説明

局部的な腐食による電気化学的ノイズの測定器

局部的な腐食を測定または監視するためのシステムおよび方法が示される。低周波成分電気化学的ノイズ(ECN)信号が感知され、ハイパスフィルタまたはバンドパスフィルタによってフィルタリングされ、局部的な腐食に関連しない部分が取り除かれる。また、フィルタリングされた信号の標準偏差が計算され、局部的な腐食値を供給するようにスケーリングされる。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2008年7月2日に出願された、名称「局部的な腐食による電気化学的ノイズの測定器」である米国予備特許出願第61/077551号の優先権および利益を主張し、その全文が参照により本明細書に組み込まれる。
【0002】
本出願は、2006年7月13日に出願された、名称「改良されたLPF、HDAおよびECN能力を有する腐食測定の野外装置」である特許文献1、2006年7月13日に出願された、名称「改良された信号測定および励起回路を有する自己較正的腐食測定の野外装置」である特許文献2、2006年7月13日に出願された、名称「構造化可能な腐食測定の野外装置」である特許文献3、2006年7月12日に出願された、名称「本質的に安全な腐食測定および履歴記録の野外装置」である特許文献4に関し、それらの全文が参照により本明細書に組み込まれる。
【0003】
本開示は、概して腐食測定に属し、より詳細には、局部的な腐食を検出する電気化学的ノイズ測定のシステムおよび方法に属する。
【背景技術】
【0004】
電気化学的ノイズ(ECN)は、孔空き腐食、隙間腐食、応力腐食割れなどの局部的な腐食現象を検出する技術である。ECN方法は腐食電極の自由腐食電位の変動(電位ノイズ)の測定、または名目上同一の腐食電極の組の間の結合電流およびその変動(電流ノイズ)の測定を伴う。したがって、測定された変動の統計的特性が解析されて、試験電極に発生する局部的な腐食の程度の定性的な測定を提供する。一般に、記録されたノイズ信号の標準偏差、歪みまたは尖度などの統計的パラメータが計算され、経験的な公式において用いられて単一パラメータを導出し、それは試験電極の局部的な腐食攻撃への傾向を示す局部的な腐食の指標または孔空きの要因とみなされる。他の方法は、周波数領域における電気化学的なノイズ変動を解析すること、および、局部的な腐食の指標としてのスペクトル密度グラフのロールオフスロープなどのパラメータを用いることを伴う。しかしながら、従来のいかなる方法も、監視されるシステムまたはプラントの操作者に局部的な腐食攻撃が存在するかどうか明らかな指標を与えるために、実際に十分信頼できるものではないことが判明している。それよりむしろ、このパラメータの特定の振る舞いが局部的な腐食が発生しつつある旨を示すものであるかどうかを評価するために、記録された局部的な腐食パラメータの時間変化を解釈するためには、ある程度の専門知識が必要となる。したがって、改良された局部的な腐食の測定システムおよび技術への要求がいまだにある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許第7282928号明細書
【特許文献2】米国特許第7265559号明細書
【特許文献3】米国特許第7239156号明細書
【特許文献4】米国特許第7245132号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
本開示の基本的な理解を容易にするために、本開示の様々な特徴が概要で述べられ、この概要は本開示の広範囲な概観ではなく、本開示のある要素を特定することもその範囲を詳述することも意図しない。それよりむしろ、本開示の主要な目的は、以下に示されるより詳細な説明にさきがけて簡潔な形式で本開示のいくつかの概念を示すことである。本開示は、局部的な腐食現象をより良好に定量化するために現場または実験室状態において用いられることができる腐食測定システムおよび技術に関する。
【課題を解決するための手段】
【0007】
本開示の1つまたは複数の特徴に従って、電解質に晒された構造体の局部的な腐食を測定または監視する腐食測定システムが提供される。システムは、測定電極とインターフェイスして腐食関連信号を感知するための信号処理回路および感知回路を有する、プローブインターフェイスを含む。システムはまた、感知された腐食関連信号から低周波成分を取り除くフィルタ、ならびに、フィルタリングされた腐食信号に少なくとも部分的に応じて標準偏差の値を計算する処理システムを含む。処理システムはしたがって、局部的な腐食攻撃の重大さを定量化するための0から1までの値を有する局部的な腐食値を提供するために標準偏差をスケーリングすることができる。ある実施形態では、フィルタは感知された腐食関連信号から約0.05Hz以下の低周波成分を取り除くハイパスフィルタまたはバンドパスフィルタである。フィルタリングは、感知された腐食関連信号と、サンプルストリームの少なくともいくらかの低周波成分を取り除くためにデジタルハイパスフィルタまたはバンドパスフィルタに提供されるサンプリングされた値とのデジタル表現を提供するアナログ−デジタル変換装置を用いてデジタル形式で行われることができる。システムのECN信号を感知することと、感知されたECN信号を低周波成分を取り除くようにフィルタリングして、フィルタリングされたECN信号を生成することと、フィルタリングされたECN信号の標準偏差を計算することと、局部的な腐食指標値を提供するように標準偏差をスケーリングすることと、を含む、局部的な腐食を測定または監視する方法が提供される。本方法のある実施形態では、ユーザによる後の検索のために局部的な腐食値を記憶することを含む。
【0008】
以下の詳細な説明および図面は、詳細な本開示のいくつかの実例となる実施例を説明し、それらは、本開示の様々な原則が実行されうるいくつかの例示的な方法を示す。図示された例は、しかしながら、本開示の多くの可能な実施形態を網羅するものではない。以下の図面と共に考慮されるとき、本開示の他の目的、利点および新しい特徴が、本開示の以下の詳細な説明において説明される。
【図面の簡単な説明】
【0009】
【図1A】本開示の1つ以上の特徴による、例示的な局部的な腐食測定システムを示した簡易概略図である。
