説明

天体の自動導入装置、端末装置及び天体望遠鏡の制御システム

【解決手段】 天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置は、複数の焦点距離で天体画像を撮像可能な撮像装置と、天体データベースと、撮像された天体画像から各天体の情報を抽出する画像処理部と、抽出された各天体の情報と、天体データベースの天体情報とを比較することにより、撮像された天体を同定する天体同定部と、備える。アライメント処理は、同定された天体の位置情報に基づいて、天体座標系に対する天体望遠鏡の座標系の座標変換情報を画定させることで実行される。自動導入では、目標天体導入後に、天体画像を撮像し、撮像された天体画像の天体を同定し、同定された天体の位置情報に基づいて、目標天体を視野中央に導入するように天体望遠鏡を回転制御する。撮像装置の焦点距離を段階的に望遠側にシフトすることでアライメント精度及び自動導入精度を向上させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、望遠鏡、カメラ等の撮像装置において、目標天体を自動導入することを可能にするための自動導入装置、並びに、該自動導入装置を制御するための端末装置、及び、天体望遠鏡の制御システムに関する。
【背景技術】
【0002】
従来、直交する2つの回転軸を有する天体望遠鏡において、ユーザが観測したい天体名を直接入力若しくは選択指令すると、望遠鏡視野内にその目標天体が入るように2つの回転軸の回りに該天体望遠鏡を回転制御する自動導入機能を備えたものがある。
【0003】
このような自動導入機能を備えた天体望遠鏡(以下、「自動導入式望遠鏡」と称する)は、一般的に、それぞれの軸の回りに望遠鏡を回転させるように接続されたモータと、モータ回転量をカウント出力するため各モータのシャフトに接続されたエンコーダと、これらモータを駆動制御するためのモータ制御部と、ユーザにより入力された情報及びエンコーダ出力信号に基づいて自動導入に必要な指令を演算するためのプロセッサと、を備えている。また、望遠鏡の架台には、各1台につき、ユーザによる望遠鏡操作を可能とするため1個のハンドヘルド式のコントローラ(以下、「ハンドセット」ともいう)がケーブルを介して接続されている。
【0004】
このハンドセットは、天体を自動導入するため必要となる情報や指令をユーザにより入力操作可能とする入力操作部と、この入力操作と連係して、望遠鏡の現在の状態(モード、向いている方向の赤経、赤緯)、目標天体に関する情報、及び、初期設定時のガイダンス等のユーザインターフェース画面を表示するための表示部と、を備えている。
【0005】
また、自動導入式望遠鏡においても、初期設定時に望遠鏡を軸回りに回転させる場合や、誤差等に起因して目標天体が完全に視野中央に導入されない場合に対応して手動操作で望遠鏡の向きを微修正することが必要である。これに応じて、ハンドセットの入力操作部には、望遠鏡を2軸回りに夫々正逆方向に回転移動させるための各移動指令ボタンが設けられ、更には望遠鏡の向いている方向を移動させるときの軸回りの回転速度(モータ速度)を指令するための速度指令手段が別途設けられている。この速度指令手段では、例えば、高速度、中速度、低速度、超低速度毎に夫々ボタンが用意されている。ユーザは、手動操作で天体を導入する際に、現在の望遠鏡の倍率が低い場合には、高速度で、高倍率の場合には超低速度でモータを回転させるというように、ユーザが倍率に応じてモータ速度を設定し直すことによって、目標天体の視野中央への短時間で確実な手動導入を行っている。更には、望遠鏡の向いている方向が目標天体から遠いときは、高速度ボタンを押し、近くなったら低速度ボタンを押すというように、目標天体からの離角に応じてモータ速度を設定し直すことによっても、短時間で確実な手動導入を行う。
【0006】
ところで、自動導入式望遠鏡では、ユーザが望遠鏡を所定の方向に向けた後、観測地の緯度・経度、日付時刻、及び、望遠鏡が天球上のどの方向に向いているかの情報を自動導入前にプロセッサに与えておかなければならない。自動導入式望遠鏡の初期のバージョンでは、ユーザは、観測地の緯度・経度をハンドセットから予め入力し、日付時刻は内蔵時計により与えられていた。また、実際に望遠鏡が向いている方向を検知するためには、経緯台では架台が水平に確保され、赤道儀では極軸が正確に合っている場合は少なくとも1つの基準星、通常では少なくとも2つの星を基準星としてユーザが選択し、基準星を実際に望遠鏡の視野内に導入することにより望遠鏡の向いている方向をプロセッサに知らせていた(アライメント)。
【0007】
最近、このような初期設定作業を更に自動化した、所謂「完全自動望遠鏡」と称されるバージョンが開発された。この完全自動望遠鏡では、GPS(Global Positioning System)、水平センサー、磁気センサー等を用いて、観測地の緯度・経度、日付時刻、望遠鏡の向いている方向を自動的に特定することにより、手動で行っていた初期設定を完全に自動化しようとするものである。
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかし、上記従来の自動導入式望遠鏡は、以下のような問題がある。
(1)ユーザインターフェース上の問題点
従来では、ハンドセットの表示部は、文字主体のユーザインターフェースであり、一例では16桁×2行程度の文字表示のみである。これに対応して、入力操作部もボタンが採用されており、かくして、ユーザは、自動導入したい天体名を入力操作部のボタンを逐一押していくことにより、直接入力しなければならなかった。また、アライメント用の基準星を選択する際には、数行程度の文字表示部では、全ての基準星を表示できないため、表示部に少数の基準星を順次表示させてから、選択しなければならなかった。
【0009】
アライメント時には、ユーザは予め基準星がどの位置にあるか知っていなければならず、又は、別途星座早見盤などで天体名を調べてからでないと使用することができなかった。また、上述したように、望遠鏡の倍率とモータ速度との間、並びに、アライメント時等で目標天体を手動導入する際の目標天体までの離角とモータ速度との間は、連動制御がなされておらず、ユーザの判断に委ねられていた。このように自動導入といっても初心者には取り扱いが難しい部分もあった。
(2)ハンドセットの問題点
従来の天体望遠鏡の自動導入装置、とりわけハンドセットは、特定の機種用に開発された専用装置であり、概して生産台数が少ないために高価であった。このため、ユーザが気に入ったハンドセットを選択する余地は無かった。
【0010】
更に、上述したように、ハンドセットと望遠鏡とはケーブルを介して有線接続されていたため、取り回しが面倒で、特に夜間使用時には引っ掛けるなどの不便があった。
(3)制御上の制約
従来の望遠鏡とハンドセットとの間の接続は、単純な制御信号や位置信号などの通信を行うためのものであったため、信号劣化を許容範囲内に収めるために、ケーブルはむやみに長くすることはできず、高々数mから数十m程度しか伸ばせなかった。このため、ハンドセットを用いて遠隔地から望遠鏡を制御することはできなかった。
【0011】
また、従来は、1台のハンドセットで1台の望遠鏡本体しか制御できなかったため、天体観望会などで、複数の望遠鏡を用意しておき、同時に同じ対象を観測したい場合にも複数のハンドセットを操作しなければならなかった。また、1台の望遠鏡を複数の観測者が利用したい場合には、望遠鏡とハンドセットとを一対で各人が専有するしかなかった。
(4)自動導入精度の低さ
自動導入式望遠鏡は、初期設定さえ正確に行っていれば、一定の精度で目標天体を視野内に導入することができる。しかし、2つの回転軸の直交誤差を始めとして架台の機械的誤差が本質的に存在するため、高倍率でも視野中央に目標天体を導入するようなピンポイント精度の自動導入を実現することは極めて困難であった。かくして、自動導入後に目標天体を視野中央に収めるために望遠鏡の方向を微修正する操作を必要としていた。
【0012】
一方、完全自動望遠鏡は、初期設定作業を完全に自動化することにより、上述したユーザインターフェース上の問題点を部分的に解決しようとするものである。しかし、初期設定にセンサを複数用いているため各センサの検出誤差が累積し、特に磁気センサの検出誤差が大きいため、充分な初期設定精度が得られず、この状態で自動導入した場合、現実の導入精度は極めて低くなってしまうというのが実情であった。そのため初期設定の精度を高めるためには従来と同様にユーザによるアライメント操作が必要となってしまい、仮に精度の高い初期設定ができたとしても初期バージョンの自動導入式望遠鏡と全く同様に機械的誤差に起因した導入精度の低下という問題を本質的に解決していなかった。
【0013】
従って、従来の完全自動望遠鏡は、その本来の目的が充分に達成できていないことになる。
(5)天文現象へのリアルタイムの対応ができない
従来の自動導入式望遠鏡は、制御基板に各天体についての位置情報等からなるデータベースを記憶したROMを備えている。しかし、このROMは、データの書き換えが不可能なので、刻一刻と変化する天文現象に関するガイダンスや、例えば新彗星や超新星等、突発的に出現する天体の自動導入に対応できなかった。
【0014】
インターネット接続されたパーソナルコンピュータを望遠鏡に接続し、パソコン側から制御することによって、変化する天文現象に対応することも理論的には可能である。しかし、正確な情報をどのサイトから入手し、その情報をどのようにパソコンのソフト上で実現するかを完全にマスターするには、かなりの熟練が必要であり、望遠鏡の完全自動化のコンセプトから逸脱することになる。
【0015】
総じて、現段階の自動導入式望遠鏡では、特に初心者、中級者、時間の限られた社会人にとって、ユーザフレンドリーなシステムを具現化したとは言い難い。
【課題を解決するための手段】
【0016】
上記課題を解決するため、本発明の一態様は、天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置に接続可能な端末装置であって、自動導入装置を指令操作するための入力操作部と、倍率に応じた天球上の所定範囲の星図画像を表示する画像表示部と、を備えており、該入力操作部は、望遠鏡コントロールモードにおいて、天体望遠鏡が少なくとも2つの軸の回りに各々回転するように指令入力するための回転指令手段と、該画像表示部に表示された星図画像の表示倍率を入力指定するための倍率入力手段と、が設けられ、望遠鏡コントロールモードにおいて、天体望遠鏡の向いている天球上の位置に対応する星図画像を画像表示部で表示すると共に、回転指令手段による天体望遠鏡の回転の速度を、前記倍率入力手段により指定された表示倍率の減少関数に従って変化させることを特徴とする。
【0017】
本発明の上記態様によれば、望遠鏡コントロールモードでは、回転指令手段からの指令に応じて天体望遠鏡が少なくとも2つの軸の回りに各々回転し、その望遠鏡の向きに応じて、画像表示部に表示された星図画像が移動する。このとき、倍率入力手段により指定された画像表示部の表示倍率が大きいとき、回転指令手段による天体望遠鏡の回転の速度が減少され、表示倍率が小さいとき、回転指令手段による天体望遠鏡の回転の速度が増大されるように制御される。このように画面のズーミングに合わせて回転速度を自動的に変えるようにしたので、ズーミング毎に回転速度だけを変更する手間を省けるようになった。
【0018】
好ましくは、入力操作部は、望遠鏡コントロールモードと目標天体を選択するための天体選択モードとを相互に切り替えるための切り替え入力手段が更に設けられている。これにより一操作でモード切り替えが可能となった。更には、天体選択モードでは、画像表示部に表示された星図画像に目標天体を導入することにより該目標天体を選択可能であるとし、回転指令手段の操作により、画像表示部に表示された星図画像をスクロール可能であるようにしてもよい。これにより、目標天体の設定が容易となる。天体選択モードで目標天体が選択された後、切り替え入力手段の操作により該目標天体の自動導入を実行し、望遠鏡コントロールモードに移行してもよい。
【0019】
