説明

含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子

【課題】 低電圧でありながら発光輝度及び発光効率が高い有機エレクトロルミネッセンス素子及びそれを実現する含窒素複素環誘導体を提供すること。
【解決手段】特定構造を有する含窒素複素環誘導体、並びに、陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、前記含窒素複素環誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規な含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子に関し、特に、有機エレクトロルミネッセンス素子の構成成分として有用な含窒素複素環誘導体を有機薄膜層に含まれる有機エレクトロルミネッセンス素子用材料として用いることにより、低電圧でありながら発光輝度及び発光効率が高い有機エレクトロルミネッセンス素子に関するものである。
【背景技術】
【0002】
有機物質を使用した有機エレクトロルミネッセンス(以下エレクトロルミネッセンスをELと略記することがある)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般にEL素子は、発光層及び該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象である。
従来の有機EL素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近の有機EL素子は徐々に改良されているものの、さらに低電圧での、高発光輝度及び高発光効率が要求されている。
これらを解決するものとして、例えば、特許文献1に、ベンゾイミダゾール構造を有する化合物を発光材料として用いた素子が開示され、この素子が電圧9Vにて200nitの輝度で発光することが記載されている。また、特許文献2には、ベンゾイミダゾール環及びアントラセン骨格を有する化合物が記載されている。しかしながら、これらの化合物を用いた有機EL素子よりもさらなる高発光輝度及び高発光効率のものが求められている。
【特許文献1】米国特許第5,645,948号明細書
【特許文献2】特開2002−38141号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明は、前記の課題を解決するためになされたもので、低電圧でありながら発光輝度及び発光効率が高い有機EL素子及びそれを実現する含窒素複素環誘導体を提供することを目的とする。
【課題を解決するための手段】
【0004】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ベンゾイミダゾールと特定の基が結合した構造を有する含窒素複素環誘導体が新規な化合物であって、この化合物を有機EL素子用材料として有機EL素子の有機化合物層の少なくとも1層に用いることにより、低電圧でありながら高輝度化及び高効率化を達成できることを見出し本発明を完成したものである。
【0005】
すなわち、本発明は、下記一般式(1)又は(2)で表される含窒素複素環誘導体を提供するものである。
【化1】

【0006】
[一般式(1)及び(2)において、R1〜R10及びA1は、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5〜50のアリール基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の核原子数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。
ただし、一般式(1)において、R1とその隣接するベンゼン環のR2、及びR3とその隣接するベンゼン環のR4のうちの少なくとも1組が互いに結合して置換もしくは無置換の環を形成し、一般式(2)において、R6とその隣接するベンゼン環のR7、及びR9とその隣接するベンゼン環のR10のうちの少なくとも1組が互いに結合し置換もしくは無置換の環を形成している。また、同一ベンゼン環のR1とR2、R3とR4、R6とR7、又はR9とR10は互いに結合して置換もしくは無置換の環を形成していてもよい。
nは3〜6、mは2〜5、xは0〜3の整数を表し、R1〜R10及びA1が複数の場合、それらは、それぞれ同一でも異なっていてもよい。
HAr1〜HAr3は、それぞれ独立に、下記一般式(a)で示される含窒素複素環からR1a〜R6aのいずれかを取り除くことにより形成される一価の基である。
【0007】
【化2】

【0008】
(R1a〜R6aは、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5〜50のアリール基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の核原子数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。)]
【0009】
また、本発明は、陰極と陽極間に少なくとも発光層を含む1層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも1層が、前記含窒素複素環誘導体を単独もしくは混合物の成分として含有する有機EL素子を提供するものである。
【発明の効果】
【0010】
本発明の含窒素複素環誘導体を有機EL素子用材料として用いた有機EL素子は、低電圧でありながら発光輝度及び発光効率が高い。
【発明を実施するための最良の形態】
【0011】
本発明の含窒素複素環誘導体は、下記一般式(1)又は(2)で表される化合物である。
【化3】