【図1B】本開示のさらなる特徴による、電解質に晒される構造体の局部的な腐食を測定または監視する例示的な方法を示したフロー図である。
【図1C】局部的な腐食がほとんどまたは全くなく、したがって、低周波ノイズも高周波ノイズも全くない、例示的な状態における時間の間に感知されたECN値を示すグラフである。
【図1D】局部的な腐食がほとんどまたは全くなく、著しい量の低周波ノイズが測定されるがより高い周波数のノイズはない、例示的な状態における時間の間に感知されたECN値を示すグラフである。
【図1E】局部的な腐食が発生しつつあり、より高い周波数のノイズが明らかである、例示的な状態における時間の間に感知されたECN値を示すグラフである。
【図2A】本開示の1つ以上の特徴による、関連するプローブと電極とを備えたループまたは電池式の送信器を含む、例示的な腐食測定装置を示す斜視図である。
【図2B】デジタルシステム、ループインターフェイス、およびプローブインターフェイスを含む、図2Aの送信器のさらなる詳細を示す概略図である。
【図3A】プロセッサに制御される励起回路と、感知回路と、様々な異なる腐食測定のための装置のプログラム的な再構成のためのアナログスイッチングシステムとを含む、図2Aおよび図2Bの例示的な送信器におけるプローブインターフェイスシステムおよびデジタルシステムの部分を示す概略図である。
【図3B】絶縁変圧器と2ステージ本質的安全バリアを含む、図2Aおよび図2Bの例示的な送信器のループインターフェイスシステムにおける絶縁回路のさらなる詳細を示す概略図である。
【図4】図2A〜図3Bの装置における、SRM、HDA、LPR、電池オフセット電圧、およびECN測定のためのいくつかの例示的なスイッチングシステム配置を示す表である。
【図5】電極が腐食測定のために輸送または貯蔵された電解質に晒された状態で、パイプまたは貯蔵構造体に設置された測定装置のプローブおよび電極を概略的に示す部分断面側面立面図である。
【図6】図5の装置における電極の1つおよび測定される電解質と同等な回路を示す簡易概略図である。
【図7】電極抵抗測定のための例示的な実質的にDCフリーの200Hz双極矩形波と、HDAおよびLPR測定および励起のないECN部分のための0.1Hz正弦波を含む、図2A〜図6の装置の完全な測定周期において、測定される電極に励起回路によって印加される例示的な励起波形を示すグラフである。
【図8】電解質抵抗測定のための装置において使用される実質的にDCフリーの双極矩形波励起信号をさらに示すグラフである。
【図9A】図2A〜図6の装置において動的な励起振幅調整を用いる電解質(溶液)抵抗測定(SRM)のための例示的な動作を示すフロー図である。
【図9B】図2A〜図6の装置における動的な振幅調整の間の異なる励起波形振幅における、双極矩形波励起電圧および測定された平均電流をプロットした、電圧および電流を示すグラフである。
【図9C】図2A〜図6の装置における動的な振幅調整の間の異なる励起波形振幅における、双極矩形波励起電圧および測定された平均電流をプロットした、電圧および電流を示すグラフである。
【図9D】図2A〜図6の装置における動的な振幅調整の間の異なる励起波形振幅における、双極矩形波励起電圧および測定された平均電流をプロットした、電圧および電流を示すグラフである。
【図10A】約200Hzで印加された例示的な双極矩形波電圧励起信号と、約0.3秒の低いサンプル期間を用いた2つの例示的な非同期A/Dコンバータサンプルとのプロットを示すグラフである。
【図10B】図10Aにおける2つの例示的なサンプル時間における励起電圧および感知された電流プロットを示すグラフである。
【図10C】図2A〜図6の装置におけるオンライン電流増幅器オフセット測定のための例示的な操作を示すフロー図である。
【図11】図2A〜図6の装置における計算されたB値の妥当性テストを含む、HDAまたはLPR測定のための動的なアルゴリズム変化のための装置の操作を示すフロー図である。
【図12】図2A〜図6の装置におけるHDA腐食測定のための例示的なオフセット測定および励起信号調整を示すフロー図である。
【発明を実施するための形態】
【0010】
本開示の各図、いくつかの実施形態、または実施例の参照が、図面と共に以下で記載され、本開示を通じて同じ参照符号は同じ要素を参照するように用いられる。様々な特徴およびプロットは原寸に比例して描かれるとは限らない。本開示は、腐食測定を提供し1つ以上の進化したタイプの腐食測定を用いて監視を行い、リアルタイムの腐食監視および/またはオフラインの腐食データ記録に、伝導性、全体の腐食、および/または局部的な腐食値を提供するための、プログラム可能な低電力腐食測定の野外装置に関する。それは標準の4〜20mAの制御ループまたは他の通信手段によって接続される分散した制御システムによって用いられることができ、または記憶された腐食データをユーザ通信装置、USBメモリスティック、マイクロSDカードなどにダウンロードする能力を有するスタンドアローンな装置として動作してもよい。
【0011】
はじめに図1Aおよび図1Bを参照すると、本開示の1つ以上の特徴による、例示的な局部的な腐食を測定するシステム2が図1Aに概略的に示される。システム2は以下の図2Aおよび図2Bに示されるように、単独の野外装置として実装されてもよく、または別々に収納されたプローブインターフェイスとデジタルシステムとを備えた分散形態で実装されてもよい。図1Aに示されるように、システム2は、電解質内に位置する複数の測定電極8とインターフェイスする信号調整回路34を有するプローブインターフェイスシステム30を含み、信号調整回路34は、プローブ6と結合された複数の電極8のうち少なくとも1つを介して、腐食関連電圧および/または電流信号を感知する感知回路34bを有する。一実施形態ではデジタル処理システム20が提供され、それは、プローブインターフェイス30からアナログ−デジタル(A/D)コンバータ26を介してデジタル形式で得られる感知された腐食関連信号から低周波成分を取り除くための、ハイパスフィルタまたはバンドパスフィルタ25を実装するプロセッサ22を有する。
【0012】