本発明の別の好ましい態様は、星図画像を表示する画像表示部を備えた天体画像表示装置であって、天体画像表示装置が向けられた方向の方位を検出する方位検出手段と、天体画像表示装置が向けられた方向の傾きを検出する傾き検出手段と、を備え、該画像表示部は、現在の日付時刻、観測地点の緯度経度において、方位検出手段により検出された方位及び傾き手段により検出された傾きにより特定される方向で観測される所定範囲の星図画像を表示することを特徴とする。この態様によれば、ユーザが天体画像表示装置を手に持って空に向けるだけで星座等が表示される。好ましくは、天体画像表示装置は、表示された星図画像を時刻の経過に従って日周運動させるのがよい。更に好ましくは、天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置の端末装置として接続可能であるとするのがよい。例えば、目標天体の選択、基準星の選択等を実際の星空と対比しながら表示画面上で行うようにすれば、ユーザフレンドリーな端末装置を実現することができる。更には、天体画像表示装置に接続された天体望遠鏡を、方位検出手段により検出された方位及び傾き手段により検出された傾きにより特定される方向に向くように制御すれば、望遠鏡のコントロールが容易となる。
【0020】
本発明の更に別の好ましい態様は、天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置であって、Webサーバ機能を備えることを特徴とする。ここで、電気通信手段は、インターネット、イントラネット及びLANのいずれかとすることができる。
【0021】
このようなWebサーバ機能を備えた自動導入装置は、Webプラウザ機能を備えた端末装置により制御することができる。このため、例えば専用端末、市販のPDA、携帯電話、携帯ゲーム器、パソコン等を使用することが可能となり、従って、ユーザが既に端末を所有している場合には新たに購入する必要が無く、新たに購入する場合でも選択肢が増え、趣向に合った端末を選択することができる。
【0022】
Webプラウザ機能を備えた端末装置は、Webサーバ機能を備えた自動導入装置と、ブルーツース(Bluetooth)や、無線LAN、光、赤外線等による無線通信を使用できる。これにより、ケーブル通信に伴う信号の劣化や機械的故障、取り回しの煩雑さから解放され、夜間でも快適に操作することができる。
【0023】
更に、インターネット等の電気通信手段で、端末装置とWebサーバ機能を備えた自動導入装置とが通信可能に相互接続される場合、1つの端末装置による複数の自動導入装置の制御(1対多制御)、複数の端末装置による1つの自動導入装置の制御(多対1制御)、複数の端末装置による複数の自動導入装置の制御(多対多制御)が可能となる。これにより、1台のコントローラ端末につき1台の自動導入式望遠鏡を制御していた従来技術と比べて大幅に制御の自由度を拡大できる。例えば、電気通信手段を介して入力機能を備えた端末装置と画面表示機能を備えた端末装置とを自動導入装置に相互接続することができる。この場合、自動導入装置は、入力機能を備えた端末装置から入力された情報に基づいた制御を実行すると共に、画面表示機能を備えた端末装置に、該制御に伴う入出力情報を表示させることができる。これにより、入力端末をより小型で持ちやすく、表示端末はより大型にして見やすくすることができ、観望会等で多数の人に各天体を紹介するなど、効率的な観測が可能となる。更に、複数の自動導入装置が、順次、切り替え制御されることにより、複数の天体望遠鏡による天体の連続追跡観測を可能にする、天体望遠鏡の制御システムを構築することができる。
【0024】
本発明の更に別の態様に係る天体望遠鏡の制御システムは、Webサーバコンピュータとしての機能を有する制御装置と、対応する天体望遠鏡を各々回転制御して目標天体を自動導入させる、複数の自動導入装置と、が電気通信手段を介して相互接続されており、該複数の自動導入装置は、該装置に関する観測情報を各々送信し、該制御装置は、受信した観測情報の各々に基づいて、複数の自動導入装置に対し所定のサービスを実行する。
【0025】
本発明の更に別の好ましい態様は、天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置であって、天体画像を撮像する撮像手段と、天体データベースと、該撮像手段により撮像された天体画像を、該天体データベースの天体情報と比較することにより、撮像された天体を同定する、天体同定手段と、を備えることを特徴とする。演算量を少なくするため、撮像手段により撮像された天体画像から各天体の情報を抽出する画像処理手段を更に備え、天体同定手段は、画像処理手段により抽出された各天体の情報と、天体データベースの天体情報とを比較することにより、撮像された天体を同定するのが好ましい。
【0026】
完全自動導入装置としての上記態様によれば、天体同定手段により同定された天体の位置情報に基づいて、天体座標系に対する天体望遠鏡の座標系の座標変換情報を画定させるためのアライメント処理を自動的に実行することができる。この場合、撮像手段が、複数の焦点距離で撮像可能に構成されているのが好ましい。アライメント処理は、例えば、撮像手段を広角側の焦点距離に設定した状態で天体画像を撮像し、広角側で撮像された天体画像の天体を同定し、同定された天体の位置情報に基づいて座標変換情報を修正し、広角側で撮像された天体画像の中から基準天体を選択し、基準天体を撮像画像の視野中央に導入するように天体望遠鏡を回転制御し、撮像手段をより望遠側の焦点距離に変更した状態で天体画像を撮像し、より望遠側で撮像された前記天体画像の天体を同定し、同定された天体の位置情報に基づいて座標変換情報を再度修正し、基準天体が撮像画像の視野中央に充分な精度で導入されるまで、撮像手段を、より望遠側の焦点距離に順次設定し、上記各工程を繰り返す。なお、アライメント処理は、少なくとも2つの基準天体を用いて実行される。
【0027】
このように本態様では、従来では、ユーザからの手入力に頼っていた入力情報を自動的に得ることが可能となる。また、撮像天体の位置に基づいてアライメントするため、GPS、水平センサ、磁気センサを用いた自動アライメントに比べて、大幅にアライメント精度を向上させることができる。
【0028】
完全自動導入装置は、自動導入後の目標天体の視野中央への修正も自動化することができる。この場合、目標天体を自動導入した後に、撮像手段により天体画像を撮像し、撮像された天体画像の天体を同定し、同定された天体の位置情報に基づいて、目標天体を天体望遠鏡の視野中央に導入するように天体望遠鏡を回転制御する。この場合、撮像手段が、複数の焦点距離で撮像可能に構成されているのが好ましい。完全自動導入は、目標天体を自動導入した後に、撮像手段を所定の焦点距離に設定した状態で天体画像を撮像し、撮像された天体画像から天体を同定し、同定された天体の位置情報に基づいて、目標天体を撮像画像の視野中央に導入するように天体望遠鏡を回転制御し、目標天体が撮像画像の視野中央に充分な精度で導入されるまで、撮像手段を、より望遠側の焦点距離に順次設定し、上記各工程を繰り返すことによってなされる。
【0029】
本発明の上記及び他の特徴は、次の図面及び以下の詳細な説明によって、更に明らかとなる。
【図面の簡単な説明】
【0030】
[図1]図1は、本発明の第1の実施例に係る、ハンディプラネタリウム式ハンドセットを備えた自動導入装置の概略図である。
[図2]図2は、図1のハンドセット及び望遠鏡本体の外観図である。
[図3A]図3Aは、図2に示すハンドセットのグラフィック表示部の構成例を示す図である。
[図3B]図3Bは、該グラフィック表示部のうち全天表示部を拡大した図である。
[図4A]図4Aは、第1の実施例に係るハンドセットにおける、天体選択モードと望遠鏡コントロールモードとを切り替える際の操作手順を示す図である。
[図4B]図4Bは、ズーミング機能とモータ速度設定との連動を示す図である。
[図5]図5は、第1の実施例に係るハンドセットの電子星座早見モードにおける処理の流れを示すフローチャートである。
[図6A]図6Aは、ユーザが図5の電子星座早見モードに設定されたハンドセットを様々な傾き(高度)で持っている状態を示す図である。
[図6B]図6Bは、そのときにハンドセットが行う処理を示す図である。
[図7]図7は、本発明の第2の実施例に係るWebサーバ型自動導入装置及びWebプラウザ型端末装置の概略図である。
[図8A]図8Aは、図7に示すWebサーバ型自動導入装置及びWebプラウザ型端末装置がインターネットを介して接続されている状態を、本発明の第3の実施例として示した図である。
[図8B]図8Bは、図8Aに示したインターネット接続を利用した、入力及び表示の制御例を示す、フローチャートである。
[図9]図9は、図8Aに示したインターネット接続を利用した、本発明の第3の実施例に係る、端末装置とWebサーバ型自動導入装置との間の接続態様であって、A(1:1制御)、B(1:多制御)、C(多:1制御)及びD(多:多制御)を各々示している。
[図10]図10は、図9に示す接続態様において、自動導入制御の端末装置側の処理の流れを示すフローチャートである。
[図11]図11は、図9に示す接続態様において、自動導入制御の自動導入装置側の処理の流れを示すフローチャートである。
[図12]図12は、1対多の天体望遠鏡制御システムの応用例を示す、概略図である。
[図13]図13は、多対1の天体望遠鏡制御システムの応用例を示す、概略図である。
[図14]図14は、連続観測システムの第1の例を示す概略図である。
[図15]図15は、連続観測システムの第2の例を示す概略図である。
[図16]図16は、本発明の第4の実施例に係る、天体情報を提供する中継用ウェブサーバコンピュータの概略図である。
[図17]図17は、本発明の第4の実施例に係る、完全自動導入装置の概略図である。
[図18]図18は、図17に示す完全自動導入装置を内蔵した望遠鏡において自動アライメント(第1基準星設定)するときの処理の流れを示したフローチャートである。
[図19]図19は、図17に示す完全自動導入装置を内蔵した望遠鏡において自動アライメント(第2基準星設定)するときの処理の流れを示したフローチャートである。
[図20]図20は、図17に示す完全自動導入装置を内蔵した望遠鏡において目標天体を完全自動導入するときの処理の流れを示したフローチャートである。
【実施例】
【0031】
以下、図面を参照して本発明の好ましい実施例を説明する。
<第1の実施例:
ハンディプラネタリウム式ハンドセットを備えた自動導入装置>
図1には、本発明の第1の実施例に係る天体自動導入装置10aを備えた自動導入式望遠鏡の概略的なブロック図が示されている。
【0032】
望遠鏡本体12は、2つの直交する回転軸を有する型式であり、該2つの直交する回転軸の回りに該望遠鏡本体12を回転させるように各々の回転軸に取り付けられたモータ14、16と、該モータ14、16の回転に従ってパルス信号を出力するようにモータシャフトに夫々接続されたエンコーダ18、20と、を備えている。なお、エンコーダ18、20は、モータシャフトに直結したものに限定されず、モータシャフトから赤経・赤緯(又は水平、垂直)各軸の最終段までギヤで減速される途中の段階に設けられたり、赤経・赤緯(又は水平、垂直)各軸に直結されていてもよい。
【0033】
更に、望遠鏡本体12は、自動導入装置10aの機能を実現するため望遠鏡を制御するCPU22を備えている。このCPU22は、エンコーダ18、20に接続されており、該エンコーダ18、20から出力された信号を読み取りカウントすると共に、外部からの入力指令に従ってモータ14、16の回転制御を行う。CPU22は、ケーブル32を介して、ユーザによる入力操作が可能なハンドヘルド式のコントローラ(ハンドセット)24に接続されている。
【0034】
ハンドセット24には、CPU26が内蔵され、該CPU26は、CPU22から送られてきたエンコーダ信号のカウント値から現在の望遠鏡が向いている天球上の位置を検出し、該位置がユーザにより入力された目標天体の座標位置に一致するようにCPU22に指令を送る。また、CPU26は、詳細を後述するように、画面表示及びキーボード制御を行う。
【0035】
また、ハンドセット24は、星図で使用するための全天体データを記憶した星図データベース27と、ハンドセット24が向けられている方位を検出するための方位センサ34と、ハンドセット24の傾斜角度を検出するための傾きセンサ36と、内蔵時計38と、を備えている。これらは、CPU26と図示しないバスで接続されている。
【0036】