【0012】
一般式(1)及び(2)において、R1〜R10及びA1は、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5〜50のアリール基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の核原子数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。
【0013】
前記R1〜R10及びA1のアリール基は、芳香族炭化水素基及び芳香族複素環基の両方を示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、1−アントリル基、2−アントリル基、9−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基、1−ナフタセニル基、2−ナフタセニル基、9−ナフタセニル基、1−ピレニル基、2−ピレニル基、4−ピレニル基、2−ビフェニルイル基、3−ビフェニルイル基、4−ビフェニルイル基、p−テルフェニル−4−イル基、p−テルフェニル−3−イル基、p−テルフェニル−2−イル基、m−テルフェニル−4−イル基、m−テルフェニル−3−イル基、m−テルフェニル−2−イル基、o−トリル基、m−トリル基、p−トリル基、p−t−ブチルフェニル基、p−(2−フェニルプロピル)フェニル基、3−メチル−2−ナフチル基、4−メチル−1−ナフチル基、4−メチル−1−アントリル基、4’−メチルビフェニルイル基、4”−t−ブチル−p−テルフェニル−4−イル基、フルオランテニル基、フルオレニル基、1−ピロリル基、2−ピロリル基、3−ピロリル基、ピラジニル基、2−ピリジニル基、3−ピリジニル基、4−ピリジニル基、1−インドリル基、2−インドリル基、3−インドリル基、4−インドリル基、5−インドリル基、6−インドリル基、7−インドリル基、1−イソインドリル基、2−イソインドリル基、3−イソインドリル基、4−イソインドリル基、5−イソインドリル基、6−イソインドリル基、7−イソインドリル基、2−フリル基、3−フリル基、2−ベンゾフラニル基、3−ベンゾフラニル基、4−ベンゾフラニル基、5−ベンゾフラニル基、6−ベンゾフラニル基、7−ベンゾフラニル基、1−イソベンゾフラニル基、3−イソベンゾフラニル基、4−イソベンゾフラニル基、5−イソベンゾフラニル基、6−イソベンゾフラニル基、7−イソベンゾフラニル基、キノリル基、3−キノリル基、4−キノリル基、5−キノリル基、6−キノリル基、7−キノリル基、8−キノリル基、1−イソキノリル基、3−イソキノリル基、4−イソキノリル基、5−イソキノリル基、6−イソキノリル基、7−イソキノリル基、8−イソキノリル基、2−キノキサリニル基、5−キノキサリニル基、6−キノキサリニル基、1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−カルバゾリル基、1−フェナントリジニル基、2−フェナントリジニル基、3−フェナントリジニル基、4−フェナントリジニル基、6−フェナントリジニル基、7−フェナントリジニル基、8−フェナントリジニル基、9−フェナントリジニル基、10−フェナントリジニル基、1−アクリジニル基、2−アクリジニル基、3−アクリジニル基、4−アクリジニル基、9−アクリジニル基、1,7−フェナントロリン−2−イル基、1,7−フェナントロリン−3−イル基、1,7−フェナントロリン−4−イル基、1,7−フェナントロリン−5−イル基、1,7−フェナントロリン−6−イル基、1,7−フェナントロリン−8−イル基、1,7−フェナントロリン−9−イル基、1,7−フェナントロリン−10−イル基、1,8−フェナントロリン−2−イル基、1,8−フェナントロリン−3−イル基、1,8−フェナントロリン−4−イル基、1,8−フェナントロリン−5−イル基、1,8−フェナントロリン−6−イル基、1,8−フェナントロリン−7−イル基、1,8−フェナントロリン−9−イル基、1,8−フェナントロリン−10−イル基、1,9−フェナントロリン−2−イル基、1,9−フェナントロリン−3−イル基、1,9−フェナントロリン−4−イル基、1,9−フェナントロリン−5−イル基、1,9−フェナントロリン−6−イル基、1,9−フェナントロリン−7−イル基、1,9−フェナントロリン−8−イル基、1,9−フェナントロリン−10−イル基、1,10−フェナントロリン−2−イル基、1,10−フェナントロリン−3−イル基、1,10−フェナントロリン−4−イル基、1,10−フェナントロリン−5−イル基、2,9−フェナントロリン−1−イル基、2,9−フェナントロリン−3−イル基、2,9−フェナントロリン−4−イル基、2,9−フェナントロリン−5−イル基、2,9−フェナントロリン−6−イル基、2,9−フェナントロリン−7−イル基、2,9−フェナントロリン−8−イル基、2,9−フェナントロリン−10−イル基、2,8−フェナントロリン−1−イル基、2,8−フェナントロリン−3−イル基、2,8−フェナントロリン−4−イル基、2,8−フェナントロリン−5−イル基、2,8−フェナントロリン−6−イル基、2,8−フェナントロリン−7−イル基、2,8−フェナントロリン−9−イル基、2,8−フェナントロリン−10−イル基、2,7−フェナントロリン−1−イル基、2,7−フェナントロリン−3−イル基、2,7−フェナントロリン−4−イル基、2,7−フェナントロリン−5−イル基、2,7−フェナントロリン−6−イル基、2,7−フェナントロリン−8−イル基、2,7−フェナントロリン−9−イル基、2,7−フェナントロリン−10−イル基、1−フェナジニル基、2−フェナジニル基、1−フェノチアジニル基、2−フェノチアジニル基、3−フェノチアジニル基、4−フェノチアジニル基、10−フェノチアジニル基、1−フェノキサジニル基、2−フェノキサジニル基、3−フェノキサジニル基、4−フェノキサジニル基、10−フェノキサジニル基、2−オキサゾリル基、4−オキサゾリル基、5−オキサゾリル基、2−オキサジアゾリル基、5−オキサジアゾリル基、3−フラザニル基、2−チエニル基、3−チエニル基、2−メチルピロール−1−イル基、2−メチルピロール−3−イル基、2−メチルピロール−4−イル基、2−メチルピロール−5−イル基、3−メチルピロール−1−イル基、3−メチルピロール−2−イル基、3−メチルピロール−4−イル基、3−メチルピロール−5−イル基、2−t−ブチルピロール−4−イル基、3−(2−フェニルプロピル)ピロール−1−イル基、2−メチル−1−インドリル基、4−メチル−1−インドリル基、2−メチル−3−インドリル基、4−メチル−3−インドリル基、2−t−ブチル1−インドリル基、4−t−ブチル1−インドリル基、2−t−ブチル3−インドリル基、4−t−ブチル3−インドリル基等が挙げられる。
これらの中で、好ましくはフェニル基、ナフチル基、ビフェニル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、フルオレニル基である。
【0014】
前記R1〜R10及びA1のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、ヒドロキシメチル基、1−ヒドロキシエチル基、2−ヒドロキシエチル基、2−ヒドロキシイソブチル基、1,2−ジヒドロキシエチル基、1,3−ジヒドロキシイソプロピル基、2,3−ジヒドロキシ−t−ブチル基、1,2,3−トリヒドロキシプロピル基、クロロメチル基、1−クロロエチル基、2−クロロエチル基、2−クロロイソブチル基、1,2−ジクロロエチル基、1,3−ジクロロイソプロピル基、2,3−ジクロロ−t−ブチル基、1,2,3−トリクロロプロピル基、ブロモメチル基、1−ブロモエチル基、2−ブロモエチル基、2−ブロモイソブチル基、1,2−ジブロモエチル基、1,3−ジブロモイソプロピル基、2,3−ジブロモ−t−ブチル基、1,2,3−トリブロモプロピル基、ヨードメチル基、1−ヨードエチル基、2−ヨードエチル基、2−ヨードイソブチル基、1,2−ジヨードエチル基、1,3−ジヨードイソプロピル基、2,3−ジヨード−t−ブチル基、1,2,3−トリヨードプロピル基、アミノメチル基、1−アミノエチル基、2−アミノエチル基、2−アミノイソブチル基、1,2−ジアミノエチル基、1,3−ジアミノイソプロピル基、2,3−ジアミノ−t−ブチル基、1,2,3−トリアミノプロピル基、シアノメチル基、1−シアノエチル基、2−シアノエチル基、2−シアノイソブチル基、1,2−ジシアノエチル基、1,3−ジシアノイソプロピル基、2,3−ジシアノ−t−ブチル基、1,2,3−トリシアノプロピル基、ニトロメチル基、1−ニトロエチル基、2−ニトロエチル基、2−ニトロイソブチル基、1,2−ジニトロエチル基、1,3−ジニトロイソプロピル基、2,3−ジニトロ−t−ブチル基、1,2,3−トリニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4−メチルシクロヘキシル基、1−アダマンチル基、2−アダマンチル基、1−ノルボルニル基、2−ノルボルニル基等が挙げられる。
【0015】
前記R1〜R10及びA1のアルコキシ基は−OYで表される基であり、Yの例としては、前記アルキル基で説明したものと同様の例が挙げられる。
前記R1〜R10及びA1のアラルキル基としては、例えば、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルイソプロピル基、2−フェニルイソプロピル基、フェニル−t−ブチル基、α−ナフチルメチル基、1−α−ナフチルエチル基、2−α−ナフチルエチル基、1−α−ナフチルイソプロピル基、2−α−ナフチルイソプロピル基、β−ナフチルメチル基、1−β−ナフチルエチル基、2−β−ナフチルエチル基、1−β−ナフチルイソプロピル基、2−β−ナフチルイソプロピル基、1−ピロリルメチル基、2−(1−ピロリル)エチル基、p−メチルベンジル基、m−メチルベンジル基、o−メチルベンジル基、p−クロロベンジル基、m−クロロベンジル基、o−クロロベンジル基、p−ブロモベンジル基、m−ブロモベンジル基、o−ブロモベンジル基、p−ヨードベンジル基、m−ヨードベンジル基、o−ヨードベンジル基、p−ヒドロキシベンジル基、m−ヒドロキシベンジル基、o−ヒドロキシベンジル基、p−アミノベンジル基、m−アミノベンジル基、o−アミノベンジル基、p−ニトロベンジル基、m−ニトロベンジル基、o−ニトロベンジル基、p−シアノベンジル基、m−シアノベンジル基、o−シアノベンジル基、1−ヒドロキシ−2−フェニルイソプロピル基、1−クロロ−2−フェニルイソプロピル基等が挙げられる。
【0016】
前記R1〜R10及びA1のアリールオキシ基は−OY’と表され、Y’の例としては前記アリール基で説明したものと同様の例が挙げられる。
前記R1〜R10及びA1のアリールチオ基は−SY’と表され、Y’の例としては前記アリール基で説明したものと同様の例が挙げられる。
前記R1〜R10及びA1のアルコキシカルボニル基は−COOYで表される基であり、Yの例としては、前記アルキル基で説明したものと同様の例が挙げられる。
前記R1〜R10及びA1のアリール基で置換されたアミノ基におけるアリール基の例としては前記アリール基で説明したものと同様の例が挙げられる。
前記R1〜R10及びA1のハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
【0017】
一般式(1)において、R1とその隣接するベンゼン環のR2、及びR3とその隣接するベンゼン環のR4のうちの少なくとも1組が互いに結合して置換もしくは無置換の環を形成し、一般式(2)において、R6とその隣接するベンゼン環のR7、及びR9とその隣接するベンゼン環のR10のうちの少なくとも1組が互いに結合し置換もしくは無置換の環を形成している。また、同一ベンゼン環のR1とR2、R3とR4、R6とR7、又はR9とR10は互いに結合して置換もしくは無置換の環を形成していてもよい。形成する環としては、5員環、6員環が好ましく、特に5員環が好ましい。
また、形成した5員環、6員環の置換基同士が結合して、環を形成していてもよい。
このような環としては、例えば、シクロブタン、シクロペンタン、シクロヘキサン、アダマンタン、ノルボルナン等の炭素数4〜12のシクロアルカン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン等の炭素数4〜12のシクロアルケン、シクロヘキサジエン、シクロヘプタジエン、シクロオクタジエン等の炭素数6〜12のシクロアルカジエン、ベンゼン、ナフタレン、フェナントレン、アントラセン、ピレン、クリセン、アセナフチレン、フルオレン等の炭素数6〜50の芳香族環などが挙げられる。
【0018】
一般式(1)及び(2)において、nは3〜6(好ましくは3〜5)、mは2〜5(好ましくは2〜4)、xは0〜3(好ましくは0〜2)の整数を表し、R1〜R10及びA1が複数の場合、それらは、それぞれ同一でも異なっていてもよい。
一般式(1)及び(2)において、HAr1〜HAr3は、それぞれ独立に、下記一般式(a)で示される含窒素複素環からR1a〜R6aのいずれかを取り除くことにより形成される一価の基である。
【0019】
【化4】