一実施形態では、システム2は一般に、図1Bに示された例示的な局部的な腐食測定または監視の過程300と共に操作される。過程300は302で電気化学的ノイズ(ECN)値、例えば励起が電解質に全く印加されない場合の2つの電極8の間の電流または電位などを感知することを含む。304では、感知された信号の低周波成分が、アナログまたはデジタルフィルタリングなどによって取り除かれ、306では標準偏差の値σが、フィルタリングされた信号値に少なくとも部分的に基づいて計算される。処理システム20は、関心のある構造体に局部的な腐食があるかないかの指標となる標準偏差の値σを、A/Dコンバータ265からのフィルタリングされた腐食関連信号サンプルに少なくとも部分的に従って、計算する。そして308で、標準偏差σを、局部的な腐食値(LCV)27を供給するようにスケーリングし、LCV27はメモリ24に記憶することができる。一実施形態では、フィルタ25は、ハイパスフィルタであれバンドパスフィルタであれ、感知された腐食関連信号から約0.05Hz以下の低周波成分を取り除くデジタルフィルタである。一例におけるフィルタリングされたサンプルはプロセッサ22によってnステージのデジタルフィルタ、例えばハイパスカットオフ周波数が約0.04〜0.06Hz、好ましくは0.05Hzの15ステージのデジタルフィルタなどに、供給される。一実施形態では、A/Dコンバータ26は、1秒のサンプリング周期で約5分間に300のサンプルを取得するようなECN測定周期で、制御される。プロセッサ22はデジタルフィルタ関数25を用い、一例では((Σ(x−平均値))/N)1/2である任意の適切な公式またはアルゴリズムによって標準偏差の値σを計算し、ここでNはサンプルの数であり、「平均値」はサンプルの平均値である。例示的な一実施形態では、標準偏差σは以下でさらに詳細に述べるランニングモーメント計算M2(σ=M2の平方根)を用いて計算される。
【0013】
プロセッサ22はしたがって、0から1の範囲で局部的な腐食値27を提供するように、308で標準偏差σをスケーリングする。一実施形態では、標準偏差の値σは感知回路34bおよびA/Dコンバータ26の入力測定範囲によってスケーリングされる。例えば、偏差σは、局部的な腐食が全くない場合および局部的な腐食が大きい場合の経験的な測定値を用いて、測定されたECN電流に対応するA/Dカウント値における入力測定値の2つの境界を画定するように、電流ノイズ測定範囲にスケーリングされることができる。標準偏差σはしたがって、308で局部的な腐食値27を導き出すように、一実施形態においてこの測定範囲によってスケーリングされる。該局部的な腐食値27は0と1の間を含む値からなる。スケーリング範囲を確定するために用いられる値を超えて局部的な腐食が大きい別の環境を説明するために、任意のスケーリングされた計算値が1を超えた場合はそれが1に設定される。可能な実施形態においては、スケーリング範囲は回路のダイナミックレンジによって与えられ、適切であることを実験的な試験によって検証されてもよい。
【0014】
図1C〜図1Eをまた参照すると、発明者は、ハイパスまたはバンドパスデジタルフィルタを用いて電気化学(電位または電流)ノイズ信号をフィルタリングすることが、実質的に一般の腐食効果と関係ない、より高い周波数成分を用いて局部的な腐食の測定を改良することを有利に容易にすると、評価している。この点において、発明者は、局部的な腐食ノイズが低い周波数成分を含むと信じられる幅広い周波数スペクトルを有しながらも、ノイズ信号の一般の腐食成分が0.05Hz以上の周波数成分を含まないことと、ハイパスまたはバンドパスフィルタ25を用いることが、関心のある局部的な腐食過程の信号から一般の腐食過程の信号を有利に分離することを、認識している。フィルタ出力の標準偏差σはより高い周波数ノイズの振幅の測定を提供し、したがって、局部的な腐食作用の量に直接関連する。この量を0から1のスケールにスケーリングすることは、局部的な腐食攻撃の測定を単純に、そして容易に理解できるようにする。図1Cは、飲料水中のチタン電極において、ほとんどあるいは全く局部的な腐食がなく低周波ノイズが全くない状態の時間で、感知されたECN電圧値352を(625mVの中央オフセットを印加した後のmV単位で)示すグラフ350を示す。図1Dのグラフ360は、ほとんどあるいは全く局部的な腐食がない、3%NaCl中の炭素鋼における異なる状態の時間で、感知されたECN値の曲線362を示す。そこでは著しい量の低周波ノイズが存在するが、観測される高周波ノイズは相対的に少ない。電極はこの場合には、信号レベルの著しい変化を伴って一般の一様な腐食攻撃を受けるが、変動は相対的に遅い。この状態では、曲線362のフィルタリングされていない信号の標準偏差に基づいて局部的な腐食計算を行うことは、誤って高い局部的な腐食値を導くおそれがある。というのは、局部的な腐食の発生が、あったとしてもわずかだからである。図1Eは、酸性化された3%NaCl溶液中のアルミニウムのための感知されたECN値の曲線372を示すグラフ370を提供する。電極はこの場合には局部的な孔食を受け、ノイズ信号の低周波成分と高周波成分の両方が存在する。
【0015】
例示的なシステム2はハイパスまたはバンドパスフィルタ25を用いて、高周波ECN変動(局部的な腐食攻撃を示す)をより遅い変動(局部的な腐食攻撃を示さない)から分離して、局部的な腐食指標または値27を生成する際にフィルタリングされた信号の標準偏差σを計算する。標準偏差の値σは、一実施形態では、0から1の範囲の無単位値として指標値27を提供するように入力信号範囲によって偏差σをスケーリングすることによって、局部的な腐食指標パラメータ27を計算するために用いられる。発明者は、低周波成分を初期に取り除くことによって、フィルタリングされた信号値を用いて標準偏差σを計算することが、局部的な腐食に関する図1Dおよび図1Eに示された場合の間の差別化を容易にして、これら2つの場合において異なる局部的な腐食値を導くことを評価している。生の(フィルタリングされていない)感知された信号の標準偏差を計算し、その信号のRMSによる偏差をスケーリングするという技法などである、従来のすべての方法および局部的な腐食指標の計算アルゴリズムは、フィルタ25を用いず、不正確に図1Dと図1Eの場合に同様の局部的な腐食指標値を導くことがある。
【0016】
