説明

固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置

【課題】 固体電解質層とインターコネクタ層とを強固に接合できる固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置を提供する。
【解決手段】 対向する平行な主面と該主面同士を接続する対向する側面とを有し、多孔質の平板状である支持基板2の一方側主面に、燃料極層3、固体電解質層4、酸素極層5が配置され、支持基板2の他方側主面にインターコネクタ層6が配置され、固体電解質層4が支持基板2の一方側主面から側面を介して他方側まで延設され、固体電解質層4の両端部とインターコネクタ層6の両端部とが接合されており、支持基板2が、対向する平行な主面で構成される平坦部9と、該平坦部9の側面側にそれぞれ形成され主面よりも主面間の厚みに対して1.7〜6%外方に向けて突出する膨らみ部10とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置に関する。
【背景技術】
【0002】
近年、次世代エネルギーとして、燃料電池セルを電気的に直列に複数個接続してなるセルスタック装置を、収納容器内に収容してなる燃料電池装置が種々提案されている。
【0003】
従来のセルスタック装置を構成する燃料電池セルとしては、ガス流路を内部に有する支持基板の一方の主面上に多孔質な燃料極層、緻密質な固体電解質層および多孔質な酸素極層がこの順に積層され、他方の主面上に緻密質なインターコネクタが設けられたものが知られている。
【0004】
そして、燃料極層および固体電解質層の両端部が支持基板の側面を介して他方の主面まで延設され、該延設された固体電解質層の両端部に、インターコネクタの両端部がそれぞれ重畳され、接合されている(例えば、特許文献1参照)。
【0005】
近年においては、燃料電池セルとして、支持基板の側面を被覆する固体電解質層に発生する応力を低減するため、支持基板の幅方向両側に、主面よりも外方に突出する膨らみ部を有するものが知られている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−158529号公報
【特許文献2】特開2004−253279号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
従来の特許文献2の燃料電池セルでは、支持基板の幅方向両側に主面よりも外方に突出する膨らみ部を形成し、この膨らみ部において固体電解質層とインターコネクタ層とを接合しているが、支持基板の厚み方向に電流が流れるため、電流経路を短くし、かつ、支持基板の側面を被覆する固体電解質層に発生する応力を低減するためには、膨らみ部の主面からの突出量が大きくなり、この場合には、固体電解質層とインターコネクタ層との接合不良が発生するおそれがあった。
【0008】
すなわち、膨らみ部の主面からの突出量が大きくなると、膨らみ部に、支持基板の主面に対して大きく傾斜した状態で形成された固体電解質層の端部に、主面とほぼ平行なインターコネクタの端部が接合することになり、接合面が主面に対して大きく傾斜しており、かつ接合面積も小さくなるため、固体電解質層とインターコネクタ層との接合不良が発生するおそれがあった。
【0009】
本発明は、固体電解質層とインターコネクタ層とを強固に接合できる固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の固体酸化物形燃料電池セルは、対向する平行な主面と該主面同士を接続する対
向する側面とを有し、多孔質の平板状である支持基板の一方側主面に、第1電極、固体電
解質層、第2電極が配置され、前記支持基板の他方側主面にインターコネクタ層が配置され、前記固体電解質層が前記支持基板の一方側主面から前記側面を介して他方側まで延設され、前記固体電解質層の両端部と前記インターコネクタ層の両端部とが接合されており、前記支持基板が、前記対向する平行な主面で構成される平坦部と、該平坦部の前記側面側にそれぞれ形成され前記主面よりも前記主面間の厚みに対して1.7〜6%外方に向けて突出する膨らみ部とを有することを特徴とする。
【0011】
また、本発明の固体酸化物形燃料電池セルは、対向する平行な主面と該主面同士を接続する対向する側面とを有し、多孔質の平板状であり第1電極を兼ねる支持基板の一方側主面に、固体電解質層、第2電極が配置され、前記支持基板の他方側主面にインターコネクタ層が配置され、前記固体電解質層が前記支持基板の一方側主面から前記側面を介して他方側まで延設され、前記固体電解質層の両端部と前記インターコネクタ層の両端部とが接合されており、前記支持基板が、前記対向する平行な主面で構成される平坦部と、該平坦部の前記側面側にそれぞれ形成され前記主面よりも前記主面間の厚みに対して1.7〜6%外方に向けて突出する膨らみ部とを有することを特徴とする。