【0020】
一般式(a)において、R1a〜R6aは、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5〜50のアリール基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の核原子数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基であり、これら各基の具体例としては、前記一般式(1)のR1〜R10及びA1で説明したものと同様の例が挙げられる。
【0021】
前記一般式(1)、(2)及び(a)の示す各基の置換基としては、置換もしくは無置換の核原子数5〜50のアリール基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の炭素数1〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基、カルボキシル基等が挙げられる。
【0022】
前記一般式(1)で表される含窒素複素環誘導体は、下記一般式(1−a)、(1−b)又は(1−c)で表される化合物であると好ましい。
【化5】

【0023】
一般式(1−a)、(1−b)及び(1−c)において、HAr1及びHAr2は、前記と同じであり、R11〜R18は、それぞれ前記R1a〜R6aと同様の基を示し、各基の具体例及び置換基も同様の例が挙げられる。
前記一般式(2)で表される含窒素複素環誘導体は、下記一般式(2−a)、(2−b)又は(2−c)で表される化合物であると好ましい。
【0024】
【化6】

【0025】
一般式(2−a)、(2−b)及び(2−c)において、HAr2は前記と同じであり、R11〜R18は、それぞれ前記R1a〜R6aと同様の基を示し、各基の具体例及び置換基も同様の例が挙げられる。
本発明の含窒素複素環誘導体は、有機EL素子用材料であると好ましく、有機EL素子用発光材料、有機EL素子用電子注入材料又は有機EL素子用電子輸送材料であるとさらに好ましい。
【0026】
本発明の一般式(1)で表される含窒素複素環誘導体の具体例を以下に示すが、これら例示化合物に限定されるものではない。
【0027】
【化7】

【0028】
【化8】

【0029】
【化9】

【0030】
【化10】

【0031】
次に、本発明の有機EL素子について説明する。
本発明の有機EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも1層が、前記含窒素複素環誘導体を単独もしくは混合物の成分として含有する。
本発明の有機EL素子は、前記有機薄膜層が電子注入・輸送層を有し、該電子注入・輸送層が、本発明の含窒素複素環誘導体を単独もしくは混合物の成分として含有すると好ましい。さらに、前記電子注入・輸送層が、主成分として含窒素複素環誘導体を含有すると好ましい。
【0032】
以下、本発明の有機EL素子の素子構成について説明する。
(1)有機EL素子の構成
本発明の有機EL素子の代表的な素子構成としては、
(1) 陽極/発光層/陰極
(2) 陽極/正孔注入層/発光層/陰極
(3) 陽極/発光層/電子注入層/陰極
(4) 陽極/正孔注入層/発光層/電子注入層/陰極
(5) 陽極/有機半導体層/発光層/陰極
(6) 陽極/有機半導体層/電子障壁層/発光層/陰極
(7) 陽極/有機半導体層/発光層/付着改善層/陰極
(8) 陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(9) 陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
などの構造を挙げることができる。
これらの中で通常(8)の構成が好ましく用いられるが、これらに限定されるものではない。
本発明の含窒素複素環誘導体は、有機EL素子のどの有機薄膜層に用いてもよいが、好ましくは発光帯域又は電子輸送帯域に用いることができ、特に好ましくは電子注入層、電子輸送層、発光層に用いる。
【0033】
(2)透光性基板
本発明の有機EL素子は、透光性の基板上に作製する。ここでいう透光性基板は有機EL素子を支持する基板であり、400〜700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリスルホン等を挙げることができる。
【0034】
(3)陽極
本発明の有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能を有するものであり、4.5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、インジウム−亜鉛酸化物(IZO)、金、銀、白金、銅等が挙げられる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選択される。
【0035】
(4)発光層
有機EL素子の発光層は以下(1) 〜(3)の機能を併せ持つものである。
(1) 注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰極又は電子注入層より電子を注入することができる機能
(2) 輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能
(3) 発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能
ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また、正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電荷を移動することが好ましい。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭57−51781号公報に開示されているように、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。
本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本発明の含窒素複素環誘導体からなる発光材料以外の他の公知の発光材料を含有させてもよく、また、本発明の含窒素複素環誘導体からなる発光材料を含む発光層に、他の公知の発光材料を含む発光層を積層してもよい。
【0036】
また、本発明の有機EL素子は、発光層が、アリールアミン化合物及び/又はスチリルアミン化合物を含有すると好ましい。
アリールアミン化合物としては下記一般式(A)で表される化合物などが挙げられ、スチリルアミン化合物としては下記一般式(B)で表される化合物などが挙げられる。
【0037】
【化11】

【0038】
[一般式(A)中、Ar8は、フェニル、ビフェニル、テルフェニル、スチルベン、ジスチリルアリールから選ばれる基であり、Ar9及びAr10は、それぞれ水素原子又は炭素数が6〜20の芳香族基であり、Ar9〜Ar10は置換されていてもよい。p’は、1〜4の整数である。さらに好ましくはAr9及び/又はAr10はスチリル基が置換されている。]
ここで、炭素数が6〜20の芳香族基としては、フェニル基、ナフチル基、アントラニル基、フェナントリル基、テルフェニル基等が好ましい。
【0039】
【化12】