図示されたシステム2において、ECN信号(例えば感知された電位または電流のいずれか)は感知回路34bによって検知されて増幅され、生じるアナログ信号は処理システム20のアナログ−デジタルコンバータ26を用いてデジタル化される。
【0017】
デジタルハイパスまたはバンドパスフィルタ25を用いてデジタルサンプルが処理され、ある時間の間のフィルタ出力の標準偏差σがプロセッサ22によって計算される。一実施形態では、カットオフ周波数が0.05Hzの、15ステージの有限インパルス応答(FIR)フィルタなどのハイパスデジタルフィルタ25が用いられ、1秒につき1サンプルというサンプリングレートで以下の例示的なフィルタリング係数を用いる。
a[0]=−0.046956、
a[1]=−0.0284518、
a[2]=−0.04213、
a[3]=−0.056783、
a[4]=−0.0707939、
a[5]=−0.0824234、
a[6]=−0.09012、
a[7]=0.8353165、
a[8]=−0.09012、
a[9]=−0.0824234、
a[10]=−0.0707939、
a[11]=−0.056783、
a[12]=−0.04213、
a[13]=−0.0284518、および、
a[14]=−0.046956。
【0018】
任意のデジタル長の、他の適切なハイパスまたはバンドパスフィルタが用いられてよく、またはアナログ設計のフィルタが用いられてもよい。ある実施形態ではさらに、システムは、現在の局部的な腐食値27を計算する際に用いるための所与の数のECNサンプルを選ぶために、一連の装置サイクルにおいて動作可能である。現在の局部的な腐食値27、例えば、約5分の期間にわたって1秒間隔で採られた、315個の感知されたECN電位または電流サンプルは、以下のユーザの検索のために記憶される。そのうち最初の15個のサンプルは破棄され、残りの300個のサンプルは標準偏差の計算に用いられる。低周波電気化学的ノイズ成分がフィルタリングされて破棄されるため、フィルタのカットオフ周波数期間の約10倍を超えるノイズ信号をサンプリングする場合には実際の利点がない。それゆえECN測定は、フィルタが用いられない場合に必要である時間よりも著しく短い時間の間に実行されることができる。
【0019】
いくつかの実装例では、標準偏差σはプロセッサ22において実装される「平均値を走らせる(running mean)」アルゴリズムを用いてリアルタイムで計算されることができ、それによってシステム2における中間データの記憶の量を軽減することができる。
【0020】
容易に理解される局部的な腐食指標パラメータをエンドユーザに供給するために、計算された標準偏差を0(局部的な腐食がまったくない)から1(深刻な局部的な腐食がある)までの範囲にスケーリングすることが有利である。用いられる電子回路の感度およびプローブ電極の表面積に応じて、多数のスケーリング要因および関係が用いられてもよい。
【0021】
例えば、測定範囲が下限の3×10−9A/cmから3×10−6A/cmまで広がる電流ノイズ測定の一実装例では、局部的な腐食指標値27は
局部的な腐食指標値=log10(標準偏差)/3−log10(3×10−9)/3
と計算されてよく、ここで第2項は回路の感度およびプローブ電極8の表面積によって決定される定数であり、この第2項は所与のシステムに応じて調整されることができる。
【0022】
図2Aおよび図2Bをまた参照すると、システムの一実施形態が、4〜20mAループを介して給電されるループ、または電池式であってもよい図2Aの野外腐食測定装置2の形態で示される。システム2は以下に述べるプロセッサベースの電子回路を収納する送信器ヘッド4、ならびにプローブ6および3つの電極のセット8を含み、電極のセット8は好ましくは、装置2が腐食監視/測定のために設置される金属構造体の材料に合致した材料でつくられ、電極8はパイプライン、貯蔵タンク、または関心のある他の構造体などの設置された構造体内に貯蔵または輸送された溶液、または電解質の固体、気体、または液体内に浸漬されるか埋め込まれる。典型的な設置では、プローブ6は、中の腐食過程に晒されるようにパイプまたは流体チャンバの内部に延びる電極と共に、関心のある構造体に取り付けられる。送信器ハウジング4およびプローブ6は環境を保護する材料で構成されており、例えば、腐食速度、局部的な腐食指標(腐食の局部化の程度)、および/または電解質抵抗(コンダクタンス)のための過程変数を生成するためのオンラインの腐食監視のために、または、電池式の電子試験片としてのスタンドアローンな設備のために、野外の用途において装置2の使用を可能にする。局部的なまたはその他の腐食データは、通信、装置、USBメモリスティック、マイクロSDカードまたは他の適切な手段を介してユーザによってアップロードされることが可能である。例示的なシステム2は、さらに、線形分極抵抗(LPR)や溶液抵抗(またはコンダクタンス)RSの測定、加えて上記の電気化学的ノイズ(ECN)の測定を含む、多数の異なる腐食関連の測定を、例えば、参照により本明細書に組み込まれる米国特許第7282928号明細書、第7265559号明細書、第7239156号明細書、および第7245132号明細書に記載された他の測定技術を用いて、行うことができる。
【0023】
図2Bはさらに、ループインターフェイス10を含む送信器4の例示的な電子機器を示す。ループインターフェイス10は、ガルバニック絶縁および本質的安全(IS)バリア回路12と電源システム14とを有し、システム2の一実施形態では回路12を介して、標準4〜20mAの制御ループ11とインターフェイスし、電源システム14は、制御ループ11または代替として電池13、ソーラーパネル(図示せず)または他の電源のいずれかからの電流に由来する内部装置電力を供給する。ループインターフェイス10はさらに、デジタルシステム20のプロセッサ22および制御ループ11と動作的に結合される、通信インターフェイス16を含む。制御ループ11は、プロセッサ22がHARTまたは他の通信プロトコルを用いて外部通信装置(図示せず)と通信することを可能にする。外部通信装置によって、ユーザが装置2を構成またはプログラミングすることができ、および/または、計算されて格納された関連する腐食値を装置20から検索することができる。例示的なループインターフェイス10は、さらに、ループ11の電流を制御するための専用のデジタル−アナログコンバータ(DAC)10からなり、DAC10は、プロセッサ22がループの電流を制御して、測定された/計算された可変な過程(例えば、腐食速度、局部的な腐食指標、コンダクタンスなどに対応する4〜20mAのループ電流レベル)を示すことを可能にする。例示的なループインターフェイス10はまた、FSKまたはループ電流の他のタイプの変調に、HARTなどの適切なプロトコルに従って、ループ11または他の有線または無線の通信手段を介してデジタル通信を行うことを提供する。