【0012】
本発明の燃料電池モジュールは、上記の燃料電池セルを収納容器内に複数収納してなることを特徴とする。
【0013】
本発明の燃料電池装置は、上記の燃料電池モジュールと、該燃料電池モジュールを動作させるための補機とを外装ケース内に収納してなることを特徴とする。
【発明の効果】
【0014】
本発明の固体酸化物形燃料電池セルでは、支持基板の膨らみ部が、主面から外方へ主面間の厚みに対して1.7〜6%外方に向けて突出するため、膨らみ部の主面からの突出量が小さく、固体電解質層の端部とインターコネクタ層の端部との接合面が、支持基板の主面とそれほど傾斜することなく広い面積で接合でき、固体電解質層とインターコネクタ層とを強固に接合できる。これにより、長期信頼性に優れた燃料電池モジュールならびに燃料電池装置を提供できる。
【図面の簡単な説明】
【0015】
【図1】固体酸化物形燃料電池セルの一例を示したものであり、(a)は横断面図、(b)は(a)の斜視図である。
【図2】(a)は、膨らみ部を誇張して示す図1の支持基板の横断面図であり、(b)は、膨らみ部を誇張して示す固体酸化物形燃料電池セルの横断面図である。
【図3】(a)は、平坦部の他方側主面において、固体電解質層の両端部とインターコネクタ層の両端部が接合している固体酸化物形燃料電池セルの横断面図であり、(b)は、固体電解質層の両端部間における他方側主面に形成された突出部上と、固体電解質層の両端部上に、インターコネクタ層が配置されている固体酸化物形燃料電池セルの横断面図である。
【図4】(a)はセルスタック装置を概略的に示す側面図、(b)は(a)のセルスタック装置の破線枠で囲った部分の一部を拡大した横断面図である。
【図5】燃料電池モジュールの一例を示す外観斜視図である。
【図6】燃料電池装置の一例を示す分解斜視図である。
【発明を実施するための形態】
【0016】
図1は、燃料電池セルの一実施形態を示すものであり、(a)は横断面図、(b)は(a)の斜視図である。なお、両図面において、燃料電池セル1の各構成を一部拡大等して示している。また、同一の部材に関しては同一の符号を付するものとし、以下同様とする

【0017】
燃料電池セル1は、中空平板形の形状をしており、全体的に見て柱状(より詳しくは楕円柱状)の導電性の多孔質支持基板(以下、単に支持基板ということがある)2を備えている。支持基板2の内部には、所定の間隔で長手方向Lの一端から他端まで貫通した複数のガス通路7が形成されており、燃料電池セル1はこの支持基板2上に各種の部材が設けられて構成されている。
【0018】
支持基板2は、図1、2に示されている形状から理解されるように、互いに平行な一対の主面(平坦面)nと、一対の主面nをそれぞれ接続する側面(弧状面)mとで構成されている。支持基板2は、対向する平行な主面nで構成される平坦部9と、該平坦部9の側面m側にそれぞれ形成された膨らみ部10を有している。
【0019】
支持基板2の一方の主面(上面)nには、緻密質なインターコネクタ6が支持基板2の長手方向Lの一端から他端にかけて設けられており、他方の主面(下面)nには、第1電極としての燃料極層3、固体電解質層4および第2電極としての酸素極層5がこの順に積層された積層体(発電部)が設けられている。
【0020】
燃料極層3は、インターコネクタ6が設けられていない他方の主面(平坦面:下面)n、両側面mおよび一方の主面の一部に設けられ、燃料極層3の外面を覆うように固体電解質層4が設けられており、支持基板2の下面に設けられた燃料極層3、固体電解質層4が、側面mを介して一方側の主面にまで形成され、固体電解質層4の両端部には、インターコネクタ層6の両端部が積層され、接合されている。
【0021】
言い換えれば、対向する平行な主面nと該主面n同士を接続する対向する側面mとを有する平板状の多孔質基板2は、緻密質な固体電解質層4および緻密質なインターコネクタ層6で取り囲まれ、封止されており、多孔質基板2内を通過する燃料ガスが外部に漏出することが防止されている。
【0022】
そして、支持基板2は、対向する平行な主面nで構成される平坦部9よりも側面m側に、主面nよりも外方に向けて突出する膨らみ部10を有するとともに、支持基板2の膨らみ部10が、主面よりも主面間の厚みに対して1.7〜6%外方に向けて突出している。すなわち、膨らみ部10の主面からの突出量t1は、支持基板2の主面間の厚み(平坦部9の厚み)をtとすると、0.017t〜0.06tとされている。膨らみ部10の主面からの突出量t1は、0.03t〜0.06tであることが望ましい。例えば、支持基板2の平坦部9における厚みtが5mm以下の場合には、膨らみ部10の主面からの突出量t1は、50〜300μmであることが望ましい。特には、100〜200μmであることが望ましい。本発明においては、特に、支持基板2の平坦部9における厚みが5mm以下の場合に有用である。
【0023】