【0040】
[一般式(B)中、Ar11〜Ar13は、置換されていてもよい核炭素数5〜40のアリール基である。q’は、1〜4の整数である。]
ここで、核原子数が5〜40のアリール基としては、フェニル、ナフチル、アントラニル、フェナントリル、ピレニル、コロニル、ビフェニル、テルフェニル、ピローリル、フラニル、チオフェニル、ベンゾチオフェニル、オキサジアゾリル、ジフェニルアントラニル、インドリル、カルバゾリル、ピリジル、ベンゾキノリル、フルオランテニル、アセナフトフルオランテニル、スチルベン等が好ましい。なお、核原子数が5〜40のアリール基は、さらに置換基により置換されていてもよく、好ましい置換基としては、炭素数1〜6のアルキル基(エチル基、メチル基、イソプロピル基、n−プロピル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等)、炭素数1〜6のアルコキシ基(エトキシ基、メトキシ基、イソプロポキシ基、n−プロポキシ基、s−ブトキシ基、t−ブトキシ基、ペントキシ基、ヘキシルオキシ基、シクロペントキシ基、シクロヘキシルオキシ基等)、核原子数5〜40のアリール基、核原子数5〜40のアリール基で置換されたアミノ基、核原子数5〜40のアリール基を有するエステル基、炭素数1〜6のアルキル基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子(塩素、臭素、ヨウ素等)が挙げられる。
【0041】
発光層に使用できる発光材料又はドーピング材料としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるものではない。
【0042】
発光層に使用できるホスト材料としては、下記(i)〜(ix)で表される化合物が好ましい。
下記一般式(i)で表される非対称アントラセン。
【0043】


【化13】

【0044】
(式中、Arは置換もしくは無置換の核炭素数10〜50の縮合芳香族基である。
Ar’は置換もしくは無置換の核炭素数6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数6〜50の芳香族基、置換もしくは無置換の核原子数5〜50の芳香族複素環基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の炭素数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基である。
a、b及びcは、それぞれ0〜4の整数である。
nは1〜3の整数である。また、nが2以上の場合は、[ ]内は、同じでも異なっていてもよい。)
【0045】
下記一般式(ii)で表される非対称モノアントラセン誘導体。
【化14】

【0046】
(式中、Ar1及びAr2は、それぞれ独立に、置換もしくは無置換の核炭素数6〜50の芳香族環基であり、m及びnは、それぞれ1〜4の整数である。ただし、m=n=1でかつAr1とAr2のベンゼン環への結合位置が左右対称型の場合には、Ar1とAr2は同一ではなく、m又はnが2〜4の整数の場合にはmとnは異なる整数である。
1〜R10は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6〜50の芳香族環基、置換もしくは無置換の核原子数5〜50の芳香族複素環基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の炭素数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは
無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基である。)
【0047】
下記一般式(iii) で表される非対称ピレン誘導体。
【化15】

【0048】
[式中、Ar及びAr’は、それぞれ置換もしくは無置換の核炭素数6〜50の芳香族基である。
L及びL’は、それぞれ置換もしくは無置換のフェニレン基、置換もしくは無置換のナフタレニレン基、置換もしくは無置換のフルオレニレン基又は置換もしくは無置換のジベンゾシロリレン基である。
mは0〜2の整数、nは1〜4の整数、sは0〜2の整数、tは0〜4の整数である。
また、L又はArは、ピレンの1〜5位のいずれかに結合し、L’又はAr’は、ピレンの6〜10位のいずれかに結合する。
ただし、n+tが偶数の時、Ar,Ar’,L,L’は下記(1) 又は(2) を満たす。
(1) Ar≠Ar’及び/又はL≠L’(ここで≠は、異なる構造の基であることを示す。)
(2) Ar=Ar’かつL=L’の時
(2-1) m≠s及び/又はn≠t、又は
(2-2) m=sかつn=tの時、
(2-2-1) L及びL’、又はピレンが、それぞれAr及びAr’上の異なる結合位置に結合しているか、(2-2-2) L及びL’、又はピレンが、Ar及びAr’上の同じ結合位置で結合している場合、L及びL’又はAr及びAr’のピレンにおける置換位置が1位と6位、又は2位と7位である場合はない。]
【0049】
下記一般式(iv)で表される非対称アントラセン誘導体。
【化16】

【0050】
(式中、A1及びA2は、それぞれ独立に、置換もしくは無置換の核炭素数10〜20の縮合芳香族環基である。
Ar1及びAr2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数6〜50の芳香族環基である。
1〜R10は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6〜50の芳香族環基、置換もしくは無置換の核原子数5〜50の芳香族複素環基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の炭素数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基又はヒドロキシル基である。
Ar1、Ar2、R9及びR10は、それぞれ複数であってもよく、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していてもよい。
ただし、一般式(1)において、中心のアントラセンの9位及び10位に、該アントラセン上に示すX−Y軸に対して対称型となる基が結合する場合はない。)
【0051】
下記一般式(v)で表されるアントラセン誘導体。
【化17】

【0052】
(式中、R1〜R10は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換しても良いアリール基,アルコキシル基,アリーロキシ基,アルキルアミノ基,アルケニル基,アリールアミノ基又は置換しても良い複素環式基を示し、a及びbは、それぞれ1〜5の整数を示し、それらが2以上の場合、R1同士又はR2同士は、それぞれにおいて、同一でも異なっていてもよく、またR1同士またはR2同士が結合して環を形成していてもよいし、R3とR4、R5とR6、R7とR8、R9とR10がたがいに結合して環を形成していてもよい。L1は単結合、−O−,−S−,−N(R)−(Rはアルキル基又は置換しても良いアリール基である)、アルキレン基又はアリーレン基を示す。)
【0053】
下記一般式(vi)で表されるアントラセン誘導体。
【化18】

【0054】
(式中、R11〜R20は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,アリール基,アルコキシル基,アリーロキシ基,アルキルアミノ基,アリールアミノ基又は置換しても良い複数環式基を示し、c,d,e及びfは、それぞれ1〜5の整数を示し、それらが2以上の場合、R11同士,R12同士,R16同士又はR17同士は、それぞれにおいて、同一でも異なっていてもよく、またR11同士,R12同士,R16同士又はR17同士が結合して環を形成していてもよいし、R13とR14,R18とR19がたがいに結合して環を形成していてもよい。L2は単結合、−O−,−S−,−N(R)−(Rはアルキル基又は置換しても良いアリール基である)、アルキレン基又はアリーレン基を示す。)
【0055】
下記一般式(vii) で表されるスピロフルオレン誘導体。
【化19】

【0056】
(式中、A5〜A8は、それぞれ独立に、置換もしくは無置換のビフェニル基又は置換もしくは無置換のナフチル基である。)
【0057】
下記一般式(viii)で表される縮合環含有化合物。
【化20】

【0058】
(式中、A9〜A14は前記と同じ、R21〜R23は、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、炭素数1〜6のアルコキシル基、炭素数5〜18のアリールオキシ基、炭素数7〜18のアラルキルオキシ基、炭素数5〜16のアリールアミノ基、ニトロ基、シアノ基、炭素数1〜6のエステル基又はハロゲン原子を示し、A9〜A14のうち少なくとも1つは3環以上の縮合芳香族環を有する基である。)
【0059】
下記一般式(ix)で表されるフルオレン化合物。
【化21】

