説明

地中熱ヒートポンプ装置

【課題】負荷運転中、蒸発器として機能する熱源側熱交換器側の冷媒配管の氷結を正確に判断し、精度良く解氷運転を行なえる地中熱ヒートポンプ装置を提供する。
【解決手段】負荷運転中に、熱源側熱交換器7側の冷媒温度を検出する冷媒温度検出手段10の検出温度が零度以下、且つ、外気温度検出手段11の検出温度が冷媒温度検出手段10の検出温度より高い時に所定の単位時間を計時する計時手段24と、所定の単位時間毎に冷媒温度検出手段10の検出温度と外気温度検出手段11の検出温度との温度差に応じた加算値を決定する加算値決定手段25と、加算値決定手段25で決定した加算値を積算する積算手段26とを設け、負荷運転中に、積算手段26での積算値が予め設定した設定値に到達したら、熱源側熱交換器7側の冷媒配管8が氷結していると判断し、熱源側熱交換器7側の冷媒配管8に高温冷媒を流して解氷する解氷運転を行うようにした。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、年間を通じて温度が比較的安定している地中熱をヒートポンプを介して利用する地中熱ヒートポンプ装置に関するものである。
【背景技術】
【0002】
従来この種の地中熱ヒートポンプ装置においては、図11に示すように、圧縮機101、負荷側熱交換器102、膨張弁103、熱源側熱交換器104を冷媒配管105で環状に接続したヒートポンプ回路106と、地盤G中に埋設された地中熱交換器107と、地中熱交換器107と熱源側熱交換器104との間を熱媒配管108で環状に接続した地中熱循環回路109と、地中熱循環回路109に熱媒として不凍液を循環させる地中熱循環ポンプ110とを備え、年間を通じて温度が比較的安定している地中熱を地中熱交換器107により採熱し、熱源側熱交換器104を蒸発器、負荷側熱交換器102を凝縮器として機能させて、負荷側で被空調空間の空気を加熱する暖房運転や給湯水を加熱する沸き上げ運転等の負荷運転を行うものがあった。(例えば、特許文献1参照。)
【0003】
この従来の地中熱ヒートポンプ装置は、前記負荷運転を継続して行い、地中熱交換器107により地盤G中からの採熱を続けると、時間の経過に伴い地盤G中の温度が低下していく。特に、寒冷地で冬場に24時間暖房運転を行うような場合には、それが顕著に現れる。
【0004】
前記負荷運転が継続して行われ、地盤G中の温度が低下し、それにより地中熱交換器107から熱源側熱交換器104に流入する不凍液の温度が低くなり、例えば2℃程度になった場合、熱源側熱交換器104を流れる冷媒の温度は0℃またはマイナス域になっている。
【0005】
そうすると、膨張弁103から圧縮機101に至るまでの熱源側熱交換器104側の冷媒配管105、つまり、低圧側の冷媒配管105も同じくマイナス域となり、低圧側の冷媒配管105の表面に外気中の水分が氷結し、時間の経過に伴い徐々に氷が成長して積層していくこととなる。
【0006】
ところが、低圧側の冷媒配管105が氷結し、氷が成長して積層したとしても、熱源側熱交換器104での熱交換能力は低下することがなく、前記負荷運転を継続することについては何ら問題が生じることはなかった。
【0007】
しかし、低圧側の冷媒配管105が氷結し、その氷が成長し積層し過ぎると、氷がヒートポンプ回路106を内蔵している筐体や筐体内の仕切板等に干渉し、それによる押力が低圧側の冷媒配管105にかかって冷媒配管105が損傷するおそれがあり、また、膨張弁103等の機能部品も氷結して損傷するおそれがあり、さらに、成長した氷が筐体に筐体内の仕切板等に接触すると、圧縮機101の振動が氷を介して筐体に伝わり、騒音を発生するという問題が生じることを本願出願人は知見した。
【0008】
そこで、本願出願人は、先に下記の特許文献2にて、負荷運転中に、低圧側の冷媒配管に設けた冷媒温度センサの検出する冷媒温度が零度以下、且つ、外気温度センサの検出する外気温度が冷媒温度センサの検出する冷媒温度より高い時の時間を計測し、その計測時間が予め設定した設定時間に到達したら、低圧側の冷媒配管が氷結していると判断し、低圧側の冷媒配管に高温冷媒を流して解氷する解氷運転を行う地中熱ヒートポンプ装置を提供した。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2009−236403号公報
【特許文献2】特願2010−51278号
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかし、本願発明者らは、試行を繰り返した結果、低圧側の冷媒配管に設けた冷媒温度センサの検出する冷媒温度が零度以下、且つ、外気温度センサの検出する外気温度が冷媒温度センサの検出する冷媒温度より高い時の時間を計測した計測時間が同じであっても、低圧側の冷媒配管の氷の積層度合、つまり、氷の厚みにばらつきがあることを知見した。それにより、計測時間が設定時間に到達した際に、無駄に解氷運転を行ってしまうという問題が生じたり、また、解氷運転を行っても氷が解け残ってしまうという問題が生じたりすることが予想された。
【0011】
そこで、本発明は、無駄に解氷運転を行うことがなく、また、解氷運転を行っても氷が解け残ることがなく、低圧側の冷媒配管の氷結を正確に判断し、必要なタイミングで精度良く解氷運転を行うことができる地中熱ヒートポンプ装置を提供することを目的とするものである。
【課題を解決するための手段】
【0012】
この発明は上記課題を解決するために、特に請求項1ではその構成を、圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、地中に埋設された地中熱交換器と、該地中熱交換器と前記熱源側熱交換器との間を熱媒配管で環状に接続した地中熱循環回路と、該地中熱循環回路に熱媒を循環させる地中熱循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、外気温度を検出する外気温度検出手段とを備え、前記地中熱交換器により地中熱を採熱し、前記熱源側熱交換器を蒸発器として機能させると共に、前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転を行う地中熱ヒートポンプ装置において、前記負荷運転中に、前記冷媒温度検出手段の検出する冷媒温度が零度以下、且つ、前記外気温度検出手段の検出する外気温度が前記冷媒温度検出手段の検出する冷媒温度より高い時に所定の単位時間を計時する計時手段と、前記所定の単位時間毎に前記冷媒温度検出手段の検出する冷媒温度と前記外気温度検出手段の検出する外気温度との温度差に応じた加算値を決定する加算値決定手段と、前記加算値決定手段で決定した加算値を積算する積算手段と、前記積算手段での積算値が予め設定した設定値に到達したら、前記熱源側熱交換器側の冷媒配管が氷結していると判断する氷結判断手段とを設け、前記氷結判断手段によって前記熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、前記熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うものとした。
