説明

収着マイクロアレイ

【課題】分析試料内の比較的大きな分子、とりわけ、生体分子を化学的にイメージングすることを可能にする装置。
【解決手段】分析試料から物質を収着するための収着マイクロアレイ(1)であって、支持体(11)と複数の収着要素(14)とを有する。複数の収着要素(14)は、明確に定められた形状に配置されて支持体(11)と接続されており、各収着要素(14)とその隣りの収着要素(14)との間の距離は、予め定められている。個々の収着要素(14)によって収着された物質の分析の出力は、分析試料の明確に定められた位置(物質がそこから収着された位置)に対して、厳密に割り当てることができ、分析試料の物質のマイクロ分布の厳密な化学的出力イメージを提供することができる。収着マイクロアレイは、物質を損なうことなく、分析試料の物質のおだやかな流体的捕捉を可能にし、分析試料上の捕捉の位置が明確に定められる。

【発明の詳細な説明】
【技術分野】
【0001】
発明の分野
本発明は、収着(sorption)マイクロアレイ(micro-array)、さらにとりわけて言えば、イメージングシステムおよびイメージング方法に関する。
【背景技術】
【0002】
技術背景
医療、化学、生化学または薬学上のさまざまな用途において、物質(例えば、生細胞または固定細胞、組織および器官といった、分析試料(アッセイサンプル)における物質、即ち、分子、原子、分子複合体など)の空間的分布および動的再分布の分析は、重要である。例えば、分子および分子複合体の時間的および空間的な(再)分布((re)distribution)は、疾患の進行または薬物の作用のような、ヒトまたは動物の体内のバイオプロセスに必須である。分析試料内の物質の(再)分布についての情報を収集するために、ミリメートル、マイクロメートルまたはナノメートルのラスタースケールで出力イメージを生成するさまざまな「化学的イメージング法」が使用される。
【0003】
例えば、上記の化学的イメージング法は、分析試料、陽電子放射断層撮影、自動放射線撮影、電子顕微鏡検査法、および原子間力顕微鏡検査において、染色された組織切片または蛍光標識された分子を光学的にイメージングすることである。これらのすべての方法では、ミリメートルからナノメートルスケールの解像度の多次元画像を生成することができるが、これらの方法は、かなり制限された化学的情報を作り出しており、該化学的情報は、多くの場合、分析される分析試料の形態(モフォロジ)と同じく重要である。
【0004】
豊富な化学的情報を作り出す化学的イメージング法のさらなる例は、赤外線分光法、ラマン分光法、および核磁気共鳴に基づいたイメージングである。化学的情報は豊富であるが、これらの方法は、通常、生体サンプル内、特に細胞、組織および器官内の物質の時間的および空間的マイクロ分布に関する情報を申し分なく提供するのに、十分な感度と空間解像度に欠ける。
【0005】
化学的イメージングに使用される別の高感度なアプローチは、イメージング質量分析法(imaging mass spectrometry)である。イメージング質量分析法の種々の方法がすでに開発されている。質量分析法は、イオンの電荷-質量比(mass-to-charge ratio)を測定する分析方法であって、既知の物質だけでなく、未知の物質の検出を可能にする。質量分析計による分析に一般的に必要なことは、分析される物質を気相(gas phase)へと変え、イオン化しなければならないことである。これは、例えば、イオンビーム誘導脱離、レーザ脱離またはエレクトロスプレーイオン化によって達成可能である。イメージング質量分析法では、分析試料の複数のあらかじめ定められた空間的スポットからの物質が、ガス相へと変えられ、イオン化され、そして質量分析法を通して相次いで分析される。そして、質量分析計の分析結果は、分析試料に対応する化学的出力イメージを作り出すために、スポットの空間的情報と共に用いることができる。
【0006】
いくつかのイメージング質量分析法は、例えば、イオン化を行うためのイオンビーム誘導脱離、および、高エネルギーイオンのビームを用いる物質のスパッタリングを含んでいる。このイオンビームは、通常電界によって形成され、衝突を誘導するために、分析試料表面上に衝撃を与える。それによって、分析試料の物質のいくらかは、表面からガス相へと排出される。通常、イオンビーム誘導脱着法は、小さな壊裂イオンおよび原子をもたらし、大きな分子、特に生体分子をイメージングすることには適していない。
【0007】
他のイメージング質量分析法は、レーザ脱着を含み、上記の高エネルギーイオンの代わりに、レーザビームの光子が使用される。ここでも、レーザ脱着によって小さな壊裂イオンおよび原子が生じ、大きな分子のイメージングを満たすことはできない。特に、生体分子のような大きな分子をイメージングするために、レーザ脱着が、マトリクス支援レーザ脱着イオン化(MALDI)に向けてさらに開発されてきた。そこでは、分析試料は、始めにマトリクスで被覆され、特定の物質がマトリクス内に抽出される。次に、適切なレーザ集束が、通常ラスター模様で、分析試料を横切る。レーザ放射は、マトリクスによって局所的に吸収され、物質がイオン化されてマトリクスから放たれることになる。この脱着プロセス中、わずかな壊裂しか起こらず、マトリクス支援レーザ脱着イオン化は、多くの化学的イメージング用途に適していることになる。しかしながら、より広い範囲のさまざまな物質の脱着に適したマトリクス材料の開発および選択は、困難である。加えて、マトリクスは、多くの場合、分析試料から物質を垂直には抽出せずに、分子の水平方向の拡散が、マトリクス内で起こる。最後に、生体分子のイオン化のために生成されるマトリクスプラズマの体積を、無限に小さくすることはできず、イオン抽出は、有限体積の閾値の後にのみ始まる。これらの影響は、マトリクス支援レーザ脱着イオン化と併せたイメージング質量分析を使用する化学的イメージング方法の空間的解像度を低下させる。
【0008】
さらに、イメージング質量分析法は、分析試料から物質を抽出し、抽出器上の物質を保持するために、高電圧を使用することを含むこともある。高電圧のこの使用で、分子は壊裂されることになり、同様に大きな分子、特に生体分子の化学的イメージングには適していない。
【0009】
イメージング質量分析に使用される記載されたイオン化方法に加えて、別のイオン化方法が知られているが、生体材料をイメージングするための適用性がまだ見つけられていない。これらの方法は、エレクトロスプレーイオン化を含み、揮発性溶媒と不揮発性分析物物質から成る高イオン化小滴のエアロゾルが、電界内で形成される。溶媒蒸発と溶媒クーロン爆発の組み合わせによって、小滴は、結果として、ガス相になってイオン化された物質が生じるまで、寸法が縮小される。エレクトロスプレーイオン化は、わずかな物質の壊裂のみを生じる。しかしながら、高濃度の無機物塩、洗浄剤または他の不揮発性物質を有する分析試料のためには、それらが組織切片および他の生体物質内で生じる程度に関わらず、直接的なエレクトロスプレーイオン化と併せた質量分析法は、望ましいものではない。
【0010】