【0060】
(式中、R1およびR2は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。異なるフルオレン基に結合するR1同士、R2同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR1およびR2は、同じであっても異なっていてもよい。R3およびR4は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、異なるフルオレン基に結合するR3同士、R4同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR3およびR4は、同じであっても異なっていてもよい。Ar1およびAr2は、ベンゼン環の合計が3個以上の置換あるいは無置換の縮合多環芳香族基またはベンゼン環と複素環の合計が3個以上の置換あるいは無置換の炭素でフルオレン基に結合する縮合多環複素環基を表わし、Ar1およびAr2は、同じであっても異なっていてもよい。nは、1乃至10の整数を表す。)
【0061】
以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノアントラセン誘導体、特に好ましくは非対称アントラセンである。
また、ドーパントの発光材料としては、りん光発光性の化合物を用いることもできる。
りん光発光性の化合物としては、ホスト材料にカルバゾール環を含む化合物が好ましい。ドーパントとしては三重項励起子から発光することのできる化合物であり、三重項励起子から発光する限り特に限定されないが、Ir、Ru、Pd、Pt、Os及びReからなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。
カルバゾール環を含む化合物からなるりん光発光に好適なホストは、その励起状態からりん光発光性化合物へエネルギー移動が起こる結果、りん光発光性化合物を発光させる機能を有する化合物である。ホスト化合物としては励起子エネルギーをりん光発光性化合物にエネルギー移動できる化合物ならば特に制限はなく、目的に応じて適宜選択することができる。カルバゾール環以外に任意の複素環などを有していても良い。
【0062】
このようなホスト化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N−ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。ホスト化合物は単独で使用しても良いし、2種以上を併用しても良い。
【0063】
具体例としては、以下のような化合物が挙げられる。
【化22】

【0064】
りん光発光性のドーパントは三重項励起子から発光することのできる化合物である。三重項励起子から発光する限り特に限定されないが、Ir、Ru、Pd、Pt、Os及びReからなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。ポルフィリン金属錯体としては、ポルフィリン白金錯体が好ましい。りん光発光性化合物は単独で使用しても良いし、2種以上を併用しても良い。
オルトメタル化金属錯体を形成する配位子としては種々のものがあるが、好ましい配位子としては、2−フェニルピリジン誘導体、7,8−ベンゾキノリン誘導体、2−(2−チエニル)ピリジン誘導体、2−(1−ナフチル)ピリジン誘導体、2−フェニルキノリン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特に、フッ素化物、トリフルオロメチル基を導入したものが、青色系ドーパントとしては好ましい。さらに補助配位子としてアセチルアセトナート、ピクリン酸等の上記配位子以外の配位子を有していても良い。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1〜70質量%であり、1〜30質量%が好ましい。りん光発光性化合物の含有量が0.1質量%未満では発光が微弱でありその含有効果が十分に発揮されず、70質量%を超える場合は、濃度消光と言われる現象が顕著になり素子性能が低下する。
また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含有しても良い。
さらに、発光層の膜厚は、好ましくは5〜50nm、より好ましくは7〜50nm、最も好ましくは10〜50nmである。5nm未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、50nmを超えると駆動電圧が上昇する恐れがある。
【0065】
(5)正孔注入・輸送層(正孔輸送帯域)
正孔注入・輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい。このような正孔注入・輸送層としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば104〜106V/cmの電界印加時に、少なくとも10-4cm2/V・秒であれば好ましい。
【0066】
具体例としては、トリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾール誘導体(特公昭37−16096号公報等参照)、ポリアリールアルカン誘導体(米国特許3,615,402号明細書、同第3,820,989号明細書、同第3,542,544号明細書、特公昭45−555号公報、同51−10983号公報、特開昭51−93224号公報、同55−17105号公報、同56−4148号公報、同55−108667号公報、同55−156953号公報、同 56−36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体(米国特許第3,180,729号明細書、同第4,278,746号明細書、特開昭55−88064号公報、同55−88065号公報、同49−105537号公報、同55−51086号公報、同56−80051号公報、同56−88141号公報、同57−45545号公報、同54−112637号公報、同55−74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,615,404号明細書、特公昭51−10105号公報、同46−3712号公報、同47−25336号公報、特開昭54−53435号公報、同54−110536号公報、同54−119925号公報等参照)、アリールアミン誘導体(米国特許第3,567,450号明細書、同第3,180,703号明細書、同第3,240,597号明細書、同第3,658,520号明細書、同第4,232,103号明細書、同第4,175,961号明細書、同第4,012,376号明細書、特公昭49−35702号公報、同39−27577号公報、特開昭55−144250号公報、同56−119132号公報、同56−22437号公報、西独特許第1,110,518号明細書等参照)、アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセン誘導体(特開昭56−46234号公報等参照)、フルオレノン誘導体(特開昭54−110837号公報等参照)、ヒドラゾン誘導体(米国特許第3,717,462号明細書、特開昭54−59143号公報、同55−52063号公報、同55−52064号公報、同55−46760号公報、同55−85495号公報、同57−11350号公報、同57−148749号公報、特開平2−311591号公報等参照)、スチルベン誘導体(特開昭61−210363号公報、同第61−228451号公報、同61−14642号公報、同61−72255号公報、同62−47646号公報、同62−36674号公報、同62−10652号公報、同62−30255号公報、同60−93455号公報、同60−94462号公報、同60−174749号公報、同60−175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2−204996号公報)、アニリン系共重合体(特開平2−282263号公報)、特開平1−211399号公報に開示されている導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。
【0067】
正孔注入・輸送層の材料としては上記のものを使用することができるが、ポルフィリン化合物(特開昭63−2956965号公報等に開示のもの)、芳香族第三級アミン化合物及びスチリルアミン化合物(米国特許第4,127,412号明細書、特開昭53−27033号公報、同54−58445号公報、同54−149634号公報、同54−64299号公報、同55−79450号公報、同55−144250号公報、同56−119132号公報、同61−295558号公報、同61−98353号公報、同63−295695号公報等参照)、特に芳香族第三級アミン化合物を用いることが好ましい。
また、米国特許第5,061,569号に記載されている2個の縮合芳香族環を分子内に有する、例えば、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル(以下NPDと略記する)、また特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”−トリス(N−(3−メチルフェニル)−N−フェニルアミノ)トリフェニルアミン(以下MTDATAと略記する)等を挙げることができる。
さらに、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、p型Si、p型SiC等の無機化合物も正孔注入・輸送層の材料として使用することができる。
【0068】
正孔注入・輸送層は上記の材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化することにより形成することができる。正孔注入・輸送層としての膜厚は特に制限はないが、通常は5nm〜5μmである。この正孔注入・輸送層は、上述した材料の一種又は二種以上からなる一層で構成されてもよく、別種の化合物からなる正孔注入・輸送層を積層したものであってもよい。
また、発光層への正孔注入又は電子注入を助ける層として有機半導体層を設けてもよく、10-10S/cm以上の導電率を有するものが好適である。このような有機半導体層の材料としては、含チオフェンオリゴマーや特開平8−193191号公報に開示してある含アリールアミンオリゴマー等の導電性オリゴマー、含アリールアミンデンドリマー等の導電性デンドリマー等を用いることができる。
【0069】
(6)電子注入・輸送層
本発明の電子注入層・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きく、また付着改善層は、この電子注入層の中で特に陰極との付着が良い材料からなる層である。本発明の有機EL素子においては、上記本発明化合物を電子注入層・輸送層、付着改善層として用いることが好ましい。
本発明の含窒素複素環誘導体を電子輸送帯域に用いる場合、本発明の含窒素複素環誘導体単独で電子注入、輸送層を形成してもよく、他の材料と混合または積層して用いてもよい。
本発明の含窒素複素環誘導体と混合または積層して電子注入・輸送層を形成する材料としては、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において電子の電荷輸送材料として慣用されているものや、有機EL素子の電子注入・輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
【0070】
本発明の有機EL素子の好ましい形態に、電子を輸送する領域または陰極と有機層の界面領域に、還元性ドーパントを含有する素子がある。本発明では、本発明化合物に還元性ドーパントを含有する有機EL素子が好ましい。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物または希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)およびCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0〜2.5eV)、およびBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、RbおよびCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、RbまたはCsであり、最も好ましのは、Csである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
【0071】
本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2SeおよびNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS、およびCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KClおよびNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2およびBeF2といったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
また、電子輸送層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、SbおよびZnの少なくとも一つの元素を含む酸化物、窒化物または酸化窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、上述したアルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられる。
【0072】
(7)陰極
陰極としては、電子注入・輸送層又は発光層に電子を注入するため、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム・カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50〜200nmである。
【0073】
(8)絶縁層
有機EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが好ましい。
絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セ シウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられ、これらの混合物や積層物を用いてもよい。
【0074】
(9)有機EL素子の製造方法
以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入・輸送層、及び必要に応じて電子注入・輸送層を形成し、さらに陰極を形成することにより有機EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有機EL素子を作製することもできる。
以下、透光性基板上に陽極/正孔注入層/発光層/電子注入層/陰極が順次設けられた構成の有機EL素子の作製例を記載する。
まず、適当な透光性基板上に陽極材料からなる薄膜を1μm以下、好ましくは10〜200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述したように真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、その蒸着条件は使用する化合物(正孔注入層の材料)、目的とする正孔注入層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度50〜450℃、真空度10-7〜10-3Torr、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚5nm〜5μmの範囲で適宜選択することが好ましい。
【0075】
次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔注入層と同じような条件範囲の中から選択することができる。
次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔注入層、発光層と同様の条件範囲から選択することができる。
本発明の含窒素複素環誘導体は、発光帯域や電子輸送帯域のいずれの層に含有させるかによって異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をすることができる。また、スピンコート法を用いる場合は、他の材料と混合することによって含有させることができる。
最後に陰極を積層して有機EL素子を得ることができる。
陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。しかし下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
この有機EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製することが好ましい。
【0076】
本発明の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
なお、有機EL素子に直流電圧を印加する場合、陽極を+、陰極を−の極性にして、5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が+、陰極が−の極性になった時のみ均一な発光が観測される。印加する交流の波形は任意でよい。
【実施例】
【0077】
合成例1
(1−1)中間体1の合成
【化23】