【0013】
また、請求項2では、請求項1記載の地中熱ヒートポンプ装置において、前記圧縮機の動作状態を検出し、その動作状態に応じて前記加算値決定手段により決定された加算値を補正する補正手段を設け、前記積算手段は前記補正手段で補正した加算値を積算するものとした。
【0014】
また、請求項3では、圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、地中に埋設された地中熱交換器と、該地中熱交換器と前記熱源側熱交換器との間を熱媒配管で環状に接続した地中熱循環回路と、該地中熱循環回路に熱媒を循環させる地中熱循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、外気温度を検出する外気温度検出手段とを備え、前記地中熱交換器により地中熱を採熱し、前記熱源側熱交換器を蒸発器として機能させると共に、前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転を行う地中熱ヒートポンプ装置において、前記負荷運転中に、前記冷媒温度検出手段の検出する冷媒温度が零度以下、且つ、前記外気温度検出手段の検出する外気温度が前記冷媒温度検出手段の検出する冷媒温度より高い時に所定の単位時間を計時する計時手段と、前記圧縮機の動作状態を検出し、前記所定の単位時間毎に前記圧縮機の動作状態に応じた加算値を決定する加算値決定手段と、前記加算値決定手段で決定した加算値を積算する積算手段と、前記積算手段での積算値が予め設定した設定値に到達したら、前記熱源側熱交換器側の冷媒配管が氷結していると判断する氷結判断手段とを設け、前記氷結判断手段によって前記熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、前記熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うものとした。
【0015】
また、請求項4では、請求項1から3の何れか一項に記載の地中熱ヒートポンプ装置において、前記冷媒温度検出手段の代わりに、前記熱源側熱交換器から流出し前記地中熱交換器に流入する熱媒の温度を検出する地中往き温度検出手段を設けたものとした。
【発明の効果】
【0016】
この発明の請求項1によれば、負荷運転中に、氷結判断手段によって熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うので、熱源側熱交換器側の冷媒配管の氷結に起因する冷媒配管や膨張弁等の機能部品の損傷を未然に防止することができると共に、熱源側熱交換器側の冷媒配管の氷結に起因する騒音の発生を未然に防止することができるものである。
【0017】
さらに、計時手段によって熱源側熱交換器側の冷媒配管の氷結条件がそろった時に所定の単位時間計時し、加算値決定手段によって所定の単位時間毎に冷媒温度と外気温度との温度差に応じた加算値を決定し、積算手段によって加算値決定手段で決定した加算値を積算し、氷結判断手段は、積算手段での積算値が予め設定した設定値に到達したら、熱源側熱交換器側の冷媒配管が氷結していると判断するので、熱源側熱交換器側の冷媒配管の氷の積層スピードに影響を与える冷媒温度と外気温度との温度差を考慮した加算値を用いて、より正確に熱源側熱交換器側の冷媒配管の氷の積層度合を推定することができ、必要なタイミングで精度良く解氷運転を行うことができるものである。
【0018】
また、請求項2によれば、圧縮機の動作状態を検出し、その動作状態に応じて、加算値決定手段で決定された加算値を補正する補正手段を設け、積算手段は補正手段で補正された加算値を積算することで、圧縮機の動作状態から熱源側熱交換器側の冷媒配管を流れる冷媒の循環流量を推定し、その冷媒の循環流量から熱源側熱交換器側の冷媒配管が周囲から吸熱する吸熱量を考慮した補正が加算値に加えられるので、より一層高精度に熱源側熱交換器側の冷媒配管の氷の積層度合を推定することができるものである。
【0019】
また、請求項3によれば、負荷運転中に、氷結判断手段によって熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うので、熱源側熱交換器側の冷媒配管の氷結に起因する冷媒配管や膨張弁等の機能部品の損傷を未然に防止することができると共に、熱源側熱交換器側の冷媒配管の氷結に起因する騒音の発生を未然に防止することができるものである。
【0020】
さらに、計時手段によって熱源側熱交換器側の冷媒配管の氷結条件がそろった時に所定の単位時間計時し、加算値決定手段は、圧縮機の動作状態から熱源側熱交換器側の冷媒配管を流れる冷媒の循環流量を推定し、その冷媒の循環流量から熱源側熱交換器側の冷媒配管が周囲から吸熱する吸熱量を考慮して、所定の単位時間毎に圧縮機の動作状態に応じた加算値を決定する。そして、積算手段によって加算値決定手段で決定した加算値を積算し、氷結判断手段は、積算手段での積算値が予め設定した設定値に到達したら、熱源側熱交換器側の冷媒配管が氷結していると判断するので、熱源側熱交換器側の冷媒配管の氷の積層スピードに影響を与える圧縮機の動作状態を考慮した加算値を用いて、より正確に熱源側熱交換器側の冷媒配管の氷の積層度合を推定することができ、必要なタイミングで精度良く解氷運転を行うことができるものである。
【0021】
また、請求項4によれば、冷媒温度検出手段の代わりに、熱源側熱交換器から流出し地中熱交換器に流入する熱媒の温度を検出する地中往き温度検出手段を設け、熱源側熱交換器の冷媒温度と近似した温度である熱源側熱交換器から流出した熱媒の温度を検出することで、地中往き温度検出手段の検出する熱媒の温度から熱源側熱交換器側の冷媒温度を推定でき、熱源側熱交換器側の冷媒配管の氷結の判断を確実に行うことができるものである。
【図面の簡単な説明】
【0022】
【図1】この発明の第1の実施形態の概略構成図。
【図2】同第1の実施形態の要部ブロック図。
【図3】同第1の実施形態の解氷運転時の動作を示すフローチャート。
【図4】この発明の第2の実施形態の要部ブロック図。
【図5】同第2の実施形態の解氷運転時の動作を示すフローチャート。
【図6】この発明の第3の実施形態の要部ブロック図。
【図7】同第3の実施形態の解氷運転時の動作を示すフローチャート。
【図8】この発明の第1から第3の実施形態における他のヒートポンプ回路概略図。
【図9】この発明の第1から第3の実施形態におけるさらに他のヒートポンプ回路概略図。
【図10】この発明の第1から第3の実施形態における他の概略構成図。
【図11】従来の地中熱ヒートポンプ装置の概略構成図。
【発明を実施するための形態】
【0023】
