体へ伝達させてもよい。
【0175】
さらに、動作3804は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの固体蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における、固形物体(例えば固形セラミック体、固形金属体、または固形石体)若しくは粒状固体(例えば砂)といった、固体蓄熱材414の集合体へ伝達させてもよい。
【0176】
さらに、動作3806は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの加圧ガス容量の材料の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における加圧ガス材料412(例えば加圧ヘリウムまたは加圧二酸化炭素)の集合体へ伝達させてもよい。
【0177】
図39A〜39Dは、図10の動作フロー1000の一例である他の実施形態を示す図である。図39A〜39Dは、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作3902、動作3904、動作3906、及び動作3908、並びに/または動作3910を含んでいてよい。
【0178】
動作3902は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの液体蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における液体材料402(例えば、液体金属、液体金属塩、液体有機物、または水)の集合体へ伝達させてもよい。
【0179】
また、動作3904は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの有機液体蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における液体有機材料404(例えば、ジフェニル酸化物を有するジフェニル)の集合体へ伝達させてもよい。
【0180】
また、動作3906は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの液体金属塩蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における液体金属塩406(例えば、フッ化リチウム)の集合体へ伝達させてもよい。
【0181】
また、動作3908は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの液体金属蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における液体金属408(例えば、ナトリウム)の集合体へ伝達させてもよい。
【0182】
また、動作3910は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における水の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における水410の集合体へ伝達させてもよい。
【0183】
図40は、図10の動作フロー1000の一例である他の実施形態を示す図である。図40は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4002、及び/または動作4004を含んでいてよい。
【0184】
また、上記動作4002は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの混合相材料の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112における混合相材料420(例えば蒸気水−水)の集合体へ伝達させてもよい。
【0185】
また、上記動作4004は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器における少なくとも1つの材料の集合体へ迂回させるステップを示している。上記した「少なくとも1つの材料の集合体」は、少なくとも1つの予備熱貯蔵器の動作温度の範囲内で相転移する。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112の動作温度422の範囲内で相転移する材料の集合体へ伝達させてもよい。
【0186】
図41Aは、図10の動作フロー1000の一例である他の実施形態を示す図である。図41は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4102、動作4104、動作4106、及び/または動作4108を含んでいてよい。
【0187】
上記動作4102は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの予備熱貯蔵器は、上記のエネルギーにおける選択された一部を、予備熱貯蔵器における蓄熱材の温度変化の形態で貯蔵する。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。ここで、上記予備熱貯蔵器は、上記エネルギーを、蓄熱材438の温度上昇の形態で貯蔵する。例えば、予備熱貯蔵器112へのエネルギー転移によって、液体蓄熱材402の温度は、100℃から200℃へ上昇する。
【0188】
上記動作4104は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの予備熱貯蔵器は、上記のエネルギーにおける選択された一部を、予備熱貯蔵器における蓄熱材の相変化の形態で貯蔵する。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。ここで、上記予備熱貯蔵器は、上記エネルギーを、蓄熱材438の相変化の形態で貯蔵する。例えば、予備熱貯蔵器112へのエネルギー転移によって、固体貯蔵材料は液体貯蔵材料へ相変化する。ここで、上記エネルギーは、潜熱の転移として上記貯蔵材料に貯蔵される。
【0189】
また、上記動作4106は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの予備熱貯蔵器は、上記のエネルギーにおける選択された一部を、予備熱貯蔵器における蓄熱材の固体−液体相変化の形態で貯蔵する。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。ここで、予備熱貯蔵器112は、上記エネルギーを、固体−液体相変化440(例えば、固体ナトリウム−液体ナトリウム相変化)の形態で貯蔵する。
【0190】
また、上記動作4108は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの予備熱貯蔵器は、上記のエネルギーにおける選択された一部を、予備熱貯蔵器における蓄熱材の液体−気体相変化の形態で貯蔵する。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。ここで、予備熱貯蔵器112は、上記エネルギーを、液体−気体相変化442(例えば、水−水蒸気相変化)の形態で貯蔵する。
【0191】
図42A及び42Bは、図10の動作フロー1000の一例である他の実施形態を示す図である。図42A及び42Bは、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4202、動作4204、動作4206、動作4208、及び/または動作4210を含んでいてよい。
【0192】
動作4202は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの原子炉システムは、少なくとも1つの液状冷却材を備えている。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、液体212で冷却された原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。
【0193】
また、動作4204は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの原子炉システムは、少なくとも1つの液体金属塩冷却材を備えている。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、液体金属塩214で冷却された原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。
【0194】
また、上記動作4206は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの原子炉システムは、少なくとも1つの冷却水を備えている。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、水220で冷却された原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。
【0195】
また、上記動作4208は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの原子炉システムは、少なくとも1つの液体金属冷却材を備えている。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、液体金属216(例えば、液体ナトリウムまたは液体鉛)で冷却された原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。
【0196】
また、上記動作4210は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの原子炉システムは、少なくとも1つの液体有機冷却材を備えている。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、液体有機物218(例えば、ジフェニル酸化物を有するジフェニル)で冷却された原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。
【0197】
図43は、図10の動作フロー1000の一例である他の実施形態を示す図である。図43は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4302、動作4304、動作4306、及び/または動作4308を含んでいてよい。
【0198】
動作4302は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの原子炉システムは、少なくとも1つの加圧ガス冷却材を備えている。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、加圧ガス222(例えば、加圧された、ヘリウムまたは二酸化炭素)で冷却された原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。
【0199】
上記動作4304は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。上記少なくとも1つの原子炉システムは、少なくとも1つの混合相冷却材を備えている。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、混合相224(例えば、水−水蒸気)で冷却された原子炉システム101の一部からのエネルギーにおける選択された一部を、予備熱貯蔵器112へ伝達させてもよい。
【0200】
上記動作4306は、少なくとも1つの熱スペクトル原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101から熱スペクトル原子炉202によって生成された一部の選択されたエネルギーを、予備熱貯蔵器112へ伝達させてもよい。
【0201】
動作4308は、少なくとも1つの高速スペクトル原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101から高速スペクトル原子炉204によって生成された一部の選択されたエネルギーを、予備熱貯蔵器112へ伝達させてもよい。
【0202】
図44は、図10の動作フロー1000の一例である他の実施形態を示す図である。図44は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4402、動作4404、及び/または動作4406を含んでいてよい。
【0203】
動作4402は、少なくとも1つのマルチスペクトル原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101からマルチスペクトル原子炉206によって生成された一部の選択されたエネルギーを、予備熱貯蔵器112へ伝達させてもよい。
【0204】
動作4404は、少なくとも1つの増殖型原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101から増殖型原子炉208によって生成された一部の選択されたエネルギーを、予備熱貯蔵器112へ伝達させてもよい。
【0205】
動作4406は、少なくとも1つの進行波炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101から進行波炉210によって生成された一部の選択されたエネルギーを、予備熱貯蔵器112へ伝達させてもよい。
【0206】
図45は、図10の動作フロー1000の一例である他の実施形態を示す図である。図45は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4502、動作4504、及び/または動作4506を含んでいてよい。
【0207】
上記動作4502は、停止事象に反応して、少なくとも1つの熱供給システムを用いて原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部の少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ供給してもよい。
【0208】
また、動作4504は、停止事象に反応して、少なくとも1つの熱交換ループを用いて原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部の少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、熱交換ループ602を介して、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ供給してもよい。
【0209】
また、動作4506は、停止事象に反応して、少なくとも1つのヒートパイプを用いて原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、ヒートパイプ604を介して、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ供給してもよい。
【0210】
図46は、図10の動作フロー1000の一例である他の実施形態を示す図である。図46は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4602、及び/または動作4604を含んでいてよい。
【0211】
また、動作4602は、停止事象に反応して、少なくとも1つの熱交換器を用いて原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、熱交換器606を介して、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ供給してもよい。例えば、上記熱交換器の第1の部分は、予備熱貯蔵器112に熱的に連通しており、上記熱交換器の第2の部分は、原子炉システム101におけるエネルギー変換システム110に熱的に連通している。
【0212】