従って、経済的に、そして厳密に、分析試料内の比較的大きな分子、とりわけ、生体分子を化学的にイメージングすることを可能にする装置に対する要求がある。
【発明の開示】
【0011】
発明の開示
本発明によると、この要求は、独立請求項1の特徴によって定められる収着マイクロアレイと、独立請求項11の特徴によって定められるイメージングシステムと、独立請求項16の特徴によって定められる方法とによって解決される。好ましい実施形態は、従属項の主題である。
【0012】
とりわけ、本発明は、分析試料から物質を収着するための収着マイクロアレイに関する。それは、支持体を有し、該支持体に接続され明確に定められた幾何学形状にて配置された複数の収着要素を有する。各収着要素とその隣りの収着要素との間の距離は、予め定められている。本明細書中で使用される用語「物質(substance)」は、あらゆる種類の化学および/または生体分子、もしくは分子全体、例えば糖類、脂質類、ホルモン類、タンパク質類、ペプチド類および核酸類を指す。さらに、本明細書中で使用される用語「分析試料(assay sample)」は、生きている、化学的に固定された、または、凍結乾燥を含む凍結された生命体、組織もしくは細胞培養、または、それらの部分、区分および抽出物を指し、塗抹(smears)を含む。さらに、本明細書中で使用される用語「収着(sorption)」およびその派生語は、収着要素内に、または、その上に物質を取り入れるための全ての好適な可逆的な非共有結合(non-covalent binding)のメカニズムを指す。
【0013】
堅牢でありかつ経済的に製造可能な収着マイクロアレイを提供するために、支持体は、例えば、ポリマー材料、金属フォイル、または結晶シリコンから作製される。収着要素は、好ましくは、物質を収着するのに適した材料から作製され、その物質についての、分析試料内の存在、濃度および/または分布が、検出され、表示される。特に、収着要素は、クロマトグラフィー材料から、より具体的には逆相クロマトグラフィー材料から作製することができる。収着要素の形状および寸法は、物質、分析試料および収着マイクロアレイの化学物理的条件に対して最適化することができる。例えば、収着マイクロアレイは、検出に必要とされる比較的大量の分子が収着される場合、比較的大きな収着要素を備えることができる。好ましくは、収着マイクロアレイの収着要素は、全て、同じまたは類似の機械的特性(例えば、頂部の高さ、弾性等)、幾何学的特性(例えば形状)、および、化学的特性(例えば吸収)を有する。この文脈での用語「類似の」は、同一の条件で(即ち、試料との接触点で、同量の物質が存在し、収着要素が、同じ力で試料に対して押しつけられる)、同量の物質が収着要素に結合されることを意味する。
【0014】
使用では、収着要素が、分析試料から1つまたは複数の物質を収着することができるように、収着マイクロアレイが、予め定められたポジションに分析試料と接触するように配置され得る。次に、収着された物質は、適切な分析ユニットによって、定性的に、および/または、定量的に分析されることができ、そのユニット内では、物質は、通常分析の前に、前処理されなければならない。例えば、クロマトグラフィー材料から成る収着要素を用いる場合、物質は、収着要素から溶離されなければならないこともあり、次に、溶離剤(eluent)が、好適な分析ユニットによって分析されることもある。この文脈では、用語「溶離(elution)」およびその派生語は、上記のように物質を収着した収着要素から、物質またはその部分を離脱させるのに適したすべてのプロセスを含む。分析では、さまざまな分析ユニットを使用することができ、検出する物質、分析試料および分析条件に応じて、異なる分析ユニットが、ほぼ適していることもあり得る。例えば、好ましい実施形態では、物質を検出し識別するために、エレクトロスプレーイオン化質量分析法を使用することができる。生体分子の分析に特に適している他の分析ユニットとして、例えば、ガスクロマトグラフィー質量分析装置、フーリエ変換赤外線装置、マトリクス支援レーザ脱着/イオン化装置、多重抗体アレイ、およびポリメラーゼ鎖反応装置が挙げられる。
【0015】
本発明による収着マイクロアレイでは、全ての収着要素が、当該収着マイクロアレイの明確に定められた位置に、即ち、互いから明確に定められた距離を有する明確に定められた幾何学的形状に配置されるので、各収着要素の分析の出力を、分析試料の明確に定められた位置に厳密に配分することができる。このように、分析試料の物質のマイクロ分布の厳密な化学的出力イメージを提供することが可能である。この文脈中の用語「出力イメージ」は、分析試料内の物質の分布を記述するためのすべてのデータ蓄積またはディスプレイを含む。例えば、それは、分析ユニットから生じる情報を、分析試料の位置情報と組み合わせたものを含み、例えば、データベース内だけでなくそのグラフィック表示における、分析試料上の収着要素の座標といったものである。
【0016】
従って、本発明による収着マイクロアレイは、専用の分析ユニット内の物質と、抽出された物質の分析とを本質的に損なわずに、分析試料からの物質の穏やかで局所的な抽出を可能にし、溶離および抽出された物質の分析は、分析試料の化学的イメージを生成するために行われる。さらに、本発明によるマイクロアレイは、分析試料および分析ユニットが、局所的に互いに分離されて、分析試料から収着される物質が、離れた分析ユニットに移されるという可能性を提供する。
【0017】
好ましい実施形態では、複数の収着要素が1列に配置され、各収着要素とその隣りの収着要素と間の距離が、予め定められている。列をなした収着要素のそのような配置によって、簡単な幾何学形状が与えられ、分析試料の位置への容易な配分を可能にする。さらに好ましい実施形態では、当該収着マイクロアレイは、複数の列の収着要素を含み、各列とその隣りの列との間の距離が、予め定められている。このようにして、単一の収着要素または単一の列の収着要素を用いる実施形態と比べて、出力イメージをさらに効果的に提供することができる。特に、クロマトグラフィー材料から成る収着要素が使用されるとき、分析試料から物質を収着する、または、溶離物(eluate)からそれらを溶離するプロセスは、物質を分析するプロセスと比べて、時間を浪費することでもある。従って、分析試料から、より多くの複数の位置での物質の収着を平行して行うことは、より効果的である。
【0018】
好ましくは、各収着要素とその隣りの収着要素との距離は、100マイクロメートル(μm)未満、好ましくは30μm未満である。収着要素のそのような配置を用いて、比較的小さい小型の収着マイクロアレイを提供することができ、分析試料内の物質のマイクロ分布を表す出力イメージを好適なスケールでかつ好適な解像度で、効果的に提供することが可能になる。特に、生体分子の収着に対しては、その距離は、好ましくは、100μm未満であり、特定の物質に応じて、距離は、多くの場合30μm未満が有利である。
【0019】
好ましい実施形態では、当該収着マイクロアレイは、実質的に矩形の形状を有し、その一辺が1mm未満である。そのような収着マイクロアレイは、十分な解像度での物質の効果的な収着のために、十分な量の収着要素を有する収着マイクロアレイの比較的コンパクトな配置を可能にする。