次に、この発明の第1の実施形態の地中熱ヒートポンプ装置を図1および図2に基づき説明する。
図1のように、本実施形態の地中熱ヒートポンプ装置は、大きく分けてヒートポンプユニット1と、地中熱交換部2と、負荷熱交換部3とから構成されるものである。
【0024】
前記ヒートポンプユニット1は、冷媒を圧縮する能力可変の圧縮機4と、圧縮機4から吐出された高温冷媒を流通させこの高温冷媒と負荷熱交換部3の負荷側の熱媒との熱交換を行う凝縮器としての負荷側熱交換器5と、負荷側熱交換器5から流出する冷媒を減圧する減圧手段としての膨張弁6と、膨張弁6からの減圧した低温冷媒を流通させこの低温冷媒と地中熱交換部2の熱源側の熱媒との熱交換を行う蒸発器としての熱源側熱交換器7とを備え、これらを冷媒配管8で環状に接続しヒートポンプ回路9を形成しているものである。なお、ヒートポンプユニット1の冷媒としては、二酸化炭素冷媒やHFC冷媒等の任意の冷媒を用いることができるものである。また、10は膨張弁6から圧縮機4に至るまでの熱源側熱交換器7側の冷媒配管8、つまり低圧側の冷媒配管8に設けられ、低圧側の冷媒配管8の表面温度または低圧側の冷媒配管8を流れる冷媒の温度を検出する冷媒温度検出手段としての冷媒温度センサであり、11は外気温度を検出する外気温度検出手段としての外気温度センサである。ここでの外気温度とは、ヒートポンプユニット1外の外気温度およびヒートポンプユニット1内の雰囲気温度を含む表現とする。
【0025】
前記地中熱交換部2は、熱源側熱交換器7と、熱源側熱交換器7の冷媒を加熱する熱源として地盤G中に埋設され互いに並列に接続された複数の地中熱交換器12と、熱源側熱交換器7と地中熱交換器12との間を熱媒配管13で環状に接続する地中熱循環回路14と、地中熱循環回路14に熱媒である不凍液を循環させる回転数可変の地中熱循環ポンプ15とを備えているものである。
【0026】
ここで、前記地中熱交換部2では、後述する負荷運転を行う際に、地中熱交換器12によって地盤G中から地中熱を採熱し、その熱を帯びた熱媒が地中熱循環ポンプ15により熱源側熱交換器7に供給される。そして、熱源側熱交換器7にて冷媒と熱媒とが対向して流れて熱交換が行われ、地中熱交換器12にて採熱された地中熱がヒートポンプユニット1の冷媒側に汲み上げられ、熱源側熱交換器7は蒸発器として機能するものとなる。
【0027】
前記負荷熱交換部3は、負荷側に熱を与える負荷側熱交換器5と、被空調空間を加熱する床暖房パネル等の負荷端末16と、負荷側熱交換器5と負荷端末16を循環可能に環状に接続する負荷側循環回路17と、負荷側循環回路17に加熱用循環液を循環させる負荷側循環ポンプ18と、負荷端末16毎に分岐した負荷側循環回路17に各々設けられ、その開閉により負荷端末16への加熱用循環液の供給を制御する熱動弁19(19a、19b)とを備えているものである。なお、20は負荷側循環回路17に設けられ負荷側熱交換器5から負荷端末16に流入する加熱用循環液の温度を検出する負荷往き温度センサである。
【0028】
前記負荷端末16によって加熱される被空調空間には、リモコン(図示せず)が各々設置されており、このリモコンにより被空調空間の加熱の指示がなされると、圧縮機4及び及び地中熱循環ポンプ15及び負荷側循環ポンプ18の駆動が開始され、熱源側熱交換器7を蒸発器として機能させると共に、負荷側熱交換器5を凝縮器として機能させて負荷側を加熱する負荷運転としての暖房運転が行われる。この暖房運転の際、負荷側熱交換器5では冷媒と加熱用循環液とが対向して流れて熱交換が行われ、負荷側熱交換器5にて加熱された加熱用循環液は、熱動弁19を介して負荷端末16に送られ、リモコンにより指示を受けた被空調空間を加熱するものである。
【0029】
21は冷媒温度センサ10、外気温度センサ11、負荷往き温度センサ20の入力や前記リモコンからの信号を受けて、圧縮機4、膨張弁6、地中熱循環ポンプ15、負荷側循環ポンプ18の各アクチュエータの駆動を制御するマイコンを有する制御手段である。
【0030】
前記制御手段21は、前記暖房運転中に熱源側熱交換器7側の冷媒配管8が氷結しているか否かを判断する氷結判断手段22と、前記暖房運転中に冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いという氷結条件が成立するか否かを判定する氷結条件判定手段23と、前記暖房運転中に冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いことを検知した時に所定の単位時間を計時する計時手段24と、計時手段24の計時する所定の単位時間毎に冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度との温度差に応じた加算値を決定する第1加算値決定手段25と、第1加算値決定手段25で決定した加算値を積算する第1積算手段26と、前記暖房運転を中断し後述する解氷運転を開始する基準となる第1設定値を記憶する第1記憶手段27とを備えているものである。なお、前記第1設定値は予め試験等を行って導き出し設定された値である。
【0031】
ここで、前記氷結判断手段22は、暖房運転中に、第1積算手段26により積算された積算値と第1記憶手段27により記憶された第1設定値とを比較し、その積算値が第1設定値に到達した時に、膨張弁6から圧縮機4に至るまでの熱源側熱交換器7側の冷媒配管8が氷結している、つまり、熱源側熱交換器7側の冷媒配管8表面に氷が積層していると判断するものであり、氷結判断手段22が熱源側熱交換器7側の冷媒配管8が氷結していると判断すると、前記制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を全開または暖房運転時よりも大きくして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を行うものである。なお、解氷運転は一定時間行われ、この一定時間は熱源側熱交換器7側の冷媒配管8の氷を解かすのに必要な時間を予め試験等により導き出し設定したものである。
【0032】
また、前記第1加算値決定手段25は、冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度との温度差に応じた加算値を決定するもので、この加算値は、所定の単位時間当たりに熱源側熱交換器7側の冷媒配管8に積層する氷の厚さの目安としての数値であり、冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度との温度差が大きい程、大きな加算値を決定するものである。これは、前記温度差が大きい程、熱源側熱交換器7側の冷媒配管8表面に氷が積層するスピードが速くなるためである。そのため、第1加算値決定手段25には、温度差が大きい程、大きな加算値を決定するように、温度差毎に加算値を対応させたデータテーブル等が予め記憶されているものである。
【0033】