また、動作4604は、停止事象に反応して、少なくとも1つの熱電装置を用いて原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、熱電装置608(例えば、半導体−半導体熱電接合部)を介して、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ供給してもよい。例えば、上記熱電装置の第1の部分は、予備熱貯蔵器112に熱的に連通しており、上記熱電装置の第2の部分は、原子炉システム101におけるヒートシンク(例えば、自然のヒートシンク)に熱的に連通している。
【0213】
図47は、図10の動作フロー1000の一例である他の実施形態を示す図である。図47は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4702、動作4704、動作4706、及び/または動作4708を含んでいてよい。
【0214】
上記動作4702は、停止事象に反応して、原子炉システムにおける少なくとも1つの主要エネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101における主要エネルギー変換システム302(例えば、主要沸騰ループに連結したエネルギー変換システム)へ供給してもよい。
【0215】
上記動作4704は、停止事象に反応して、原子炉システムにおける少なくとも1つの補助エネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101における補助エネルギー変換システム304(例えば、非主要沸騰に連結したエネルギー変換システム)へ供給してもよい。
【0216】
上記動作4706は、停止事象に反応して、原子炉システムにおける少なくとも1つの緊急エネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101における緊急エネルギー変換システム306(例えば、上記原子炉システムにおける様々な運転システムへ電力を供給するエネルギー変換システム)へ供給してもよい。
【0217】
上記動作4708は、停止事象に反応して、原子炉システムにおける少なくとも1つの沸騰ループへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101における沸騰ループ322へ供給してもよい。
【0218】
図48は、図10の動作フロー1000の一例である他の実施形態を示す図である。図48は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4802、及び/または動作4804を含んでいてよい。
【0219】
動作4802は、停止事象に反応して、原子炉システムにおける少なくとも1つのタービンへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるタービン312へ供給してもよい。
【0220】
さらに、動作4804は、停止事象に反応して、原子炉システムにおける少なくとも1つのタービンの少なくとも1つの作動流体へ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるタービン312の作動流体320へ供給してもよい。
【0221】
図49は、図10の動作フロー1000の一例である他の実施形態を示す図である。図49は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作4902、動作4904、動作4906、及び/または動作4908を含んでいてよい。
【0222】
動作4902は、停止事象に反応して、原子炉システムにおける少なくとも1つのトッピングサイクルへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるトッピングサイクル314へ供給してもよい。
【0223】
動作4904は、停止事象に反応して、原子炉システムにおける少なくとも1つのボトミングサイクルへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるボトミングサイクル316へ供給してもよい。
【0224】
動作4906は、停止事象に反応して、少なくとも1つの低温ダンプへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システムにおける、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101における低温ダンプ318へ供給してもよい。
【0225】
動作4908は、計画的停止事象に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の計画的停止事象(例えば、定期点検)に反応して、原子炉システム101における計画的停止事象に反応する熱供給システム904は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0226】
図50は、図10の動作フロー1000の一例である他の実施形態を示す図である。図50は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5002、動作5004、動作5006、及び/または動作5008を含んでいてよい。
【0227】
上記動作5002は、緊急停止事象に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の緊急停止事象(例えば、SCRAM)に反応して、原子炉システム101における緊急停止事象に反応する熱供給システム902は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0228】
上記動作5004は、原子炉停止に先行して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101における反応炉102の停止に先行して、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0229】
動作5006は、原子炉が停止している間に、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101における反応炉102が停止している間に、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0230】
動作5008は、原子炉が停止した後に、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101における反応炉102が停止した後に、停止事象に反応する熱供給システム114は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0231】
図51は、図10の動作フロー1000の一例である他の実施形態を示す図である。図50は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5102、動作5104、及び/または動作5106を含んでいてよい。
【0232】
動作5102は、停止事象を示す少なくとも1つの状態に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止を示す状態に反応して、原子炉システム101の停止を示す状態に反応する熱供給システムは、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0233】
また、動作5104は、原子炉システムの少なくとも1つの運転システムからの少なくとも1つの信号に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の運転システムからの信号に反応して、原子炉システム101の運転システムからの信号に反応する熱供給システム908は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0234】
また、動作5106は、少なくとも1つの予備熱貯蔵器における少なくとも1つの運転システムからの少なくとも1つの信号に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、予備熱貯蔵器112における運転システムからの信号に反応して、予備熱貯蔵器における運転システムからの信号に反応する熱供給システム910は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0235】
図52は、図10の動作フロー1000の一例である他の実施形態を示す図である。図52は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5202、及び/または動作5204を含んでいてよい。
【0236】
また、動作5202は、原子炉システムにおける少なくとも1つの操作者/操作体からの少なくとも1つの信号に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101における操作者/操作体(例えば、ユーザ(人)または人が制御するプログラムされたコンピュータシステム)からの信号に反応して、原子炉システムにおける操作者/操作体からの信号に反応する熱供給システム912は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0237】
また、動作5204は、予め選択された供給開始時間に、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、停止後の予め選択された経過時間に、停止後の予め選択された経過時間に反応する熱供給システム914(例えば、経過時間は、反応炉の停止事象開始に対して計測されてもよい)は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0238】
図53は、図10の動作フロー1000の一例である他の実施形態を示す図である。図53は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5302、動作5304、動作5306、及び/または動作5308を含んでいてよい。
【0239】
動作5302は、原子炉システムの少なくとも1つの運転システムによって確定された停止事象に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の運転システム120によって確定された停止事象に反応して、原子炉システムの運転システムによって確定された停止事象に反応する熱供給システム916は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0240】
動作5304は、原子炉システムの少なくとも1つの原子炉制御システムによって確定された停止事象に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の原子炉制御システムによって確定された停止事象に反応して、原子炉システムの原子炉制御システムによって確定された停止事象に反応する熱供給システム918は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0241】
また、動作5306は、少なくとも1つの安全システムからの少なくとも1つの信号に反応する原子炉システムにおける少なくとも1つの原子炉制御システムによって確定された停止事象に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の原子炉制御システムによって確定された停止事象に反応して(ここで、反応炉制御システムは、原子炉システム101の安全システムからの信号に反応する)、原子炉制御システムによって確定された停止事象に反応する熱供給システム920(ここで、反応炉制御システムは、原子炉システム101の安全システムに反応する)は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0242】
また、上記動作5308は、少なくとも1つの安全システムからの少なくとも1つの信号に反応する原子炉システムにおける少なくとも1つの原子炉制御システムによって確定された停止事象に反応して(上記安全システムは、原子炉システムにおける少なくとも1つの検知状態に反応する)、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。ここで、上記少なくとも1つの安全システムは、原子炉システムにおける少なくとも1つの検知状態に反応する。例えば、図1〜9Bに示されるように、原子炉システム101の原子炉制御システムによって確定された停止事象に反応して(ここで、反応炉制御システムは、原子炉システム101の安全システムからの信号に反応する)、原子炉制御システムによって確定された停止事象に反応する熱供給システム920(ここで、反応炉制御システムは、原子炉システム101の安全システムに反応し、上記安全システムは、検知した反応炉の状態(例えば、外部状態または内部状態)に反応する)は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0243】
図54は、図10の動作フロー1000の一例である他の実施形態を示す図である。図54は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5402、及び/または動作5404を含んでいてよい。
【0244】
動作5402は、停止事象に反応して、少なくとも1つの予備熱貯蔵器内に貯蔵されている選択されたエネルギー量を算出して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。ここで、例えば、図1〜9Bに示されるように、原子炉システム101の停止で予備熱貯蔵器112内に貯蔵されているエネルギー量の算出に反応して、原子炉システムの停止で予備熱貯蔵器内に貯蔵されているエネルギー量の算出に反応する熱供給システム924は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0245】
また、動作5404は、停止事象に反応して、少なくとも1つの予備熱貯蔵器内に貯蔵されている選択されたエネルギーの比率を算出して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止で予備熱貯蔵器112内に貯蔵されているエネルギー容量の利用比率の算出に反応して、原子炉システムの停止で予備熱貯蔵器内に貯蔵されているエネルギー容量の利用比率の算出に反応する熱供給システム926は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0246】
図55は、図10の動作フロー1000の一例である他の実施形態を示す図である。図55は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5502、及び/または動作5504を含んでいてよい。
【0247】
上記動作5502は、停止事象に反応して、少なくとも1つの予備熱貯蔵器内の利用可能な選択された貯蔵容量を算出して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止で予備熱貯蔵器112の利用可能な貯蔵容量の算出に反応して、原子炉システムの停止で予備熱貯蔵器の利用可能な貯蔵容量の算出に反応する熱供給システム928は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0248】
