説明

太陽光集熱管

【課題】内管の内部を流通する熱媒体に伝達されたエネルギの放散を抑制することによって、集熱効率を高めることができるようにした太陽光集熱管を提供すること。
【解決手段】集光機構2によって集光された太陽光を受光し、内部を流通する熱媒体14にエネルギを伝達する内管11と、この内管11の外周を断熱空間13を形成して覆う外管12とからなる太陽光集熱管1の内管11の表面の少なくとも太陽光が照射される部分に太陽光熱吸収膜11aを施すとともに、集光機構2からの太陽光が照射されない部分に熱反射膜11bを施すようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽光集熱管に関し、特に、集光機構によって集光された太陽光を受光し、内部を流通する熱媒体にエネルギを伝達する内管と、該内管の外周を断熱空間を形成して覆う外管とからなる太陽光集熱管に関するものである。
【背景技術】
【0002】
従来、断面が放物線形状をなすトラフ型の反射鏡によって集光された太陽光を受光し、内部を流通する熱媒体にエネルギを伝達する内管と、該内管の外周を断熱空間を形成して覆う外管とからなる太陽光集熱管が提案されている(例えば、特許文献1参照。)。
【0003】
ところで、従来の太陽光集熱管は、太陽光の集光効率を上げるために種々の工夫がなされており、例えば、特許文献1に記載の太陽光集熱管においては、内部を流通する熱媒体にエネルギを伝達する内管の外周を断熱空間を形成して覆う外管に、内管に太陽光が収束する構造素子を備えることが提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2004−239603号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
このように、従来の太陽光集熱管は、集熱効率を上げるために、専ら集光機構等の太陽光の集光側に注意が払われているほとんどで、内部を熱媒体が流通する内管については、管の全表面を黒色に着色したり、微細な凹凸をつけることによって収熱効率を上げるようにしたり、極めて特殊な多層のコーティングにより表面反射防止層や赤外線反射層を形成することが提案される程度であった。
【0006】
本発明は、上記従来の太陽光集熱管の実情に鑑み、内管の内部を流通する熱媒体に伝達されたエネルギの放散を抑制することによって、集熱効率を高めることができるようにした太陽光集熱管を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本発明の太陽光集熱管は、集光機構によって集光された太陽光を受光し、内部を流通する熱媒体にエネルギを伝達する内管と、該内管の外周を断熱空間を形成して覆う外管とからなる太陽光集熱管において、前記内管の表面の少なくとも前記集光機構からの太陽光が照射される部分に太陽光熱吸収膜を施すとともに、前記集光機構からの太陽光が照射されない部分に熱反射膜を施してなることを特徴とする。
【0008】
この場合において、内管の表面の全周に太陽光熱吸収膜を施すとともに、前記集光機構からの太陽光が照射されない部分に熱反射膜を施すようにしたり、内管の前記集光機構からの太陽光が照射される部分に太陽光熱吸収膜を施すとともに、前記集光機構からの太陽光が照射されない部分に熱反射膜を施すようにすることができる。
【0009】
また、前記太陽光熱吸収膜を、酸化クロム層から構成することができる。
【0010】
また、前記熱反射膜を、アルミニウム箔又は薄板から構成することができる。
【発明の効果】
【0011】
本発明の太陽光集熱管によれば、内管の表面の少なくとも集光機構からの太陽光が照射される部分に太陽光熱吸収膜を施すとともに、集光機構からの太陽光が照射されない部分に熱反射膜を施すことにより、内管の内部を流通する熱媒体へのエネルギの吸収を高めるとともに、熱媒体に伝達されたエネルギの放散を抑制することができ、これによって、集熱効率を高めることができる。
【0012】
また、太陽光熱吸収膜を、酸化クロム層から構成することにより、比較的安価な構成によって、内管の内部を流通する熱媒体へのエネルギの吸収を高めることができる。
【0013】
また、熱反射膜を、アルミニウム箔又は薄板から構成することにより、比較的安価な材料によって、内管の内部を流通する熱媒体に伝達されたエネルギの放散を抑制することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の太陽光集熱管を適用する太陽光集熱装置の一実施例を示し、(a)は正面図、(b)は側面断面図である。