【0020】
好ましい実施形態では、当該収着マイクロアレイは、複数のカンチレバーをさらに有しており、それぞれのカンチレバーは、第一の長手方向端部領域と、第二の長手方向端部領域とを持っており、それぞれの第一の端部領域は支持体に接続され、それぞれの第二の端部領域は、収着要素の1つに接続されている。このようなカンチレバーは、収着要素と支持体との間の弾性的な相互接続を提供し、分析試料にあり得る起伏を補償すること、および、物質を収着する間に分析試料へと収着要素をわずかに押しつけること、即ち、収着要素上に小さな力を印加することを可能にする。
【0021】
さらに、当該収着マイクロアレイは、好ましくは、支持体に接続される複数の先細部を含み、各収着要素が、先細部の1つの頂部に配置されている。収着要素が先細部の頂部に配置されているので、該収着要素は支持体に対してシルエットが浮かび上がっており、該収着要素と分析試料との間の接触が容易に提供され得るようになっている。当該収着マイクロアレイが上述のカンチレバーを有する場合、各先細部は、カンチレバーのうちの1つの第二の長手方向端部領域に配置される。これは、また、分析試料にあり得る起伏を補償すること、および、分析試料へと収着要素をわずかに押しつけることを容易にする。
【0022】
1つの好ましい実施形態では、各先細部が縦(longitudinal)のチャンネルを有し、そのチャンネル内には、1つの収着要素が、それぞれの先細部の頂部と重なるように配置されている。このような配置では、収着要素を、チャンネルを通じて溶離手段と直接的に接続することができ、収着された物質を各収着要素からそれを収容するチャンネルを通じて溶離することができる。さらに、各収着要素は、比較的大きな体積を有することができ、比較的大量の物質、および/または、比較的大きな物質の収着を可能にする。特に、収着マイクロアレイが、分析試料内で生体分子のマイクロ分布をイメージングするために使用される場合、分析ユニットがそれを検出できるようにするために、特定の最小量の生体分子を単一の収着要素内に収着しなければならない。例えば、質量分析のような従来技術の分析ユニットを使う場合、最小量の約100アトモル(attomole)の生体分子が、検出可能なように、1ピコリットル中に存在しなければならない。
【0023】
各収着要素は、支持体から突き出している先の尖った形状を有することができる。そのような先の尖った形状によって、分析試料を突き刺すことができる。例えば、分析試料が細胞を有する場合、細胞の膜を突き刺すことができ、当該収着マイクロアレイによって細胞の内部に到達し得るようになっている。収着要素は、上記と同様にいずれの他の好適な態様によって、先細部内の対応する縦方向のチャンネル内に配置されてもよい。
【0024】
第二の好ましい実施形態では、各収着要素は、50μm未満の、好ましくは20μm未満の、より好ましくは2μm未満の直径を有する小球体の形状を有する。収着要素のこのような配置によって、比較的小さな、即ち、ナノメートルスケールまでの、小型の収着マイクロアレイを提供することができ、各収着要素は、好適な分析ユニット内で物質を検出するのに十分な結合能力(binding capacity)を有する。できる限り高い解像度で、できるだけ効率的な収着を達成するために、小球体の直径は、前記範囲内にあり、収着される生体分子の種類に依存する。さらに、上記の小球体型の収着要素は、簡単に製造可能である。
【0025】
好ましくは、当該収着マイクロアレイは、個々の収着要素が光ビームまたは赤外線放射により加熱可能であるように、色付けされている。例えば、収着要素から逸れている支持体の表面、または、収着要素の隣のスポットには、暗い色、特に黒色で色付けされることができる。光束または赤外線放射が、前記スポットに当たるとき、支持体および隣接する収着要素が加熱されることができる。特に、例えば、凍結された組織部分の分析試料のような、凍結された分析試料が使用されるとき、物質を収着する間、分析試料の小さな領域を解凍することができる。収着プロセスは、凍結相よりも液相で効果的であるので、上記の色付けされた収着マイクロアレイは、物質のより効果的な収着を可能にする。さらに、それは、収着要素と接触している分析試料の小さな領域を解凍することのみを可能にし、分析試料の残りを凍結状態のまま保つ。このように、長手方向の拡散を防止することができ、高解像度のイメージングが可能になる。
【0026】
本発明の第二の態様は、上記の収着マイクロアレイを含むイメージングシステムを取り扱う。当該イメージングシステムは、溶離剤によって通過可能である通過可能な流体チャンネルを有するマイクロ流体チップ、および、流体チャンネルに連通している収着要素の1つを収容するための溶離シンクをさらに含む。溶離剤は、収着要素からの物質の溶離に適した液体の他、ガスを含むいずれの流体であってもよい。以下に説明するように、当該イメージングシステムにおける、収着マイクロアレイとマイクロ流体チップとの組み合わせは、分析試料の便利で効果的なイメージングを可能にする。
【0027】
本発明によるイメージングシステムを用いて、1つまたはいくつかの物質が、上述の収着マイクロアレイによって、分析試料から収着されることができる。この収着後、収着マイクロアレイは、位置を変えられ、収着要素のうちの1つが溶離シンク内に収容されるように、マイクロ流体チップに位置決めされる。溶離剤は、次に流体チャンネルを通過し、溶離シンクを通過することができる。もし、物質が溶離シンク内に受け入れられている収着要素によって収着されているならば、それらは、収着要素から溶離剤によって溶離されることができる。溶出物(eluate)は、次に、それを分析することのできる分析ユニットへと移されることができる。次に、出力イメージを作り出すために、この分析の結果のデータを、分析試料上の位置情報と共に、格納することができる。さらなるステップでは、収着要素を相次いで、溶離シンク内に収容し、収着マイクロアレイのすべての収着要素が溶離されるまで、溶離することができる。次に、収着マイクロアレイは、再び、異なるあらかじめ定められた位置上に分析試料と接触するように配置されることができ、収着後、それは、再びマイクロ流体チップに位置決めし直されることができる。当業者に明らかなように、分析試料に接触するように再び位置決めされる前に、収着マイクロアレイを再生することもできる、またはそれを一度だけ使用して、その後処分することができる。好ましいスケールかつ好ましい解像度の出力イメージが達成されるまで、収着、溶離および分析のステップを繰り返すことができる。
【0028】
好ましくは、マイクロ流体チップは、バルブをさらに有し、該バルブは、溶離シンクを通過する溶離剤を制御するために、溶離シンクの上流の流体チャンネルに配置されるむ。上記のバルブを使って、流体チャンネルおよび溶離シンクへの溶離剤の通過は、簡単に制御することができる。例えば、収着要素の一つが溶離シンク内に収容される間、バルブを一定時間にわたって開くことができる。これは、例えば、どの収着要素が溶離されるのかそしてどの溶出物(eluate)が分析されるのかを、常時十分に明らかにすることができる。
【0029】