インターコネクタ層6の両端部は、図2(b)に示すように、膨らみ部10の一部を被覆しており、膨らみ部10の上面に形成された固体電解質層4の両端部に積層され、接合されている。固体電解質層4を酸素極層5、燃料極層3で挟んだ発電部は、支持基板2の幅方向Bの両側に形成された膨らみ部10間の平坦部9の主面に形成されている。
【0024】
このような固体酸化物形燃料電池セルでは、支持基板2の膨らみ部10の主面から外方への突出量t1が0.017t〜0.06tとされているため、膨らみ部10に配置される固体電解質層4における応力を小さくできるとともに、膨らみ部10の主面からの突出量が0.017t〜0.06tと小さく、固体電解質層4の端部とインターコネクタ層6の端部との接合面が、支持基板2の主面とそれほど傾斜することなく広い面積で接合でき
、固体電解質層4とインターコネクタ層6とを強固に接合できる。これにより、長期信頼性に優れた燃料電池セルおよび燃料電池モジュール、さらには燃料電池装置を提供できる。
【0025】
すなわち、図2(b)で言えば、膨らみ部10の主面から外方への突出量t1が0.06t以下と小さいため、膨らみ部10の上面に形成された固体電解質層4の端部にインターコネクタ層6の端部が緩やかに傾斜した状態で積層して広い面積で接合でき、固体電解質層4の両端部とインターコネクタ層6の両端部とを強固に接合できる。
【0026】
また、固体電解質4、インターコネクタ層6の厚みを薄くすることが発電性能を向上させるために望ましいが、これらの厚みを薄くしたとしても、支持基板2の下面の平坦部と膨らみ部10の境界部分に形成された固体電解質層4、および支持基板2の上面の平坦部と膨らみ部10の境界部分に形成されたインターコネクタ層6にクラック等が生じることを抑制できる。
【0027】
また、膨らみ部10が主面から外方へ0.017t以上突出しているため、特に、厚さが5mm以下の支持基板2の側面付近における固体電解質4の応力を小さくできる。これにより、支持基板2の側面付近の固体電解質4に剥離やクラックが発生することを抑制できる。
【0028】
すなわち、支持基板2を薄くすることにより発電性能を向上できるが、支持基板2を薄くするほど、支持基板2の側面mの曲率半径が小さくなり、この側面mに形成される固体電解質層4に高い応力が生じるようになるが、膨らみ部10が主面から外方へ0.017t以上突出しているため、支持基板2の側面mの曲率半径が大きくなり、この側面mに形成される固体電解質層4に生じる応力を低減でき、固体電解質4にクラックや剥離が生じることを抑制できる。
【0029】
ここで、燃料電池セル1は、燃料極層3と酸素極層5との対面している部分が電極として機能することにより発電する。即ち、酸素極層5の外側に空気等の酸素含有ガスを流し、且つ支持基板2内のガス流路7に燃料ガス(水素含有ガス)を流し、所定の作動温度まで加熱することにより発電する。かかる発電によって生じた電流は、支持基板2の表面に設けられたインターコネクタ6を介して集電される。
【0030】
以下に、本発明の燃料電池セル1を構成する各部材について説明する。支持基板2は、ガス通路7の内部を流れる燃料ガスを燃料極層3まで透過させるためにガス透過性であること、インターコネクタ6を介して集電を行うために導電性であることが要求されることから、例えば、NiおよびNiOのうち少なくとも一方と、無機酸化物、例えば、特定の希土類酸化物とにより形成されることが好ましい。
【0031】
特定の希土類酸化物とは、支持基板2の熱膨張係数を固体電解質層4の熱膨張係数に近づけるために使用されるものであり、Y、Lu(ルテチウム)、Yb、Tm(ツリウム)、Er(エルビウム)、Ho(ホルミウム)、Dy(ジスプロシウム)、Gd、Sm、Pr(プラセオジム)からなる群より選択される少なくとも1種の元素を含む希土類酸化物が、NiおよびNiOのうち少なくとも一方との組み合わせで使用することができる。このような希土類酸化物の具体例としては、Y、Lu、Yb、Tm、Er、Ho、Dy、Gd、Sm、Prを例示することができ、NiおよびNiOのうち少なくとも一方との固溶、反応が殆どなく、また、熱膨張係数が固体電解質層4とほとんど同程度であり、かつ安価であるという点から、Y、Ybが好ましい。
【0032】
また、本発明においては、支持基板2の良好な導電率を維持し、かつ熱膨張係数を固体電解質層4と近似させるという点で、焼成−還元後における体積比率が、Ni:希土類元素酸化物(例えば、Ni:Y)が35:65〜65:35(Ni/(Ni+Y)がモル比で65〜86mol%)の範囲にあることが好ましい。なお、支持基板2中には、要求される特性が損なわれない限りの範囲で、他の金属成分や酸化物成分を含有していてもよい。
【0033】
また、支持基板2は、ガス透過性を有していることが必要であるため、通常、気孔率が30%以上、特に35〜50%の範囲にあることが好ましい。また、支持基板2の導電率は、50S/cm以上、より好ましくは300S/cm以上、特に好ましくは440S/cm以上とすることがよい。