また、動作5504は、停止事象に反応して、少なくとも1つの予備熱貯蔵器内の利用可能な貯蔵容量の選択された比率を算出して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち少なくとも一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止で予備熱貯蔵器112内の利用可能な貯蔵容量の比率の算出に反応して、原子炉システムの停止で予備熱貯蔵器内の利用可能な貯蔵容量の比率の算出に反応する熱供給システム930は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0249】
図56は、図10の動作フロー1000の一例である他の実施形態を示す図である。図56は、供給動作1020が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5602、及び/または動作5604を含んでいてよい。
【0250】
上記動作5602は、停止事象に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回されたエネルギーの選択された一部のうち特定の一部を供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止事象に反応して、予備熱貯蔵器内に貯蔵されたエネルギーの特定の一部をエネルギー変換システムに供給するために適した熱供給システム932は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0251】
また、動作5604は、停止事象に反応して、原子炉システムにおける少なくとも1つのエネルギー変換システムへ迂回された、選択された特定の割合のエネルギーを供給するステップを示している。例えば、図1〜9Bに示されるように、原子炉システム101の停止事象に反応して、予備熱貯蔵器内に貯蔵されている所定の割合のエネルギーをエネルギー変換システムに供給するために適した熱供給システム934は、予備熱貯蔵器112にて貯蔵された熱エネルギーの一部を、原子炉システム101におけるエネルギー変換システム110へ伝達することを開始してよい。
【0252】
図57は、反応炉で生成したエネルギーの選択された一部の蓄熱及び利用に関連した動作の一例である動作フロー5700を示す図である。図57は、図10の動作フロー1000が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5710、動作5712、及び/または動作5714を含んでいてよい。
【0253】
開始動作、迂回動作1010、及び供給動作1020の後、動作フロー5700は、補充動作5710に移る。動作5710は、少なくとも1つの予備熱貯蔵器に、少なくとも1つの付加的なエネルギー源からの付加的なエネルギーの一部を補充するステップを示す。例えば、図7に示されるように、予備熱貯蔵器112内に貯蔵された熱エネルギーは、付加的なエネルギー源702から供給された付加的なエネルギーの一部が補充されてもよい。
【0254】
上記動作5712は、少なくとも1つの予備熱貯蔵器に、原子炉システムにおける少なくとも1つのエネルギー変換システムからの付加的なエネルギーの一部を補充するステップを示す。例えば、図7に示されるように、予備熱貯蔵器112内に貯蔵された熱エネルギーは、原子炉システム101におけるエネルギー変換装置110からの付加的なエネルギーの一部が補充されてもよい。
【0255】
上記動作5714は、少なくとも1つの予備熱貯蔵器に、少なくとも1つの付加的な原子炉システムからの付加的なエネルギーの一部を補充するステップを示す。例えば、図7に示されるように、予備熱貯蔵器112内に貯蔵された熱エネルギーは、付加的な原子炉システム704からの付加的なエネルギー(例えば、熱エネルギーまたは電気エネルギー)の一部が補充されてもよい。
【0256】
図58は、反応炉で生成したエネルギーの選択された一部の蓄熱及び利用に関連した動作の一例である動作フロー5800を示す図である。図58は、図10の動作フロー1000が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5810、動作5812、動作5814、及び/または動作5816を含んでいてよい。
【0257】
開始動作、迂回動作1010、及び供給動作1020の後、動作フロー5700は、監視動作5810に移る。動作5810は、少なくとも1つの予備熱貯蔵器における少なくとも1つの状態を監視するステップを示す。例えば、図4Dに示されるように、予備熱貯蔵器112における、動作状態(例えば、準備状態、温度、圧力、または蓄積容量)といった少なくとも1つの状態が監視されてもよい。
【0258】
また、動作5812は、少なくとも1つの蓄熱体監視システムを用いて、少なくとも1つの予備熱貯蔵器における少なくとも1つの状態を監視するステップを示す。例えば、図4Dに示されるように、蓄熱体監視システム444は、予備熱貯蔵器112の状態を監視するのに用いられている。
【0259】
また、動作5814は、少なくとも1つの予備熱貯蔵器の温度を監視するステップを示す。例えば、図4Dに示されるように、蓄熱体温度監視システム446は、予備熱貯蔵器112の内部温度を監視するのに用いられてもよい。
【0260】
また、動作5816は、少なくとも1つの予備熱貯蔵器の圧力を監視するステップを示す。例えば、図4Dに示されるように、蓄熱体圧力監視システム448は、予備熱貯蔵器112内の圧力を監視するのに用いられてもよい。
【0261】
図59は、図58の動作フロー5800の一例である他の実施形態を示す図である。図59は、上記動作5810が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作5902、及び/または動作5904を含んでいてよい。
【0262】
動作5902は、少なくとも1つの予備蓄熱体内に貯蔵されたエネルギーの量を算出するステップを示す。例えば、図4Dに示されるように、予備熱貯蔵器112に貯蔵されたエネルギーの量を算出するシステム450は、予備熱貯蔵器112内のエネルギー貯蔵レベルを監視するのに用いられてもよい。
【0263】
動作5904は、少なくとも1つの予備蓄熱体内の利用可能なエネルギーの貯蔵容量を算出するステップを示す。例えば、図4Dに示されるように、予備熱貯蔵器112内の利用可能なエネルギーの貯蔵容量を算出するシステム452は、予備熱貯蔵器112の利用可能なエネルギーの貯蔵容量を監視するのに用いられてもよい。
【0264】
図60は、図10の動作フロー1000の一例である他の実施形態を示す図である。図60は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作6002、動作6004、及び/または動作6006を含んでいてよい。
【0265】
動作6002は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、貯蔵器収容システム内に収容された少なくとも1つの蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、貯蔵器収容システム122(例えば容器)内に収容された予備熱貯蔵器112の蓄熱材116の集合体へ伝達させてもよい。
【0266】
また、動作6004は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの外部容器内に収容された少なくとも1つの蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、外部容器426内に収容された予備熱貯蔵器112の蓄熱材116の集合体へ伝達させてもよい。
【0267】
また、動作6006は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの外部高圧ガス容器内に収容された少なくとも1つの蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、外部高圧ガス容器430内に収容された予備熱貯蔵器112の蓄熱材116の集合体へ伝達させてもよい。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、外部高圧ヘリウム容器に収容された高圧ヘリウムガスの集合体へ伝達させてもよい。
【0268】
図61は、図10の動作フロー1000の一例である他の実施形態を示す図である。図61は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作6102を含んでいてよい。
【0269】
動作6102は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの外部液体プール内に収容された少なくとも1つの蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、外部液体プール434内に収容された予備熱貯蔵器112の液体蓄熱材402の集合体へ伝達させてもよい。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、外部液体ナトリウムプールに収容された液体ナトリウムの集合体へ伝達させてもよい。
【0270】
図62は、図10の動作フロー1000の一例である他の実施形態を示す図である。図62は、迂回動作1010が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作6202を含んでいてよい。
【0271】
動作6202は、少なくとも1つの原子炉システムの一部からのエネルギーにおける選択された一部を、少なくとも1つの外部液体容器内に収容された少なくとも1つの蓄熱材の集合体へ迂回させるステップを示している。例えば、図1〜9Bに示されるように、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、外部液体容器428内に収容された予備熱貯蔵器112の蓄熱材116の集合体へ伝達させてもよい。例えば、エネルギー伝達システム104は、原子炉システム101の一部からのエネルギーにおける選択された一部を、外部水容器に収容された水の集合体へ伝達させてもよい。
【0272】
図63は、反応炉で生成したエネルギーの選択された一部の蓄熱及び利用に関連した動作の一例である動作フロー6500を示す図である。図63は、図10の動作フロー1000が少なくとも1つのさらなる動作を含む、実施形態の例を示している。さらなる動作は、動作6310、及び/または動作6312を含んでいてよい。
【0273】
開始動作、迂回動作1010、及び供給動作1020の後、動作フロー6300は、温度維持動作6310に移る。動作6310は、選択された温度を超えるように、少なくとも1つの予備熱貯蔵器における少なくとも1つの蓄熱材の温度を維持するステップを示す。例えば、図4Dに示されるように、予備熱貯蔵器112における蓄熱材116の温度は、蓄熱体温度制御システム454(例えばサーモスタット)で維持されてもよい。
【0274】
上記動作6312は、少なくとも1つの蓄熱材の融解温度を超えるように、少なくとも1つの予備熱貯蔵器における少なくとも1つの蓄熱材の温度を維持するステップを示す。例えば、図4Dに示されるように、予備熱貯蔵器122における蓄熱材116の温度は、蓄熱体温度制御システム454(例えばサーモスタット)で、蓄熱材116の融解温度といった、特定の温度を超えるように維持されてもよい。
【0275】
当業者であれば、最先端技術が進歩し、ハードウェア、ソフトウェア、及び/またはファームウェアのシステム形態の実行に関して、ほぼ差異が残されていないことについて認識するであろう。ハードウェア、ソフトウェア、及び/またはファームウェアの使用は、一般的に(しかし、必ずしもそうではなく、特定の状況においては、ハードウェアかソフトウェアかの選択が重要な意義を持つ場合もある)、費用対効果において折り合いをつけるために選択される設計事項である。本開示において示すプロセスおよび/またはシステムおよび/または他の技術を実行することのできる媒体は様々であり(例えば、ハードウェア、ソフトウェア、および/またはファームウェア)、また、好ましい媒体は、これらのプロセスおよび/またはシステムおよび/または他の技術が配備される状況に応じて変化することについて、当業者であれば理解するであろう。例えば、速度および正確性が最重要であると判断される場合は、主にハードウェアおよび/またはファームウェア媒体が選択され、あるいは、柔軟性が最重要であると判断される場合は、主にソフトウェアが選択され、あるいは、ハードウェア、ソフトウェア、および/またはファームウェアの任意の組み合わせが選択される場合もある。従って、本開示において示すプロセスおよび/またはデバイスおよび/または他の技術を実施することのできる媒体は様々に存在しており、一方が他方よりも本質的に優れていることはなく、用いられる全ての媒体は、その媒体が配備される状況に応じて選択されるものであり、実施の際における特定の懸念事項(例えば、速度、柔軟性、あるいは予測性)もまた様々である。光学的な形態を実施する場合は、通常は、光学指向のハードウェア、ソフトウェア、および/またはファームウェアが用いられることについて、当業者であれば認識するであろう。
【0276】
ここに記述された、いくつかの処理(implementation)において、論理及びこれに類似した処理は、ソフトウェア、または他の制御構造を包含していてもよい。電気回路は、例えば、ここに記述された様々な関数を実行するために構成・配置された、1つ以上の電流パスを備えていてもよい。いくつかの実行において、1つ以上の媒体は、該媒体が、上述のように行うのに用いられる、デバイスによる検出が可能な命令を保持する、あるいは送信したとき、デバイスによる検出が可能な命令を生み出すように構成されていてもよい。いくつかの変形例において、例えば、処理は、ここに記述された1つ以上の操作に関連する1つ以上の命令の受信もしくは送信の処理による、既存のソフトウェアもしくはファームウェア、またはゲートアレイもしくはプログラム可能なハードウェアの更新または変更を包含してもよい。あるいは、いくつかの変形例において、処理は、特定目的のハードウェア、ソフトウェア、ファームウェア要素、および/または特定目的の要素を処理する、あるいは呼び出す一般目的の要素を包含してもよい。規格または他の処理が、ここに記述された1つ以上の具体的な送信媒体、適宜パケット送信、または様々な時に分散型媒体に通すことによって送信されてもよい。
【0277】
あるいは、実行は、特定目的の命令シーケンスを処理すること、または、ここに記述された1つ以上の任意の実質的な機能操作の事象について、許可する、トリガーする、協働する、要求する、あるいは生じさせるために回路を呼び出すことを包含してもよい。いくつかの変形例において、ここでの操作上または論理上の記述は、ソースコードとして表現され、実行可能命令シーケンスとしてコンパイルされる、あるいは呼び出されてもよい。いくつかの状況において、例えば、処理は、全体的または部分的に、C++もしくは他のコードシーケンスといった、ソースコードによって供されていてもよい。他の処理において、ソースまたは他のコード処理は、市販及び/または従来の技術を用いて、高レベル記述子言語にコンパイル/処理/翻訳/変換されてもよい(例えば、初めにCまたはC++プログラミング言語技術で記述されて処理し、その後に、プログラミング言語処理系を、論理合成可能な言語処理系、ハードウェア記述言語処理系、ハードウェア設計シミュレーション処理系、および/またはそれに類似した他の表現モードに変換する)。例えば、論理表現(例えば、コンピュータプログラミング言語処理系)の一部または全ては、(例えば、ハードウェア記述言語(HDL)および/または超高速集積回路ハードウェア記述言語(VHDL)もしくはハードウェア(例えばアプリケーション特異的集積回路)を有する物理処理を形成するのに用いられてもよい他の回路モデルを介した)Verilog型ハードウェア記述として、明らかにされてもよい(be manifested)。最適な送信または計算要素、材料供給、アクチュエータ、またはこれらの教示に照らした他の構造を、どのようにして取得して、構成し最適化するのかについて、当業者であれば認識するであろう。