好ましくは、マイクロ流体チップは、溶離シンクを加熱するためのヒーターをさらに含む。上記のヒーターを使って、収着要素の1つが溶離シンク内に収容される間、よりよい溶離が可能であるように、溶離を実行するための温度を最適化することができる。
【0030】
好ましい実施形態では、マイクロ流体チップは、複数の流体チャンネルと、複数の溶離シンクとを有し、該溶離シンクは、1列の収着要素の収着要素を同時に収容するために配置されている。このような配置によって、単一収着要素毎の溶離の後に収着マイクロアレイを配置し直すことなく、収着マイクロアレイの収着要素を溶離することができる。これは、収着マイクロアレイの収着要素のすべてを効果的に溶離することを可能にする。
【0031】
好ましくは、該マイクロ流体チップは、空穴(voids)をさらに有し、それらは、収着要素の少なくとも1つが溶離シンク内に収容されるときに、溶離シンク内に収容されていないすべての他の収着要素を収容するためのものである。そのような配置によって、溶離シンク内に収容されていない収着要素を、系統立てて、かつ、防護された様式で保つことができる。
【0032】
本発明の第三の態様は、上述のイメージングシステムを用いて、分析試料内の少なくとも1つの物質の分布をイメージングするための方法を扱う。この方法は、
(a)あらかじめ定められた位置において分析試料と接触させて、収着マイクロアレイを位置決めするステップを有し、
(b)収着マイクロアレイの収着要素内に、分析試料から少なくとも1つの物質を収着するステップを有し、
(c)分析試料から、収着マイクロアレイを移動させ、かつ、少なくとも1つの収着要素が、マイクロ流体チップの少なくとも1つの溶離シンク内に受け入れられるように、該収着マイクロアレイをマイクロ流体チップに位置決めするステップを有し、
(d)少なくとも1つの溶離シンク内に受け入れられている少なくとも1つの収着要素から、少なくとも1つの物質を溶離するステップを有し、
(e)少なくとも1つの物質を分析するための分析ユニットへ溶離剤を渡すステップを有し、
(f)分析試料を表す出力イメージを提供するための分析結果を集めるステップを有し、
(g)収着マイクロアレイの収着要素のそれぞれが、少なくとも1つの溶離シンク内に受け入れられるまで、該収着マイクロアレイの次の少なくとも1つの収着要素を用いて、ステップ(c)から(f)を繰り返すステップを有し、
(f)出力イメージが、予め定められたスケールと予め定められた解像度とを有するまで、予め定められたポジションを変えながら、ステップ(a)から(g)を繰り返すステップを有する。
【0033】
このような方法を用いて、分析試料内の物質のマイクロ分布を表す出力イメージを効果的に提供することができる。
【0034】
好ましくは、少なくとも1つの流体チャンネルが、マイクロ流体チップの対応する少なくとも1つの溶離シンクといっしょに、溶離剤で既に充たされており、一方で、少なくとも1つの収着要素が、少なくとも1つの溶離シンク内に受け入れられる(ステップ(c))。分析ユニットへと溶離剤をわたすために、マイクロ流体チップを、分析ユニットに直接的に接続することができる。代替的には、少なくとも1つの物質を含む溶離剤は、同様に最初に、例えば、マルチウェルマイクロプレートのような、移送および/または格納デバイスへとうつされ、後で分析されることができる。特に、マルチウェルマイクロプレートは、生体分子スクリーニング協会(Society for Biomolecular Screening(SBS))によって開発され、米国規格協会(ANSI)によって承認された基準に従って配置された標準化マルチマイクロプレートであってよい〔生体分子スクリーニング協会を参照のこと。ANSI/SBS 1−2004:マイクロプレート−フットプリント寸法、ANSI/SBS 2−2004:マイクロプレート−高さ寸法、ANSI/SBS 3−2004:マイクロプレート−底部外側フランジ寸法、および、ANSI/SBS 4−2004:マイクロプレート−ウェル位置。http://www.sbsonline.org:生体分子スクリーニング協会、2004〕。適切なマイクロ流体チップが使用される場合、収着マイクロアレイのすべての収着要素を、マイクロ流体チップの溶離シンク内に同時に収容することが同様に可能であり、そのためには、ステップ(c)〜(f)が、一度のみ実行されなければならず、繰り返されてはならない。
【0035】
好ましい実施形態では、分析試料は、凍結された部分内に存在していて、個々の収着要素は、収着マイクロアレイの収着要素内の分析試料から少なくとも1つの物質を収着する間、好ましくは光束または赤外線放射によって加熱される。この方法を実施するために、上記の色付けされた収着マイクロアレイが、好ましくは使用される。このように、分析試料の小さなスポットは、単一の収着要素によって物質の収着を可能にするのに十分な寸法で、解凍されることができる。 他の全体の分析試料は、収着が行われる場所にのみ、分析試料が影響を受けるように、凍結されて安定なステージ内に保たれることができる。このようにして、正確かつ厳正なイメージングが可能となる。
【0036】
本発明による収着マイクロアレイ、本発明によるイメージングシステム、および本発明による方法が、本明細書の以下に、例示的な実施形態として、付属の図を参照して、さらに詳細に記載される。
【本発明を実施するための形態】
【0037】
本発明を実施するための形態
以下の説明では、特定の用語が、便宜上の理由で用いられており、そして、それらは、限定するものとして解釈されてはならない。「右」、「左」、「上方に」、および、「上面に」という用語は、図中での方向を指す。用語は、明示的に述べられる用語だけでなく、それらの派生語および類似する意味を伴う用語を含んでいる。
【0038】
図1には、収着マイクロアレイ1が示されており、該収着マイクロアレイは、支持体(support)11および複数のカンチレバー12を有している。個々のカンチレバー12は、自体の第一の長手方向端部領域121において、支持体11へと変わっている。各カンチレバー12の第二の長手方向端部領域122には、頂部(apex)131を有するピラミッド形の先細部(tip)13が配置されている。さらに、個々の先細部13の頂部131には、小球体(globule)の形状を有する収着要素14が配置されている。
【0039】
次のことが、この説明の残りに適用される。もし、図面を明確にするために、図が、明細書の直接に関連する部分において説明されていない参照記号を含む場合、それは、先述の部分が参照される。
【0040】
図2において最も良く理解されるように、当該収着マイクロアレイ1は、四角の形状を持ち、そして、64個の収着要素14を有し、それら収着要素は8つの平行な列(row)となって配置されている。各列は、8つの収着要素14を含み、各収着要素14とその隣の収着要素14との間の距離は、あらかじめ定められている。各列とその隣りの列との間の距離は、収着要素14同士の間の距離に等しい。図3と共に図2において最も良く理解されるように、カンチレバー12と支持体11とは、単一の四角形の平らな部品から作製され、各カンチレバー12は、該部品を貫通する3つのスロットを配置することによって構築され、それらスロットはいっしょになって長方形の2つの縦方向の辺と1つの幅方向の辺を形成している。該部品は、例えば、ポリマー材料、金属フォイル、または、シリコンといったような、あらゆる好ましい材料であってもよい。