【0024】
他の実施形態では、システム2は4〜20mAループに接続しない電池電源のために設計された野外装置であり、電源システム14は、電池13からの電流を用いてのデジタルシステム20およびプローブインターフェイス回路30への給電のための電源調整および絶縁を提供する。システム2はさらに、関連するドライバ回路と共にUSBポート17を含み、該ドライバ回路はユーザがUSBメモリスティックまたは他のUSB装置をインストールすることを可能にし、そのメモリスティックまたは他のUSBデバイスに、保存された腐食測定データ(例えば局部的な腐食値27)をシステム2がダウンロードする。このことは、システム2が低電力モードで作動することを可能にし、デバイス2は、プログラミング可能なスケジュールに従った測定モードにおいてプログラミング可能な動作のためのリアルタイムの時計を有し、システム2は、1つ以上の腐食測定(例えば、ECNを含む局部化された腐食測定)を、例えば1時間に1回、あるいは一日に数回などで、行う。したがって、ユーザは装置2を訪れて、通信装置を接続するかUSBメモリスティックを挿入し、システム2によって収集された、記憶された測定データを得ることが可能である。他の実施形態では、ユニット2はデータのアップロードのためのマイクロSDカードインターフェイスを含んでもよい。
【0025】
デジタルシステム20は処理システム22を含み、処理システム22はマイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、プログラミング可能な論理回路などの、任意の形態の処理回路であってよく、それによって、本明細書で記載された様々な機能が達成されうる。デジタルシステム20は1つ以上の形態のメモリ24、特に、フラッシュ、FRAMなどの不揮発性メモリを含み、さらに、アナログ−デジタルコンバータ(A/D)26を含んでよく、A/D26および/またはメモリ24は別々の構成要素または回路であってもよく、プロセッサ22に一体化されてもよい。
【0026】
例示的なプローブインターフェイスシステム30は、測定されるべき電解質内に位置する複数の測定電極8とインターフェイスする信号調整回路34を含み、ある測定タイプのための少なくとも1つの電極8に該信号調整回路34によって印加される励起信号を生成するためのDAC32を同様に含む。励起回路34aはDAC32の出力に基づく励起信号を第1の電極E1(補助電極)を介して電解質へと供給し、回路34bは1つ以上の腐食関連電気信号、例えば電圧、電流などを、他の電極E2および/またはE3の一方または両方を介して感知する。本明細書では、第2の電極E2は電解質において電圧信号を感知するために用いられる参照電極と呼ばれ、残りの電極E3は作用電極と呼ばれる。複数のアナログスイッチング構成要素を有するスイッチングシステム34cは、励起回路34aおよび感知回路34bの様々な構成要素と、複数の異なる配置の電極8との、プロセッサに制御された再構成を可能にする。
【0027】
図3A、図3B、および図4はプローブインターフェイスシステム30およびデジタルシステム20のさらなる詳細を示し、それらは励起回路34a、感知回路34b、および図3AのU13〜U16で示された4つのアナログスイッチング装置からなるスイッチングシステム34cを含む。アナログスイッチU13〜U16のそれぞれは、図では「0」状態と「1」状態として示される2つのスイッチング状態を有し、処理システム22は各スイッチ34cの状態を制御するように、対応するスイッチング制御信号CS13〜CS16を供給する。アナログスイッチU13〜U16は、さらに、スイッチング端子がいずれかの極端子から切断されたチップ選択入力(図示せず)によって制御される第3の動作状態を有してもよい。したがって、多くの異なる腐食測定装置において腐食測定装置2を再構成するように、励起回路34aおよび感知回路34bの構成要素をプロセッサに制御されて相互接続するために、スイッチU13〜U16が結合される。図4は装置2における、SRM、HDA、LPR、電池オフセット電圧、およびECNの測定操作のためのスイッチ設定または状態を表す表70を示す。例示的な装置2は、図4の測定モードの任意の単独の一方において作動するようにユーザによってプログラミングされてもよく、一連の装置サイクルのそれぞれにおいて、挙げられた測定タイプのうち2つ以上の任意の組み合わせにおける測定を行ってもよい。それによって、システム2は容易に、任意の腐食測定または監視用途に対応するように構成される。
【0028】
プロセッサ22は各測定機関の間、励起回路34a、第1の(補助)電極E1、およびスイッチングシステム34cを介して電池に適切な励起を供給するように励起DAC43を制御し、また、感知回路34b、スイッチ34c、および参照電極E2および作用電極E3をそれぞれ介して対応する電池電圧および/または電流の測定値を得るように測定A/D26を作動させる。電極結合は抵抗器R49〜R51を用いてプローブ6を通って形成され、フィルタリングネットワークR54〜R56、C56、C57、およびC58は励起回路34aおよび感知回路34bへの接続を形成する。以下に記載する計画では、装置2は装置U13〜U16の制御されたスイッチングを介して各装置サイクルにおいて一連の測定を行う。図示された装置2において、さらに、あるタイプの選択可能な測定(例えばSRM、HDA、およびLPR)が励起信号の印加を含む一方、他のもの(例えばECN)が含まず、全体の腐食がHDAまたはLPRの測定タイプを用いて計算され、電解質抵抗またはコンダクタンスがSRM技法を用いて計算され、ECN測定が局部的な腐食指標値を計算するのに用いられる。