【図2】本発明の太陽光集熱管を適用した太陽光集熱装置の異なる実施例を示し、(a)は正面図、(b)は平面図、(c)は側面断面図である。
【図3】本発明の太陽光集熱管の一実施例を示し、(a)は外観の概略図、(b1)及び(b2)は断面の概略図、(c)は使用状態の説明図である。
【発明を実施するための形態】
【0015】
以下、本発明の太陽光集熱管の実施の形態を、図面に基づいて説明する。
【0016】
図1に、本発明の太陽光集熱管を適用する太陽光集熱装置の一実施例を示す。
この太陽光集熱装置は、集光機構としての断面が放物線形状をなすトラフ型の反射鏡2によって集光された太陽光を受光し、内部を流通する熱媒体14にエネルギを伝達する内管11と、この内管11の外周を断熱空間13を形成して覆う外管12とからなる太陽光集熱管1を備えて構成されている。
【0017】
この場合において、太陽光集熱管1及び反射鏡2は、基台3に、太陽光集熱管1及び反射鏡2の中心軸L1が南北軸に沿うように、かつ、太陽光集熱管1及び反射鏡2を共通の揺動軸4を介して揺動可能に設置するようにする。
そして、太陽光集熱管1及び反射鏡2の二等分線L2を含む面の延長方向が常に太陽の方向を指向するように、太陽の動きに従って揺動軸4を回動させる太陽追尾機構5を設けるようにする。
【0018】
これにより、太陽光Sbが、常に反射鏡2の二等分線L2を含む面と平行に反射鏡2に入射し、反射光が、反射鏡2の焦点の位置に架設された太陽光集熱管1の中心軸L1に集光されるようにする。
【0019】
なお、本実施例においては、反射鏡2を、支持材となるアルミニウム製の板材と鏡となる高反射率のアルミニウム製の板材とを重ね合わせたものを、アルミニウム製の押出成形材からなる枠部材に嵌め込んで構成するようにしたが、湾曲可能な薄板からなるガラス製の鏡を用いることもできる。
【0020】
また、本実施例において、集光機構として、断面が放物線形状をなすトラフ型の反射鏡2を用いるようにしたが、複数の長尺の平面分割鏡からなるフレネルミラー型の反射鏡のほか、図2に示すような、リニアフレネルレンズ6等の公知の集光機構を用いることができる。
【0021】
ところで、本実施例において、太陽光集熱管1には、図3に示すように、集光機構としての反射鏡2によって集光された太陽光を受光し、内部を流通する熱媒体14にエネルギを伝達する内管11と、この内管11の外周を断熱空間13を形成して覆う外管12とからなる太陽光集熱管1の内管11の表面の少なくとも反射鏡2からの太陽光が照射される部分(反射鏡2の側の太陽光Sbの反射光が照射される部分)に太陽光熱吸収膜11aを施すとともに、反射鏡2からの太陽光が照射されない部分(反射鏡2の反対側の太陽光Sbの反射光が照射されない部分)に熱反射膜11bを施したものを用いるようにしている。
【0022】
より具体的には、内管11の表面の少なくとも反射鏡2からの太陽光が照射される部分(本実施例においては、内管11の表面の全周(図3(b1))又は下側の180°の範囲(図3(b2)))に太陽光熱吸収膜11aとして、酸化クロムメッキ層を施すようにしている。
なお、反射鏡2からの太陽光が照射される部分に限定して太陽光熱吸収膜11aを形成することもできる。
そして、太陽光熱吸収膜11aとしての酸化クロムメッキ層は、酸洗いした鋼管からなる内管11の表面に酸化クロムメッキ処理を施すことにより、比較的低コストで形成することができる。
なお、太陽光熱吸収膜11aの材質や形成方法は、これに限定されず、材質としては、酸化クロムのほか、ニッケル系等の材料を用いたり、形成方法としては、メッキ処理のほか、溶射処理、物理蒸着(PVD)、塗装等によって太陽光熱の吸収を高めるために表面を黒色に着色したり、適宜の選択吸収膜を施すようにする等、従来、公知のものを採用することができる。
【0023】
また、反射鏡2からの太陽光が照射されない部分(本実施例においては、内管11の表面の全周に形成した太陽光熱吸収膜11aの表面の上側の180°の範囲(図3(b1))又は内管11の表面の上側の180°の範囲(図3(b2)))に熱反射膜11bとして、アルミニウム箔又は薄板を施すようにしている。
なお、反射鏡2からの太陽光が照射されない部分全体に熱反射膜11bを形成することもできる。
そして、熱反射膜11bとしてのアルミニウム箔又は薄板は、シリコン樹脂系等の接着剤を介して接着することにより、比較的低コストで形成することができる。