次に、図1および図2に示す第1の実施形態の暖房運転中の解氷運転の動作について図3に示すフローチャートに基づき説明する。
前記リモコンにより負荷端末16による被空調空間の暖房の指示がなされると、前記制御手段21は圧縮機4、地中熱循環ポンプ15、負荷側循環ポンプ18の駆動を開始させ、暖房運転が開始される。ここで、暖房運転開始時において、地中熱循環ポンプ15は予め設定された一定回転数で駆動を開始させるものである。暖房運転が開始されると、負荷側熱交換器5では負荷側循環ポンプ18により循環される加熱用循環液と圧縮機4から吐出された高温高圧の冷媒とが熱交換され、加熱された加熱用循環液が負荷端末16に供給され被空調空間を加熱すると共に、熱源側熱交換器7では、地中熱循環ポンプ15により循環され地中熱交換器12を介して地中熱を採熱した熱媒と膨張弁6から吐出された低温低圧の冷媒とが熱交換され、地中熱により冷媒を加熱し蒸発させるものである。
【0034】
前記暖房運転中に、氷結条件判定手段23は、冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いか否か、つまり、前記氷結条件が成立するか否かを判定し(ステップS1)、氷結条件が成立すると判定したら、計時手段24により所定の単位時間、例えば1時間の計時を開始させ、所定の単位時間が経過したか否かを判断し(ステップS2)、所定の単位時間が経過したと判断すると、第1加算値決定手段25は、その時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照し、その温度差(=外気温度−冷媒温度)を算出して、その温度差に応じた加算値を決定し(ステップS3)、第1積算手段26は、第1加算値決定手段25で決定した加算値を積算し、(ステップS4)、氷結判断手段22は、第1積算手段26で積算された積算値と第1記憶手段27により記憶された第1設定値とを比較し、その積算値が第1設定値に到達したか否かを判断し(ステップS5)、積算値が第1設定値に到達していないと判断した場合、再び前記ステップS1の処理に戻るものである。
【0035】
そして、第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達するまでステップS1〜ステップS5までの処理を繰り返して、ステップS5の処理において、氷結判断手段22が、第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達したと判断した場合、制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を例えば全開にして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を開始するものである(ステップS6)。
【0036】
前記ステップS6で、制御手段21は解氷運転を開始すると、一定時間、例えば5分が経過したか否かを判断し(ステップS7)、一定時間が経過したと判断すると、解氷運転を終了し(ステップS8)、解氷運転が終了すると第1積算手段26の積算値が零にクリアーされると共に、地中熱循環ポンプ15および負荷側循環ポンプ18の駆動を開始させ暖房運転を再開するものである。
【0037】
一方、前記ステップS1で、氷結条件判定手段23により氷結条件が成立しないと判定された場合は、第1積算手段26はそれまで積算した積算値を保持記憶し(ステップS9)、再び前記ステップS1の処理に戻るものであり、前記第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達するまでステップS1〜ステップS5までの処理を繰り返し行っている途中で、前記ステップS1で、氷結条件判定手段23により氷結条件が成立しないと判定された場合も、前記ステップS9で第1積算手段26はそれまで積算した積算値を保持記憶し、再び前記ステップS1の処理に戻るものである。
【0038】
なお、暖房運転が停止された場合は、第1積算手段26はそれまで積算した積算値を保持記憶し、再び暖房運転が開始された時は、第1積算手段26に保持記憶した積算値から積算を開始するものである。
【0039】
以上説明した暖房運転中の解氷運転において、暖房運転中に、氷結判断手段22によって熱源側熱交換器7側の冷媒配管8が氷結していると判断された場合は、解氷運転を行うので、氷結に起因する冷媒配管8や膨張弁6等の機能部品の損傷を未然に防止することができると共に、氷結に起因する騒音の発生を未然に防止することができるものである。
【0040】
また、前記ステップS2で、計時手段24によって熱源側熱交換器7側の冷媒配管8の氷結条件がそろった時に所定の単位時間を計時し、前記ステップS3で、第1加算値決定手段25によって所定の単位時間毎に冷媒温度と外気温度との温度差に応じた加算値を決定し、前記ステップS4で、第1積算手段26によって第1加算値決定手段25で決定した加算値を積算し、前記ステップS5で、氷結判断手段22は、第1積算手段26での積算値が予め設定した第1設定値に到達したと判断したら、熱源側熱交換器7側の冷媒配管8が氷結していると判断することで、熱源側熱交換器7側の冷媒配管8の氷の積層スピードに影響を与える冷媒温度と外気温度との温度差を考慮した加算値を用いて、より正確に熱源側熱交換器7側の冷媒配管8の氷の積層度合を推定することができ、無駄な解氷運転を行うことがなく、また、熱源側熱交換器7側の冷媒配管8表面に氷が積層し過ぎる前に、必要なタイミングで精度良く解氷運転を行うことができるものである。また、無駄な解氷運転を行わないことにより、暖房出力を安定させることができ、COPの低下を抑制することができるものである。
【0041】
また、本実施形態では、前記ステップS2での所定の単位時間を1時間としたが、所定の単位時間を2時間や5時間としてもよく、また1分や1秒としてもよいものであり、所定の単位時間が短く設定される程、熱源側熱交換器7の冷媒配管8の氷の積層度合を推定する正確さが増すものである。
【0042】
また、前記ステップS3にて、第1加算値決定手段25は、所定の単位時間経過時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照し、その温度差(=外気温度−冷媒温度)を算出し、その算出した温度差に応じた加算値を決定するようにしたが、前記ステップS1で氷結条件が成立した時点で、冷媒温度と外気温度を参照して、その温度差を算出すると共に、所定の単位時間経過時の冷媒温度と外気温度を参照して、その温度差を算出し、算出した双方の温度差の平均をとって、その平均温度差に応じた加算値を第1積算手段26に積算する加算値としてもよいものである。
【0043】