アルゴン気流下、1L三口フラスコに、2,5−ジブロモテレフタル酸メチルエステル 35g(0.1mol)、フェニルボロン酸 27g(0.22mol)、テトラキストリフェニルホスフィンパラジウム(0) 5.7g(5mmol)、トルエン 200mL、炭酸ナトリウム 32g(0.3mol)/水 150mL を加え、8時間加熱還流した。反応終了後、有機層を水洗し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。得られた粗結晶をエタノールで再結晶し、目的とする中間体1 27g(白色結晶、収率80%)を得た。
【0078】
(1−2)中間体2の合成
【化24】

1Lフラスコに、中間体1 17g(0.05mol)、80%硫酸 200mLを加え、180℃で3時間加熱攪拌した。反応終了後、硫酸を分液し、塩化メチレンを加えた後、炭酸水素ナトリウム水溶液で洗浄した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去し、反応粗生成物を得た。カラムクロマトグラフィー(シリカゲル ヘキサン:酢酸エチル=95:5)にて精製し、目的とする中間体2 10g(灰色結晶 収率70%)を得た。
【0079】
(1−3)中間体3の合成
【化25】

1Lフラスコに、中間体2 10g(0.035mol)、ヒドラジン一水和物 8.8mL(0.175mol)、水酸化カリウム 12g(0.18mol)、ジエチレングリコール 300mLを加え、200℃で2時間加熱攪拌した。反応終了後、水を加え、析出物をろ別した。反応粗生成物をヘキサン:クロロホルムで再沈し、目的とする中間体3 4.5g(淡褐色固体 収率50%)を得た。
【0080】
(1−4)中間体4の合成
【化26】

アルゴン気流下、300mL三口フラスコに、中間体3 4g(0.015mol)、t−ブトキシカリウム 9g(0.08mol)、DMSO 100mLを加え、反応系を5℃に冷却した。続いて、沃化メチル 11g(0.08mol)をゆっくり滴下した後、一晩攪拌した。反応終了後、水を加え、有機層を酢酸エチルで抽出し飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去し、反応粗生成物を得た。カラムクロマトグラフィー(シリカゲル ヘキサン:酢酸エチル=95:5)にて精製し、目的とする中間体4 4.6g(白色結晶 収率95%)を得た。
【0081】
(1−5)中間体5の合成
【化27】

200mLフラスコに、中間体4 3.1g(10mmol)、クロロホルム 20mLを加えた。続いて、臭素 3.2g(20mmol)をゆっくりと滴下し、室温にて2時間攪拌した。反応終了後、反応液にチオ硫酸ナトリウム水溶液を加え、有機層を分液し、水、飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後ロータリーエバポレーターで溶媒を留去した。得られた粗結晶をエタノールで再結晶し、目的とする中間体5 3.7g(白色結晶、収率80%)を得た。
【0082】
(1−6)中間体6の合成
【化28】

アルゴン気流下3L三口フラスコに、中間体5 10g(0.021mol)、THF 200mLを加え、−65℃まで冷却した。続いて、n−ブチルリチウム 47mL(0.047mol,1mol/L(ヘキサン))をゆっくりと加えた。反応液を−70℃で6時間攪拌した後、ボロン酸トリイソプロポキシド 24g(0.13mol)を−65℃でゆっくりと加え、−70℃で1時間攪拌した後、室温にて一晩攪拌した。反応終了後、反応液に希塩酸を加え、pH=3にして有機層を分液し、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。酢酸エチルを加え、得られた結晶をろ別し、ヘキサンで3回洗浄し、目的とする中間体6 5.9g(白色結晶 収率69%)を得た。
【0083】
(1−7) 化合物(1)の合成
【化29】

アルゴン気流下300mL三口フラスコに、中間原料6 2.0g(5.0mmol)、2−(4−ブロモフェニル)−1−フェニルベンゾイミダゾール 3.9g(11mmol)、テトラキストリフェニルホスフィンパラジウム(0) 0.23g(0.20mmol)、1,2−ジメトキシエタン 50mL、2M炭酸ナトリウム水溶液 15mL(30mmol)を加え、8時間加熱還流した。反応終了後、有機層を水洗し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。得られた粗結晶を、トルエン 50mL、メタノール 100mLにて洗浄し、淡黄色粉末 3.4gを得た。このものは、FD−MS(フィールドディソプーションマススペクトル)の測定により、化合物(1)と同定した(収率80%)
【0084】
合成例2
化合物(2)の合成
【化30】