【0034】
なお、支持基板2の幅は、例えば、15〜35mm、弧状面mの長さ(弧の長さ)は、例えば、2〜8mmであり、支持基板2の厚み(平坦面n間の厚み)は例えば、1.5〜5mmであることが好ましい。それにより、ある程度の強度を維持しつつ集電性を確保することができる。
【0035】
燃料極層3は、電極反応を生じさせるものであり、鉄族金属であるNiおよびNiOのうち少なくとも一方と、希土類元素が固溶したZrOとから形成することができる。なお、希土類元素としては、支持基板2において例示した希土類元素(Y等)を用いることができる。
【0036】
燃料極層3において、NiおよびNiOのうち少なくとも一方と、希土類元素が固溶したZrOの含有量は、焼成−還元後における体積比率が、Ni:希土類元素が固溶したZrO(例えば、Ni:YSZ)が35:65〜65:35の範囲にあるのが好ましい。さらに、この燃料極層3は多孔質で、その気孔率は15%以上、特に20〜40%の範囲にあるのが好ましく、その厚みは、1〜30μmとすることができる。
【0037】
固体電解質層4は、3〜15モル%のY(イットリウム)、Sc(スカンジウム)、Yb(イッテルビウム)等の希土類元素を含有する部分安定化あるいは安定化ZrOからなる緻密質なセラミックスを用いるのが好ましい。また、希土類元素としては、安価であるという点からYが好ましい。さらに、固体電解質層4は、ガス透過を防止するという点から、相対密度(アルキメデス法による)が93%以上、特に95%以上の緻密質であることが望ましく、かつその厚みが5〜50μmであることが好ましい。固体電解質層4は、ランタンガレート系材料、セリア系材料から構成されていても良い。
【0038】
なお、固体電解質層4と後述する酸素極層5の間に、固体電解質層4と酸素極層5との接合を強固とするとともに、固体電解質層4の成分と酸素極層5の成分とが反応して電気抵抗の高い反応層が形成されることを抑制する目的で中間層8を備えることもでき、図1に示した燃料電池セル1においては中間層8を備えた例を示している。
【0039】
ここで、中間層8は、Ce(セリウム)と他の希土類元素とを含有する組成にて形成することができ、例えば、(CeO1−x(REO1.5(REはSm、Y、Yb、Gdの少なくとも1種であり、xは0<x≦0.3を満足する数。)で表される組成を有していることが好ましい。さらには、電気抵抗を低減するという点から、REとしてSmやGdを用いることが好ましく、例えば10〜20モル%のSmO1.5またはGdO1.5が固溶したCeOからなることが好ましい。なお、中間層8は例えば2層より構成することもでき、この場合1層目を固体電解質層4と同時焼成により設けた後に、同時焼成よりも200℃以上低い温度にて2層目を別途焼成することが好ましい。
【0040】
また、酸素極層5は、ガス透過性を有する必要があり、従って、酸素極層5を形成する導電性セラミックス(ペロブスカイト型酸化物)は、気孔率が20%以上、特に30〜50%の範囲にあることが好ましい。さらに、酸素極層5の厚みは、集電性という点から30〜100μmとすることができる。
【0041】
酸素極層5を構成する導電性セラミックスとしては、いわゆるABO型のペロブスカイト型複合酸化物を主成分とする焼結体からなる導電性を有するセラミックスにより形成されるのが好ましく、遷移金属ペロブスカイト型酸化物、特にAサイトにSr(ストロンチウム)とLa(ランタン)が共存するLaSrCoFeO系酸化物(例えばLaSrCoFeO)、LaMnO系酸化物(例えばLaSrMnO)、LaFeO系酸化物(例えばLaSrFeO)、LaCoO系酸化物(例えばLaSrCoO)の少なくとも1種が好ましく、600〜1000℃程度の作動温度での電気伝導性が高いという点からLaSrCoFeO系酸化物が特に好ましい。なお、上記ペロブスカイト型酸化物においては、Bサイトに、Co(コバルト)とともにFe(鉄)やMn(マンガン)が存在しても良い。
【0042】
インターコネクタ6は、緻密質な導電性セラミックスにより形成されることが好ましいが、燃料ガス(水素含有ガス)および酸素含有ガスと接触するため、耐還元性、耐酸化性を有していることが必要である。このため、耐還元性、耐酸化性を有する導電性セラミックスとしては、一般に、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)が使用され、特に支持基板2と固体電解質層4との熱膨張係数を近づける目的から、LaCrO系酸化物が用いられる。インターコネクタ6は、LaCrO系酸化物以外の、例えば、LaTiO系酸化物や、耐熱性金属、導電性セラミックスを用いても形成できる。
【0043】
また、インターコネクタ6の厚みは、ガスのリーク防止と電気抵抗という点から、10〜50μmとすることができる。この範囲よりも厚みが薄いと、ガスのリークを生じやすく、またこの範囲よりも厚みが大きいと、電気抵抗が大きく、電位降下により集電機能が低下してしまうおそれがある。