励起信号(ある場合は)は、スイッチU13の「0」状態経路から直接つながる第1の増幅器(例えばオペアンプ)U12Aを用いる第1の極性か、スイッチ13の「1」状態からインバータとして構成された増幅器U12bを介した反対の第2の極性のいずれかにおいて、スイッチU16の「0」状態経路と抵抗器R61から対応する出力電流を補助電極E1に供給するドライバ増幅器U10Aによって、DAC32により供給される電圧信号として補助電極E1に印加される。これらの構成は、さらに、電極が励起回路34aのドライバ増幅器34aのフィードバックループにあり、それによって、補助電極E1および作用電極E3の間を流れる電流が、参照電極E2と作用電極E3の間の電位を印加された励起信号電圧と同じにする。ある作動構成では、さらに、励起信号は全く印加されず、感知回路34bによってE2とE3を介して感知された電圧信号を処理システム22がサンプリングする間、スイッチングシステムが補助電極E1を励起回路34aから電気的に絶縁する。
【0029】
任意の印加された励起電圧信号から得られる戻り電流は、例示的な3つの電極定電位測定構成において作用電極E3を介して流れる。抵抗器R57、R60およびR72を介してR56の両端の電圧に基づく出力を生成するように電流感知抵抗器R56と共に電圧変換器への電流を形成する電流感知増幅器U9Aを介して、感知回路34bはこの戻り電流を感知する。感知回路34bの電圧変換器へのこの電流は、HDAおよびECN測定における電流を感知するために用いられ、また、極性抵抗LPRを測定する際に同期整流器と組み合わせて用いられる。
【0030】
電圧変換増幅器U9AはスイッチU15の「0」および「1」の状態に対してそれぞれ、増幅器U8Aの反転入力または非反転入力のいずれかへの出力を供給し、U8Aの出力は電流感知のために、A/Dコンバータ26への2つの入力の一方に供給される。電流感知極性スイッチU15はしたがって、プロセッサ22からの制御信号CS15によってトグルスイッチングを行うように、ある測定のタイプのための整流器として作動する。この点では、励起極性スイッチU13および電流感知極性スイッチU15は(プロセッサ22によって制御された制御信号CS13およびCS15のスイッチングによって)同調して動作し、これらのアナログスイッチング構成要素は、電解質(溶液)抵抗R(SRMモード)を測定するためのある実施形態において用いられる同期整流器を構成する。電流感知構成要素は、さらに、腐食測定装置2においてHDA、LPR、およびECN測定を実施する際に、作用電極E3から感知された電流の測定のために極性スイッチU15のトグリングを行わずに、用いられる。感知回路34bはさらに、高いインピーダンス経路R59を介して参照電極E2における電圧を感知するように、A/D26の第2のアナログ入力を駆動する増幅器U7Aに電圧感知機能を提供する。該電圧は、増幅器U5Aを用いる参照電圧VREF31と比較される。
【0031】
したがってA/D26は、プロセッサ22の制御下でアナログ電圧および電流値を獲得して変換し、そしてそれらの測定値のデジタル値をプロセッサ22に提供する。A/Dコンバータ26は、さらに、例えば一実施形態においてはデルタ−シグマ変調器に基づいたコンバータなどの、任意の適切な変換装置であってよく、好ましくは相対的に遅い変換速度で作動する。例えば、示された実施形態におけるA/D26は、ループまたは電池式の実装形態のための電源システム14の電源割当量の範囲内にとどまるように、励起信号周波数より著しく少ないサンプリングレート、例えば毎秒約10サンプリングより少ない、例えば一実施形態によれば0.3秒につき1回のサンプリングで、様々な感知された腐食関連信号の測定サンプルを獲得するように作動される。処理システム22はしたがって、励起回路34aによって電解質に供給される励起信号を供給し、および、感知回路34bから受信された測定値に基づいて複数の異なる腐食測定タイプを実行して少なくとも1つの腐食関連値を計算するようにスイッチング構成要素U13〜U16を選択的に再構成するためにスイッチングシステム34cに制御信号CS13〜CS16を供給するように、プローブインターフェイスシステム30と動作的に結合する。
【0032】
図2A〜図3Bに示されるように、例示的なシステム2は、4〜20mAループ11と装置2の電極E1〜E3ならびに回路とのガルバニック絶縁を提供する絶縁および本質的安全(IS)バリア12を含む。この実施形態では、ループ電流は、ヒューズF1、サージプロテクタN1および抵抗器R3を有する一次安全領域12aの入力ステージと、整流器12a1とを通り、次いでインバータ12a2を通り、それは絶縁変圧器T1への入力を供給する。変圧器T1の絶縁された出力は二次絶縁領域12bへの入力を供給し、該領域は、電圧制限ツェナーN6〜N9と、トランジスタP5〜P8、抵抗器R17、R21、R29〜R30、R34、R35およびキャパシタC34から形成される電流制限回路と、からなる電圧保護回路12b1を含む。この第1の本質的安全バリアステージ12bの出力は、さらなる電圧制限ツェナーN10〜N15を含みそれによってループコントローラ回路15によって見られる可能な電圧をさらに制限する、第2のISバリアステージ12cへの入力を供給する。装置2のIS保護はまた、電極E1〜E3を保護するための1Kオームの保護抵抗器R57〜R61を提供する。動作において、測定された電解質および電極E1〜E3は一般的に接地接続に接続され、プローブインターフェイス回路30の前の端部はまた、低いインピーダンスの経路を介して設置される。
【0033】