【0041】
それぞれのカンチレバー12は、一つの方向では、その隣りのカンチレバー12に対して向いて平行に配置され、かつ、他の方向では、その隣りのカンチレバー12と一線上に並んで配置され、全てのカンチレバー12の第二の端部領域122が、それらカンチレバー12の右端にあり、全てのカンチレバー12の第一の端部領域121が、それらカンチレバー12の左端にあるようになっている。個々のカンチレバー12の第二の端部領域122には、先細部13の1つが配置され、該先細部13は、また、上記した単一の部分から作られる。
【0042】
図4は、収着要素14の一つの列を示している。収着要素14は、小球体の形状を有しており、それらは、あらゆる好ましい収着材料から作製することができ、例えば、クロマトグラフィー材料、および、とりわけ、逆相(reverse phase)クロマトグラフィー材料といったものが挙げられる。
【0043】
図5および図6は、マイクロ流体チップ2を示しており、該流体チップは、9つの流体チャンネル21を有している。該チャンネルは、全て1つの単一の入口(inlet)211で始まり、全て1つの単一の出口(outlet)212で終わっている。流体チャンネル21の8つは、基本的に互いに平行に配置され、それらの各々は、溶離シンク23を通過しており、8つの溶離シンク23が列内に並んでいるようになっている。個々の流体チャンネル21では、バルブ22が、対応する溶離シンク23の上流にそれぞれ配置されており、それぞれは、溶離シンク23の1つを通らない9番目の流体チャンネル21の入口211と出口212との間にある。さらに、7列の一致した8つの空穴24が、溶離シンク23の列の左側に配置され、同様に7列の一致した8つの空穴24がは、溶離シンク23の列の右側に配置されている。
【0044】
使用においては、流体は、入口211を通って流体チャンネル21内へ入ることができる。バルブ22の状態に応じて、流体は、流体チャンネル21の内部でブロックされるか、または、対応する流体チャンネル21を通過し、出口212を通って当該マイクロ流体チップ2から出ることができる。流体チャンネル21は、上方向に開口している。流体チャンネル21の直径は、通常、非常に小さく、例えばμmのレンジであり、そのため、流体を毛管現象の力によって流体チャンネル21の内部に保つことができる。従って、マイクロ流体チップ2内で使用される流体の特性に依存して、該流体は、意図せずに流体チャンネル21から流出することはできない。
【0045】
図7、図8および図9は、イメージングシステムを示しており、該システムは、上述の収着マイクロアレイ1と、上述のマイクロ流体チップ2とを有している。使用では、収着マイクロアレイ1が分析試料と接触するように用いられて、物質をポテンシャル的に収着した後に、収着マイクロアレイ1の前面に近いところにある第一の列の収着要素14が、列をなす溶離シンク23の内側に配置されるように、該収着マイクロアレイ1を位置させることができる。同時に、収着マイクロアレイ1の他の7つの列の収着要素14は、溶離シンク23の列から離れた7つの列の空穴24の内部に配置される。この状態では、好適な流体、すなわち溶離剤は、相次いでバルブ22を開口および閉口することによって、相次いで溶離シンク23を通過することができる。このように、収着要素14によってポテンシャル的に収着された物質は、収着要素14から溶離されることができ、溶出物(eluate)は、出口212を通って、好適な分析デバイス内に入ることができる。第一の列の収着要素14の全ての収着要素14が溶離された後、次の列の収着要素14が1列の溶離シンク23の内部に配置されるように、該収着マイクロアレイ1を位置し直すことができる。それによって、第一の列の収着要素14は、溶離シンク23の列から右側にある、第一の列の空穴24の内部に配置されて、他の6つの列の収着要素14は、溶離シンク23の列から左側にある6つの列の空穴24の内部に配置される。収着要素14のこの列方式の処理は、全ての収着要素14が溶離されるまで、続けることができる。
【0046】
収着要素14は、マイクロ流体チップ2内で連続して相次いで処理されるので、その時点で分析されている収着要素14の溶離物を、常に確かめることができる。このように、分析試料上で分析される物質が取り去られた場所を実証することができ、そのために各溶離物の分析結果を、分析試料の明確に定められた場所に配分することができる。したがって、分析試料の厳密な出力イメージを提供することができる。
【0047】
図10、図11および図12は、上記のイメージングシステムが使用されている本発明による方法を示している。図10は、分析試料3(例えば、組織の凍結された部分などのもの)と相互に作用して行われるステップを示している。収着マイクロアレイ1は、明確に定められた位置に、第一の収着スポット31で分析試料3と接触するように配置されている。この位置決め(ポジショニング)では、例えば、およそ1ナノメートルの半分の厳密さで位置決めを可能にする原子力間顕微鏡由来の周知の位置決めシステムのような任意の好適な配置システムを使用することができる。分析試料3に接触している間、例えば、分析試料内にあって収着要素14によって収着可能である生体分子のような物質は、分析試料3から収着要素14内に収着される。収着後、収着マイクロアレイ1は、分析試料3から移動させられて、マイクロ流体チップ2のところに位置決めされる。図11で最も良く理解されるように、1列の収着要素14は、それによって、マイクロ流体チップ2の対応する列の溶離シンク23内に収容される。その間、1列の溶離シンク23内に収容されていない他の列の収着要素14は、対応する列の空穴24内に配置される。この段階で、1つのバルブ22が、好適な溶離剤が1つの溶離シンク23を相次いで通過するように、相次いで開かれる。1つの収着要素14の物質が、相次いで溶離され、対応する溶離物は、直接的にまたは移送ユニットを通って、好適な分析デバイス内に入る。収着マイクロアレイ1の全ての収着要素14は、上記のように溶離され、収着マイクロアレイ1は、再生層41を有する再生ユニット4に配置し直される。図12に示されるように、収着要素14は、収着要素14の最適化された再生(regeneration)が達成されるまで、再生層41内に保たれる。
【0048】
再生後、収着マイクロアレイ1は、明確に定められた(well defined)ポジションに配置され、第二の収着スポット32において分析試料3と接触し、そして、当該方法のさらなるステップが、上記のように2番目のサイクルで再び実行される。この2番目のサイクルの後、収着マイクロアレイ1は、正確に定められたポジションに配置され、第三の収着スポット33で分析試料3と接触し、当該方法のさらなるステップが、再び上記のように3番目のサイクルで行われる。本発明による該方法では、予め定められたスケールと、予め定められた解像度とを有する出力イメージを提供するために、所望の回数の処理サイクルが行われる。処理(プロセス)の間、または、後のステージにおいて、分析デバイスのすべての分析結果(例えば、生体分子の定性的および定量的情報といったもの)が収集され、分析試料3の空間情報と組み合わすことができる。このようにして、分析試料3を表す厳密な出力イメージを提供することができる。