なお、ハンドセット24とCPU22とは一体となっていてもよい。即ち、CPU26にCPU22の機能が含まれている構成や、ハンドセット24内にCPU26とCPU22とが設けられている構成も可能である。望遠鏡本体にハンドセット24の機能が内蔵され、画面表示部や入力用キーボードなどが望遠鏡本体に装備されていてもよい。
【0037】
図2には、図1の望遠鏡本体12及びハンドセット24の外観が示されている。望遠鏡本体12は、架台12aと、それに取り付けられている望遠鏡鏡筒12bと、を備えている。図2の例では、架台12aとして赤道儀が採用され、モータ14、16は夫々赤経モータ及び赤緯モータとして機能する。なお、赤経モータ及び赤緯モータ14、16は、架台12aの赤経ハウジング及び赤緯ハウジングに内蔵されているが、外付け方式であってもよい。また、CPU22は例えば赤緯ハウジング内に収容された制御基板に収めてもよいが、CPU22を内蔵したコントローラを外付け方式で架台12aに接続してもよい。本実施例の自動導入装置10aは、経緯台にも適用可能であり、この場合、モータ14、16は夫々水平モータ及び高度モータとして機能する。
【0038】
図2に示すハンドセット24は、グラフィック表示部28と、複数のキー若しくはボタン(A,B、1,2,3,4,5,6,7,8)からなる入力操作部30と、を備えている。グラフィック表示部28には、図3Aに示すように、恒星、惑星、星雲星団、星座の配列等からなる星図画像を表示可能な星図表示部40と、星図表示部40よりも広い天球領域、例えば北半球若しくは南半球全体の星図画像を表示可能な全天表示部44と、望遠鏡本体12や天体に関する情報等を文字で表示するための文字表示部42と、が設けられている。
【0039】
星図表示部40には、横軸に方角、縦軸に高度が表示される。CPU26は、入力操作部30から入力された入力情報と、各種センサからの出力信号とに基づいて、後述する所定のアルゴリズムに従って星図データベース27から画像データを読み取り、星図表示部40に表示する。このとき、星図画像に表示された星座、惑星などの名前を表示してもよい。
【0040】
更に、CPU26は、エンコーダ信号のカウント値から検出された現在の望遠鏡が向いている天球上の座標位置又は目標天体の座標位置を、図3Bに示すように、カーソル46として表示する。更に、CPU26は、星図表示部40に表示されている範囲を表す枠48を、全天表示部44に表示する。これにより、望遠鏡が向いている方向や、星図表示部が全天のどの部分に相当しているか等が直ちにわかるので、全体像が把握しやすくなる。
【0041】
次に、本実施例に係る自動導入装置10aの操作手順及び制御方法を説明する。
【0042】
本自動導入装置10aは、画面上で目標の天体を選択する天体選択モードと、ボタンを押せば望遠鏡(架台)が動く望遠鏡コントロールモードの2つのモードを少なくとも備えている。
【0043】
図4Aに示すように、例えばシステム起動時は、天体選択モードになっているとする。
【0044】
ユーザが入力操作部30のボタン1、2、3、4(図2参照)のいずれかを押すと星図表示部40(図3A参照)に表示された星空が、各ボタンに割り付けられていた移動方向に従って上下左右に移動する。なお、このときは望遠鏡の架台は動いていない。ユーザは、表示された星空画像を見ながら、星図表示部40の中央部のカーソル41に導入したい目標天体を持ってくる。目標天体が中央に表示されると、文字情報表示部42に目標天体の赤経、赤緯値、天体の種類、等級、地球からの距離(光年)等の各種説明が表示される。
【0045】
目標天体が中央に表示された状態で、ボタンAを押すと、画面は望遠鏡コントロールモードになり、かつ、望遠鏡は目標天体に向かって動き出すようにモータ制御される。望遠鏡の向いている実際の座標位置は、全天表示部44のカーソル46で表されているので、星図表示部40の中央に表示された目標天体と現在の望遠鏡位置との離角を直感的に認知することができる。望遠鏡の向きの移動に従ってカーソル46も移動し、それが全天表示部44で星図表示部40の範囲を示す枠48内に入ると、星図表示部40にもカーソル46が表示される。導入が終了すると画面中央カーソル41とカーソル46とが合致し、目標天体と望遠鏡の向きが一致したことを示す。その後は、ボタン1、2、3、4を押すと、望遠鏡の向きが移動し、これと共に星図表示部40内の画面が移動する。
【0046】
望遠鏡コントロールモードでは、星図表示部40の画面中央は、絶えず望遠鏡が向いている座標として表示することもできる。この場合、天体選択モードで目標天体が中央に表示された状態で、ボタンAを押すと、星図表示部40の画面は、目標天体中心の画面から望遠鏡が向いている座標を中心とする画面に切り替わり、自動導入開始と共に、星図表示部40内の画面が移動する。このとき、カーソル46は、目標天体の位置を示すものとして表示し、上記の場合と区別するためそのデザインを変えるのが好ましい。
【0047】
また、天体選択モード及び望遠鏡コントロールモードのいずれにおいても、星図表示部40の画面中央カーソル41は、絶えず望遠鏡が向いている座標位置として表示することもできる。この場合、天体選択モードでは、カーソル46の位置で目標天体を指定するものとし、ボタン1、2、3、4はそのカーソル位置を移動させるために使用される。
【0048】
図4Aに示すように、自動導入完了後、再びボタン[A]を押すと、天体選択モードになる。このように、ワンクリックで天体選択モードと望遠鏡コントロールモードを切替えられ、[天体選択モード]→[望遠鏡コントロールモード]に切り替えたときは、同時に自動導入も始まるようになっている。各モードに遷移したことを分かりやすくするために、画面に現在モードを文字表示したり、画面中央のカーソルのデザインを変えたり、画面背景色を変えたりするのが好ましい。
【0049】
このように本実施例では、ハンドセット24に文字情報だけでなく星図を表示するようにしたので、ユーザは容易に目標天体を選べるようになった。
【0050】
ところで、西の空、東の空というように広い範囲を指示したい場合は、画面上にも広範囲な表示をするのが好ましい。また、天体が密集している中から目的の天体を支持したいときは、拡大表示をするのが好ましい。このような要求を満たすために、ハンドセット24の入力操作部30のボタン5にズームアップ、ボタン6にズームダウン機能を割り付ける。それぞれのボタンを押すたびに所定の拡大・縮小率で拡大・縮小するようにしておく。
【0051】
ここで、現在モードが望遠鏡コントロールモードになっているとする。画面が強拡大されている時は、画面全体は非常に狭い範囲しか表示されていない。このとき、モータ速度が高速度に設定されていると、モータコントロールボタン1、2、3、4を押せば、一瞬にして広範囲を動いてしまい、画面上にも全く違った場所が表示されてしまい。現在位置を把握しにくい。その逆に、画面全体に広い範囲を表示しているときを考える。このとき、モータ速度が低速度に設定されていると、モータコントロールボタン1、2、3、4を押しても、望遠鏡の動く範囲は微小で画面上では1画素にも満たない時もあるであろう。そのような場合、画面では望遠鏡(視野)の動きを表現できない。よって、画面が拡大されているときには、モータ速度は遅く、逆に、画面が拡大されてないときにはモータ速度は高速度に自動的に設定されることが望ましい。
【0052】
そこで、本実施例では、図4Bに示すように、ズームアップボタン5を押す度に、自動的にモータ速度が遅くなるように、逆に、ズームダウンボタンを押す度にモータ速度が速くなるように、設定されている。
【0053】
このように、画面のズーミングに合わせてモータ速度が自動的に変わるようにしたので、ズーミング毎にモータ速度だけを変更する手間が省けるようになった。
【0054】
本実施例のハンドセット24は、ユーザに星空案内するための電子星座早見モードを更に備えている。このモードでの操作手順を図5のフローチャートに示す。
【0055】
図5に示すように、ハンドセット24をパワーオンした直後は、星図表示部40は、最大画角表示に設定されている(ステップ500)。この状態で、ユーザは、図6Aに示すように、観測したい空の方向にハンドセット24を向ける。観測したい空の方向によって、図示のように例えば低高度、中高度、高高度に分類されることがわかる。
【0056】
次に、ハンドセット24は、星図表示部40に、日付・時刻、観測場所、ハンドセット24の方位、高度に応じた星座図を描く(図5のステップ502)。
【0057】
ステップ502の描画制御は、図6Bに示すようにしてなされる。即ち、ハンドセット24のCPU26は、方位センサ34及び傾きセンサ36から出力された信号に基づいて、ユーザが見ている(即ち、ハンドセット24が向けられた)空の方位及び仰角(高度)を演算する(ステップ400)。これと並行して、又は事前に、CPU26は、内蔵時計38と、予め入力されフラッシュメモリ等に記憶されている観測地の緯度及び経度50とに基づいて当該観測地の現時点での空の天体配置を計算する(ステップ402)。なお、観測地の緯度及び経度情報50は、ユーザが入力操作部30から入力してもよいが、GPSを介して自動的に検知するようにしてもよい。
【0058】
次に、CPU26は、計算された現時点での観測地の天体配置に基づいて、ハンドセット24の星図表示部40に表示可能な現時点での倍率における範囲に相当する画像データを星図データベース27から読み取り編集し、ユーザが現時点で見ている(即ち、ハンドセット24が向けられた)星座の画像を星図表示部40に表示する(ステップ404)。このようにしてユーザは、星図表示部40における最大画角における空の天体配置を容易に知ることができる。
【0059】
次に、CPU26は、スーミング待機モードに移行する(ステップ504)。このモードでは、より詳しく表示天体を知りたい場合には、ズームアップボタン5を押すことにより画像を拡大表示することができる。より広い範囲を表示させたいときには、ズームダウンボタン6を押すことにより画像を縮小表示すればよい。なお、星図表示部40には、画像だけなく、天体名等や星座等も表示されるので、ユーザは、見ている天体や星座の名称を直ちに知ることができる。必要とあらば、文字情報表示部42に、カーソル41に位置している天体や星座についての詳しい説明を表示させることもできる。
【0060】
また、CPU26は、以下のように絶えず、方位センサ34及び傾きセンサ36からの出力信号を監視する。
【0061】
傾きセンサ36からの入力に有意な変化があった場合(図5のステップ506)、CPU26は、検出されたハンドセット24の傾き(高度)を中心とした星座図を星図表示部40に再描画させる(ステップ508)。方位センサ34からの入力に有意な変化があった場合(ステップ510)、CPU26は、検出されたハンドセット24の方位を中心とした星座図を星図表示部40に再描画させる(ステップ512)。これにより、ユーザは、ハンドセット24を観測したい空の任意方向に向けるだけで、直ちに、実際に現れている星座や天体を直ちに知ることができる。ここで、傾きや方位の僅かな変化に追従して表示画像が変化すると、見ずらくなるので、それらの変化幅が所定値を超え、且つ、その状態が一定時間以上継続したときに画像の変更を行うのが好ましい。また、ハンドセット24を移動するとき、その移動速度に完全に追従させるのではなく、視認性を考慮して表示画像上での移動速度を適宜設定するのが好ましい。
【0062】
なお、一旦表示させた天体配置画像をボタン操作で固定表示し、ハンドセット24の位置を変えても、同じ画像を表示し続けることができる固定表示モードを設けてもよい。固定表示モードをボタン操作で解除した場合、上記のような監視モードに直ちに移行する。
【0063】
また、CPU26は、時刻の経過に従って、表示させた星座図を日周運動させる制御も同時に行う(ステップ514)。この制御は、上記した固定表示モードでも同様に行ってもよい。そして、再び、ズーミング待機モードに移行し、同様の処理を繰り返す。
【0064】