【0044】
また、図示していないが、インターコネクタ6の外面(上面)には、P型半導体層を設けることが好ましい。集電部材(図示せず)を、P型半導体層を介してインターコネクタ6に接続させることにより、両者の接触がオーム接触となり、電位降下を少なくでき、集電性能の低下を有効に回避することが可能となる。
【0045】
このようなP型半導体層としては、遷移金属ペロブスカイト型酸化物からなる層を例示することができる。具体的には、電子伝導性が大きいもの、例えば、BサイトにMn、Fe、Coなどが存在するLaMnO系酸化物、LaFeO系酸化物、LaCoO系酸化物などの少なくとも一種からなるP型半導体セラミックスを使用することができる。このようなP型半導体層の厚みは、一般に、30〜100μmとすることができる。
【0046】
また、支持基板2とインターコネクタ6との間には、インターコネクタ6と支持基板2との間の熱膨張係数差を軽減する等のために密着層(図示せず)を設けることもできる。
【0047】
密着層は、例えば、希土類元素酸化物、希土類元素が固溶したZrO、希土類元素が固溶したCeOのうち少なくとも1種と、NiおよびNiOのうち少なくとも一方とから形成することができる。より具体的には、例えばYとNiおよびNiOのうち少なくとも一方からなる組成や、Yが固溶したZrO(YSZ)とNiおよびNiOのうち少なくとも一方からなる組成、Y、Sm、Gd等が固溶したCeOとNiおよびNiOのうち少なくとも一方からなる組成から形成することができる。なお、希土類元素酸化
物や希土類元素が固溶したZrO(CeO)と、NiおよびNiOのうち少なくとも一方とは、焼成−還元後における体積比率が40:60〜60:40の範囲となるように形成することが好ましい。
【0048】
なお、密着層を設ける場合においては、密着層の厚みを適宜設定して、固体電解質層4および燃料極層3の支持基板2側にインターコネクタ6の端部が介在するように設けることで、インターコネクタ6と固体電解質層4や燃料極層3とが剥離を生じることを抑制することができる。
【0049】
以上説明した本発明の燃料電池セル1の作製方法について説明する。
【0050】
先ず、NiおよびNiOの少なくとも一方の粉末と、Yなどの希土類酸化物の粉末と、有機バインダーと、溶媒とを混合して坏土を調製し、この坏土を用いて押出成形法により支持基板成形体を作製し、これを乾燥する。なお、支持基板成形体として、支持基板成形体を900〜1000℃にて2〜6時間仮焼した仮焼体を用いてもよい。
【0051】
図2(a)のような膨らみ部を有する支持基板を作製するためには、膨らみ部を形成するような押出成形用の金型を用いる。
【0052】
次に、例えば所定の調合組成に従いNiO、Yが固溶したZrO(YSZ)の素原料を秤量、混合する。この後、混合した粉体に、有機バインダーおよび溶媒を混合して燃料極層用スラリーを調製する。
【0053】
さらに、希土類元素が固溶したZrO粉末に、トルエン、バインダー、市販の分散剤等を加えてスラリー化したものをドクターブレード等の方法により、7〜75μmの厚さに成形してシート状の固体電解質層成形体を作製する。得られたシート状の固体電解質層成形体上に燃料極層用スラリーを塗布して燃料極層成形体が形成されたシート状の積層体成形体を形成する。このシート状の積層体成形体を、燃料極層成形体を下面として支持基板成形体に積層する。
【0054】
続いて固体電解質層4と酸素極層5との間に配置する中間層8成形体を形成する。
【0055】
例えば、GdO1.5が固溶したCeO粉末を用いた原料粉末に、溶媒としてトルエンを添加し、中間層用スラリーを作製し、このスラリーを固体電解質層成形体上に塗布して中間層成形体を作製する。なお、シート状の中間層成形体を作製し、これを固体電解質層成形体上に積層してもよい。
【0056】
続いて、インターコネクタ用材料(例えば、Mgを含有するLaCrO系酸化物粉末)、有機バインダー及び溶媒を混合してスラリーを調製し、スクリーン印刷にて積層体成形体の支持基板成形体上に塗布した。なお、固体電解質層成形体の周方向における端部に重なるようにインターコネクタを設けた。
【0057】
次いで、上記の積層体成形体を脱バインダー処理し、酸素含有雰囲気中、1400℃〜1600℃にて2〜6時間、同時焼結(同時焼成)する。
【0058】
なお、中間層8を2層から形成する場合には、酸素極層側の中間層は、同時焼成された中間層8(1層目)の上面に、上述の中間層用スラリーを塗布した後、上記同時焼成時の温度よりも200℃以上低い温度にて焼成する。
【0059】
次いで、酸素極層用材料(例えば、LaCoO系酸化物粉末)、溶媒および増孔剤を