また、図5〜図7を参照すると、動作時に、図5に記載のように、プローブ6は、パイプまたは他の金属構造体40内を輸送中の電解質50に含浸された電極8によって設置される。図6は図5の設備における電極の1つE1と測定される電解質のための等価電気的回路60を示し、他の電極E2およびE3の電気的回路も図6に示された回路と同等である。電極/電解質回路60は、電極E1と電解質50の間の電気化学二層キャパシタンスCdlと並列な内部電池電圧Vと分極抵抗Rの直列の組み合わせを含み、電解質50はSRM測定の対象である抵抗Rを有する。図7の励起信号グラフ100に示されるように、送信装置2の一つの可能な構成の信号測定が、3つの測定期間101、102、103において実施され、一連の装置サイクルのそれぞれは代替としていかなる順番であってもよく、装置2は装置サイクルにつき1回のみの測定を行うようにプログラミングされてもよく、所与の装置サイクルにおいて2つ以上の測定タイプの任意の組み合わせを行うようプログラミングされてもよい。この構成において、SRM測定が進行して最初に溶液抵抗値Rを供給し、それはLPRまたはHDA測定において腐食速度を決定する際に、分極抵抗Rの計算における任意の誤りを訂正するように用いられ、これらの抵抗RおよびRは図6において本質的に直列になっている。
【0034】
図7に示された例示的な構成の第一の測定フェーズ101において、同期整流器が、さらに下に記載されたオフセット測定のために期間100aにおいてまず動作し、その次にAC励起信号の振幅が期間100bにおいて動的に調整される。その後に、相対的に高周波のAC励起信号が溶液抵抗/コンダクタンス測定のために部分101において印加され、その次に間隙100cがあり、同一でない電極8によって生成された不均衡によるオフセットが測定される。第1のフェーズ101において、さらに、装置2は、作用電極インターフェイスの分極を避けるように平均でゼロ(実質的にDCオフセットがない)のAC波形を印加するのが有利である。さらに、例示的な装置2において、DAC32およびプロセッサ22は(電力保存のために)低速度で動作し、SRMの間のDAC出力は所与のDCレベルに設定され、出力の極性はSRM測定のための双極方形波励起信号を生成するようにスイッチングシステム34cを用いてスイッチングされる。フェーズ101においてSRM測定によって生成される、ありうる小さいDC電池電流の効果を最小にするために、フェーズ101の継続時間は可能な限り短く設定され、間隙の期間100cはSRM測定の後、およびフェーズ102のLPR測定の前に分極を全く供給されず、それによって作用電極インターフェイスを脱分極させる。
【0035】
第1のフェーズ101において、電解質(溶液)抵抗R(したがって電解質コンダクタンス1/R)が高周波方形波励起を用いて測定される。第2の部分102において、装置2は低周波正弦波励起電圧を印加し、電流と、LPRおよび/またはHDA技術を用いた腐食速度を決定するための関連する高調波とを測定する。第3の部分103においては、励起が全く印加されず、装置は局部的な腐食指標値27を決定するためにECN測定を用いて電気化学的ノイズを測定する。
【0036】
装置サイクルの第1の部分101の間、プロセッサ22はスイッチングシステム34cに、図4の表70のSRMの行に示されるスイッチU13〜U16を構成させ、ここでU14およびU16は「1」スイッチ状態であり、U13およびU15と共に動作する同期整流器は処理システム22の制御下で同期的にトグルされ、約500Hz未満、好ましくは約100〜200Hzの方形波励起/電流感知整流器周波数を供給する。図7のグラフ100は第1の測定期間101における約200Hzの周波数での動作を示す。相対的に高い周波数(例えば約50Hzより上)を印加すると、キャパシタンスCdlによって上の区画を効果的に短絡することが、図6の等価回路に示される。作用電極E3を介して感知された、結果としてのAC電流は電解質抵抗Rに反比例する。他の波形、例えば正弦波、方形波などがSRM測定のために用いられることもある。期間101において示されたSRM測定は、作用電極E3において感知された電池電流の感知回路34bおよびA/D26による測定と共に、補助電極E1における方形波励起電圧の供給を含む。DAC32(図3A)はプロセッサ22によって制御されるレベルにおいてDC出力信号を供給し、U13のスイッチングが、制御信号CS13を介したプロセッサ22によって制御された励起周波数において印加された励起電圧の極性を交代させる。作用電極E3における、結果としての感知された電池電流は励起周波数における方形波でもある。プロセッサ22はまた、信号CS15を介して電流感知極性スイッチU15を同一の周波数でトグルするように動作させ、それによって、感知されたAC電流信号は、A/Dコンバータ26に整流された入力信号を与えるように整流される。電力を保存するために、プロセッサ22は一層低い周波数、例えば一実施形態では約3.3HzでA/Dコンバータ26のサンプリングを制御する。プロセッサ222はしたがって、感知された電流の多くの測定値を獲得し、平均の感知された電流を計算するようにそれらの測定値を平均し、そしてそれは、電解質抵抗Rを計算するように用いられる。
【0037】
また、図8を参照すると、同期整流器の動作は、電池における腐食を悪化させないように、外部電極E1への実質的にDCがない励起信号の供給を可能にする。U15を介して感知された電流信号の整流は、A/Dコンバータ26が低いサンプリングレートで動作して電力を保存することを可能にし、十分なサンプルを採ることは、処理システム22が正確な平均電流値を得ることを可能にし、そのような整流がない場合は、平均電流値はゼロかゼロに近くなるだろう。この点において、補助電極へのDC電圧の印加が、測定される腐食処理の電気化学性を変化させ、したがって、任意の後続の腐食速度測定の妨げとなりうることが留意される。加えて、電流感知回路の整流は、そのようなDC成分を平均値がゼロのAC成分に本質的に裁断することによって、同一でない電極8に起因する感知された電流におけるいかなるDCも効果的に取り除く。さらに同期整流器は、スイッチング周波数以外の周波数における干渉を拒絶するようにも動作する。図8はDAC32および同期整流器の動作による第1の測定期間101の間に印加された、およそ+/−20mVの振幅を有する、1つの可能な実質的にDCがない方形波励起信号波形を示す。図3AのDAC32は、補助電極E1において励起波形を生成するようにスイッチU13のトグリングによってスイッチングされた極性である、実質的に一定のDC値を供給する。装置2はしたがって、第1の測定期間101において、非侵入型のDCのない方形波励起信号を有利に供給し、DCおよびノイズの拒絶と共にループまたは電池電源の限られた割当量においてSRM測定を行う際に、感知された電流のゆっくりとしたサンプリングを可能とする同期整流器を提供する。