この電子星座早見モードは、自動導入前のアライメントで使用する基準星を選択する際にも用いることができる。例えば、基準星として登録されている星にマークを付けて表示しておく。ユーザが、表示されている基準星を星図表示部40の中央カーソル41又はカーソル46に合わせて選択ボタンを押すと、CPU26は、どの基準星が選択されたかを検知することができる。更に、方位センサ34及び傾きセンサ36の検出結果から、選択された基準星が、現在、どの方向に向いているかを判断し、記憶しておく。アライメント時には、CPU26は、選択された基準星の方向に望遠鏡が自動的に向くようにモータ制御する。この場合、センサの誤差により、基準星が望遠鏡の視野中央に入らない場合がある。このときはユーザが入力操作部30のボタン1,2,3,4を押すことにより、最終的に視野中央に基準星を合わせることにより、正確な基準星の位置をCPU26に知らせることができる。なお、基準星の選択時とアライメント時とで時間差があると、日周運動に起因して記憶している基準星の位置が変わるので、日周運動に従って記憶位置を更新するのが好ましい。
【0065】
本モードでは、最終的にユーザがアライメントする必要があるが、ハンドセット24を星が現れている空の領域に向けるだけで基準星を直感的に選択でき、基準星が大まかな位置まで自動導入されるので、従来のように文字ディスプレイで逐一基準星を選択し、望遠鏡を初期位置から基準星の位置までボタン操作で移動させる方式と比べて、アライメントに要するユーザ負担を大幅に軽減することができる。
【0066】
また、電子星座早見モードを、上記した天体選択モードで目標天体を選択する際にも使用することができる。この場合、ユーザは、表示画像を実際の星座と対比させて見ながら目標天体をカーソル41又は46に合わせて選択する。更に、電子星座早見モードを、上記した望遠鏡コントロールモードと連動させて使用可能にしてもよい。この場合、ハンドセット24の向きと望遠鏡の視野とが一致するように、望遠鏡が駆動制御される。
【0067】
以上のように本実施例では、実際の星空と対比しながら各星座や天体の情報収集や選択を直感的に行うことができる、ユーザフレンドリーなシステムを実現した。
<第2の実施例:Webサーバ型自動導入装置>
図7には、本発明の第2の実施例に係るWebサーバ型自動導入装置10bの概略構成が示されている。なお、第1の実施例と同様の構成要件については、同一の符号を附して詳細な説明を省略し、異なる部分についてのみ説明する。
【0068】
望遠鏡本体12は、自動導入装置10bの機能を実現するためCPU52を備えている。CPU52は、座標計算、エンコーダ18、20の信号の読み取り、モータ制御、コントローラ端末との通信を実行することに加えて、インターネットにアクセスして各種端末と通信可能なサーバコンピュータとして望遠鏡本体12を制御する機能を備えている。
【0069】
このように第2の実施例では、自動導入装置10bにWebサーバ機能を持たせたので、Webブラウザ機能を搭載した端末を自動導入装置10bの制御のために使用できるようになった。そのため、自動導入装置10bのコントローラ54は、Webブラウザ機能、画面表示、キー入力制御機能、及び、通信機能を備えたCPU56を有する任意端末として構成することができる。このような端末として、例えば専用端末、市販のPDA、携帯電話、携帯ゲーム器、パソコン等がある。従って、ユーザが既に端末を所有している場合には新たに購入する必要が無く、新たに購入する場合でも選択肢が増え、趣向に合った端末を選択することができる。なお、第1の実施例のハンドセット24にプラウザ機能を持たせたものをコントローラ54として用いてもよい。この場合、Webサーバ52を介してインターネットから取得した天文情報、例えば新彗星、新星を表示部28に表示するようにすれば、タイムリーな天体観測が可能となる。
【0070】
CPU52との通信方式として、図7に例示されたようにブルーツース(Bluetooth)による無線通信や、無線LAN、光、赤外線等による他の無線通信を使用できる。これにより、ケーブル通信に伴う信号の劣化や機械的故障、取り回しの煩雑さから解放され、夜間でも快適に操作することができる。勿論、本実施例でも、ケーブル等を用いたり、電話回線等を介してインターネット通信することも可能である。
【0071】
なお、望遠鏡本体12にハンドセットの機能が内蔵されていてもよい。即ち、画面表示部や入力用キーボードなどが望遠鏡本体に装備されていてもよい。また、Webサーバ機能を内蔵したハンドセット、例えば図1のハンドセット24にWebサーバ機能が内蔵され、これにWebプラウザ機能を備えた端末が接続されるような構成も可能である。
<第3の実施例:天体望遠鏡の制御システム>
第3の実施例として、1以上の端末と1以上の自動導入装置とをネットワーク接続した、天体望遠鏡の制御システムを説明する。なお、第1及び第2の実施例と同様の構成要件については、同一の符号を附して詳細な説明を省略し、異なる部分についてのみ説明する。
【0072】
図8Aには、図7の自動導入装置10bと同じ機能を各々有する複数の自動導入装置72a、72b、...と、図7のコントローラ54と同じ機能を各々有する複数の端末装置74a、74b、...と、画面表示機能に特化した端末装置76と、入力機能に特化した端末装置78と、がインターネット70を介して相互接続された状態が示されている。なお、インターネット70の代わりに、イントラネット、LAN(有線、無線)等を用いることもできる。
【0073】
図8Aから直ちに理解できるように、たとえ端末装置74a、74bが自動導入装置72a、72b(望遠鏡本体)の設置場所から遠隔地にあった場合においても、インターネット70を経由して端末装置74a、74bからWebサーバ機能を持つ自動導入装置72a、72bを制御することができる。例えば、望遠鏡を屋上に設置し、コントローラ端末は階下の部屋の中からでも遠隔制御できる。また、望遠鏡は高山に設置し、市街地からコントローラで制御する使用方法も可能である。更に、地球の裏側からでもコントロール可能である。
【0074】
また、図8Aから、自動導入装置本体にWebサーバ機能を持たせ、端末側はWebブラウザ機能を持たせたことにより、1:1、1:多、多:1、多:多の操作が可能となることがわかる(図9参照)。即ち、一台の端末から複数の望遠鏡を操作したり、多人数が一台または複数の望遠鏡を操作することが可能となる。このため、天体観望会などで、効率的な観測を実現することができる。
【0075】
次に、1:多、多:1、多:多接続における制御の流れを示す。
【0076】
最初に、図10のフローチャートを用いて、自動導入を要求する端末側の制御の流れを説明する。最初に、端末側から自動導入装置に接続要求を送信する(ステップ300)。複数の自動導入装置がインターネットを介して接続可能な場合には、いずれか1つを選択してもよいし、或いは、そのうちの幾つか又は全部に対して接続要求を発信してもよい。次に、この接続要求に対する自動導入装置からの応答を受信するまで待機する(ステップ302)。自動導入装置からの応答を受信した場合には(ステップ302肯定判定)、その自動導入装置に導入要求(天体導入リクエスト信号)を送信する(ステップ304)。この天体導入リクエスト信号には、例えば、その応答を送信した自動導入装置で導入すべき目標天体、又は、天球上の位置(赤経、赤緯)の指定情報が含まれている。複数の自動導入装置に接続している場合には、所定のシーケンスに従って(例えば、応答を受信した順)、複数の自動導入装置に夫々天体導入リクエスト信号を送信する。目標天体は、複数の自動導入装置毎に異なっていてもよいし、同一であってもよい。
【0077】
次に、自動導入装置の導入が完了したか否かを判定する(ステップ306)。導入が完了しない場合(ステップ306否定判定)、接続確認信号を送信し(ステップ308)、導入が完了するまで待機する。導入が完了した場合(ステップ306肯定判定)、その自動導入装置で観測を終了するか否かを判定する(ステップ310)。この観測終了の判定は、例えば、端末側の導入スケジュールが終了したか、又は、自動導入装置側から観測終了の指示があったかにより行う。観測終了でない場合(ステップ310否定判定)、ステップ304に戻り、導入要求を送信する。観測終了した場合(ステップ310肯定判定)、その自動導入装置との接続を開放する(ステップ312)。
【0078】
次に、自動導入が要求される自動導入装置側の制御の流れを図11のフローチャートを用いて説明する。同図に示すように、最初に、端末側からの接続要求を受信したか否かを判定する(ステップ320)。接続要求を受信するまで待機し、受信した場合(ステップ320肯定判定)、接続相手(端末側)のアドレスを記憶し(ステップ322)、当該端末側と接続する。次に接続した相手先の端末側から導入要求を受信したか否かを判定する(ステップ324)。天体導入リクエスト信号を受信するまで待機し、受信した場合(ステップ324肯定判定)、天体導入リクエスト信号により指定された目標天体の目標座標を計算し(ステップ326)、望遠鏡本体のモータの回転制御を開始し(ステップ328)、待機し(ステップ330)、望遠鏡が目標座標に達したか否かを判定する(ステップ332)。目標座標に達していない場合(ステップ332否定判定)、端末からの接続確認信号(図10のステップ308)を受信したか否かを判定する(ステップ334)。端末からの接続確認信号を確認した場合(ステップ334肯定判定)、ステップ328に戻り、端末との接続が確認されている間に目標座標に達するまで、同様の処理を繰り返す。目標座標が達成された場合(ステップ332肯定判定)、モータを停止し(ステップ338)、端末側の要求や観測スケジュール等に基づいて、接続を開放すべきか否かを判定する(ステップ340)。接続を開放しない場合(ステップ340否定判定)、ステップ324に戻り、端末側からの導入要求を待機し、同様の処理を繰り返す。接続開放する場合(ステップ340肯定判定)、実際に端末側との接続を開放する(ステップ342)。
【0079】
以下に、図8乃至図11に示された構成の応用例を示す。
(独立した表示及び入力機能端末)
従来の端末装置では、表示部と入力部とは一体となっていた。しかし、表示部は星図や望遠鏡本体で撮像した画像を表示したいために(情報量を大きくしたいために)大きな寸法のものが望ましい。一方、入力部は手のひらに収まるくらいの小さなものが扱いやすい。この矛盾する要求を解決するため、多対1又は多対多接続(図9)において、図8Aに示すように、端末装置として、画像表示に特化した端末装置76と、入力機能に特化した端末装置78と、を配置する。
【0080】
この構成を用いて1台の望遠鏡本体のWebサーバ型自動導入装置72aを制御する流れを、図8Bを用いて説明する。
【0081】
図8Bに示すように、Webサーバ型自動導入装置72aは、インターネット70を介して表示属性を持った端末装置76をサーチする(ステップ550)。表示属性端末76が検出されると、表示されるべき情報を該表示属性端末76に送信する(ステップ552)。次に、Webサーバ型自動導入装置72aは、インターネット70を介して入力属性を持った端末装置78をサーチする(ステップ554)。入力属性端末78が検出されると、該端末からユーザにより入力された情報を取得する(ステップ556)。Webサーバ型自動導入装置72aは、入力情報に基づく動作を実行し、再びステップ550に戻り、同様の処理を実行する。このように表示部と入力部とは必ずしも一体になっている必要は無く、例えば入力部はポケットの中に入れて操作し、表示部は外部に設置すれば、多人数で観測する場合に非常に有効である。インターネットやLANを利用すれば、表示用端末を複数、遠隔地に設置して多地域・多人数で観測するような構成が簡単に実現できる。
(1対多の制御)
図12に、1対多制御の天体望遠鏡の制御システムの応用例を示す。
【0082】
図12に示す制御システムでは、自動導入装置を内蔵する複数の天体望遠鏡110a、110b、110c,...と、該複数の自動導入装置の制御権を有する、1台の端末装置102と、がインターネット、LAN等(図8A)の電気通信手段を介して相互接続されている。天体望遠鏡110a、110b、110c,...の各々には、自動導入装置への指令を入力するためのハンドセット112a、112b、112c,...が有線で又は好ましくは無線で接続されている。これらのハンドセットには、図1乃至図4又は図7に示すハンドセットを使用することができる。自動導入装置は、図7に示すWebサーバ機能を有することができる。
【0083】
端末装置102は、表示部108を有する。この端末装置102は、上記と同様のハンドセット、又は、パーソナルコンピュータ等で構成することができる。また、端末装置102にも、自動導入装置を内蔵した天体望遠鏡を接続してもよい。
【0084】