含有するスラリーをディッピング等により中間層8上に塗布し、1000〜1300℃で、2〜6時間焼き付けることにより、図1に示す構造の燃料電池セル1を製造できる。なお、燃料電池セル1は、その後、内部に水素ガスを流し、支持基板2および燃料極層3の還元処理を行なうのが好ましい。その際、例えば750〜1000℃にて5〜20時間還元処理を行なうのが好ましい。
【0060】
図3(a)は、他の形態の固体酸化物形燃料電池セルを示すもので、この形態では、固体電解質層4が、支持基板2の一方側主面から膨らみ部10を介して平坦部9の他方側主面mまで延設され、該平坦部9の他方側主面において、固体電解質層4の両端部とインターコネクタ層6の両端部が接合している。言い換えれば、固体電解質層4は平坦部9の他方側主面まで延設され、固体電解質層4の端部は他方側主面に主面とほぼ平行に形成され、該平坦な固体電解質層4の端部上面に、インターコネクタ層6の端部が接合している。
【0061】
このような固体酸化物形燃料電池セルでは、主面とほぼ平行であり平坦な固体電解質層成形体の両端部上および両端部間に、インターコネクタ層6のスラリーを塗布して、焼成することにより、平坦な主面上で、固体電解質層4の両端部とインターコネクタ層6の両端部とが接合できるため、製造が容易で、接合面が主面と平行でかつ接合面積が広くなるため、接合強度を向上できる。
【0062】
図3(b)は、さらに他の形態の固体酸化物形燃料電池セルを示すもので、この形態では、固体電解質層4が、支持基板2の一方側主面から膨らみ部10を介して平坦部9の他方側主面mまで延設され、さらに、固体電解質層4の両端部間における他方側主面に外面が平坦状の突出部2aを有しており、支持基板2の他方側主面からの突出部2aの高さが、支持基板2の他方側主面からの固体電解質層4の端部の高さと実質的に同一高さとされている。そして、平坦部9の他方側主面において、固体電解質層4の両端部の上面と、突出部2aの上面に、インターコネクタ層6が積層され、接合している。
【0063】
このような固体酸化物形燃料電池セルでは、平坦な固体電解質層成形体の両端部間に、インターコネクタ層6のスラリーを塗布して、焼成することにより、平坦な主面上で、固体電解質層4の両端部とインターコネクタ層6の両端部が接合できるため、製造が容易で、接合面が主面と平行でかつ接合面積が広くなり、接合強度を向上できるとともに、インターコネクタ層6の厚みもほぼ均一となるため、インターコネクタ層6を支持基板2に強固に無理なく接合できる。
【0064】
図4は、上述した燃料電池セル1の複数個を、集電部材14を介して電気的に直列に接続して構成されるセルスタック装置の一例を示したものであり、(a)はセルスタック装置12を概略的に示す側面図、(b)は(a)のセルスタック装置12の一部拡大平面図であり、(a)で示した点線枠で囲った部分を抜粋して示している。なお、(b)において(a)で示した点線枠で囲った部分に対応する部分を明確とするために矢印にて示している。
【0065】
なお、セルスタック装置12においては、各燃料電池セル1を集電部材14を介して立設して配列することでセルスタック13を構成しており、各燃料電池セル1の一端部(下端部)が、燃料電池セル1に燃料ガスを供給するためのガスタンク15に、ガラスシール材等の接着剤により固定されている。また、燃料電池セル1の配列方向の両端からセルスタック13を挟持するように、ガスタンク15に下端が固定された弾性変形可能な導電部材16を具備している。
【0066】
また、図4に示す導電部材16においては、燃料電池セル1の配列方向に沿って外側に向けて延びた形状で、セルスタック13(燃料電池セル1)の発電により生じる電流を引
出すための電流引出部17が設けられている。
【0067】
図5は、セルスタック装置12を収納容器内に収納してなる燃料電池モジュール20の一例を示す外観斜視図であり、直方体状の収納容器21の内部に、図4に示したセルスタック装置12を収納して構成されている。
【0068】
なお、燃料電池セル1にて使用する燃料ガスを得るために、天然ガスや灯油等の原燃料を改質して燃料ガスを生成するための改質器22がセルスタック13の上方に配置されている。そして、改質器22で生成された燃料ガスは、ガス流通管23を介してガスタンク15に供給され、ガスタンク15を介して燃料電池セル1の内部に設けられたガス通路7に供給される。
【0069】
なお、図5においては、収納容器21の一部(前後面)を取り外し、内部に収納されているセルスタック装置12および改質器22を後方に取り出した状態を示している。ここで、図5に示した燃料電池モジュール20においては、セルスタック装置12を、収納容器21内にスライドして収納することが可能である。なお、セルスタック装置12は、改質器22を含むものとしても良い。
【0070】