この場合、アルミニウム箔又は薄板をシリコン樹脂系等の接着剤を介して接着することにより、熱反射機能に加え、接着剤の断熱機能が加わり(接着剤を発泡させることにより、断熱機能を一層向上することができる。)、熱媒体14に伝達されたエネルギを内管11内に封じ込め、エネルギの放散を抑制することができる。
なお、熱反射膜11bの材質や形成方法は、これに限定されず、熱反射機能(熱媒体14に伝達されたエネルギを内管11内に封じ込める機能)を備えた白色や銀色の耐熱断熱塗料、例えば、セラミック系接着剤やシリコン樹脂をバインダとして微小中空セラミックを含有したもの、グラスウール等からなる断熱シート材等、従来、公知のものを採用することができる。また、アルミニウムの薄板をバンド等で物理的に固定するようにすることもできる。
【0024】
なお、内管11には、鋼管の外、ステンレススチール管等の金属管を、また、外管12は、コバールガラス管等の硼珪酸ガラス管を好適に用いることができる。
【0025】
また、断熱空間13は、通常、内管11と外管12の間を真空にすることにより、断熱を行うようにする。
【0026】
また、内管11の内部を流通する熱媒体14には、数百℃、例えば、400℃程度の温度まで加熱されて熱媒体として機能を発揮する水、熱媒油、溶融塩等の熱媒体を用いることができる。
【0027】
この太陽光集熱管1は、内管11の表面の少なくとも集光機構としての反射鏡2からの太陽光が照射される部分に太陽光熱吸収膜11aを施すとともに、反射鏡2からの太陽光が照射されない部分に熱反射膜11bを施すことにより、太陽光熱吸収膜11aによって、内管11の内部を流通する熱媒体14へのエネルギの吸収を高めるとともに、熱反射膜11bによって、熱媒体14に伝達されたエネルギを内管11内に封じ込め、エネルギの放散を抑制することができ、これによって、集熱効率を高めることができる。
【0028】
以下、この太陽光集熱管の性能について検証することとする。
[ケース1]
・熱媒体の加熱温度:400℃
・反射鏡の幅2m、長さ5m
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施した場合
σx(273+400)=11632W/m
σ(シュテファンボルツマン係数)=5.67×10−8W/(m・K
放射率:ε=0.6、内管の表面積:0.534mとして、
放熱量:0.6×11632×0.534=3.73kW ・・・・・(1)
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施し、そのうち半周に熱反射膜(アルミニウム箔)を施した場合
アルミニウム箔の放射率:ε=0.1として
太陽光熱吸収膜(酸化クロムメッキ層)の部分からの放熱量:1.86kW
熱反射膜(アルミニウム箔)の部分からの放熱量:0.31kW
全体の放熱量:2.27kW ・・・・・(2)
・太陽からの直達日射が1kW/mのとき太陽光集熱管が吸収する熱量
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施した場合
反射鏡の反対側:10×25/1000×0.9×0.95=0.11
反射鏡側:10×1975/2000×0.9×0.9×0.95= 7.60
全体の熱量:7.71kW ・・・・・(3)
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施し、そのうち半周に熱反射膜(アルミニウム箔)を施した場合
反射鏡の反対側:10×25/1000×0.9×0= 0
反射鏡側:10×1975/2000×0.9×0.9×0.95= 7.60
全体の熱量:7.60kW ・・・・・(4)
・熱効率
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施した場合
(3)−(1)=3.98kW → 熱効率:3.98kW/10kW=39.8%
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施し、そのうち半周に熱反射膜(アルミニウム箔)を施した場合
(4)−(2)=5.43kW → 熱効率:5.43kW/10kW=54.3%
【0029】
[ケース2]
・熱媒体の加熱温度:200℃
・反射鏡の幅2m、長さ5m
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施した場合
σx(273+200)=2838W/m
σ(シュテファンボルツマン係数)=5.67×10−8W/(m・K
放射率:ε=0.6、内管の表面積:0.534mとして、
放熱量:0.6×2838×0.534=0.91kW ・・・・・(5)