2−(4−ブロモフェニル)−1−フェニルベンゾイミダゾールの代わりに、2−フェニル−1−(4−ブロモフェニル)ベンゾイミダゾールを用いた以外は、化合物(1)の合成と同様の操作を行うことで化合物(2)を淡黄色粉末 として得た。収量3.0g(収率70%)を得た。このものは、FD−MS(フィールドディソプーションマススペクトル)の測定により、化合物(2)と同定した。
【0085】
合成例3
化合物(3)の合成
【化31】

2−(4−ブロモフェニル)−1−フェニルベンゾイミダゾールの代わりに、5−ブロモ−1,2−ジフェニルベンゾイミダゾールを用いた以外は、化合物(1)の合成と同様の操作を行うことで化合物(3)を淡黄色粉末 として得た。収量3.5g(収率82%)を得た。このものは、FD−MS(フィールドディソプーションマススペクトル)の測定により、化合物(3)と同定した。
【0086】
合成例4
(4−1)中間体7の合成
【化32】

アルゴン気流下、3L三口フラスコに、2,7−ジブロモフルオレン 32g(0.1mol)、t−ブトキシカリウム 27g(0.24mol)、DMSO 500mLを加え、反応系を5℃に冷却した。続いて、沃化メチル 34g(0.24mol)をゆっくり滴下した後、一晩攪拌した。反応終了後、水を加え、有機層を酢酸エチルで抽出し飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去し、反応粗生成物を得た。カラムクロマトグラフィー(シリカゲル ヘキサン:酢酸エチル=95:5)にて精製し、目的とする中間体7 34g(白色結晶 収率98%)を得た。
【0087】
(4−2)中間体8の合成
【化33】

アルゴン気流下3L三口フラスコに、中間体7 35g(0.1mol)、THF 1Lを加え、−65℃まで冷却した。続いて、n−ブチルリチウム 220mL(0.22mol,1mol/L(ヘキサン))をゆっくりと加えた。反応液を−70℃で6時間攪拌した後、ボロン酸トリイソプロポキシド 45g(0.24mol)を−65℃でゆっくりと加え、−70℃で1時間攪拌した後、室温にて一晩攪拌した。反応終了後、反応液に希塩酸を加え、pH=3にして有機層を分液し、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。酢酸エチルを加え、得られた結晶をろ別し、ヘキサンで3回洗浄し、目的とする中間体8 20g(白色結晶、収率70%)を得た。
【0088】
(4−3)中間体9の合成


【化34】

アルゴン気流下、1L三口フラスコに、中間原料8 14g(0.05mol)、2−ブロモ安息香酸エチルエステル 25g(0.11mol)、テトラキストリフェニルホスフィンパラジウム(0) 2.8g(5mmol)、トルエン 200mL、炭酸ナトリウム 16g(0.15mol)/水150mL を加え、8時間加熱還流した。反応終了後、有機層を水洗し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。得られた粗結晶をエタノールで再結晶し、目的とする中間体9 12g(白色結晶、収率50%)を得た。
【0089】
(4−4)中間体10の合成
【化35】

1Lフラスコに、中間体9 12g(0.025mol)、80%硫酸 200mLを加え、180℃で3時間加熱攪拌した。反応終了後、硫酸を分液し、塩化メチレンを加えた後、炭酸水素ナトリウム水溶液で洗浄した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去し、反応粗生成物を得た。カラムクロマトグラフィー(シリカゲル ヘキサン:酢酸エチル=95:5)にて精製し、目的とする中間体10 6.2g(灰色結晶、収率60%)を得た。
【0090】
(4−5)中間体11の合成
【化36】

500mLフラスコに、中間体10 6g(0.015mol)、ヒドラジン一水和物 4mL(0.075mol)、水酸化カリウム 5g(0.076mol)、ジエチレングリコール 100mLを加え、200℃で2時間加熱攪拌した。反応終了後、水を加え、析出物をろ別した。反応粗生成物をヘキサン:クロロホルムで再沈し、目的とする中間体11 2.9g(淡褐色固体 収率50%)を得た。
【0091】
(4−5)中間体12の合成
【化37】

アルゴン気流下300mL三口フラスコに、中間体11 2.9g(7.5mmol)、t−ブトキシカリウム 3.8g(40mol)、DMSO 100mLを加え、反応系を5℃に冷却した。続いて、沃化メチル 5.6g(40mol)をゆっくり滴下した後、一晩攪拌した。反応終了後、水を加え、有機層を酢酸エチルで抽出し飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去し、反応粗生成物を得た。カラムクロマトグラフィー(シリカゲル ヘキサン:酢酸エチル=95:5)にて精製し、目的とする中間体12 3.0g(白色結晶 収率90%)を得た。
【0092】
(4−5)中間体13の合成
【化38】

200mLフラスコに、中間体12 2.2g(5mmol)、クロロホルム 20mLを加えた。続いて、臭素1.6g(10mmol)をゆっくりと滴下し、室温にて2時間攪拌した。反応終了後、反応液にチオ硫酸ナトリウム水溶液を加え、有機層を分液し、水、飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後ロータリーエバポレーターで溶媒を留去した。得られた粗結晶をエタノールで再結晶し、目的とする中間体13 2.1g(白色結晶、収率70%)を得た。
【0093】
(4−6)中間体14の合成
【化39】

アルゴン気流下3L三口フラスコに、中間体13 2.1g(3.6mol)、THF 50mLを加え、−65℃まで冷却した。続いて、n−ブチルリチウム 8.0mL(8.0mol,1mol/L(ヘキサン))をゆっくりと加えた。反応液を−70℃で6時間攪拌した後、ボロン酸トリイソプロポキシド 4.0g(21mmol)を−65℃でゆっくりと加え、−70℃で1時間攪拌した後、室温にて一晩攪拌した。反応終了後、反応液に希塩酸を加え、pH=3にして有機層を分液し、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。酢酸エチルを加え、得られた結晶をろ別し、ヘキサンで3回洗浄し、目的とする中間体14 1.1g(白色結晶、収率59%)を得た。
【0094】
(4−7) 化合物(4)の合成
【化40】