また、前記ステップS3にて、第1加算値決定手段25が、所定の単位時間経過時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照した際、冷媒温度と外気温度との関係が、例えば、冷媒温度が−1℃で外気温度が−2℃で、外気温度−冷媒温度で算出される温度差が、温度差≦0であった場合は、熱源側熱交換器7側の冷媒配管8の氷の積層には影響を与えないとして加算値を0に決定し、前記ステップS4で、第1積算手段26にて0を積算するようにしてもよく、また、第1加算値決定手段25が、所定の単位時間経過時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照した際、冷媒温度と外気温度との温度差が、温度差≦0であっても、例えば、前記ステップS1で氷結条件が成立した時点で、冷媒温度が−1℃、外気温度が1℃、温度差が2℃であり、所定の単位時間経過時に、冷媒温度が−1℃、外気温度が−2℃、温度差が−1℃である場合は、算出した双方の温度差の平均をとって、平均温度差=(2−1)/2=0.5が0より大きい場合は、平均温度差に応じた加算値を決定し、前記ステップS4で、第1積算手段26にてその加算値を積算するようにしてもよいものである。
【0044】
また、前記ステップS7において、制御手段21は予め設定した一定時間が経過したと判断したら、前記ステップS8で解氷運転を終了するようにしてしているが、制御手段21は、解氷運転中に冷媒温度センサ10の検出する検出温度が、予め試験等により導き出し設定された所定温度に達したら、解氷運転を終了するようにしてもよい。これは、冷媒温度センサ10が熱源側熱交換器7側の冷媒配管8の表面温度を検出するものであった場合、解氷運転中に低圧側の冷媒配管8に氷が張っている状態だと、冷媒温度センサ10の検出する検出温度はあまり上昇せず、低圧側の冷媒配管8の氷が解けてくると、徐々に冷媒温度センサ10の検出する検出温度が上昇するからであり、解氷運転を終了する所定温度を予め試験等により導き出し設定しておけば、低圧側の冷媒配管8表面に氷が解け残ることなく解氷運転を終了することができるものである。
【0045】
次に、図1および図4に示す本発明の第2の実施形態について説明するが、この実施形態は先に説明した第1の実施形態と同一部分については同一符号を付し説明を一部省略し、相違する構成や動作について説明すると、28は圧縮機4の動作状態、すなわち、圧縮機4の駆動周波数または駆動電流値等を検出し、その動作状態を示す検出値に応じて前記第1加算値決定手段25により決定された加算値を補正する補正手段であり、本実施形態では、前記第1積算手段26は補正手段28で補正された加算値を積算するものである。
【0046】
また、前記補正手段28は、第1加算値決定手段25により決定された加算値に対して、圧縮機4の動作状態を示す駆動周波数や駆動電流値等の検出値に応じた補正係数を掛けて加算値を補正するものであり、圧縮機4の検出値が大きい程、加算値を増やす方向に大きく補正するようしている。これは、圧縮機4の検出値が大きい程、ヒートポンプ回路9を循環する冷媒の循環流量が大きくなり、それに伴い、熱源側熱交換器7側の冷媒配管8を流れる冷媒の循環流量も大きくなり、熱源側熱交換器7側の冷媒配管8が周囲から吸熱する吸熱量が増大し、熱源側熱交換器7側の冷媒配管8表面に氷が積層するスピードが速くなるためである。そのため、前記補正手段28には、圧縮機4の検出値が大きい程、第1加算値決定手段25により決定された加算値を増やす方向に補正するように、検出値毎に補正係数を対応させたデータテーブル等が予め記憶されているものである。なお、補正係数は加算値を増やす方向に補正する値だけでなく、加算値を減らす方向に補正する値を含んでいてもよいものである。
【0047】
次に、図1および図4に示す第2の実施形態の暖房運転中の解氷運転の動作について図5に示すフローチャートに基づき説明する。
前記リモコンにより負荷端末16による被空調空間の暖房の指示がなされると、前記制御手段21は圧縮機4、地中熱循環ポンプ15、負荷側循環ポンプ18の駆動を開始させ、暖房運転が開始される。ここで、暖房運転開始時において、地中熱循環ポンプ15は予め設定された一定回転数で駆動を開始させるものである。暖房運転が開始されると、負荷側熱交換器5では負荷側循環ポンプ18により循環される加熱用循環液と圧縮機4から吐出された高温高圧の冷媒とが熱交換され、加熱された加熱用循環液が負荷端末16に供給され被空調空間を加熱すると共に、熱源側熱交換器7では、地中熱循環ポンプ15により循環され地中熱交換器12を介して地中熱を採熱した熱媒と膨張弁6から吐出された低温低圧の冷媒とが熱交換され、地中熱により冷媒を加熱し蒸発させるものである。
【0048】
前記暖房運転中に、氷結条件判定手段23は、冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いか否か、つまり、前記氷結条件が成立するか否かを判定し(ステップS10)、氷結条件が成立すると判定したら、計時手段24により所定の単位時間、例えば1時間の計時を開始させ、所定の単位時間が経過したか否かを判断し(ステップS11)、所定の単位時間が経過したと判断すると、第1加算値決定手段25は、その時の冷媒温度センサ10の検出する冷媒温度と外気温度センサ11の検出する外気温度とを参照し、その温度差(=外気温度−冷媒温度)を算出して、その温度差に応じた加算値を決定し(ステップS12)、補正手段28は、その時の圧縮機4の動作状態、例えば圧縮機4の駆動周波数を検出し、その検出値に応じた補正係数を第1加算値決定手段25が決定した加算値に掛けて加算値を補正し(ステップS13)、第1積算手段26は、補正手段28で補正した加算値を積算し、(ステップS14)、氷結判断手段22は、第1積算手段26で積算された積算値と第1記憶手段27により記憶された第1設定値とを比較し、その積算値が第1設定値に到達したか否かを判断し(ステップS15)、積算値が第1設定値に到達していないと判断した場合、再び前記ステップS10の処理に戻るものである。
【0049】
そして、第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達するまでステップS10〜ステップS15までの処理を繰り返して、ステップS15の処理において、氷結判断手段22が、第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達したと判断した場合、制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を例えば全開にして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を開始するものである(ステップS16)。
【0050】
前記ステップS16で、制御手段21は解氷運転を開始すると、一定時間、例えば5分が経過したか否かを判断し(ステップS17)、一定時間が経過したと判断すると、解氷運転を終了し(ステップS18)、解氷運転が終了すると第1積算手段26の積算値が零にクリアーされると共に、地中熱循環ポンプ15および負荷側循環ポンプ18の駆動を開始させ暖房運転を再開するものである。