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施し、そのうち半周に熱反射膜(アルミニウム箔)を施した場合
アルミニウム箔の放射率:ε=0.1として
太陽光熱吸収膜(酸化クロムメッキ層)の部分からの放熱量:0.46kW
熱反射膜(アルミニウム箔)の部分からの放熱量:0.08kW
全体の放熱量:0.54kW ・・・・・(6)
・太陽からの直達日射が1kW/mのとき太陽光集熱管が吸収する熱量
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施した場合
反射鏡の反対側:10×25/1000×0.9×0.95=0.11
反射鏡側:10×1975/2000×0.9×0.9×0.95= 7.60
全体の熱量:7.71kW ・・・・・(7)
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施し、そのうち半周に熱反射膜(アルミニウム箔)を施した場合
反射鏡の反対側:10×25/1000×0.9×0= 0
反射鏡側:10×1975/2000×0.9×0.9×0.95= 7.60
全体の熱量:7.60kW ・・・・・(8)
・熱効率
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施した場合
(7)−(5)=6.80kW → 熱効率:6.80kW/10kW=68.0%
・内管の全表面に太陽光熱吸収膜(酸化クロムメッキ層)を施し、そのうち半周に熱反射膜(アルミニウム箔)を施した場合
(8)−(6)=7.06kW → 熱効率:7.06kW/10kW=70.6%
【0030】
以上の太陽光集熱管の性能について検証結果から、反射鏡2からの太陽光が照射されない部分に熱反射膜11bを施すことにより、熱媒体14に伝達されたエネルギを内管11内に封じ込め、エネルギの放散を抑制することができ、これによって、集熱効率を高めることができること、特に、熱媒体の加熱温度が高い場合に、集熱効率を高めることができることを確認した。
【0031】
以上、本発明の太陽光集熱管について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
【産業上の利用可能性】
【0032】
本発明の太陽光集熱管は、内管の内部を流通する熱媒体に伝達されたエネルギの放散を抑制することによって、集熱効率を高めることができる特性を有していることから、太陽光集熱管を用いる太陽光集熱装置の用途に好適に用いることができる。
【符号の説明】
【0033】
1 太陽光集熱管
11 内管
11a 太陽光熱吸収膜
11b 熱反射膜
12 外管
13 断熱空間
14 熱媒体
2 反射鏡(集光機構)
6 リニアフレネルレンズ(集光機構)
Sb 太陽光

【特許請求の範囲】
【請求項1】
集光機構によって集光された太陽光を受光し、内部を流通する熱媒体にエネルギを伝達する内管と、該内管の外周を断熱空間を形成して覆う外管とからなる太陽光集熱管において、前記内管の表面の少なくとも前記集光機構からの太陽光が照射される部分に太陽光熱吸収膜を施すとともに、前記集光機構からの太陽光が照射されない部分に熱反射膜を施してなることを特徴とする太陽光集熱管。
【請求項2】
内管の表面の全周に太陽光熱吸収膜を施すとともに、前記集光機構からの太陽光が照射されない部分に熱反射膜を施してなることを特徴とする請求項1記載の太陽光集熱管。
【請求項3】
内管の前記集光機構からの太陽光が照射される部分に太陽光熱吸収膜を施すとともに、前記集光機構からの太陽光が照射されない部分に熱反射膜を施してなることを特徴とする請求項1記載の太陽光集熱管。
【請求項4】
前記太陽光熱吸収膜が、酸化クロム層からなることを特徴とする請求項1、2又は3記載の太陽光集熱管。
【請求項5】
前記熱反射膜が、アルミニウム箔又は薄板からなることを特徴とする請求項1、2、3又は4記載の太陽光集熱管。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−117761(P2012−117761A)
【公開日】平成24年6月21日(2012.6.21)
【国際特許分類】
【出願番号】特願2010−268553(P2010−268553)
【出願日】平成22年12月1日(2010.12.1)
【出願人】(000005452)株式会社日立プラントテクノロジー (1,767)
【出願人】(504005781)株式会社日立プラントメカニクス (16)