上述の詳細な説明では、ブロック図、フローチャート、および/または実施例を用いて、上記デバイスおよび/またはプロセスの様々な実施形態について説明した。これらのブロック図、フローチャート、および/または実施例が、1つ以上の機能および/または処理を含んでいる場合、これらブロック図、フローチャート、または実施例内の各機能および/または処理は、適用性の広いハードウェア、ソフトウェア、ファームウェア、あるいはこれらの実質的に任意の組み合わせによって個々におよび/または組み合わせで実施できることについて、当業者であれば理解するであろう。一実施形態では、本開示において示す構成要素の一部は、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、あるいはその他の統合的な形式によって実施することができる。しかし、本開示において示す実施形態の一部の形態は、全体的あるいは部分的に、1つ以上のコンピュータにおいて実行される1つ以上のコンピュータプログラム(例えば、1つ以上のコンピュータシステムにおいて実行される1つ以上のプログラム)、1つ以上のプロセッサにおいて実行される1つ以上のプログラム(例えば、1つ以上のマイクロプロセッサにおいて実行する1つ以上のプログラム)、ファームウェア、あるいはこれらの実質的に任意の組み合わせとして、集積回路内において同等に実施することができ、また、回路設計および/または上記ソフトウェアおよび/またはファームウェアへの符号の書き込みは、当業者の技術範囲内において本開示が十分に行われていることについて、当業者であれば認識するであろう。さらに、本開示において示す構成要素のメカニズムは、プログラムプロダクトとして様々な形式で分配することができ、また、本開示において示す構成要素の実施形態は、上記分配を実施するために実際に用いられる信号を有する媒体の種類に関わらず適用されることについて、当業者であれば理解するであろう。信号を有する媒体の例としては、記録型の媒体(例えば、フロッピー(登録商標)ディスク、ハードディスクドライブ、コンパクトディスク(CD)、デジタルビデオデスク(DVD)、デジタルテープ、コンピュータメモリ等)、および伝送型の媒体(例えば、デジタルおよび/またはアナログ通信媒体(例えば、光ファイバーケーブル、導波管、有線通信リンク、無線通信リンク(例えば、トランスミッター、レシーバー、送信論理操作、受信論理操作等)等))が含まれるが、これらに限定されるものではない。
【0278】
一般的な意味で、当業者であれば、ここに記載する各種実施形態が、広い範囲の電気部品(例えば、ハードウェア、ソフトウェア、ファームウェア、および/または実質的にこれらの任意の組み合わせ)、ならびに、機械的な力または動きを付与する広い範囲の部品(例えば、剛体、バネ(つまり、ねじれを有する物体)、水力装置、電気磁気によって駆動されるデバイス、および/または実質的にこれらの任意の組み合わせ)を有する各種の電気機械的システムによって個別におよび/または集合的に実行可能であることは理解できるであろう。その結果、ここで使用しているように、「電気機械的システム」の例としては、変換装置(例えば、アクチュエータ、モータ、圧電性結晶、マイクロ電気機械的システム(MEMS)など)に作動可能に結合された電気回路構成、少なくとも1つの離散型電気回路を有する電気回路構成、少なくとも1つの集積型回路を有する電気回路構成、少なくとも1つの特定用途向け集積回路を有する電気回路構成、コンピュータプログラムによって構成される汎用演算デバイスを形成する電気回路構成(例えば、ここに記載されるプロセスおよび/またはデバイスを少なくとも部分的に実装する、コンピュータプログラムによって構成される汎用コンピュータ、またはここに記載されるプロセスおよび/またはデバイスを少なくとも部分的に実装する、コンピュータプログラムによって構成されるマイクロプロセッサ)、メモリデバイスを形成する電気回路構成(例えば、各種形態のメモリ(例えば、RAM、フラッシュメモリ、ROM等)、通信デバイスを形成する電気回路構成(例えば、モデム、通信スイッチ、光電気的設備等)、および/またはこれらの任意の非電気的な等価物(例えば光学的な等価物またはその他の等価物)などがあげられるが、これらの例に限定されるものではない。当業者であれば、さらに、電気機械的システムの例としては、さまざまな家庭用電化システム、医学的デバイス、さらに、その他のシステム(例えばモータ搭載型搬送システム、工場の製造工程自動化システム、セキュリティシステム、および/または通信/演算システム)などがあげられるが、これらの例に限定されるものではないことが理解できるであろう。当業者であれば、文脈と矛盾する場合を除けば、ここで使用しているように、電気機械的デバイスは、電気的駆動および機械的駆動の両方を有するシステムに限定されるものではないことが理解できるであろう。
【0279】
一般的な意味において、当業者は、広範なハードウェア、ソフトウェア、ファームウェアおよび/またはこれらの任意の組合せによって、個々にか、および/または共同して実施され得る本明細書に記載されている種々の局面が、種々の“電気回路”を構成していると見なされ得ることを認識する。したがって、本明細書に使用されるときの“電気回路”としては、少なくとも1つの分離した電気回路を有している電気回路、少なくとも1つの集積回路を有している電気回路、少なくとも1つの用途の特殊な集積回路を有している電気回路、コンピュータプログラムによって構成されている一般的な目的の演算装置を形成している電気回路(例えば、処理および/または手段を少なくとも部分的に実施させるコンピュータプログラムによって構成されている一般的な目的のコンピュータ、または処理および/または手段を少なくとも部分的に実施させるコンピュータプログラムによって構成されているマイクロプロセッサ)、記憶装置(例えば、メモリの形態(例えば、ランダムアクセス、フラッシュ、読み出し専用など))を形成している電気回路、および/または通信装置を形成している電気回路(例えば、モデム、通信切替装置、光電気装置など)が挙げられるが、これらに限定されない。当業者は、本明細書に記載の対象がアナログ様式、デジタル様式またはこれらのいくつかの組合せにおいて実施され得ることを認識する。
【0280】
当業者は、本明細書に記載されている装置および/または処理の少なくとも一部がデータ処理システムへと統合され得ると認識するであろう。当業者は、データ処理システムは、システムユニット筺体、ビデオ表示装置、メモリ(揮発性メモリ、または不揮発性メモリ)、プロセッサ(マイクロプロセッサ、またはデジタル信号プロセッサ)、コンピュータ団体(操作システム、運転手、グラフィカル・ユーザー・インターフェース、および応用プログラム、例えば接触パッド、接触画面、アンテナ等の1つ以上の相互関係装置、)ならびに/もしくはフィードバックループ、および制御モータ(例えば、位置および/または速度を感知するフィードバック、構成部品および/または数量の移設、および/または調整のための制御モータ)を含んでいる制御システムを一般的に1つ以上含んでいると認識するであろう。データ処理システムは、データコンピュータ/通信、および/またはネットワークコンピュータ/通信システムにおいて模範的に見られるそれらのように、適切な、市販の構成部品を使用することによって、実施され得る。
【0281】
当業者は、ここで述べた要素(例えば動作)、装置、対象およびそれらに付随する議論が、概念の明瞭化の目的の例として用いられたこと、および、種々の構成の修飾が検討されることを理解するだろう。したがって、ここで用いられるように、述べた具体例および付随する議論は、より一般的なクラスの代表を意図する。一般に、特定の例の使用は、そのクラスの代表であることが意図され、特定の要素(例えば動作)、装置および対象を盛り込んでいないことは、制限的であるととらえるべきではない。
【0282】
ユーザは、本明細書において単一の図示された形状として示されている/記載されているが、特に断りがない限り、当業者は、ユーザが、人間のユーザ、ロボットのユーザ(例えば、コンピュータを利用したもの)、および/またはこれらの実質的に任意の組み合わせ(例えば、ユーザが、1つ以上のロボットの動作主によって支援され得る)の見本で有り得ることを十分に理解する。特に断りがない限り、当業者は、一般的に、同じことが“送信主”および/または本明細書に使用される用語といった他の存在を指す用語についても言えることを十分に理解する。