図12に示す制御システムは、天体観望会などに応用することができる。例えば、参加者の各々に天体望遠鏡110a、110b、110c,...を与え、説明員に端末装置102を与える。説明員が端末装置側から全ての天体望遠鏡に接続要求(図10のステップ300)及び導入要求(図10のステップ304)を送信することにより、参加者各人の天体望遠鏡を一斉に自動導入制御し、これにより同一天体を参加者全員に観望させることができる。勿論、端末装置102から天体望遠鏡毎に異なる目標天体を導入するように要求してもよい。
【0085】
各天体望遠鏡は、端末装置102からの導入要求を受信したとき直ちにモータ回転を開始するようにしてもよいが、安全性を向上させるため、各々のハンドセット112a、112b、112c,...に動作開始ボタンを設けておき、参加者が動作開始ボタンを押すことにより、導入要求に応じたモータ回転制御を開始するようにしてもよい。後者の場合は、参加者が望遠鏡から離れたことを確認してから導入を開始することができるので、安全性を向上させることができる。各自動導入装置は、天体望遠鏡を駆動開始するとき警告音又は警告表示を発する警告手段、及び、端末装置102との通信が切れた場合、その天体望遠鏡の回転駆動を緊急停止させる停止手段の少なくともいずれかを備えるのが好ましい。
また、各天体望遠鏡において、その少なくとも1つの動作についてハンドセットからの指令を端末装置102からの指令に優先させる優先操作ボタンをハンドセットに設けるようにしてもよい。例えば、自動導入中にモータ回転を緊急停止させるためのボタンを設けることにより安全性を更に向上させることができる。また、優先操作ボタンを押すことにより、端末装置からの指令に依らずに、天体望遠鏡を所望の方向に向けることができるようにしてもよい。
【0086】
また、制御システムの制御権を端末装置102から、任意のハンドセット112a、112b、112c,...へと移行する機能を端末装置102及び/又は各ハンドセットが有するようにしてもよい。この場合、参加者が自分の好きな目標天体を他の天体望遠鏡にも自動導入させて、それを紹介し、説明したりすることができる。
【0087】
また、端末装置102は、指定した少なくとも1つの自動導入装置のみを制御する個別制御モードを備えてもよい。これにより、参加者のレベル等に応じた個別指導が可能となる。
【0088】
更に、端末装置102による各自動導入装置の管理及び指導的制御を援助するため、端末装置102の表示部108は、各自動導入装置からの受信情報を表示することができる。この受信情報には、例えば、自動導入装置の各々の動作終了状態、各天体望遠鏡の向いている方向若しくは天球上の位置を示す情報、各自動導入装置の使用者からの電子メール情報、及び、各天体望遠鏡により撮像された天体画像データの少なくともいずれかが含まれる。また、これらの情報は、自動導入装置間でも転送可能である。
各天体望遠鏡の自動導入をより効率的に実行するため、端末装置102には、天体望遠鏡の各々の自動導入のため必要となるアライメント用の情報を記憶し、次回の制御システム起動時に、自動導入装置の各々に該アライメント用情報を再設定する機能が与えられる。これにより、2回目以降の観望会から参加者によるアライメント作業を省略することができ、天体観望会を迅速に開催することができる。
(多対1制御)
図13に、多対1制御の天体望遠鏡の制御システムの応用例を示す。
【0089】
図13に示す制御システムでは、自動導入装置を内蔵する1台の天体望遠鏡124と、該天体望遠鏡124を入力操作するため、その手許にあるハンドセット122と、ハンドセット122又は天体望遠鏡124の自動導入装置とインターネット等の電気通信手段を介して接続された、複数のハンドセット120a、120b、120c、120d、120eと、...が用意されている。
【0090】
複数のハンドセット120a、120b、120c、120d、120eは、電気通信手段を介して天体導入リクエスト信号を各々送信する。2以上のハンドセットから天体導入リクエスト信号を受信した場合(図11のステップ324で複数の導入要求を受信した場合)、自動導入装置124は、所定のシーケンスにより該天体導入リクエスト信号の実行順番を割り当て、該実行順番に従って各目標天体を順次自動導入する。
この所定のシーケンスには、例えば、次のものが考えられる。
(1)自動導入装置124がそれらの天体導入リクエスト信号を受信した順番
(2)ハンドセット122が操作可能となった他のハンドセット120a、120b、120c、120d、120eからの天体導入リクエスト信号の順番
(3)受信した時刻の差が所定の時間以内にある複数の天体導入リクエスト信号の場合には、現在天体望遠鏡124が向いている方向により近い目標天体を指定した天体導入リクエスト信号の順番
ハンドセット122、120a、120b、120c、120d、120e,...は、表示部を各々備えている。これらの表示部は、自動導入装置124の動作終了状態、天体望遠鏡の向いている方向若しくは天球上の位置を示す情報、天体望遠鏡が導入する天体に関する情報、及び、天体望遠鏡により撮像された天体画像データの少なくともいずれかを少なくとも表示可能である。また、電気通信手段に、天体情報サーバコンピュータ126が接続可能である。この天体情報サーバコンピュータ126から、導入天体等に関する画像、動画、音声、説明文章、データ等を送信させ、各ハンドセットで表示、再生することもできる。なお、天体情報サーバコンピュータ126は、図12の1対多制御にも適用できる。
(連続観測システム)
本発明の実施例に係る天体望遠鏡の制御システムを用いて、相互接続された複数の自動導入装置が、順次、切り替え制御されることにより、複数の天体望遠鏡による天体の連続追跡観測を可能にする、連続観測システムを構成することができる。この連続観測システムは、例えば、Webサーバ機能を備えた複数の自動導入装置をインターネット等を介して相互接続し、自動導入装置間で情報を相互に連絡により実現することができる。また、相互接続された自動導入装置を管理・制御する1台のWebサーバコンピュータが、連続観測を可能にするように、個々の自動導入装置を制御することによっても実現できる。
【0091】
図14に、連続観測システムの一例を示す。本システムでは、ドイツ式赤道儀を備えた2台の天体望遠鏡130a、130bが提供されている。これらの天体望遠鏡には、CCDカメラ132a、132bが各々取り付けられており、目標天体を撮像することができる。
【0092】
一例として、1台の天体望遠鏡130aが子午線128に対して東側にある天体Eを観測している場合を想定する。このとき、天体望遠鏡130aの鏡筒は、そのドイツ式赤道儀マウントに対して西側に配置されている。他方の天体望遠鏡130bは、鏡筒がそのドイツ式赤道儀マウントに対して東側に配置されるように予め鏡筒反転した状態でスタンバイ状態で待機している。
【0093】
天体望遠鏡130aが天体Eの観測を終了し、次に、子午線128を超えてその西側にある天体Wの観測をする場合、このままだと、鏡筒やCCDカメラが赤道儀又は三脚(図示せず)と干渉するおそれがある。従来ならば、マウントに対する鏡筒の位置の東西を入れ変えて鏡筒反転をする必要があり、この反転動作の間に観測できない時間が生じていた。本実施例の連続観測システムでは、この場合に、予め鏡筒反転しておいた天体望遠鏡130bにより天体Wを観測(撮像)させるように制御する。これにより、観測不可能な時間を可能な限り少なくして、連続的に天体を観測(撮像)することができる。
【0094】
また、天体望遠鏡130aが天体Nを観測している場合を想定する。観測中に天体Nが子午線128を超えて西側に移行したとき、迅速に天体望遠鏡130bに天体Nの観測を移行させる。これにより、鏡筒反転する時間を節約して、同一天体Nを連続的に観測(撮像)することができる。
【0095】
図14の例では、2台の天体望遠鏡を用いていたが、3台以上の望遠鏡を用いることも可能である。
【0096】
また、接眼部が鏡筒の側面に取り付けられているニュートン式反射望遠鏡を用いて眼視観測する場合、子午線の東西で、接眼部の方向が大きく変わってしまう。本連続観測システムを用いた場合、子午線を超えた場合、予め鏡筒反転して接眼部の位置を眼視用に調整した望遠鏡で観測中の天体を自動導入するようにすれば、眼視観測の場合も、赤道儀の反転や鏡筒回転に要する時間を節約することができる。
【0097】
また、本実施例に係る連続観測システムは、人工衛星等の高速移動天体の連続観測にも使用することができる。その応用例を図15に示す。
【0098】
図15に示すように、複数の自動導入装置を内臓した天体望遠鏡140a、140b、140c,...が、異なる地点(例えば、東京、名古屋、大阪等々)に夫々配置されている、例えば、低空軌道の高速で移動する人工衛星Sが最初に現れた地点で、天体望遠鏡140aが、人工衛星Sの観測を開始する。天体望遠鏡140aは、人工衛星Sを観測しながら、その移動情報を、他の地点に発信する。各自動導入装置は、受信した移動情報に基づいて、自地点に人工衛星Sが現れる時刻、座標を予測計算し、観測可能となった時刻にその出現座標に天体望遠鏡を向け、観測を開始する。この作業を連鎖的に複数の地点で順次行うことにより、高速移動天体の連続的な追跡観測が可能となる。
【0099】
図15の連続観測システムの別の例では、各地に配置された自動導入装置の各々が、自地点で天体観測可能な天球上の領域を検出する観測領域検出手段を備える。この観測領域検出手段は、例えば、CCDカメラと、該CCDカメラで撮像された画像から天体観測可能な領域と不可能な領域(雲、山、建物、公害等の障害物により撮影不可能な領域)とを識別する画像解析装置と、から構成される。
【0100】
この連続観測システムでは、観測中の天体望遠鏡140aが、観測領域検出手段により検出された天体観測可能な領域の範囲外の領域へと向きを変えたとき、その領域の観測が該範囲外の領域を観測可能な領域に有する別の自動導入装置140b、140cの制御へと順次切り替えられる。これにより、例えば晴れ間をぬった天体の連続観測が可能となる。
(観測情報共有システム)
従来では、望遠鏡本体と自動導入装置は、通常、一式で販売されユーザの元に届けられる。これに対し、本実施例の観測情報共有システムでは、中継用Webサーバを経由して自動導入装置にタイムリーな付加機能を実現している。
【0101】
図16には、このような付加機能を備えた観測情報共有中継用Webサーバコンピュータ100が示されている。同図に示すように、中継用Webサーバコンピュータ100は、インターネット70(又はLAN)を介して、Webサーバ型自動導入装置72a、72b、....と、各種端末装置74a、74b、....と、に接続され、相互に情報伝達可能に構成されている。
【0102】
中継用Webサーバコンピュータ100は、例えば、天文情報サイトに自動的にアクセスして新天体情報を得る新天体情報検索機能と、気象衛星や天気予報の情報サイトにアクセスして気象情報を得る気象情報検索機能と、入力装置から入力された情報や検索機能により検索された情報を所定の導入メニュープログラムに従って編集し、Webサーバ型自動導入装置72a、72b、...に送信するメニュー機能と、端末装置74a、74b、...又はWebサーバ型自動導入装置からのリクエストに応じた作業及び情報収集を代行するヘルピング機能と、データ/プログラムを送信するデータ/プログラム送信機能と、を含んでいる。これらの機能は、Webサーバ機能を実行するCPUと、上記各機能をCPUに実行させるためのプログラムと、ハードディスク等の記憶装置と、入力装置(キーボード、マウス、DVD±R/±RW/ROMドライブ、CD−R/RW/ROMドライブ等)と、によって実現できる。
【0103】
中継用Webサーバコンピュータ100の記憶装置には、新天体に関する情報から構成された新天体データベースと、端末装置又はWebサーバ型自動導入装置のバージョンアップ用のデータやファームウェアプログラムからなるバージョンアップデータベースと、天体観測に欠かせない情報、例えば気象情報や観測地情報等からなる天体観測援用データベースと、Webサーバ型自動導入装置72a、72b、...で実行可能なオブジェクト形式のプログラムからなるプログラムデータベースと、が格納されている。これらのデータベースは、上記各検索機能及び入力装置からの入力により絶えず更新されている。
【0104】
中継用Webサーバコンピュータ100を利用した情報提供サービスとして例えば以下のものが挙げられる。