【0051】
一方、前記ステップS10で、氷結条件判定手段23により氷結条件が成立しないと判定された場合は、第1積算手段26はそれまで積算した積算値を保持記憶し(ステップS19)、再び前記ステップS10の処理に戻るものであり、前記第1積算手段26の積算値が第1記憶手段27に記憶された第1設定値に到達するまでステップS10〜ステップS15までの処理を繰り返し行っている途中で、前記ステップS10で、氷結条件判定手段23により氷結条件が成立しないと判定された場合も、前記ステップS19で第1積算手段26はそれまで積算した積算値を保持記憶し、再び前記ステップS10の処理に戻るものである。
【0052】
なお、暖房運転が停止された場合は、第1積算手段26はそれまで積算した積算値を保持記憶し、再び暖房運転が開始された時は、第1積算手段26に保持記憶した積算値から積算を開始するものである。
【0053】
以上説明した暖房運転中の解氷運転の中で、本実施形態の特徴的な部分において、前記ステップS13で、補正手段28は、圧縮機4の動作状態から熱源側熱交換器7側の冷媒配管8を流れる冷媒の循環流量を推定し、その冷媒の循環流量から熱源側熱交換器7側の冷媒配管8が周囲から吸熱する吸熱量を考慮した補正を、第1加算値決定手段25で決定された加算値に加え、ステップS14で、第1積算手段26は補正手段28で補正された加算値を積算するので、より一層高精度に熱源側熱交換器7側の冷媒配管8の氷の積層度合を推定することができるものである。
【0054】
次に、図1および図6に示す本発明の第3の実施形態について説明するが、この実施形態は先に説明した第1の実施形態と同一部分については同一符号を付し説明を一部省略し、相違する構成や動作について説明する。
【0055】
前記制御手段21は、前記暖房運転中に熱源側熱交換器7側の冷媒配管8が氷結しているか否かを判断する氷結判断手段22と、前記暖房運転中に冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いという氷結条件が成立するか否かを判定する氷結条件判定手段23と、前記暖房運転中に冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いことを検知した時に所定の単位時間を計時する計時手段24と、圧縮機4の動作状態、すなわち、圧縮機4の駆動周波数または駆動電流値等を検出し、計時手段24の計時する所定の単位時間毎に圧縮機4の動作状態を示す検出値に応じた加算値を決定する第2加算値決定手段29と、第2加算値決定手段29で決定した加算値を積算する第2積算手段30と、前記暖房運転を中断し後述する解氷運転を開始する基準となる第2設定値を記憶する第2記憶手段31とを備えているものである。なお、前記第2設定値は予め試験等を行って導き出し設定された値である。
【0056】
ここで、前記氷結判断手段22は、暖房運転中に、第2積算手段30により積算された積算値と第2記憶手段31により記憶された第2設定値とを比較し、その積算値が第2設定値に到達した時に、膨張弁6から圧縮機4に至るまでの熱源側熱交換器7側の冷媒配管8が氷結している、つまり、熱源側熱交換器7側の冷媒配管8表面に氷が積層していると判断するものであり、氷結判断手段22が熱源側熱交換器7側の冷媒配管8が氷結していると判断すると、前記制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を全開または暖房運転時よりも大きくして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を行うものである。なお、解氷運転は一定時間行われ、この一定時間は熱源側熱交換器7側の冷媒配管8の氷を解かすのに必要な時間を予め試験等により導き出し設定したものである。
【0057】
また、前記第2加算値決定手段29は、圧縮機4の動作状態を示す駆動周波数や駆動電流値等の検出値に応じた加算値を決定するもので、この加算値は、所定の単位時間当たりに熱源側熱交換器7側の冷媒配管8に積層する氷の厚さの目安としての数値であり、圧縮機4の検出値が大きい程、大きな加算値に決定するようにしている。これは、圧縮機4の検出値が大きい程、ヒートポンプ回路9を循環する冷媒の循環流量が大きくなり、それに伴い、熱源側熱交換器7側の冷媒配管8を流れる冷媒の循環流量も大きくなり、熱源側熱交換器7側の冷媒配管8が周囲から吸熱する吸熱量が増大し、熱源側熱交換器7側の冷媒配管8表面に氷が積層するスピードが速くなるためである。そのため、第2加算値決定手段29には、圧縮機4の検出値が大きい程、大きな加算値を決定するように、検出値毎に加算値を対応させたデータテーブル等が予め記憶されているものである。
【0058】
次に、図1および図6に示す第3の実施形態の暖房運転中の解氷運転の動作について図7に示すフローチャートに基づき説明する。
前記リモコンにより負荷端末16による被空調空間の暖房の指示がなされると、前記制御手段21は圧縮機4、地中熱循環ポンプ15、負荷側循環ポンプ18の駆動を開始させ、暖房運転が開始される。ここで、暖房運転開始時において、地中熱循環ポンプ15は予め設定された一定回転数で駆動を開始させるものである。暖房運転が開始されると、負荷側熱交換器5では負荷側循環ポンプ18により循環される加熱用循環液と圧縮機4から吐出された高温高圧の冷媒とが熱交換され、加熱された加熱用循環液が負荷端末16に供給され被空調空間を加熱すると共に、熱源側熱交換器7では、地中熱循環ポンプ15により循環され地中熱交換器12を介して地中熱を採熱した熱媒と膨張弁6から吐出された低温低圧の冷媒とが熱交換され、地中熱により冷媒を加熱し蒸発させるものである。
【0059】
前記暖房運転中に、氷結条件判定手段23は、冷媒温度センサ10の検出する冷媒温度が零度以下、且つ、外気温度センサ11の検出する外気温度が冷媒温度センサ10の検出する冷媒温度より高いか否か、つまり、前記氷結条件が成立するか否かを判定し(ステップS20)、氷結条件が成立すると判定したら、計時手段24により所定の単位時間、例えば1時間の計時を開始させ、所定の単位時間が経過したか否かを判断し(ステップS21)、所定の単位時間が経過したと判断すると、第2加算値決定手段29は、所定の単位時間経過時の圧縮機4の動作状態を示す検出値、例えば圧縮機4の駆動周波数を検出し、その検出値に応じた加算値を決定し(ステップS22)、第2積算手段30は、第2加算値決定手段29で決定した加算値を積算し、(ステップS23)、氷結判断手段22は、第2積算手段30で積算された積算値と第2記憶手段31により記憶された第2設定値とを比較し、その積算値が第2設定値に到達したか否かを判断し(ステップS24)、積算値が第2設定値に到達していないと判断した場合、再び前記ステップS20の処理に戻るものである。