ここにある本質的に任意の複数形及び/若しくは単数形の用語について、当業者は、文脈及び/若しくは出願に適切になるように、複数形から単数形へ、並びに/または単数形から複数形へ翻訳し得る。様々な単数形/複数形の置換は、明確化のために、表現上、ここには示されていない。
【0283】
ここで記述される主題は、ときに、他の異なる成分内に含まれるまたはそれと接続される、異なる成分を示す。このような示された構造が単に例であり、実際同じ機能を達成させる他の多くの構造が実行されうることが理解されるだろう。概念的な意味で、同じ機能を達成させる組成の任意の構成は、有効に「関連」するので、所望の機能が達成される。ここから、特定の機能を達成させるのにここで結合される任意の2つの成分は、互いに「関連」しているので、構造や中間成分にかかわらず所望の機能が達成される。同様に、よく関連した任意の2つの成分はまた、互いに「動作可能に接続」または「動作可能に結合」されているようとすることができ、所望の機能が達成される。そして、よく関連している任意の2つの成分は、互いに「動作可能に結合可能」とすることができ、所望の機能が達成される。動作可能に結合可能な具体例は、特に限定されないが、物理的に対になりうるおよび/または物理的に相互作用する成分および/または無線で相互作用可能および/または無線で相互作用する成分および/または論理的に相互作用するおよび/または論理的に相互作用できる成分を含む。
【0284】
いくつかの場合において、1つ以上の構成部品が、本明細書において「するように設定されている」、「するように設定可能な」、「実行可能な/するように実行可能な」、「適応する/適応可能な」、「可能な」「確認可能な/することが確認される」等、と言及され得る。当業者は、上記の用語(例えば、「するように設定されている」)は、文脈と矛盾しない限り、活動状態の構成部品、および/または不活動状態の構成部品、および/または待機状態の構成部品を一般的に含んでいると認識するであろう。
【0285】
ここに記載した本主題の具体的な態様を図示説明したが、変更及び修正を加えても、ここに記載した主題及びより広い態様から逸脱するものではないこと、したがって、付属の請求項は、その範囲内に、さらにここに記載した主題の真の精神及び範囲内に、すべての変化及び修正が含むことを、当業者は本明細書中の教唆に基づいて自ずと理解できるはずである。当該技術分野の当業者であれば、一般に、ここで使用した用語、特に付属の請求項(例えば、付属の請求項の本文)で使用した用語が、一般に「オープン」な用語であることを意図したものであることが理解できるであろう(例えば、「…を含む」という用語は、「を含んでいるが、これらに限定されるものではない」と解釈すべきであり、「…を有する」という用語は、「少なくとも…を有する」と解釈すべきであり、「…を備えた」という用語は、「を備えているが、これらに限定されるものではない」と解釈すべきである)。さらに、請求項において導入された構成要素について具体的な個数が意図されているのであれば、このような意図が請求項中で明示的に記載されるのであって、このような明示的な記載が無い場合には、このような意図は存在しないことが、当該技術分野の当業者は理解できるであろう。理解の一助として例を挙げると、下記の付属の請求項において、請求項の構成要素を導入するために、「少なくとも1つの」とか「1つ以上の」といった導入表現が使用されているかもしれない。しかし、たとえこのような表現を使用していたとしても、不定冠詞「a」または「an」によって請求項の構成要素を導入していることが、請求項に導入されたこの構成要素を含む任意の特定の請求項を、該構成要素を1つしか含まない請求項に限定していることを暗示しているのだと、解釈するべきものではない。同様に、このような解釈は、たとえ同一請求項中に「1つ以上の」または「少なくとも1つの」という導入表現と、不定冠詞、例えば「a」または「an」とが含まれていても、やはりするべきものではない(例えば、「a」及び/または「an」は、通常、「少なくとも1つの」または「1つ以上の」を意味すると解釈すべきである)。同じことが、請求項の構成要素を導入するために使用された定冠詞の使用についても当てはまる。さらに、たとえ請求項で導入された構成要素について具体的な個数が明示的に記載されていたとしても、当業者であれば、このような記載は、通常、少なくとも記載された個数が含まれていることを意味していると解釈されるべきであることが理解できるであろう(例えば、修飾語を使わずに単に「2つの構成要素」と記載されている場合、通常、該構成要素が少なくとも2つまたは2つ以上含まれていることを意味する)。さらに、「A、B、及びCなどのうちの少なくとも一つ」に類似の表現形式が使用されている場合、一般に、このような文構造は、当業者がその表現形式を理解するであろう意味を意図している(例えば、「A、B、及びCのうちの少なくとも一つを有するシステム」には、Aだけを有するシステム、Bだけを有するシステム、Cだけを有するシステム、A及びBをともに有するシステム、A及びCをともに有するシステム、B及びCをともに有するシステム、及び/またはA、B、及びCをともに有するシステムなどが含まれるが、これに限定されるものではない)。「A、B、またはCなどのうちの少なくとも一つ」に類似の表現形式が使用されている場合、一般に、このような文構造は、当業者がその表現形式を理解するであろう意味を意図している(例えば、「A、B、またはCのうちの少なくとも一つを有するシステム」には、Aだけを有するシステム、Bだけを有するシステム、Cだけを有するシステム、A及びBをともに有するシステム、A及びCをともに有するシステム、B及びCをともに有するシステム、及び/またはA、B、及びCをともに有するシステムなどが含まれるが、これに限定されるものではない)。さらに、当業者であれば、通常、選択肢となる2つ以上の用語を提示する選言的な言葉及び/または表現は、それが明細書中、請求項中、または図面中のいずれであっても、文脈と矛盾しない限りにおいて、複数の用語のうちの一つを含んでいる可能性、複数の用語のうちの一方を含んでいる可能性、または複数の用語をともに含んでいる可能性を考慮しているものであると理解すべきことが理解できるであろう。例えば、「AまたはB」という表現は、通常、「A」である可能性または「B」である可能性または「A及びB」である可能性を含んだものであると理解される。
【0286】
付属の請求項に関して、当業者であれば、請求項中に記載の動作は、一般に任意の順序で実施してもかまわないことが理解できるであろう。また、さまざまな作動の流れが一連の流れとして提示されているが、このさまざまな動作が、図示された順序とは他の順序で実施されても、または同時に実施されてもかまわないことは理解されるべきである。このような別の順序の例には、文脈と矛盾しない限りにおいて、繰り返し、交互実施、中断、順序変更、増分、準備、補充、同時、逆、またはその他の変形した各順序が含まれてもよい。さらに、「…に反応して」とか「…に関連して」といった用語、またはその他の過去分詞から派生した形容詞は、文脈と矛盾しない限りにおいて、一般に、このような変形例を除外することを意図したものではない。
【図面の簡単な説明】
【0287】
【図1】原子炉によって生成されたエネルギーを蓄熱するためのシステムを示す概略的な図である。
【図2A】予備熱貯蔵器に伝達されるエネルギーを生成するために適した原子炉の種類を示すフローチャートである。
【図2B】原子炉によって生成されたエネルギーを予備熱貯蔵器に供給する際の使用に適した原子炉冷却材の種類を示すフローチャートである。