【0049】
図13および図14では、本発明によるイメージングシステムの別の実施形態が示されている。それは、収着マイクロアレイ19を有しており、該収着マイクロアレイは、支持体119、カンチレバー129、先細部139、および、収着要素149を持っており、上述した収着マイクロアレイ1でのように配置されている。さらに、それは、マイクロ流体チップ29を有しており、該マイクロ流体チップは、上述のマイクロ流体チップ2のように、流体チャンネル219、入口2119、出口2129、バルブ229、溶離シンク239、および、空穴249を持っている。マイクロ流体チップ29は、溶離シンク239の周りに配置される抵抗式ヒーター259をさらに有する。このヒーター259によって、収着要素149が溶離シンク239内に配置されている間、溶離シンク239を加熱することができ、溶離を上昇した温度で行うことができるようになっている。上昇した温度での溶離は、低い温度で行うよりも著しく効果的であるので、収着要素149の溶離を、より迅速に、および/または、より完全に行うことができる。
【0050】
さらに、カバー269が、マイクロ流体チップ29の上部に配置され、該カバー269は、マイクロ流体チップ29の溶離シンク239と空穴249とに対応する貫通孔を有している。このようなカバーによって、流体チャンネル219からの流体の意図しない漏れを防止することができる。これは、比較的大きな直径を有する流体チャンネル219が使用される場合に、そして、毛管現象の力が低い特性を持った流体が使用される場合に、そして特に、ガス状の流体が使用される場合に、特に有利である。
【0051】
図15および図16では、本発明によるイメージングシステムのさらなる実施形態が示されている。それは、収着マイクロアレイ18を有しており、該収着マイクロアレイは、支持体118、カンチレバー128、先細部138、および、収着要素148を持っており、上述の収着マイクロアレイ1のように、そして、収着マイクロアレイ19のように配列されている。さらに、それは、マイクロ流体チップ28を有しており、該マイクロ流体チップは、流体チャンネル218、入口2118、溶離シンク238、空穴248、ヒーター258、および、カバー268を持っており、これらは基本的に上述のマイクロ流体チップ29のように配置されている。上述のマイクロ流体チップ2、29とは異なり、当該マイクロ流体チップ28は、バルブと、9番目の流体チャンネル(溶離シンク238のうちの1つを通過しない流体チャンネル)とを有していない。さらに、当該マイクロ流体チップ28は、T形状となっており、該T形状は、柄(stem)部分278と、交差(cross)部分288とを持っている。入口2118、溶離シンク238、空穴248、および、ヒーター258は、柄部分278に配置されている。交差部分288は、1列の8つの出口2128を有しており、各々が流体チャンネル218のうちの1つと接続されている。
【0052】
流体チャンネル218は、出口2128で終わる前に、交差部分288内で広がっているので、出口2128は、互いに比較的大きな距離をおいている。従って、それらは、好適な移送および/または格納デバイス(例えば、マルチウェルマイクロプレートといったもの)と簡単に接続することができる。使用では、当該収着マイクロアレイ18の1列の収着要素148のうちの全ての収着要素148を、1ステップで、溶離することができ、これは、それらが1列の溶離シンク238の内部に配置されているときに、流体(即ち、溶離剤)を、入口2118を通しかつ流体チャンネル218を通し該溶離シンク238を経由して通過させることによって行うことができる。出口2128を通過した後、溶離剤を、好適な移送および/または格納デバイス内に収集することができる。
【0053】
図17及び図18は、本発明による収着マイクロアレイ17のさらなる実施形態を示しており、これは、支持体117および複数のカンチレバー127を有している。個々のカンチレバー127は、その第一の長手方向端部領域1217において、支持体117へと変わっている。個々のカンチレバー127の第二の長手方向端部領域1227には、頂部1317を有するピラミッド状の先細部137が配置されている。それぞれの先細部137は、その先細部137を縦方向に通って延びるチャンネル1327を有する。各チャンネル1327内には、円筒状の収着要素147が配置され、それら収着要素は、それぞれの先細部137の頂部1317と重なっている(オーバラップしている)。
【0054】
円筒状の収着要素147は、比較的大きな体積を有し、これは、比較的大量の物質の収着、および/または、比較的大きな分子の収着ができるものである。さらに、チャンネル1327は、溶離剤の剤源(source)と接続することができ、物質を収着した後、収着要素147は、チャンネル1327を通して直接的に溶離され得るようになっている。
【0055】
図19および図20には、本発明による収着マイクロアレイ16の別のさらなる実施形態が示されており、これは、支持体116および複数のカンチレバー126を有している。個々のカンチレバー126は、その第一の長手方向端部領域1216において、支持体116へと変わっている。個々のカンチレバー126の第二の長手方向端部領域1226には、頂部1316を有するピラミッド状の先細部136が配置されている。それぞれの先細部136は、先細部136を縦方向に貫いて延びるチャンネル1326を有する。各チャンネル1326内には、円筒状の収着要素146が配置され、それら収着要素は、それぞれの先細部136の頂部1316と重なっており、かつ、支持体116から離れる方へ突き出している先の尖った端部1416を有している。
【0056】
図17および18の実施形態で説明したことに加えて、分析試料を突き刺すために、先の尖った端部1416を有する収着要素146を使用することができる。特に、該収着要素146は、例えば、細胞の内部に入るために生体細胞分析試料の膜を突き刺すために用いることができる。
【0057】
図21および図22は、本発明によるイメージングシステムの別のさらなる実施形態を示している。当該イメージングシステムは、収着マイクロアレイ16、マイクロ流体チップ27およびピペット297を有している。マイクロ流体チップ27は、溶離シンク237を有し、該溶離シンクは、それぞれ、上部漏斗部分2317を持っており、この上部漏斗部分が、エレクトロスプレーイオン化質量分析法に適したノズル2327と接続されている。
【0058】