(1)新天体導入 例えば新彗星の現時点における座標、赤経及び赤緯方向の移動速度を、Webサーバ型自動導入装置72a、72b、...に送信する。これによって、Webサーバ型自動導入装置は新彗星の自動導入のみならず、自動追尾にも対応することができる。また、等級、軌道等の情報を提供してもよい。
【0105】
他の新天体についても同様である。
(2)バージョンアップ バージョンアップされたデータやファームウェアプログラムを、端末装置74a、74b、...又はWebサーバ型自動導入装置72a、72b、...に配信する。
(3)天体導入メニュー その季節・時期に応じたお奨め天体導入メニュー、その他、トピックになっている天体の導入メニューをWebサーバ型自動導入装置72a、72b、...に実行させる。これらの導入メニューは、選択された複数の天体を順次導入する指令、各天体の紹介内容等から構成されている。
【0106】
なお、導入メニューをデータとして送り、Webサーバ型自動導入装置に既にインストールされたメニュープログラムで実行してもよい。或いは、プログラムとしてWebサーバ型自動導入装置に送り、そこで実行形式に変換した後、導入メニューを実行する方法でもよい。
(4)ヘルピング機能
端末装置又はWebサーバ型自動導入装置からのリクエストに応じた作業及び情報収集を代行する。例えば、Webサーバ型自動導入装置で演算負荷が多大となり、自動導入等に時間がかかっているとき、その演算の一部又は全てを代行する。また、他のWebサーバ型自動導入装置に負荷がかかっていない場合、そのWebサーバに指令してその演算の一部を代行させることもできる。
【0107】
また、大量データ送信にも対応する。
(5)観測地データ提供 各地に配置されたWebサーバ型自動導入装置72a、72b、...に気象センサ90を接続しておけば、それらの気象データを、各端末装置に送信することができる。これらの気象データを、気象予報サイトから入手した情報で補ってもよい。ユーザは、どの地域が天候が良いかを事前に知ることができるので、移動して天体観測する場合に、有用である。
【0108】
また、各観測地のWebサーバ型自動導入装置72a、72b、...で撮像された流星、流星痕、火球等から、距離等を演算したり、各地の小惑星の掩蔽観測結果から小惑星の形状等を演算し、それらの結果を各端末装置や自動導入装置に返信してもよい。
【0109】
中継用Webサーバ100は、例えば、望遠鏡販売会社内に設置し、上記のような情報提供サービスを提供することにより、ユーザフレンドリーな天体観測システムを実現することができる。中継用Webサーバに課金機能を持たせておけば、付加サービスの利用に応じて料金を徴収することもできる。
【0110】
上述したサービス機能を自動導入装置毎にきめ細かく実行するため、複数の自動導入装置の各々が各装置に関する観測情報を送信するのが好ましい。この場合、中継用Webサーバ100は、受信した各自動導入装置に関する観測情報に基づいて、複数の自動導入装置の各々に応じた所定のサービスを実行する。
【0111】
送信される観測情報には、装置の型式、バージョンアップ情報、稼働時間の他、ユーザが導入した天体を判別することができる導入天体情報が含まれていてもよい。観測情報の利用方法として、中継用Webサーバ100は、受信した各導入天体情報を集計して導入天体をランキング付けする機能を持つことができる。この場合、次のサービスを実行するのが好ましい。
(1)導入天体のランキング情報を複数の自動導入装置に通知する。
(2)導入天体のランキング情報から少なくとも1つの天体を選択し、該天体を導入するように、複数の自動導入装置を指令する。
(3)導入天体のランキング情報に従って、ランクインした天体を順次導入するように、複数の自動導入装置を指令する。
【0112】
このサービスにより、各ユーザは、人気のある天体を事前に知ることができ、直ちに観望することができる。
【0113】
また、中継用Webサーバ100は、受信した観測情報に基づいて各自動導入装置の使用者のタイプを分類する機能を持つこともできる。分類される使用者のタイプとしては、例えば、関心のある天体の種類(月、惑星、太陽、銀河内星雲星団、銀河系外星雲星団、小惑星、彗星、新星・超新星、変光星)、初心者からエキスパートまでの習熟度、及び、観測スタイル(撮影派、眼視観望派、学術観測派、オールラウンド派)等々が含まれる。
【0114】
使用者のタイプを分類する手段として、例えば、中継用Webサーバ100が、多人数に亘って実際に調査された使用者タイプ別の天体導入数、望遠鏡稼動時間、導入天体の種類等の統計データベースを予め記憶しておき、受信した観測情報に基づいて、どのタイプに最も近いかを判定する、という方法が考えられる。
【0115】
中継用Webサーバ100は、自動導入装置の各々に対して、分類した使用者のタイプに応じた制御、又は、天体情報の送信をサービスとして実行する。これにより、例えば初心者、エキスパート等、各ユーザに最適な天体情報のサービスを行うことができる。
【0116】
更に、中継用Webサーバ100は、サービスとして、チャット、掲示板及びテレビ会議システムのうちいずれか1つの形態を提供してもよい。このサービスでは、観測情報に基づいて同じ天体を観測中であると判断された自動導入装置又は同じタイプの使用者の自動導入装置同士だけがアクセスできるように制限される。
これにより、観測に必要となる情報の取得効率を向上させることができる。
<第4の実施例:完全自動導入装置>
図17には、本発明の第4の実施例に係る完全自動導入装置10cの概略構成が示されている。なお、第1乃至第3の実施例と同様の構成要件については、同一の符号を附して詳細な説明を省略し、異なる部分についてのみ説明する。
【0117】
完全自動導入装置10cは、従来の自動導入式望遠鏡の初期設定を自動化すると共に、自動導入精度を向上させることを目的としている。
【0118】
この目的を達成するため、完全自動導入装置10cは、望遠鏡光軸に平行となるように、鏡筒12bに同架された撮像装置80を備えている。この撮像装置80は、可変焦点距離レンズ、例えば広角側から望遠側までカバーする高倍率ズームレンズとして設計されたレンズ部80aと、CCDカメラ若しくはCMOSイメージセンサなどで構成されたカメラ部80bと、から構成される。レンズ部80aには、ズーム動作を実行する図示しないモータと、エンコーダとが内蔵され、CPU53からの指令によりその焦点距離を電動で逐次設定することができる。
【0119】
自動導入装置10cは、撮像装置80により撮像された画像データを変換処理する画像処理部82と、全天の各天体に関する情報を記憶した天体データベース86と、画像処理部82により変換処理された天体配置データと天体データベース86から抽出した基準天体配置データとを比較照合して撮像装置80により撮像された領域(及び天体)を同定する天体同定部88と、を備えている。
【0120】
直接撮像された画像データで比較照合する場合には大量の演算時間が必要となるので、画像処理部82では、撮像データを、撮像領域内の各天体を同定する上で必要となる最小限の情報を含む圧縮データに変換する。例えば、撮像領域の画素データから各天体を輪郭抽出し、抽出された各天体の位置座標及び明るさ(例えば当該天体領域内の撮像素子の出力強度の平均値から推定する)等から構成された天体配置データを作成する。当然、天体データベース86の基準天体配置データも、全天の各天体について予めこれと同じ形式で作成されている。なお、CCDノイズを天体として誤抽出する可能性を減少させるため、画像処理部82では、同じ領域を複数回撮像した画像を加算演算してS/N比を向上させてもよい。
【0121】
天体同定部88は、照合演算に伴うCPU53への負荷を軽減するため、CPUとは独立の演算回路として構成するのが好ましい。照合演算としては、例えば、各天体の位置座標及び明るさからなる天体配置データを、天体データベース86から、これと同じ面積の領域を逐一ずらしながら抽出して得られた候補となる複数の基準天体配置データと各々照合して類似度を演算し、最も高い類似度を与えた天体配置領域候補を、撮像装置80により撮像された領域として同定する。
【0122】
CPU53は、詳細を後述する完全自動導入装置を実現するため、第2の実施例のCPU52と同様のWebサーバ型自動導入機能に加えて、天体同定部88により同定された天体の位置座標から望遠鏡が向いている方向の座標位置を検出し、該座標位置に基づいて目標天体からのずれを検知する機能を備えている。この機能を備えている限り、CPU53として、サーバ機能を備えていない第1の実施例のCPUを用いてもよい。Webサーバ機能を備えたCPU53の利点として、インターネットを介して得られた、彗星、小惑星、新星、超新星等の新天体の出現や、変光星等の光度変化の情報を反映するように天体ベースベース86を更新することができる、ことも挙げられる。
【0123】
オプションでCPU53に気象センサ90を接続するようにしてもよい。これにより、遠隔地からアクセスして完全自動導入する場合に天候に応じた観測室の開閉が可能となり、更には雲の無い方向・高度の情報などを利用できる。
【0124】
撮像装置80は、外付けでなくともよく、それ自体が望遠鏡鏡筒12bの光路内に抜き差し可能に挿入され、望遠鏡の対物レンズを通過した光を直接撮像したり、或いは、該光路内に挿入されたミラー等の光切替器から導かれた光を検出する直接検出方式であってもよい。直接検出方式の場合、レンズ部80aを外して鏡筒12bの光学系で直接焦点撮像するか、又は、レンズ部80aを、鏡筒12bの対物レンズに対して変倍アイピースとして機能するように設計してもよい。また、広角側の撮像は、外付けの撮像装置が担当し、最高精度を目的とした望遠側は、これとは別個の直接検出方式の撮像装置が担当するというようにしてもよい。
【0125】
次に、完全自動導入装置10cの自動アライメントの流れを図18及び図19を用いて説明する。これらの図は、各天体の座標位置を特定できる天体座標系に対して、CPUが認識する観測地点上の望遠鏡の仮想座標系がどのような座標変換で関連しているかを2つの基準星を用いて自動的に検出する例を示している。
【0126】
図18に示すように、最初に、日付・時刻、観測地の緯度・経度情報等の初期パラメータと、内蔵天体データベース86とから現在の空の天体配置を計算する(ステップ600)。なお、日付・時刻の情報は、電波時計等の内蔵時計から、観測地の緯度・経度情報は、ユーザにより入力された値をフラッシュメモリに記憶したものや、GPSから得るようにしてもよい。
【0127】
次に、計算された現在の空の天体配置から現れていると予想される第1の撮像候補を選定する(ステップ602)。このとき、人工の建築物や街灯などで視界がさえぎられている領域を候補から除外するため、赤外線望遠鏡等を並列に搭載して、その情報と撮像データから天体抽出可否判定をすると、撮像候補の選定を迅速に確実に行うことができる。また、気象センサ90を併用して、雲の無い空の領域を撮像候補として選定してもよい。
【0128】
次に、鏡筒12bが所定の向きに向くようにする(ステップ604)。例えば、初期設定でユーザが鏡筒12bを例えばおおよそ西向き、水平にすることを条件に、選定された撮像候補の方向におおよそ鏡筒12bが自動的に向くようにモータ制御する。或いは、望遠鏡に方位センサ及び傾きセンサを内蔵しておき、その出力信号から望遠鏡の現在の配置を計算し、撮像候補の方向におおよそ鏡筒12bが自動的に向くようにモータ制御してもよい。
【0129】
鏡筒12bがほぼ第1の撮像候補に向いた後、レンズ部80aを広角側にセットして撮像する(ステップ606)。撮像データが画像処理部82に転送されると、画像処理部82は、撮像データを画像処理し、撮像候補領域内の天体を抽出する作業を実行する(ステップ608)。次に、撮像候補の領域内で天体が抽出できたか否かが判定される(ステップ610)。天体が抽出できなかった場合(ステップ610の否定判定)、ステップ602に戻り、他の撮像候補を選定し、同様の処理を繰り返す。天体が抽出できた場合(ステップ610の肯定判定)、天体同定部88は、撮像候補領域内で抽出された天体データと、天体データベース86内の天体データとを比較し(ステップ612)、抽出された天体を同定する(ステップ614)。このとき、天体同定部88は、演算量を減らすため、天体データベース86上において、計算された現在の空の天体配置から現れていない天体データを除外して比較照合を行うのが好ましい。また、精度が見込める場合には、撮像された撮像候補の領域(レンズ80aの画角分)を含んで誤差を見込んだ範囲内に含まれる天体データとの比較照合を行ってもよい。