【図3】熱エネルギーを、予備熱貯蔵器から原子炉システムの種々のエネルギー変換システムに伝達するために適したシステムを示す概略的な図である。
【図4A】エネルギーを予備熱貯蔵器に蓄熱するために適した蓄熱材の種類を示すフローチャートである。
【図4B】予備熱貯蔵器の種々の蓄熱材を収容するために適した、貯蔵器収容システムの種類を示すフローチャートである。
【図4C】熱エネルギーの貯蔵に適した蓄熱材への熱力学的変化を示すフローチャートである。
【図4D】予備熱貯蔵器を監視するために適した蓄熱体監視システムの種類を示すフローチャートである。
【図5A】エネルギーを原子炉システムから予備熱貯蔵器に伝達するために適したエネルギー伝達システムの種類を示すフローチャートである。
【図5B】予備熱貯蔵器を、熱伝達システムを介して、原子炉システムの熱源に熱的に結合させることを示す概略的な図である。
【図5C】予備熱貯蔵器システムを、原子炉システム熱伝達の主要冷却材システムに熱的に結合させることを示す概略的な図である。
【図5D】予備熱貯蔵器を、原子炉システムの主要冷却材システムと、副冷却材システムとに熱的に結合することを示す概略的な図である。
【図6】熱供給システムにおいて用いられる熱伝達部材の種類を示すフローチャートである。
【図7】予備熱貯蔵器に、付加的なエネルギー源からの付加的なエネルギーを補充することを示す概略的な図である。
【図8A】原子炉システムからのエネルギーが予備熱貯蔵器に迂回を開始した時に、エネルギー伝達システムが反応する条件の種類を示すフローチャートである。
【図8B】原子炉システムからのエネルギーが予備熱貯蔵器に迂回を開始した時に、エネルギー伝達システムが反応する条件の種類を示すフローチャートである。
【図8C】原子炉システムからの原子炉システムの余剰エネルギーを、予備熱貯蔵器に迂回させることを示す、フローチャートである。
【図9A】予備熱貯蔵器内に貯蔵されている熱エネルギーの、原子炉システムのエネルギー変換システムへの伝達が開始された時に、熱供給システムが反応する停止事象および停止条件の種類を示すフローチャートである。
【図9B】予備熱貯蔵器内に貯蔵されている熱エネルギーの、原子炉システムのエネルギー変換システムへの伝達が開始された時に、熱供給システムが反応する停止事象および停止条件の種類を示すフローチャートである。
【図10】原子炉において生成された熱を、予備熱貯蔵器の中に蓄熱する方法のハイレベルフローチャートである。
【図11】図10の他の実施例を示すハイレベルフローチャートである。
【図12】図10の他の実施例を示すハイレベルフローチャートである。
【図13】図10の他の実施例を示すハイレベルフローチャートである。
【図14A】図10の他の実施例を示すハイレベルフローチャートである。
【図14B】図10の他の実施例を示すハイレベルフローチャートである。
【図15A】図10の他の実施例を示すハイレベルフローチャートである。
【図15B】図10の他の実施例を示すハイレベルフローチャートである。
【図16A】図10の他の実施例を示すハイレベルフローチャートである。
【図16B】図10の他の実施例を示すハイレベルフローチャートである。
【図17A】図10の他の実施例を示すハイレベルフローチャートである。
【図17B】図10の他の実施例を示すハイレベルフローチャートである。
【図18A】図10の他の実施例を示すハイレベルフローチャートである。
【図18B】図10の他の実施例を示すハイレベルフローチャートである。
【図19A】図10の他の実施例を示すハイレベルフローチャートである。
【図19B】図10の他の実施例を示すハイレベルフローチャートである。
【図20】図10の他の実施例を示すハイレベルフローチャートである。
【図21】図10の他の実施例を示すハイレベルフローチャートである。
【図22】図10の他の実施例を示すハイレベルフローチャートである。
【図23】図10の他の実施例を示すハイレベルフローチャートである。
【図24】図10の他の実施例を示すハイレベルフローチャートである。
【図25】図10の他の実施例を示すハイレベルフローチャートである。
【図26】図10の他の実施例を示すハイレベルフローチャートである。
【図27】図10の他の実施例を示すハイレベルフローチャートである。
【図28】図10の他の実施例を示すハイレベルフローチャートである。
【図29】図10の他の実施例を示すハイレベルフローチャートである。
【図30】図10の他の実施例を示すハイレベルフローチャートである。
【図31】図10の他の実施例を示すハイレベルフローチャートである。
【図32】図10の他の実施例を示すハイレベルフローチャートである。
【図33】図10の他の実施例を示すハイレベルフローチャートである。
【図34】図10の他の実施例を示すハイレベルフローチャートである。
【図35】図10の他の実施例を示すハイレベルフローチャートである。
【図36】図10の他の実施例を示すハイレベルフローチャートである。
【図37】図10の他の実施例を示すハイレベルフローチャートである。
【図38】図10の他の実施例を示すハイレベルフローチャートである。
【図39A】図10の他の実施例を示すハイレベルフローチャートである。
【図39B】図10の他の実施例を示すハイレベルフローチャートである。
【図39C】図10の他の実施例を示すハイレベルフローチャートである。
【図39D】図10の他の実施例を示すハイレベルフローチャートである。
【図40】図10の他の実施例を示すハイレベルフローチャートである。
【図41A】図10の他の実施例を示すハイレベルフローチャートである。
【図41B】図10の他の実施例を示すハイレベルフローチャートである。
【図42A】図10の他の実施例を示すハイレベルフローチャートである。
【図42B】図10の他の実施例を示すハイレベルフローチャートである。
【図43】図10の他の実施例を示すハイレベルフローチャートである。
【図44】図10の他の実施例を示すハイレベルフローチャートである。
【図45】図10の他の実施例を示すハイレベルフローチャートである。
【図46】図10の他の実施例を示すハイレベルフローチャートである。
【図47】図10の他の実施例を示すハイレベルフローチャートである。
【図48】図10の他の実施例を示すハイレベルフローチャートである。
【図49】図10の他の実施例を示すハイレベルフローチャートである。
【図50】図10の他の実施例を示すハイレベルフローチャートである。
【図51】図10の他の実施例を示すハイレベルフローチャートである。
【図52】図10の他の実施例を示すハイレベルフローチャートである。
【図53】図10の他の実施例を示すハイレベルフローチャートである。
【図54】図10の他の実施例を示すハイレベルフローチャートである。
【図55】図10の他の実施例を示すハイレベルフローチャートである。
【図56】図10の他の実施例を示すハイレベルフローチャートである。
【図57】図10の他の実施例を示すハイレベルフローチャートである。
【図58】図10の他の実施例を示すハイレベルフローチャートである。
【図59】図10の他の実施例を示すハイレベルフローチャートである。
【図60】図10の他の実施例を示すハイレベルフローチャートである。
【図61】図10の他の実施例を示すハイレベルフローチャートである。
【図62】図10の他の実施例を示すハイレベルフローチャートである。
【図63】図10の他の実施例を示すハイレベルフローチャートである。