【0060】
そして、第2積算手段30の積算値が第2記憶手段31に記憶された第2設定値に到達するまでステップS20〜ステップS24までの処理を繰り返して、ステップS24の処理において、氷結判断手段22が、第2積算手段30の積算値が第2記憶手段31に記憶された第2設定値に到達したと判断した場合、制御手段21は、地中熱循環ポンプ15および負荷側循環ポンプ18を停止して、暖房運転を一時中断し、膨張弁6の開度を例えば全開にして圧縮機4から吐出される高温冷媒を熱源側熱交換器7側の冷媒配管8内に流して熱源側熱交換器7側の冷媒配管8表面に積層した氷を解氷する解氷運転を開始するものである(ステップS25)。
【0061】
前記ステップS25で、制御手段21は解氷運転を開始すると、一定時間、例えば5分が経過したか否かを判断し(ステップS26)、一定時間が経過したと判断すると、解氷運転を終了し(ステップS27)、解氷運転が終了すると第2積算手段30の積算値が零にクリアーされると共に、地中熱循環ポンプ15および負荷側循環ポンプ18の駆動を開始させ暖房運転を再開するものである。
【0062】
一方、前記ステップS20で、氷結条件判定手段23により氷結条件が成立しないと判定された場合は、第2積算手段30はそれまで積算した積算値を保持記憶し(ステップS28)、再び前記ステップS20の処理に戻るものであり、前記第2積算手段30の積算値が第2記憶手段31に記憶された第2設定値に到達するまでステップS20〜ステップS24までの処理を繰り返し行っている途中で、前記ステップS20で、氷結条件判定手段23により氷結条件が成立しないと判定された場合も、前記ステップS28で第2積算手段30はそれまで積算した積算値を保持記憶し、再び前記ステップS20の処理に戻るものである。
【0063】
なお、暖房運転が停止された場合は、第2積算手段30はそれまで積算した積算値を保持記憶し、再び暖房運転が開始された時は、第2積算手段30に保持記憶した積算値から積算を開始するものである。
【0064】
以上説明した暖房運転中の解氷運転において、暖房運転中に、氷結判断手段22によって熱源側熱交換器7側の冷媒配管8が氷結していると判断された場合は、解氷運転を行うので、氷結に起因する冷媒配管8や膨張弁6等の機能部品の損傷を未然に防止することができると共に、氷結に起因する騒音の発生を未然に防止することができるものである。
【0065】
また、前記ステップS21で、計時手段24によって熱源側熱交換器7側の冷媒配管8の氷結条件がそろった時に所定の単位時間を計時し、前記ステップS22で、第2加算値決定手段29は、圧縮機4の動作状態を示す検出値から熱源側熱交換器7側の冷媒配管8を流れる冷媒の循環流量を推定し、その冷媒の循環流量から熱源側熱交換器7側の冷媒配管8が周囲から吸熱する吸熱量を考慮して、計時手段24の計時した所定の単位時間毎に圧縮機4の動作状態を示す検出値に応じた加算値を決定し、前記ステップS23で、第2積算手段30によって第2加算値決定手段29で決定した加算値を積算し、前記ステップS24で、氷結判断手段22は、第2積算手段30での積算値が予め設定した第2設定値に到達したと判断したら、熱源側熱交換器7側の冷媒配管8が氷結していると判断することで、熱源側熱交換器7側の冷媒配管8の氷の積層スピードに影響を与える圧縮機4の動作状態を考慮した加算値を用いて、より正確に熱源側熱交換器7側の冷媒配管8の氷の積層度合を推定することができ、無駄な解氷運転を行うことがなく、また、熱源側熱交換器7側の冷媒配管8表面に氷が積層し過ぎる前に、必要なタイミングで精度良く解氷運転を行うことができるものである。また、無駄な解氷運転を行わないことにより、暖房出力を安定させることができ、COPの低下を抑制することができるものである。
【0066】
また、本実施形態では、前記ステップS21での所定の単位時間を1時間としたが、所定の単位時間を2時間や5時間としてもよく、また1分や1秒としてもよいものであり、所定の単位時間が短く設定される程、熱源側熱交換器7の冷媒配管8の氷の積層度合を推定する正確さが増すものである。
【0067】
また、前記ステップS22にて、第2加算値決定手段29は、所定の単位時間経過時の圧縮機4の動作状態を示す検出値、例えば圧縮機4の駆動周波数を検出し、その検出値に応じた加算値を決定するようにしたが、前記ステップS20で氷結条件が成立した時点で、圧縮機4の動作状態を示す検出値を検出すると共に、所定の単位時間経過時の圧縮機4の動作状態を示す検出値を検出し、検出した双方の検出値の平均をとって、その平均検出値に応じた加算値を第2積算手段30に積算する加算値としてもよいものである。
【0068】
また、前記ステップS26において、制御手段21は予め設定した一定時間が経過したと判断したら、前記ステップS27で解氷運転を終了するようにしてしているが、制御手段21は、解氷運転中に冷媒温度センサ10の検出する検出温度が、予め試験等により導き出し設定された所定温度に達したら、解氷運転を終了するようにしてもよい。これは、冷媒温度センサ10が熱源側熱交換器7側の冷媒配管8の表面温度を検出するものであった場合、解氷運転中に低圧側の冷媒配管8に氷が張っている状態だと、冷媒温度センサ10の検出する検出温度はあまり上昇せず、低圧側の冷媒配管8の氷が解けてくると、徐々に冷媒温度センサ10の検出する検出温度が上昇するからであり、解氷運転を終了する所定温度を予め試験等により導き出し設定しておけば、低圧側の冷媒配管8表面に氷が解け残ることなく解氷運転を終了することができるものである。
【0069】
なお、本発明は先に説明した第1から第3の実施形態に限定されるものでなく、第1から第3の実施形態では、解氷運転時に膨張弁6を全開にして圧縮機4から吐出される高温冷媒を熱源側熱交換器7に流すようにしたが、図8に示すように、ヒートポンプ回路9に負荷側熱交換器5および膨張弁6をバイパスするバイパス管32と、そのバイパス管32を開閉する開閉弁33とを設け、解氷運転時に開閉弁33を開弁して、圧縮機4から吐出される高温冷媒を熱源側熱交換器7に直接流入させて、熱源側熱交換器7に高温冷媒を流すようにしてもよく、さらに、図9に示すように、ヒートポンプ回路9に、暖房運転時は熱源側熱交換器7を蒸発器として機能させると共に、負荷側熱交換器5を凝縮器として機能させ負荷側を加熱し、解氷運転時は熱源側熱交換器7を凝縮器として機能させると共に、負荷側熱交換器5を蒸発器として機能させ熱源側を加熱するように切り換える四方弁34を設け、解氷運転時に熱源側熱交換器7を凝縮器として機能させるように四方弁34を切り換え、図中の点線矢印で示したように、圧縮機4から吐出される高温冷媒を熱源側熱交換器7に直接流入させて、熱源側熱交換器7に高温冷媒を流すようにしてもよいものである。
【0070】