【0130】
抽出された天体が同定されると、その位置座標に基づいて、天体座標系に対する望遠鏡仮想座標系の座標変換パラメータを補正する(ステップ616)。
【0131】
次に、上記したアライメント手続きで充分な精度が得られたか否かが判定される(ステップ618)。この判定は、例えば、撮像レンズ部80aの焦点距離(又は対物レンズとの合成焦点距離)が一定値を超えたか否かでなされる。また、天体データベースとの照合演算で類似度が一定値を超えたか否かの判定を併用してもよい。広角側で撮像した場合には、充分な精度が得られないため(ステップ618の否定判定)、ステップ622に移行する。
【0132】
ステップ622では、現視野、即ち撮像候補の領域内においてステップ614で同定された天体の中から注目する天体(第1基準星)を選択し、該天体を望遠鏡の視野中央に導入するように望遠鏡をモータ制御する(ステップ622)。次に、レンズ部80bを1段階望遠側にズームアップし、カメラ部80bで撮像する(ステップ624)。画像処理部82が撮像データを画像処理し、第1基準星を抽出する(ステップ626)。再び、ステップ612に戻り、第1基準星について同様の処理を繰り返す。このようにレンズ部82bを望遠側に段階的にズームアップしていき、第1基準星の位置について最終的に充分な精度が得られた場合(ステップ618の肯定判定)、第1基準星の設定を終了する(ステップ620)。なお、望遠側でのステップ618の精度判定は、基準星と視野中央との離角が閾値以内であるとき充分な精度であると判定してもよい。
【0133】
次に、図19のフローチャートに示すように、第1基準星設定で選定された撮像候補とは別の撮像候補が選定され(ステップ630)、図18の各ステップと同様に、第2の基準星の設定が行われる(ステップ632〜ステップ654)。最終的に第2の基準星の位置座標について充分な精度が得られた場合(ステップ646の肯定判定)、第2の基準星の設定が終了し、アライメントが完了する(ステップ648)。即ち、天体座標系に対する望遠鏡仮想座標系の座標変換パラメータが充分な精度で自動的に設定されたことになる。
【0134】
図18及び図19に示したアライメント作業を要約すると、以下の通りとなる。
(1)ユーザは適当に望遠鏡を設置する。
(2)自動導入装置10cは空の適当な方向へ望遠鏡を向け撮像する。
(3)自動導入装置10cは撮像画像から天体を同定し望遠鏡が向いている座標を決定する。
【0135】
即ち、第4の実施例によれば、ほぼ完全に初期設定が自動的に済んでしまう完全自動導入装置が実現できる。
【0136】
なお、図18のステップ600で、ユーザが所定方向に望遠鏡を向けたり、緯度、経度情報等の初期パラメータを入力する例を示したが、この作業も撮像装置80を用いて自動化することができる。例えば、超広角レンズ又は魚眼レンズ(この場合、湾曲収差を補正する)を用いて空の広い領域を撮像し、画像処理部82で星座の配置を抽出し、各天体を同定すれば、現在の空の天体配置が同定できる。この天体配置から初期パラメータを自動的に求め、設定することができる。このようにしてユーザは、単に望遠鏡鏡筒を適当に空に向けるだけで済み、ステップ600の作業を更に単純化できる。このとき、赤外線望遠鏡や気象センサ90などで、建築物や雲などで視界がさえぎられている領域を検出し、これらの領域を天体データベースとの比較で除外すれば、初期パラメータの自動設定を迅速に確実に行うことができる。
【0137】
次に、完全自動導入装置10cの完全自動導入の流れを、図20を用いて説明する。
【0138】
図20に示すように、最初に、ユーザがコントローラ54から導入したい天体を指定入力する(ステップ660)。自動導入装置10cは、望遠鏡鏡筒が目標天体に向くようにモータ制御する(ステップ662)。
【0139】
モータ制御が停止すると、レンズ部80bを例えば中望遠にセットし、カメラ部80bが撮像する(ステップ664)。画像処理部82は、撮像データを画像処理し、天体を抽出する作業を実行する(ステップ668)。次に、撮像領域内で天体が抽出できたか否かが判定される(ステップ670)。天体が抽出できなかった場合(ステップ670の否定判定)、建築物、山、雲等の視野妨害による導入不可能として完全自動導入を終了する(ステップ672)。このとき、コントローラ54の表示部にその旨を警告するのが好ましい。
【0140】
天体が抽出できた場合(ステップ670の肯定判定)、天体同定部88は、撮像領域内で抽出された天体データと、天体データベース86内の天体データとを比較し(ステップ674)、目標天体を抽出し(ステップ674)、その位置を検知する。
【0141】
次に、抽出された目標天体が視野中央に導入されるように、望遠鏡をモータ制御する(ステップ678)。
【0142】
次に、充分な精度で導入されたか否かが判定される(ステップ680)。この判定は、例えば、撮像レンズ部80aの焦点距離(又は対物レンズとの合成焦点距離)が一定値を超え、且つ、目標天体位置と視野中央位置との間の離角が一定以内に収まったか否かでなされる。中望遠側で撮像した場合には、まだ充分な精度でないため(ステップ680の否定判定)、ステップ684に移行する。
【0143】
ステップ684では、レンズ部80bを1段階望遠側にズームアップし、カメラ部80bで撮像する。画像処理部82が撮像データを画像処理し、目標天体を抽出する(ステップ686)。再び、ステップ678に戻り、目標天体について同様の処理を繰り返す。このようにレンズ部82bを望遠側に段階的にズームアップしていき、目標天体の位置について最終的に充分な精度が得られた場合(ステップ680の肯定判定)、完全自動導入を終了する(ステップ682)。
【0144】
通常、自動導入した状態では架台の軸の直交誤差その他の要因からその導入精度は限られている。しかし、本実施例の自動導入装置10cでは、通常精度の自動導入終了後、撮像画像から目標天体を同定し、それを視野中央に導くことができる。撮像装置のズーミング機能等によって倍率を上げれば、より高い精度で視野中央に導入することができる。
【0145】
本実施例の自動導入装置10cでは、以下のような付加機能を持たせることができる。
【0146】
(オートガイダー機能)
特に暗い星雲・星団などの写真撮影をするときには、1時間以上の長時間露出をすることがある。そのような場合でも架台は天体を長時間にわたって精密に追尾する必要がある。本システムでは、目的の天体が撮像装置の視野中心に位置するように絶えず制御信号を出すことが出来るので精密な自動追尾装置にもなる。撮像装置80の倍率を上げれば、より高い精度で追尾を行うことができる。
(自動星空案内機能)
撮像した画像をコントローラの画面に表示し、同時に天体同定機能により同定した天体名も画面上に表示する。さらに、天体データベースより検索した該当天体の詳細説明、例えば等級、大きさ、座標、所属星座なども表示することができ、現在望遠鏡が向いている星空の自動案内装置にもなる。
(新天体検索機能)
画像処理部82には天体を抽出し、その位置を同定する機能があるので、抽出されはしたが天体データベース86には存在しなかった天体があれば、新星、超新星、彗星、未登録の小惑星等の新天体である可能性もある。そこで、そのような天体が検出された場合、新天体候補としてコントローラ54にその旨と画像とを表示してもよい。一方、ノイズである可能性もあるので、新天体候補が検出されると、同じ領域を2回以上撮像し、それがノイズであるか否かの確認も行う。ノイズであれば、アライメント精度又は導入精度の向上に資することになる。また、時間差を持たせて撮像した新天体候補の位置が、移動している場合、彗星又は小惑星の可能性がある旨を表示してもよい。また、CPU53に、電子メール送信機能又はFAX機能を持たせ、新天体の可能性が高い場合には、その旨を所定の連絡箇所に容易に送信するようにしてもよい。
【0147】
以上が、本発明の各実施例であるが、本発明は、上記例に限定されず、本発明の請求項により画定される範囲内において様々な変形及び置換をなすことができる。
【0148】
例えば、本明細書で言及される「望遠鏡」という言葉は、単に天体を裸眼で観察する手段に限定されず、シュミットカメラ等の撮影目的のための撮像装置をも網羅し、更には、可視光のみならず、電波、X線、γ線、赤外線等を観測可能な観測装置も含み得る。
【0149】
また、図2のハンドセット24は、望遠鏡に接続しなくても(或いは、自動導入装置のコントローラとしての機能を省略)、図5に示した機能を持った電子星座早見盤として用いることができる。
【図1】

【図2】



【図5】


【図7】


【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】


【特許請求の範囲】
【請求項1】
天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置に接続可能な端末装置であって、
前記自動導入装置を指令操作するための入力操作部と、
表示倍率に応じた天球上の所定範囲の星図画像を表示する画像表示部と、
を備え、
前記入力操作部は、
望遠鏡コントロールモードにおいて、前記天体望遠鏡の回転駆動を指令操作するための回転指令手段と、
前記画像表示部に表示された星図画像の表示倍率を入力指定するための倍率入力手段と、
を有し、
前記望遠鏡コントロールモードにおいて、天体望遠鏡の向いている天球上の位置に対応する星図画像を前記画像表示部で表示すると共に、前記回転指令手段による天体望遠鏡の回転の速度を、前記倍率入力手段により指定された表示倍率の減少関数に従って変化させることを特徴とする、端末装置。
【請求項2】
前記画像表示部に表示された星図画像上で、自動導入用の目標天体又はアライメント用の基準天体を選択可能である、天体選択モードが更に用意されている、請求項1に記載の端末装置。
【請求項3】
前記天体選択モードでは、前記天体望遠鏡の向いている天球上の位置とは独立に、前記画像表示部に星図画像を表示可能である、請求項2に記載の端末装置。
【請求項4】
前記回転指令手段の操作により、前記画像表示部に表示された星図画像をスクロール可能であることを特徴とする、請求項1乃至3のいずれか1項に記載の端末装置。
【請求項5】
天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置に接続可能な端末装置であって、
前記自動導入装置を指令操作するための入力操作部と、
表示倍率に応じた天球上の所定範囲の星図画像を表示する画像表示部と、
前記端末装置が向けられた方向の方位を検出する方位検出手段と、
前記端末装置が向けられた方向の傾きを検出する傾き検出手段と、
を備え、
前記画像表示部は、現在の日付時刻、観測地点の緯度経度において、前記方位検出手段により検出された方位及び前記傾き手段により検出された傾きにより特定される方向で観測される所定範囲の星図画像を表示する星座早見モードを備えることを特徴とする、端末装置。
【請求項6】
前記星座早見モードにおいて、
前記画像表示部に表示された星図画像上で自動導入用の目標天体又はアライメント用の基準天体を選択する天体選択モード、及び、
前記方位検出手段により検出された方位及び前記傾き手段により検出された傾きにより特定される方向に向くように前記天体望遠鏡を制御可能な望遠鏡コントロールモードのうち少なくともいずれかを実行可能である、請求項5に記載の端末装置。
【請求項7】
天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置であって、
天体画像を撮像する撮像手段と、
天体データベースと、
前記撮像手段により撮像された天体画像を、前記天体データベースの天体情報と比較することにより、撮像された天体を同定する、天体同定手段と、
を備え、
前記天体同定手段により同定された天体の位置情報に基づいて、天体座標系に対する前記天体望遠鏡の座標系の座標変換情報を画定させるためのアライメント処理を実行することを特徴とする、自動導入装置。
【請求項8】
前記撮像手段は、複数の焦点距離で撮像可能に構成されており、
前記アライメント処理は、
前記撮像手段を広角側の焦点距離に設定した状態で天体画像を撮像し、
広角側で撮像された前記天体画像の天体を同定し、