また収納容器21の内部に設けられた酸素含有ガス導入部材24は、図5においてはガスタンク15に並置されたセルスタック13の間に配置されるとともに、酸素含有ガスが燃料ガスの流れに合わせて、燃料電池セル1の側方を下端部から上端部に向けて流れるように、燃料電池セル1の下端部に酸素含有ガスを供給する。そして、燃料電池セル1の燃料ガス通路7より排出される燃料ガスと酸素含有ガスとを燃料電池セル1の上端部側で燃焼させることにより、燃料電池セル1の温度を上昇させることができ、セルスタック装置12の起動を早めることができる。また、燃料電池セル1の上端部側にて、燃料電池セル1の燃料ガス通路7から排出される燃料ガスと酸素含有ガスとを燃焼させることにより、燃料電池セル1(セルスタック13)の上方に配置された改質器22を効率よく温めることができる。それにより、改質器22で効率よく改質反応を行うことができる。
【0071】
さらに、燃料電池モジュール20においても、長期信頼性が向上した燃料電池セル1を用いて構成されるセルスタック装置12を収納容器21内に収納してなることから、長期信頼性が向上した燃料電池モジュール20とすることができる。
【0072】
図6は、外装ケース内に図5で示した燃料電池モジュール20と、燃料電池セルスタック装置12を動作させるための補機とを収納してなる燃料電池装置の一例を示す分解斜視図である。なお、図6においては一部構成を省略して示している。
【0073】
図6に示す燃料電池装置25は、支柱26と外装板27から構成される外装ケース内を仕切板28により上下に区画し、その上方側を上述した燃料電池モジュール20を収納するモジュール収納室29とし、下方側を燃料電池モジュール20を動作させるための補機類を収納する補機収納室30として構成されている。なお、補機収納室30に収納する補機類を省略して示している。
【0074】
また、仕切板28には、補機収納室30の空気をモジュール収納室29側に流すための空気流通口31が設けられており、モジュール収納室29を構成する外装板27の一部に、モジュール収納室29内の空気を排気するための排気口32が設けられている。
【0075】
このような燃料電池装置25においては、上述したように、長期信頼性を向上することができる燃料電池モジュール20をモジュール収納室29に収納して構成されることにより、長期信頼性の向上した燃料電池装置25とすることができる。
【0076】
以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。例えば、各部材間に機能に合わせて各種中間層を形成しても良い。
【0077】
また、上記形態では、第1電極として燃料極層3を、第2電極として酸素極層5を用いたが、第1電極として酸素極層を、第2電極として燃料極層を用いても良い。この場合には、支持基板2内を酸素含有ガスが流れることになる。
【0078】
さらに、上記形態では、支持基板2に燃料極層3、固体電解質層4、酸素極層5を形成したが、燃料極を兼ねる支持基板に、固体電解質層、酸素極層を形成した燃料電池セルであっても、酸素極を兼ねる支持基板に、固体電解質層、燃料極層を形成した燃料電池セルであっても、上記形態と同様の効果を得ることができる。
【実施例】
【0079】
先ず、平均粒径0.5μmのNiO粉末と、平均粒径0.9μmのY粉末を焼成−還元後における体積比率が、Niが48体積%、Yが52体積%になるように混合し、有機バインダーと溶媒にて作製した坏土を押出成形法にて成形し、乾燥、脱脂して支持基板成形体を作製した。成形に用いる金型は、支持基板における膨らみ部の突出量t1が、焼成後に、表1に示す突出量となるような金型を用いた。
【0080】
次に、8mol%のYが固溶したマイクロトラック法による粒径が0.8μmのZrO粉末(固体電解質層原料粉末)と有機バインダーと溶媒とを混合して得られたスラリーを用いて、ドクターブレード法にて固体電解質層用シートを作製した。
【0081】
次に平均粒径0.5μmのNiO粉末とYが固溶したZrO粉末と有機バインダーと溶媒とを混合した燃料極層用スラリーを作製し、固体電解質層用シート上に燃料極層用スラリーを塗布して燃料極層成形体を形成したシート状の積層体成形体を形成した。続いて、積層体成形体の燃料極層成形体側の面を支持基板成形体の所定位置に積層した。
【0082】
続いて、上記のように燃料極層成形体および固体電解質層成形体を積層した積層体成形体を1000℃にて3時間仮焼処理した。
【0083】
次に、CeOを85モル%、他の希土類元素の酸化物(GdO1.5)を15モル%含む複合酸化物に、アクリル系バインダーとトルエンとを添加し、混合して作製した中間層用のスラリーを、固体電解質層仮焼体上にスクリーン印刷法にて塗布し、中間層成形体を作製した。
【0084】
続いて、LaCrO系酸化物と、有機バインダーと溶媒とを混合したインターコネクタ用スラリーを用いて、燃料極層成形体および固体電解質層成形体が形成されていない支持基板成形体の他方側の平坦部上に、インターコネクタの両端部が固体電解質層上に位置するように、スクリーン印刷によりインターコネクタを設けた。
【0085】
そして、これらの各層が積層された各積層体を、大気中1510℃にて3時間同時焼成(焼結)した。
【0086】