また、本発明は先に説明した第1から第3の実施形態に限定されるものでなく、第1から第3の実施形態では、地盤G中に埋設された複数の地中熱交換器12は互いに並列に接続されているが、複数の地中熱交換器12を互いに直列に接続してもよく、さらに、地中熱交換器12を複数埋設せず、地盤G中から所望の採熱ができるのであれば、地中熱交換器12を1本だけ埋設したものであってもよい。
【0071】
また、本発明は先に説明した第1から第3の実施形態に限定されるものでなく、第1から第3の実施形態では、床暖房パネル等の負荷端末16により被空調空間である室内を加熱する熱媒循環式の暖房運転を負荷運転としたが、被空調空間である室内に負荷側熱交換器5を有する室内機(図示せず)を設け、この室内機内で圧縮機4から吐出された高温冷媒を室内空気と直接熱交換し、送風により室内を加熱する暖房運転を負荷運転としてもよいものであり、また、負荷端末16を給湯等に使用する湯水を貯湯する貯湯タンク(図示せず)とし、貯湯タンク内の湯水を沸き上げる沸き上げ運転を負荷運転としてもよいものであり、本発明の要旨を変更しない範囲で様々な変形が可能であり、これを妨げるものではない。
【0072】
また、本発明は先に説明した第1から第3の実施形態に限定されるものでなく、第1から第3の実施形態では、氷結判断手段22は、冷媒温度センサ10の検出する冷媒温度に基づき、熱源側熱交換器7の冷媒配管8が氷結しているか否かの判断を行っているが、図17に示すように、冷媒温度センサ10の代わりに、熱源側熱交換器7から流出し地中熱交換器12に流入する地中熱循環回路14の熱媒の温度を検出する地中往き温度検出手段としての地中往き温度センサ35を設け、氷結判断手段22は、この地中往き温度センサ35の検出する熱媒温度と外気温度センサ11の検出する外気温度に基づき、熱源側熱交換器7の冷媒配管8が氷結しているか否かの判断を行うようにしてもよい。これは、熱源側熱交換器7から流出する熱媒の温度が熱源側熱交換器7に流入する冷媒温度に近似した温度であり、その熱媒温度から熱源側熱交換器7側の冷媒温度を推定できるためであり、氷結判断手段22は、地中往き温度センサ35の検出する熱媒温度を利用して、熱源側熱交換器7の冷媒配管8の氷結の判断を確実に行うことができるものである。
【符号の説明】
【0073】
4 圧縮機
5 負荷側熱交換器
6 膨張弁
7 熱源側熱交換器
8 冷媒配管
9 ヒートポンプ回路
10 冷媒温度センサ
11 外気温度センサ
12 地中熱交換器
13 熱媒配管
14 地中熱循環回路
15 地中熱循環ポンプ
22 氷結判断手段
24 計時手段
25 第1加算値決定手段
26 第1積算手段
28 補正手段
29 第2加算値決定手段
30 第2積算手段
35 地中往き温度センサ

【特許請求の範囲】
【請求項1】
圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、地中に埋設された地中熱交換器と、該地中熱交換器と前記熱源側熱交換器との間を熱媒配管で環状に接続した地中熱循環回路と、該地中熱循環回路に熱媒を循環させる地中熱循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、外気温度を検出する外気温度検出手段とを備え、前記地中熱交換器により地中熱を採熱し、前記熱源側熱交換器を蒸発器として機能させると共に、前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転を行う地中熱ヒートポンプ装置において、前記負荷運転中に、前記冷媒温度検出手段の検出する冷媒温度が零度以下、且つ、前記外気温度検出手段の検出する外気温度が前記冷媒温度検出手段の検出する冷媒温度より高い時に所定の単位時間を計時する計時手段と、前記所定の単位時間毎に前記冷媒温度検出手段の検出する冷媒温度と前記外気温度検出手段の検出する外気温度との温度差に応じた加算値を決定する加算値決定手段と、前記加算値決定手段で決定した加算値を積算する積算手段と、前記積算手段での積算値が予め設定した設定値に到達したら、前記熱源側熱交換器側の冷媒配管が氷結していると判断する氷結判断手段とを設け、前記氷結判断手段によって前記熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、前記熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うようにしたことを特徴とする地中熱ヒートポンプ装置。
【請求項2】
請求項1記載の地中熱ヒートポンプ装置において、前記圧縮機の動作状態を検出し、その動作状態に応じて前記加算値決定手段により決定された加算値を補正する補正手段を設け、前記積算手段は前記補正手段で補正した加算値を積算するようにした地中熱ヒートポンプ装置。
【請求項3】
圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、地中に埋設された地中熱交換器と、該地中熱交換器と前記熱源側熱交換器との間を熱媒配管で環状に接続した地中熱循環回路と、該地中熱循環回路に熱媒を循環させる地中熱循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、外気温度を検出する外気温度検出手段とを備え、前記地中熱交換器により地中熱を採熱し、前記熱源側熱交換器を蒸発器として機能させると共に、前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転を行う地中熱ヒートポンプ装置において、前記負荷運転中に、前記冷媒温度検出手段の検出する冷媒温度が零度以下、且つ、前記外気温度検出手段の検出する外気温度が前記冷媒温度検出手段の検出する冷媒温度より高い時に所定の単位時間を計時する計時手段と、前記圧縮機の動作状態を検出し、前記所定の単位時間毎に前記圧縮機の動作状態に応じた加算値を決定する加算値決定手段と、前記加算値決定手段で決定した加算値を積算する積算手段と、前記積算手段での積算値が予め設定した設定値に到達したら、前記熱源側熱交換器側の冷媒配管が氷結していると判断する氷結判断手段とを設け、前記氷結判断手段によって前記熱源側熱交換器側の冷媒配管が氷結していると判断された場合は、前記熱源側熱交換器側の冷媒配管に高温冷媒を流して解氷する解氷運転を行うようにしたことを特徴とする地中熱ヒートポンプ装置。
【請求項4】
請求項1から3の何れか一項に記載の地中熱ヒートポンプ装置において、前記冷媒温度検出手段の代わりに、前記熱源側熱交換器から流出し前記地中熱交換器に流入する熱媒の温度を検出する地中往き温度検出手段を設けた地中熱ヒートポンプ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−226660(P2011−226660A)
【公開日】平成23年11月10日(2011.11.10)
【国際特許分類】
【出願番号】特願2010−94111(P2010−94111)
【出願日】平成22年4月15日(2010.4.15)
【出願人】(000000538)株式会社コロナ (753)