【特許請求の範囲】
【請求項1】
少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、エネルギー伝達システムと、
停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムと、を備えた、装置。
【請求項2】
上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの原子炉システムの一部からの余剰エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項1に記載の装置。
【請求項3】
上記少なくとも1つの原子炉システムの一部からの余剰エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つのエネルギー変換システムの運転需要を超えるエネルギーの少なくとも一部を、少なくとも1つの原子炉システムの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項2に記載の装置。
【請求項4】
上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの原子炉システムの一部における特定比率のエネルギー出力を、少なくとも1つの原子炉システムの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項1に記載の装置。
【請求項5】
上記少なくとも1つのエネルギー伝達システムを用いて、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項1に記載の装置。
【請求項6】
少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムを備えた、請求項5に記載の装置。
【請求項7】
上記少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムは、
熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの熱源と熱的に連通している少なくとも1つの原子炉システムの一部から、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムを備えた、請求項6に記載の装置。
【請求項8】
上記熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの熱源と熱的に連通している少なくとも1つの原子炉システムの一部から、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムは、
熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの原子炉心と熱的に連通している少なくとも1つの原子炉システムの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムを備えた、請求項7に記載の装置。
【請求項9】
上記熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの原子炉心と熱的に連通している少なくとも1つの原子炉システムの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムは、
熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムを備えた、請求項8に記載の装置。
【請求項10】
上記熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムは、
熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材ループの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムを備えた、請求項9に記載の装置。
【請求項11】
上記熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムは、
熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの冷却材プールの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムを備えた、請求項9に記載の装置。
【請求項12】
上記熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部から少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムは、
上記熱エネルギーの選択された一部を、少なくとも1つの原子炉システムの少なくとも1つの主要冷却材システムの一部から、少なくとも1つの予備熱貯蔵器へ迂回するように配置され、上記少なくとも1つの予備熱貯蔵器は、少なくとも1つの原子炉システムの上記少なくとも1つの主要冷却材システム及び少なくとも1つの原子炉システムの少なくとも1つの副冷却材システムに熱的に連通する、少なくとも1つの熱伝達システムを備えた、請求項9に記載の装置。
【請求項13】
上記少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムは、
少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの直接流体交換熱伝達システムを備えた、請求項6に記載の装置。
【請求項14】
上記少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの直接流体交換熱伝達システムは、
少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体流体と、少なくとも1つの原子炉システムの少なくとも1つの冷却材とを混合するように配置された、少なくとも1つの直接流体交換熱伝達システムを備えた、請求項13に記載の装置。
【請求項15】
上記少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱伝達システムは、
少なくとも1つの原子炉システムの一部からの熱エネルギーにおける選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの熱交換器を備えた、請求項6に記載の装置。
【請求項16】
上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、エネルギー伝達システムは、
少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、エネルギー伝達システムを備えた、請求項4に記載の装置。
【請求項17】
上記少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、エネルギー伝達システムは、
少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの電気/熱変換システムを備えた、請求項16に記載の装置。
【請求項18】
上記少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの電気/熱変換システムは、
少なくとも1つの原子炉システムにおける少なくとも1つのエネルギー変換システムからの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの電気/熱変換システムを備えた、請求項17に記載の装置。
【請求項19】
上記少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの電気/熱変換システムは、
少なくとも1つの原子炉システムの一部からの電気エネルギーの少なくとも一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つの抵抗加熱装置を備えた、請求項17に記載の装置。
【請求項20】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
少なくとも1つの熱交換ループを備えた、請求項1に記載の装置。
【請求項21】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
少なくとも1つのヒートパイプを備えた、請求項1に記載の装置。
【請求項22】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
少なくとも1つの熱交換器を備えた、請求項1に記載の装置。
【請求項23】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
少なくとも1つの熱電装置を備えた、請求項1に記載の装置。
【請求項24】
上記原子炉システムの少なくとも1つのエネルギー変換システムは、
原子炉システムの少なくとも1つの主要エネルギー変換システムを備えた、請求項1に記載の装置。
【請求項25】
上記原子炉システムの少なくとも1つのエネルギー変換システムは、
原子炉システムの少なくとも1つの補助エネルギー変換システムを備えた、請求項1に記載の装置。
【請求項26】
上記原子炉システムの少なくとも1つのエネルギー変換システムは、
原子炉システムの少なくとも1つの緊急エネルギー変換システムを備えた、請求項1に記載の装置。
【請求項27】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つの沸騰ループへ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項1に記載の装置。
【請求項28】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのタービンへ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項1に記載の装置。
【請求項29】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのタービンへ供給するように構成された、少なくとも1つの熱供給システムは、
停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムにおける少なくとも1つのタービンの少なくとも1つの作動流体へ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項28に記載の装置。
【請求項30】
上記原子炉システムの少なくとも1つのエネルギー変換システムは、
原子炉システムの少なくとも1つのトッピングサイクルを備えた、請求項1に記載の装置。
【請求項31】
上記原子炉システムの少なくとも1つのエネルギー変換システムは、
原子炉システムの少なくとも1つのボトミングサイクルを備えた、請求項1に記載の装置。
【請求項32】
上記原子炉システムの少なくとも1つのエネルギー変換システムは、
低温ダンプを備えた、請求項1に記載の装置。
【請求項33】
さらに、
上記少なくとも1つの予備熱貯蔵器に付加的なエネルギーの一部を補充するように構成された、少なくとも1つの付加的なエネルギー源を備えた、請求項1に記載の装置。
【請求項34】
上記少なくとも1つの予備熱貯蔵器に付加的なエネルギーの一部を補充するように構成された、上記少なくとも1つの付加的なエネルギー源は、
上記少なくとも1つの予備熱貯蔵器に付加的なエネルギーの一部を補充するように構成された、上記原子炉システムの少なくとも1つのエネルギー変換システムを備えた、請求項33に記載の装置。
【請求項35】
上記少なくとも1つの予備熱貯蔵器に付加的なエネルギーの一部を補充するように構成された、上記少なくとも1つの付加的なエネルギー源は、
上記少なくとも1つの予備熱貯蔵器に付加的なエネルギーの一部を補充するように構成された、少なくとも1つの付加的な原子炉システムを備えた、請求項33に記載の装置。
【請求項36】
上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの状態に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項1に記載の装置。
【請求項37】
上記少なくとも1つの状態に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの原子炉システムの少なくとも1つの運転システムに反応して、上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項36に記載の装置。
【請求項38】
上記少なくとも1つの原子炉システムの少なくとも1つの運転システムに反応して、上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの原子炉システムの少なくとも1つの運転システムからの少なくとも1つの信号に反応して、上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項37に記載の装置。
【請求項39】
上記少なくとも1つの状態に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体運転システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項36に記載の装置。
【請求項40】
上記少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体運転システムに反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱体運転システムからの少なくとも1つの信号に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項39に記載の装置。
【請求項41】
上記少なくとも1つの状態に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの原子炉システムの操作者/操作体からの少なくとも1つの信号に反応して、上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項36に記載の装置。
【請求項42】
上記少なくとも1つの状態に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
予め選択された迂回開始時間で、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項36に記載の装置。
【請求項43】
上記少なくとも1つの状態に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
停止事象に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項36に記載の装置。
【請求項44】
上記少なくとも1つの状態に反応して、少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの予備熱貯蔵器内に貯蔵されているエネルギーの量の算出に反応して、上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、上記少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項36に記載の装置。
【請求項45】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
計画的停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項1に記載の装置。
【請求項46】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
緊急停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項1に記載の装置。
【請求項47】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
停止事象を示す少なくとも1つの状態に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項1に記載の装置。
【請求項48】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
上記原子炉システムの少なくとも1つの運転システムによって確定された停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項1に記載の装置。
【請求項49】
上記原子炉システムの少なくとも1つの運転システムによって確定された停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、上記少なくとも1つの熱供給システムは、
原子炉システムの少なくとも1つの反応炉制御システムによって確定された停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、上記少なくとも1つの熱供給システムを備えた、請求項48に記載の装置。
【請求項50】
上記原子炉システムの少なくとも1つの反応炉制御システムは、
少なくとも1つの安全システムからの少なくとも1つの信号に反応するように構成された、原子炉システムの少なくとも1つの反応炉制御システムを備えた、請求項49に記載の装置。
【請求項51】
上記少なくとも1つの安全システムは、
上記原子炉システムの検知された少なくとも1つの状態に反応するように構成された、少なくとも1つの安全システムを備えた、請求項50に記載の装置。
【請求項52】
上記停止事象に反応して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムは、
停止事象に反応して、少なくとも1つの予備熱貯蔵器内に貯蔵されているエネルギーの選択された量を算出して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項1に記載の装置。
【請求項53】
迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、上記少なくとも1つの熱供給システムは、
停止事象に反応して、少なくとも1つの予備熱貯蔵器内の選択された利用可能な貯蔵容量を算出して、迂回された上記エネルギーの選択された一部のうちの少なくとも一部を、原子炉システムの少なくとも1つのエネルギー変換システムへ供給するように構成された、少なくとも1つの熱供給システムを備えた、請求項1に記載の装置。
【請求項54】
さらに、
少なくとも1つの予備熱貯蔵器の少なくとも1つの状態を監視するように構成された、少なくとも1つの蓄熱体監視システムを備えた、請求項1に記載の装置。
【請求項55】
上記蓄熱体監視システムは、
少なくとも1つの蓄熱体温度監視システムを備えた、請求項54に記載の装置。
【請求項56】
上記蓄熱体監視システムは、
少なくとも1つの蓄熱体圧力監視システムを備えた、請求項54に記載の装置。
【請求項57】
上記蓄熱体監視システムは、
少なくとも1つの予備熱貯蔵器内に貯蔵されているエネルギーの量を算出するように構成された、少なくとも1つの監視システムを備えた、請求項54に記載の装置。
【請求項58】
上記少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器へ迂回するように配置された、少なくとも1つのエネルギー伝達システムは、
少なくとも1つの原子炉システムの一部からのエネルギーの選択された一部を、少なくとも1つの予備熱貯蔵器の少なくとも1つの蓄熱材の集合体へ迂回するように配置された、少なくとも1つのエネルギー伝達システムを備えた、請求項1に記載の装置。
【請求項59】
上記少なくとも1つの蓄熱材は、
少なくとも1つの固体蓄熱材蓄熱体を備えた、請求項58に記載の装置。
【請求項60】
上記少なくとも1つの蓄熱材は、
少なくとも1つの液体蓄熱材を備えた、請求項58に記載の装置。
【請求項61】
上記少なくとも1つの蓄熱材は、
少なくとも1つの加圧ガス蓄熱材を備えた、請求項58に記載の装置。
【請求項62】
上記少なくとも1つの蓄熱材は、
少なくとも1つの混合相蓄熱材を備えた、請求項58に記載の装置。
【請求項63】
上記少なくとも1つの蓄熱材は、
上記少なくとも1つの予備熱貯蔵器の動作温度の範囲内で相転移する少なくとも1つの材料を備えた、請求項58に記載の装置。
【請求項64】
上記少なくとも1つの蓄熱材は、
貯蔵器収容システム内に収容された少なくとも1つの蓄熱材を備えた、請求項58に記載の装置。
【請求項65】
上記貯蔵器収容システムは、
少なくとも1つの外部容器を備えた、請求項64に記載の装置。
【請求項66】
上記少なくとも1つの外部容器は、
少なくとも1つの外部高圧ガス容器を備えた、請求項65に記載の装置。
【請求項67】
上記少なくとも1つの外部容器は、
少なくとも1つの外部液体容器を備えた、請求項65に記載の装置。
【請求項68】
上記貯蔵器収容システムは、
少なくとも1つの外部液体プールを備えた、請求項64に記載の装置。
【請求項69】
上記少なくとも1つの予備熱貯蔵器は、
予備熱貯蔵器における少なくとも1つの蓄熱材の温度変化の形で、上記エネルギーの選択された一部を貯蔵するように構成された予備熱貯蔵器を備えた、請求項1に記載の装置。
【請求項70】
上記少なくとも1つの予備熱貯蔵器は、
予備熱貯蔵器における少なくとも1つの蓄熱材の相変化の形で、上記エネルギーの選択された一部を貯蔵するように構成された予備熱貯蔵器を備えた、請求項1に記載の装置。
【請求項71】
上記少なくとも1つの予備熱貯蔵器は、
選択された温度を超えるように、少なくとも1つの予備熱貯蔵器における少なくとも1つの蓄熱材の温度を維持するように構成された少なくとも1つの蓄熱体温度制御システムを備えた、請求項1に記載の装置。
【請求項72】
上記選択された温度を超えるように、少なくとも1つの予備熱貯蔵器における少なくとも1つの蓄熱材の温度を維持するように構成された少なくとも1つの蓄熱体温度制御システムは、
少なくとも1つの蓄熱材の融解温度を超えるように、少なくとも1つの予備熱貯蔵器における少なくとも1つの蓄熱材の温度を維持するように構成された少なくとも1つの蓄熱体温度制御システムを備えた、請求項71に記載の装置。
【請求項73】
上記少なくとも1つの原子炉システムは、
少なくとも1つの熱スペクトル原子炉システムを備えた、請求項1に記載の装置。
【請求項74】
上記少なくとも1つの原子炉システムは、
少なくとも1つの高速スペクトル原子炉システムを備えた、請求項1に記載の装置。
【請求項75】
上記少なくとも1つの原子炉システムは、
少なくとも1つのマルチスペクトル原子炉システムを備えた、請求項1に記載の装置。
【請求項76】
上記少なくとも1つの原子炉システムは、
少なくとも1つの増殖型原子炉システムを備えた、請求項1に記載の装置。
【請求項77】
上記少なくとも1つの原子炉システムは、
少なくとも1つの進行波炉システムを備えた、請求項1に記載の装置。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図4D】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図16A】
image rotate