収着マイクロアレイ16の収着要素146を溶離するために、収着マイクロアレイ16をマイクロ流体チップ27の上に配置することができ、それによって、1列の収着要素146の下方端部は、対応する頂部1316の下方端部と共に、マイクロ流体チップ27の1列の溶離シンク237の漏斗部分2317の内部に配置される。次に、ピペット297が、1列の収着要素146のチャンネル1326に相次いで配置される。ピペット297は、チャンネル1326のうちの1つの内部にある間、対応する収着要素146に溶離剤を供給する。溶離剤は、収着要素146から対応するノズル2327に移送されるか、または例えば、マイクロ流体チップの他の実施形態についての上述の方法で収集される。進化したアクセス性を提供するために、ピペット297を簡単に挿入することができるように、チャンネル1326の上部開口部を広げることができる。
【0059】
本発明による収着マイクロアレイ、本発明によるイメージングシステムおよび方法の、他の代替的な実施形態が想到し得る。本文で明示的に述べられるのは次のとおりである。
・当該収着マイクロアレイは、四角形の形状以外の別の形状を同様に有することができる。加えて、8以外の別の数の列の収着要素を、収着マイクロアレイに配置することができ、該列は、同様に、8以外の別の数の収着要素を有することができる。特に、移送、および/または、格納デバイスに応じて、収着要素の配置を適合させることができる。
・収着要素を、カンチレバー上に直接的に、および/または、支持体上に直接的に配置することができる。
・先細部は、ピラミッドの形状以外の任意の他の好適な形状を有することができる。
・カンチレバーもしくは支持体の先細部の頂部または平らな部分を、収着要素として同様に配置することができる。
・複数の列の収着要素を有する収着マイクロアレイの配置は、収着要素の各列とその隣りの列との間の距離が、収着要素とそれらの隣りの収着要素との間の距離と異なるようであってもよい。
・チャンネルを有する先細部を備えた収着マイクロアレイが上記のように使用されるとき、チャンネルと接続されている溶離剤の剤源を有する好適な溶離デバイスが、直接的にチャンネルを通して、収着要素を溶離することができる。例えば、分析試料から物質を収着した後、収着マイクロアレイを収集場所に配置し直すことができ、物質が収着要素から溶離されるように、収着要素を溶離剤によって洗浄することができる。
【図面の簡単な説明】
【0060】
【図1】図1は、本発明によるイメージングシステムの第一の実施形態の、本発明による概略の収着マイクロアレイの部分の斜視図を示している。
【図2】図2は、図1の収着マイクロアレイの上面図を示している。
【図3】図3は、図2の収着マイクロアレイの線A−Aに沿った断面図を示している。
【図4】図4は、図2の収着マイクロアレイの線B−Bに沿った断面図を示している。
【図5】図5は、図1のイメージングシステムのマイクロ流体チップの上面図を示している。
【図6】図6は、図5のマイクロ流体チップの側面図を示している。
【図7】図7は、図1のイメージングシステムの収着マイクロアレイおよびマイクロ流体チップの上面を示し、収着マイクロアレイの一隅が切り取られている。
【図8】図8は、図7のイメージングシステムの線A−Aに沿った断面図を示している。
【図9】図9は、図7のイメージングシステムの部分の斜視図を示している。
【図10】図10は、本発明による方法の実施形態での、分析試料の部分と相互に作用する図7のイメージングシステムの収着マイクロアレイの斜視図部分を示している。
【図11】図11は、図10の方法において、図7のイメージングシステムのマイクロ流体チップと相互に作用する、図10の収着マイクロアレイの部分の斜視図を示している。
【図12】図12は、図10からの方法において、再生ユニットと相互に作用する図10の収着マイクロアレイの部分の斜視図を示している。
【図13】図13は、本発明によるイメージングシステムの第二の実施形態の収着マイクロアレイおよびマイクロ流体チップの上面図を示している。
【図14】図14は、図13からのイメージングシステムのイメージングシステムの線A−Aに沿った断面図の溶離シンクの周りの部分を示している。
【図15】図15は、本発明によるイメージングシステムの第三の実施形態の収着マイクロアレイおよびマイクロ流体チップの上面図を示している。
【図16】図16は、図15からのイメージングシステムの線A−Aに沿った断面図を示している。
【図17】図17は、本発明の概略の収着マイクロアレイのさらなる実施形態の部分の斜視図を示している。
【図18】図18は、図17の収着マイクロアレイの断面の部分を示しており、そのカンチレバーを横切っている。
【図19】図19は、本発明による概略の収着マイクロアレイの別のさらなる実施形態の部分の斜視図を示している。
【図20】図20は、図19の収着マイクロアレイの断面の部分を示しており、そのカンチレバーを横切っている。
【図21】図21は、図19からの収着マイクロアレイの断面を示しており、本発明によるイメージングシステムの第四の実施形態のマイクロ流体チップの上面で、そのカンチレバーを横切っている。
【図22】図22は、点線Aで囲んだ図21の断面の部分を示している。

【特許請求の範囲】
【請求項1】
物質を分析試料から収着するための収着マイクロアレイ(1、16、17、18、19)であって、
支持体(11、116、117、118、119)を有し、
該支持体(11、116、117、118、119)に接続され明確に定められた幾何学形状にて配置された複数の収着要素(14、146、147、148、149)を有し、
さらに、
該支持体(11、116、117、118、119)に接続されている複数の先細部(13、136、137、138、139)を有し、それら先細部はそれぞれの収着要素(14、146、147、148、149)を持っており、各収着要素は、1つの先細部(13、136、137、138、139)の頂部(131、1316、1317)に配置され、各収着要素(14、146、147、148、149)とその隣りの収着要素(14、146、147、148、149)と間の距離が、予め定められている、
前記収着マイクロアレイ。
【請求項2】
複数の収着要素(14、146、147、148、149)が、1列に配置され、各収着要素(14、146、147、148、149)とその隣りの収着要素(14、146、147、148、149)と間の距離が、予め定められている、請求項1に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項3】
複数の列の収着要素(14、146、147、148、149)を有し、各列とその隣りの列との間の距離が、予め定められている、請求項2に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項4】
各収着要素(14、146、147、148、149)とその隣りの収着要素(14、146、147、148、149)との距離が、100μmより小さく、好ましくは、30μmより小さい、請求項1〜3のいずれか1項に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項5】
実質的に矩形の形状を有し、該矩形の辺が1mmよりも小さい、請求項1〜4のいずれか1項に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項6】