アルゴン気流下300mL三口フラスコに、中間原料14 1.1g(2.1mmol)、2−(4−ブロモフェニル)−1−フェニルベンゾイミダゾール 1.6g(4.6mmol)、テトラキストリフェニルホスフィンパラジウム(0) 0.10g(0.09mmol)、1,2−ジメトキシエタン 20mL、2M炭酸ナトリウム水溶液 6.5mL(13mmol)を加え、8時間加熱還流した。反応終了後、有機層を水洗し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。得られた粗結晶を、トルエン 50mL、メタノール 100mLにて洗浄し、淡黄色粉末 1.6gを得た。このものは、FD−MS(フィールドディソプーションマススペクトル)の測定により、化合物(4)と同定した(収率78%)
【0095】
実施例1(有機EL素子の製造)
(1)有機EL素子の作製
25×75×1.1mmサイズのガラス基板上に、膜厚130nmのインジウムスズ酸化物からなる透明電極を設けた。このガラス基板にイソプロピルアルコールで超音波洗浄し、紫外線及びオゾンを照射して洗浄した。
次いで、透明電極付きガラス基板を、真空蒸着装置の蒸着槽内の基板ホルダーに装着するとともに、真空槽内の真空度を1×10―3Paに減圧した後、以下の蒸着条件で、陽極層上に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層および陰極層を順次積層して、有機EL素子を作製した。
正孔注入層:N’,N’’−ビス[4−(ジフェニルアミノ)フェニル]−N’,N’’−ジフェニルビフェニル−4,4’−ジアミン;蒸着条件2nm/sec;膜厚60nm
正孔輸送層:N,N’− ジ(ナフタレン−1−イル)−N,N’−ジフェニル−ベンジジン;蒸着条件2nm/sec;膜厚20nm
発光層:ホスト:2−t−ブチル−9,10−ジフェニルアントラセン;蒸着条件2nm/secとドーパント:テトラキス(2−ナフチル)−4,4’−ジアミノスチルベン;蒸着条件0.2nm/secを同時蒸着;膜厚40nm(ホスト:ドーパント=40:2)
電子輸送層:化合物(1);蒸着条件2nm/sec;膜厚20nm
電子注入層:フッ化リチウム;蒸着条件0.1nm/sec;膜厚1nm
陰極層:アルミニウム;蒸着条件2nm/sec;膜厚200nm
【0096】
(2)有機EL素子の評価
次にこの素子に通電試験を行ったところ、電圧6.0Vにて発光輝度が500cd/m2であり、発光色は青色であることを確認した。また、初期発光輝度を500cd/m2として定電流駆動させたところ、10%輝度減少時間は100時間であった。得られた結果を表1に示す。この素子を85℃で500時間保存したところ、駆動電圧に変化が見られなかった。
【0097】
実施例2〜4
実施例2〜4においては、電子輸送層に、実施例1の化合物(1)の代わりに、化合物(2)〜化合物(4)をそれぞれ用いた他は、実施例1と同様に有機EL素子を作製した。その結果、表1に示すように全て青色発光が観察され、発光輝度は、480〜510cd/m2であり、10%輝度減少時間は90〜110時間であった。
【0098】
【表1】

【0099】
比較例1及び2
比較例1及び2においては、電子輸送層に、実施例1の化合物(1)の代わりに、それぞれ以下の材料を用いた他は、実施例1と同様に有機EL素子を作製した。
その結果、表2に示すように全て青色発光が観察され、発光輝度は、400〜430cd/m2であり、10%輝度減少時間は50〜60時間であった。また、85℃で500時間保存時の駆動電圧は、1V以上増加した。
比較例1:化合物(A) トリス(8−ヒドロキシキノリノ)アルミニウム; 膜厚20nm
比較例2:化合物(B) トリス(2−(1−フェニルベンゾイミダゾリル)ベンゼン;膜厚20nm
【化41】

【0100】
【表2】

【0101】
以上より、本発明の材料を電子輸送材料として使用すると、低電圧で、著しく半減寿命が向上することが分かる。
【産業上の利用可能性】
【0102】
以上詳細に説明したように、本発明の含窒素複素環誘導体を電子輸送材料として使用すると、駆動電圧を低くでき、著しく長寿命化が図れることが分かった。このため、本発明の有機EL素子は、実用性に高く、壁掛けテレビの平面発光体やディスプレイのバックライト等の光源として有用である。有機EL素子、電子輸送材料、さらには電子写真感光体や有機半導体の電荷輸送材料としても用いることができる。


【特許請求の範囲】
【請求項1】
下記一般式(1)又は(2)で表される含窒素複素環誘導体。
【化1】

[一般式(1)及び(2)において、R1〜R10及びA1は、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5〜50のアリール基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の核原子数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。
ただし、一般式(1)において、R1とその隣接するベンゼン環のR2、及びR3とその隣接するベンゼン環のR4のうちの少なくとも1組が互いに結合して置換もしくは無置換の環を形成し、一般式(2)において、R6とその隣接するベンゼン環のR7、及びR9とその隣接するベンゼン環のR10のうちの少なくとも1組が互いに結合し置換もしくは無置換の環を形成している。また、同一ベンゼン環のR1とR2、R3とR4、R6とR7、又はR9とR10は互いに結合して置換もしくは無置換の環を形成していてもよい。
nは3〜6、mは2〜5、xは0〜3の整数を表し、
1〜R10及びA1が複数の場合、それらは、それぞれ同一でも異なっていてもよい。
HAr1〜HAr3は、それぞれ独立に、下記一般式(a)で示される含窒素複素環からR1a〜R6aのいずれかを取り除くことにより形成される一価の基である。
【化2】

(R1a〜R6aは、それぞれ独立に、水素原子、置換もしくは無置換の核原子数5〜50のアリール基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の核原子数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。)]
【請求項2】
一般式(1)で表される含窒素複素環誘導体が、下記一般式(1−a)、(1−b)又は(1−c)で表される化合物である請求項1に記載の含窒素複素環誘導体。
【化3】

(式中、HAr1及びHAr2は、前記と同じであり、R11〜R18は、それぞれ前記R1a〜R6aと同様の基を示す。)
【請求項3】
一般式(2)で表される含窒素複素環誘導体が、下記一般式(2−a)、(2−b)又は(2−c)で表される化合物である請求項1に記載の含窒素複素環誘導体。
【化4】

(式中、HAr2は前記と同じであり、R11〜R18は、それぞれ前記R1a〜R6aと同様の基を示す。)
【請求項4】
有機エレクトロルミネッセンス素子用材料である請求項1〜3のいずれかに記載の含窒素複素環誘導体。
【請求項5】
有機エレクトロルミネッセンス素子用電子注入材料又は電子輸送材料である請求項1〜3のいずれかに記載の含窒素複素環誘導体。
【請求項6】
有機エレクトロルミネッセンス素子用発光材料である請求項1〜3のいずれかに記載の含窒素複素環誘導体。
【請求項7】
陰極と陽極間に少なくとも発光層を含む1層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、請求項1〜3のいずれかに記載の含窒素複素環誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子。
【請求項8】
前記有機薄膜層が電子注入層又は電子輸送層を有し、該電子注入層又は該電子輸送層が、請求項1〜3のいずれかに記載の含窒素複素環誘導体を単独もしくは混合物の成分として含有する請求項7に記載の有機エレクトロルミネッセンス素子。
【請求項9】
前記発光層が、前記含窒素複素環誘導体を単独又は混合物の成分として含有する請求項7に記載の有機エレクトロルミネッセンス素子。
【請求項10】
前記含窒素複素環誘導体を含有する該電子注入層又は該電子輸送層が、還元性ドーパントを含有する請求項8に記載の有機エレクトロルミネッセンス素子。
【請求項11】
前記還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される少なくとも1種である請求項10に記載の有機エレクトロルミネッセンス素子。


【公開番号】特開2007−39406(P2007−39406A)
【公開日】平成19年2月15日(2007.2.15)
【国際特許分類】
【出願番号】特願2005−227615(P2005−227615)
【出願日】平成17年8月5日(2005.8.5)
【出願人】(000183646)出光興産株式会社 (2,069)
【Fターム(参考)】