同定された天体の位置情報に基づいて前記座標変換情報を修正し、
広角側で撮像された前記天体画像の中から基準天体を選択し、
前記基準天体を撮像画像の視野中央に導入するように天体望遠鏡を回転制御し、
前記撮像手段をより望遠側の焦点距離に変更した状態で天体画像を撮像し、
より望遠側で撮像された前記天体画像の天体を同定し、
同定された天体の位置情報に基づいて前記座標変換情報を修正し、
基準天体が撮像画像の視野中央に充分な精度で導入されるまで、前記撮像手段を、より望遠側の焦点距離に順次設定し、前記各工程を繰り返すことを特徴とする、請求項7に記載の自動導入装置。
【請求項9】
前記アライメント処理を、少なくとも2つの基準天体を用いて実行する、請求項8に記載の自動導入装置。
【請求項10】
天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置であって、
天体画像を撮像する撮像手段と、
天体データベースと、
前記撮像手段により撮像された天体画像を、前記天体データベースの天体情報と比較することにより、撮像された天体を同定する、天体同定手段と、
を備え、
前記天体同定手段により同定された天体の位置情報に基づいて、目標天体を天体望遠鏡の視野中央に導入するように天体望遠鏡を回転制御可能に構成された、自動導入装置。
【請求項11】
前記撮像手段は、複数の焦点距離で撮像可能に構成されており、
前記目標天体を自動導入し、
前記撮像手段を所定の焦点距離に設定した状態で天体画像を撮像し、
撮像された前記天体画像から天体を同定し、
同定された天体の位置情報に基づいて、前記目標天体を撮像画像の視野中央に導入するように天体望遠鏡を回転制御し、
前記目標天体が撮像画像の視野中央に充分な精度で導入されるまで、前記撮像手段を、より望遠側の焦点距離に順次設定し、前記各工程を繰り返すことを特徴とする、請求項10に記載の自動導入装置。
【請求項12】
前記天体同定手段は、前記撮像手段により撮像された天体画像に基づいて天体が撮像されていない領域を抽出し、前記目標天体が前記領域内にあるか否かを判定する機能を有する、請求項10に記載の自動導入装置。
【請求項13】
天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置であって、
前記自動導入装置は、
電気通信手段を介したWebサーバ機能を備えると共に、
Webプラウザ機能を備えた端末装置、及び、他の1つ以上の自動導入装置と、前記電気通信手段を介して情報の相互伝達を可能とする、自動導入装置。
【請求項14】
天体望遠鏡を少なくとも2つの軸の回りに回転制御することにより目標天体を自動導入させる自動導入装置であって、
前記自動導入装置は、
電気通信手段を介したWebサーバ機能を備えると共に、
Webプラウザ機能を備えた複数の端末装置と、前記電気通信手段を介して情報の相互伝達を可能とする、自動導入装置。
【請求項15】
前記電気通信手段には、更に、他の1つ以上の自動導入装置が接続されている、請求項14に記載の自動導入装置。
【請求項16】
前記複数の端末装置には、前記自動導入装置への指令を入力するための入力操作端末、及び、受信した入出力情報を表示する表示端末が含まれている、請求項14又は15に記載の自動導入装置。
【請求項17】
天体望遠鏡の制御システムであって、
対応する天体望遠鏡を各々回転制御して目標天体を自動導入させる、複数の自動導入装置と、
前記複数の自動導入装置の制御権を有する、1台の端末装置と、
が電気通信手段を介して相互接続されている、天体望遠鏡の制御システム。
【請求項18】
前記自動導入装置の各々は、該自動導入装置への指令を入力するための操作手段を有し、該操作手段は、
前記端末装置からの指令信号に基づく天体望遠鏡の制御動作を実際に開始させるための動作開始手段、及び、
対応する天体望遠鏡の少なくとも1つの動作について前記操作手段からの指令を前記端末装置の指令に優先させる優先操作手段のうち少なくともいずれかを備える、請求項17に記載の天体望遠鏡の制御システム。
【請求項19】
前記自動導入装置の各々は、該自動導入装置への指令を入力するための操作端末を有し、
前記端末装置の制御権をいずれか1つの操作端末に移行することを可能にする、請求項17に記載の天体望遠鏡の制御システム。
【請求項20】
前記端末装置は、指定した少なくとも1つの自動導入装置のみを制御する個別制御モードを備える、請求項17に記載の天体望遠鏡の制御システム。
【請求項21】
前記端末装置は、各自動導入装置からの受信情報を表示する表示手段を備える、請求項17に記載の天体望遠鏡の制御システム。
【請求項22】
前記受信情報には、
前記自動導入装置の各々の動作終了状態、
各天体望遠鏡の向いている方向若しくは天球上の位置を示す情報、
各自動導入装置の使用者からの電子メール情報、及び、
各天体望遠鏡により撮像された天体画像データの少なくともいずれかが含まれる、請求項21に記載の天体望遠鏡の制御システム。
【請求項23】
前記端末装置は、前記天体望遠鏡の各々の自動導入のため必要となるアライメント用の情報を記憶し、次回の制御システム起動時に、前記自動導入装置の各々に該アライメント用情報を再設定する、請求項17に記載の天体望遠鏡の制御システム。
【請求項24】
天体望遠鏡の制御システムであって、
電気通信手段を介して天体導入リクエスト信号を各々送信する、複数の端末装置と、
前記電気通信手段に接続され、且つ、前記天体導入リクエスト信号に従って1台の天体望遠鏡を回転制御して目標天体を自動導入させるための自動導入装置と、
を備え、
前記自動導入装置は、前記複数の端末装置から各々天体導入リクエスト信号を受信した場合、所定のシーケンスにより該天体導入リクエスト信号の実行順番を割り当て、該実行順番に従って各目標天体を順次自動導入する、天体望遠鏡の制御システム。
【請求項25】
前記所定のシーケンスは、
(1)前記天体導入リクエスト信号を前記自動導入装置が受信した順番、
(2)前記自動導入装置に直接接続された端末装置が設けられている場合において、該端末装置が操作可能となった他の端末装置からの天体導入リクエスト信号の順番、
(3)受信した時刻の差が所定の時間以内にある複数の天体導入リクエスト信号の場合には、現在天体望遠鏡が向いている方向により近い目標天体を指定した天体導入リクエスト信号の順番、
のいずれかで天体導入リクエスト信号の実行順番を割り当てる、請求項24に記載の天体望遠鏡の制御システム。
【請求項26】
前記複数の端末装置は、表示手段を各々備えており、
前記表示手段は、
前記自動導入装置の動作終了状態、
前記天体望遠鏡の向いている方向若しくは天球上の位置を示す情報、
前記天体望遠鏡が導入する天体に関する情報
及び、
前記天体望遠鏡により撮像された天体画像データの少なくともいずれかを表示可能である、請求項24に記載の天体望遠鏡の制御システム。
【請求項27】
前記自動導入装置は、前記端末装置との通信が切れた場合、前記天体望遠鏡の回転駆動を緊急停止させる停止手段、及び、
前記天体望遠鏡を駆動開始するとき、警告音又は警告表示を発する警告手段の少なくともいずれかを備える、請求項17又は24に記載の天体望遠鏡の制御システム。
【請求項28】
天体望遠鏡の制御システムであって、
Webサーバコンピュータとしての機能を有する制御装置と、
対応する天体望遠鏡を各々回転制御して目標天体を自動導入させる、複数の自動導入装置と、
が電気通信手段を介して相互接続されており、
前記複数の自動導入装置は、該装置に関する観測情報を各々送信し、
前記制御装置は、前記観測情報の各々に基づいて、前記複数の自動導入装置に対し所定のサービスを実行する、天体望遠鏡の制御システム。
【請求項29】
前記観測情報には、導入した天体の情報が含まれており、
前記制御装置は、受信した前記導入天体情報を集計して導入天体をランキング付けする機能を有し、
(1)前記導入天体のランキング情報を前記複数の自動導入装置に通知する、
(2)前記導入天体のランキング情報から少なくとも1つの天体を選択し、該天体を導入するように、前記複数の自動導入装置を指令する、及び、
(3)前記導入天体のランキング情報に従って、ランクインした天体を順次導入するように、前記複数の自動導入装置を指令する、各サービスのうち少なくともいずれかを実行する、請求項28に記載の天体望遠鏡の制御システム。
【請求項30】
前記制御装置は、受信した前記観測情報に基づいて各自動導入装置の使用者のタイプを分類する機能を有する、請求項28に記載の天体望遠鏡の制御システム。
【請求項31】
前記使用者のタイプは、
関心のある天体の種類、初心者からエキスパートまでの習熟度、及び、観測スタイルのうち少なくともいずれかを含む、請求項30に記載の天体望遠鏡の制御システム。
【請求項32】
前記制御装置は、前記自動導入装置の各々に対して、分類した使用者のタイプに応じた制御又は天体情報の送信を前記サービスとして実行する、請求項30に記載の天体望遠鏡の制御システム。
【請求項33】
前記天体情報は、新天体導入情報、前記自動導入装置のバージョンアップ情報、及び、天体導入メニュー情報の少なくともいずれかを含んでいる、請求項32に記載の天体望遠鏡の制御システム。
【請求項34】
前記制御装置は、前記観測情報に基づいて、前記自動導入装置のための演算を代行する、請求項28に記載の天体望遠鏡の制御システム。
【請求項35】
各地に配置された前記自動導入装置に気象センサが接続されており、
前記制御装置は、前記気象センサの各々により検出された気象情報を受信し、前記サービスとして、各地の気象情報を提供する、請求項28に記載の天体望遠鏡の制御システム。
【請求項36】
前記制御装置は、前記サービスとして、チャット、掲示板及びテレビ会議システムのうちいずれか1つの形態を提供し、該サービスでは、前記観測情報に基づいて同じ天体を観測中であると判断された自動導入装置又は同じタイプの使用者の自動導入装置同士だけがアクセスできるように制限される、請求項28に記載の天体望遠鏡の制御システム。
【請求項37】
天体望遠鏡の制御システムであって、
対応する天体望遠鏡を各々回転制御して目標天体を自動導入させる、複数の自動導入装置が電気通信手段を介して相互接続されており、
前記複数の自動導入装置が、順次、切り替え制御されることにより、複数の天体望遠鏡による天体の連続追跡観測を可能にする、天体望遠鏡の制御システム。
【請求項38】
前記複数の自動導入装置が回転制御する夫々の天体望遠鏡は、ドイツ式赤道儀マウントを有し、
観測中の天体望遠鏡の赤道儀が子午線を超えたとき、予め鏡筒反転された別の天体望遠鏡の自動導入装置の制御へと順次切り替えられる、請求項37に記載の天体望遠鏡の制御システム。
【請求項39】
前記複数の自動導入装置は、異なる地点に夫々配置されており、
移動天体を観測中の天体望遠鏡を制御する自動導入装置により該移動天体の移動情報が送信され、該移動情報に基づいて該移動天体が次に出現すると予測された他の地点の自動導入装置の制御へと順次切り替えられる、請求項37に記載の天体望遠鏡の制御システム。
【請求項40】
各地に配置された前記自動導入装置の各々は、自地点で天体観測可能な天球上の領域を検出する観測領域検出手段を備え、
観測中の天体望遠鏡が、前記観測領域検出手段により検出された天体観測可能な領域の範囲外の領域へと向きを変えたとき、該範囲外の領域を観測可能な領域に有する別の自動導入装置の制御へと順次切り替えられる、請求項37に記載の天体望遠鏡の制御システム。
【請求項41】
電気通信手段を介して取得された天体情報に基づいて前記天体データベースを更新する、請求項7又は10に記載の自動導入装置。
【請求項42】
前記天体同定手段により同定された天体の位置情報に基づいて、前記アライメント処理のための初期パラメータを自動設定する、請求項7に記載の自動導入装置。

【国際公開番号】WO2004/107013
【国際公開日】平成16年12月9日(2004.12.9)
【発行日】平成18年7月20日(2006.7.20)
【国際特許分類】
【出願番号】特願2005−506526(P2005−506526)
【国際出願番号】PCT/JP2004/007496
【国際出願日】平成16年5月31日(2004.5.31)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
Bluetooth
【出願人】(393027235)株式会社ビクセン (3)
【Fターム(参考)】