次に、平均粒径2μmのLaSrCoFeOの粉末と、イソプロピルアルコールとからなる混合液を作製し、積層焼結体の中間層の表面に塗布し、酸素極層成形体を形成し、1100℃にて4時間で焼き付け、酸素極層を形成し、表1に示す構成の燃料電池セルを作製した。
【0087】
なお、作製した燃料電池セルの寸法は25mm×200mmで、支持基板の気孔率35%、燃料極層の厚さは10μm、気孔率24%、酸素極層の厚みは50μm、気孔率40%、固体電解質層の相対密度は97%であった。
【0088】
燃料電池セルの支持基板の主面間における厚みt、固体電解質層の厚み、インターコネクタ層の厚み、膨らみ部の有無、膨らみ部の主面からの突出量t1を変化させた燃料電池セルを各10個ずつ作製した。突出量t1は、主面間における厚みtに対する比率として記載した。
【0089】
これらの燃料電池セルについて、固体電解質層の両端部とインターコネクタ層の両端部との接合部分におけるクラック、剥離の有無を、走査型電子顕微鏡にて観察して確認し、その結果を表1に記載した。表1において、3/10とは、10本の燃料電池セル中に3本について、クラックや剥離が生じたことを意味する。
【0090】
【表1】

【0091】
表1より、支持基板の膨らみ部の主面から外方への突出量t1が、主面間における厚みtに対して1.7〜6%である場合には、固体電解質層の両端部とインターコネクタ層の両端部との接合部分において、クラック、剥離がなく、固体電解質層の両端部とインターコネクタ層の両端部とを強固に接合できることがわかる。
【符号の説明】
【0092】
1:燃料電池セル
2:支持基板
2a:突出部
3:燃料極層
4:固体電解質層
5:酸素極層
6:インターコネクタ層
7:ガス通路
9:平坦部
10:膨らみ部
12:セルスタック装置
20:燃料電池モジュール
25:燃料電池装置

【特許請求の範囲】
【請求項1】
対向する平行な主面と該主面同士を接続する対向する側面とを有し、多孔質の平板状である支持基板の一方側主面に、第1電極、固体電解質層、第2電極が配置され、前記支持
基板の他方側主面にインターコネクタ層が配置され、前記固体電解質層が前記支持基板の一方側主面から前記側面を介して他方側まで延設され、前記固体電解質層の両端部と前記インターコネクタ層の両端部とが接合されており、前記支持基板が、前記対向する平行な主面で構成される平坦部と、該平坦部の前記側面側にそれぞれ形成され前記主面よりも前記主面間の厚みに対して1.7〜6%外方に向けて突出する膨らみ部とを有することを特徴とする固体酸化物形燃料電池用セル。
【請求項2】
対向する平行な主面と該主面同士を接続する対向する側面とを有し、多孔質の平板状であり第1電極を兼ねる支持基板の一方側主面に、固体電解質層、第2電極が配置され、前記支持基板の他方側主面にインターコネクタ層が配置され、前記固体電解質層が前記支持基板の一方側主面から前記側面を介して他方側まで延設され、前記固体電解質層の両端部と前記インターコネクタ層の両端部とが接合されており、前記支持基板が、前記対向する平行な主面で構成される平坦部と、該平坦部の前記側面側にそれぞれ形成され前記主面よりも前記主面間の厚みに対して1.7〜6%外方に向けて突出する膨らみ部とを有することを特徴とする固体酸化物形燃料電池用セル。
【請求項3】
前記固体電解質層が、前記支持基板の一方側主面から前記膨らみ部を介して前記平坦部の他方側主面まで延設され、該平坦部の他方側主面において、前記固体電解質層の両端部と前記インターコネクタ層の両端部が接合していることを特徴とする請求項1または2に記載の固体酸化物形燃料電池用セル。
【請求項4】
前記支持基板は、前記固体電解質層の両端部間における前記他方側主面に外面が平坦状の突出部を有しており、前記支持基板の他方側主面からの前記突出部の高さが、前記支持基板の他方側主面からの前記固体電解質層の端部の高さと実質的に同一高さとされており、前記固体電解質層の両端部上に前記インターコネクタ層の両端部が配置されていることを特徴とする請求項3に記載の固体酸化物形燃料電池セル。
【請求項5】
請求項1乃至4のうちいずれかに記載の固体酸化物形燃料電池セルを収納容器内に複数収納してなることを特徴とする燃料電池モジュール。
【請求項6】
請求項5に記載の燃料電池モジュールと、該燃料電池モジュールを動作させるための補機とを外装ケース内に収納してなることを特徴とする燃料電池装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−97977(P2013−97977A)
【公開日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2011−238962(P2011−238962)
【出願日】平成23年10月31日(2011.10.31)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】