さらに、複数のカンチレバー(12、126、127、128、129)を有し、それぞれのカンチレバーは、第一の長手方向端部領域(121、1216、1217)と第二の長手方向端部領域(122、1226、1227)とを持ち、各第一の端部領域(121、1216、1217)が、支持体(11、116、117、118、119)と接続されており、各第二の端部領域(122、1226、1227)が、収着要素(14、146、147、148、149)の1つと接続されている、請求項1〜5のいずれか1項に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項7】
各先細部(13、136、137、138、139)が、長手方向のチャンネルを有し、該チャンネル内には、収着要素(14、146、147、148、149)の1つが、それぞれの先細部(13、136、137、138、139)の頂部(131、1316、1317)と重なるように配列されている、請求項6に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項8】
各収着要素(14、146、147、148、149)が、支持体(11、116、117、118、119)から離れる方へ突き出している先の尖った形状を有する、請求項1〜7のいずれか1項に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項9】
各収着要素(14、146、147、148、149)が、小球体の形状を有し、該小球体は、50μm未満の、好ましくは20μm未満の、より好ましくは2μm未満の直径を持っている、請求項1〜6のいずれか1項に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項10】
各収着要素(14、146、147、148、149)が、光のビームまたは赤外線放射によって加熱可能であるように色付けされている、請求項1〜9のいずれか1項に記載の収着マイクロアレイ(1、16、17、18、19)。
【請求項11】
イメージングシステムであって、
請求項1〜11のいずれか1項に記載の収着マイクロアレイ(1、16、17、18、19)を有し、かつ、
マイクロ流体チップ(2、28、29)を有し、該マイクロ流体チップは、溶離剤が通過可能である流体チャンネル(21、218、219)と、収着要素(14、146、147、148、149)の1つを受け入れるための溶離シンク(23、238、239)とを持っており、該溶離シンクは流体チャンネル(21、218、219)と接続されている、
前記イメージングシステム。
【請求項12】
マイクロ流体チップ(2、28、29)が、バルブ(22、228)をさらに有しており、該バルブは、溶離シンク(23、238、239)を通過する溶離剤を制御するために、溶離シンク(23、238、239)の上流の流体チャンネル(21、218、219)に配置されている、請求項11に記載のイメージングシステム。
【請求項13】
マイクロ流体チップ(2、28、29)が、溶離シンク(23、238、239)を加熱するためのヒーター(258、259)をさらに有している、請求項11または12に記載のイメージングシステム。
【請求項14】
マイクロ流体チップ(2、28、29)が、複数の流体チャンネル(21、218、219)を持っており、かつ、複数の溶離シンク(23、238、239)を持っており、該複数の溶離シンクが、一列の収着要素(14、146、147、148、149)のそれら収着要素(14、146、147、148、149)を同時に受け入れるために配置されている、請求項11〜13のいずれか1項に記載のイメージングシステム。
【請求項15】
マイクロ流体チップ(2、28、29)が、空穴(24、248、249)をさらに有しており、該空穴は、収着要素(14、146、147、148、149)の少なくとも1つが、溶離シンク(23、238、239)内に受け入れられるときに、該溶離シンク(23、238、239)内に受け入れられていない他の全ての収着要素(14、146、147、148、149)を受け入れるためのものである、請求項11〜14のいずれか1項に記載のイメージングシステム。
【請求項16】
請求項12〜16のいずれか1つに記載のイメージングシステムを用いて、分析試料内における少なくとも1つの物質の分布をイメージングするための方法であって、
(a)あらかじめ定められた位置において分析試料と接触させて、収着マイクロアレイ(1、16、17、18、19)を位置決めするステップを有し、
(b)収着マイクロアレイ(1、16、17、18、19)の収着要素(14、146、147、148、149)内に、分析試料から少なくとも1つの物質を収着するステップを有し、
(c)分析試料から、収着マイクロアレイ(1、16、17、18、19)を移動させ、かつ、少なくとも1つの収着要素(14、146、147、148、149)が、マイクロ流体チップ(2、28、29)の少なくとも1つの溶離シンク(23、238、239)内に受け入れられるように、該収着マイクロアレイをマイクロ流体チップ(2、28、29)に位置決めするステップを有し、
(d)少なくとも1つの溶離シンク(23、238、239)内に受け入れられている少なくとも1つの収着要素(14、146、147、148、149)から、少なくとも1つの物質を溶離するステップを有し、
(e)少なくとも1つの物質を分析するための分析ユニットへ溶離剤を渡すステップを有し、
(f)分析試料を表す出力イメージを提供するための分析結果を集めるステップを有し、
(g)収着マイクロアレイ(1、16、17、18、19)の収着要素(14、146、147、148、149)のそれぞれが、少なくとも1つの溶離シンク内に受け入れられるまで、該収着マイクロアレイ(1、16、17、18、19)の次の少なくとも1つの収着要素(14、146、147、148、149)を用いて、ステップ(c)から(f)を繰り返すステップを有し、
(f)出力イメージが、予め定められたスケールと予め定められた解像度とを有するまで、予め定められたポジションを変えながら、ステップ(a)から(g)を繰り返すステップを有する、
前記方法。
【請求項17】
分析試料が、凍結された部分内に存在しており、かつ、
収着マイクロアレイ(1、16、17、18、19)の収着要素(14、146、147、148、149)内の分析試料から少なくとも1つの物質を収着する間、収着要素(14、146、147、148、149)のそれぞれが加熱される、請求項16に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2008−241709(P2008−241709A)
【公開日】平成20年10月9日(2008.10.9)
【国際特許分類】
【外国語出願】
【出願番号】特願2008−67776(P2008−67776)
【出願日】平成20年3月17日(2008.3.17)
【出願人】(591003013)エフ.ホフマン−ラ ロシュ アーゲー (1,754)
【氏名又は名称原語表記】F. HOFFMANN−LA ROCHE AKTIENGESELLSCHAFT
【Fターム(参考)】