【図16B】
image rotate

【図17A】
image rotate

【図17B】
image rotate

【図18A】
image rotate

【図18B】
image rotate

【図19A】
image rotate

【図19B】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39A】
image rotate

【図39B】
image rotate

【図39C】
image rotate

【図39D】
image rotate

【図40】
image rotate

【図41A】
image rotate

【図41B】
image rotate

【図42A】
image rotate

【図42B】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate

【図49】
image rotate

【図50】
image rotate

【図51】
image rotate

【図52】
image rotate

【図53】
image rotate

【図54】
image rotate

【図55】
image rotate

【図56】
image rotate

【図57】
image rotate

【図58】
image rotate

【図59】
image rotate

【図60】
image rotate

【図61】
image rotate

【図62】
image rotate

【図63】
image rotate


【公表番号】特表2013−520648(P2013−520648A)
【公表日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2012−553902(P2012−553902)
【出願日】平成23年2月18日(2011.2.18)
【国際出願番号】PCT/US2011/000297
【国際公開番号】WO2011/142790
【国際公開日】平成23年11月17日(2011.11.17)
【出願人】(508156546)シーレイト リミテッド ライアビリティー カンパニー (54)
【氏名又は名称原語表記】SEARETE LLC
【住所又は居所原語表記】1756−114th Ave.Se,Suite 110,Bellevue,WA 98004,United States of America