【0038】
また、図9A〜図9Dを参照すると、システム2のある実施形態は、所定の時間期間における、または各SRM測定期間101の始まりにおける、SRM測定における方形波励起信号の大きさまたは振幅を調整するように動作可能である。このことは、A/Dコンバータ22の入力範囲の使用を改善することを容易にし、測定された電流サンプルにおける、そして計算された平均電流値における正確さを改善することを容易にし、したがって改善された電解質抵抗(またはコンダクタンス)測定を容易にする。図9Aの過程120はこの例示的な動作を示し、SRMサイクル101が122で始まり、相対的に高周波の方形波励起信号が124で、第1の(例えば低い)頂点間振幅で補助電極E1に供給される。一例では、方形波周波数は約200Hzであるが、しかしながら他の値を用いてもよく、好ましくは約500Hz以下である。図9B〜図9Dはグラフ140、144、150、154、160、164を示し、それらは、図9Aの過程120による異なった励起波形振幅に関する、方形波励起電圧および対応する測定された平均電流である電圧および電流のプロットを示す。図9Bの第1のプロット140において、約200Hzの方形波が、相対的に低い第1の振幅142に印加される。平均の電流が過程120の126において、例えば、上記のような同期整流器操作を用いるか、平均電流値を測定する他の適切な技術を用いて、測定される。このようにして得られた平均電流値が所定の閾値THを上回るかどうかの決定が128で行われ、A/D入力範囲の適切な使用に関する判断を行うことが可能な任意の適切な閾値が用いられてよい。一例では、閾値はA/D入力範囲のおよそ半分に関するが、他の値も用いられてよい。
【0039】
測定された電流が閾値THを上回らなかった場合は(128のNO)、図9Bの電流プロット144に示されるように、励起信号振幅が130で増加し(例えば、処理システム22の制御の下でDAC32の出力を増加させることによって)、図9Aの過程120は再び126で平均電流を測定する。この状態は図9Cのプロット150および154に示され、新しい励起信号振幅152は図9Bの初期振幅142よりも大きい。128で新しい平均電流は閾値THと比較され、図9Cのプロット154に示されるように、この電流はなおも閾値THより下にある。したがって、130で図9Aのプロセス120は、図9Dの励起電圧プロット160に示されるレベル162へと再び励起振幅を増加させる。図9Dのプロット164に示されるように、この点において、最新の励起振幅162は閾値THよりも大きい(図9Aの128でYES)、結果として感知された平均電流を提供する。図9Aの過程120は132へと続き、そこでは電解質抵抗Rが最新の励起電圧振幅値を用いて計算され、期間101のSRM過程は134で終了する。このように、腐食測定装置2はA/D変換範囲の全範囲を利用するように構成され、処理システム22は知られている最新の励起電圧振幅を最新の測定されたおよび計算された平均電流値と132で関連させ、電解質抵抗Rおよび/または電解質コンダクタンスを計算する。励起振幅のこの適応的な調整は有効なA/D解像度の適切な使用を容易にし、正確さを犠牲にすることなく、非常に低いまたは非常に高い電解質伝導性を有する用途のための装置2の構成を提供する。
【0040】
また、図10A〜図10Cを参照すると、装置2はまた、計算された腐食関連値の正確さをさらに改良するための電流増幅器オフセットのための較正を提供する。この点において、非同期A/Dサンプリングと共に上記の同期整流器を使用することは、図10Aおよび図10Bに示された方形波の各サイクルの間、測定された電流およびA/Dコンバータ26への入力がわずかに増加するという状況につながることがある。図10Aのプロット170は、約0.3秒という長いA/Dサンプリング周期を用いて、時間TとTにそれぞれ得られた2つの例示的な非同期A/DコンバータサンプルS1とS2と共に、SRM測定において用いられた200Hzの方形波電圧励起信号を示す。図10Bのグラフ172および174はそれぞれ、励起電圧および感知された電流プロットの、図10Aの2つの例示的なサンプリング時間TとTにおける例示的な部分の詳細をさらに示す。2つの電流サンプルは励起周期の中の異なる時点でサンプリングされたものであるので、第1の電流サンプルS1は第2のサンプルS2よりも幾分か低いことが見てとれる。これらの不正確さに加えて、電流信号を感知するために用いられるオペアンプU8AおよびU9Aにおけるオフセットが、R、腐食速度、および/または局部化された腐食の計算における正確さを減少させることにつながることがある。さらなる不正確さが、整流器の反転通路と非反転通路の間のDCオフセット差、電池ドライバ増幅器U10Aの有限な速さ、プローブ入力の抵抗器およびキャパシタから生じる。
【0041】
これらの不正確さを低減させるために、装置2はオンライン電流増幅器のオフセット測定を提供し、例示的な過程180が図10Cに示される。それは182で始まり、同期整流器構成要素U13およびU15がプロセッサ22によってトグリングされる間に測定された電流増幅器オフセットに基づいて、装置2がオンラインオフセット値を自動的に決定する。184では、プロセッサ22がDAC32の励起信号をゼロに設定させ、信号CS13およびCS15を介してそれぞれ同期整流器構成要素U13およびU15のトグリングを始める。184の印加された励起電圧がない状態で、整流器構成要素は信号CS13およびCS15を介して、上記のSRM測定に通常用いられるのと同じ速度でスイッチングされる(例えば、実装例では約200Hz)。プロセッサ22は、188でA/D26を用いて感知された電流信号の多数のサンプルを獲得し、190で平均電流値を計算する。それはしたがって、上記のSRM測定におけるオフセットとしての後の使用のために記憶され、192でオンライン電流増幅器のオフセット測定は終了する。その後、期間101におけるSRM測定の間、プロセッサ22は電解質抵抗値Rを計算する前に、記憶されたオフセットを用いて電流測定値を訂正し、増幅器U9AおよびU8Aを含む電流感知回路におけるオフセットによる逆効果に対抗し、同期整流器の動作およびA/Dコンバータ26の非同期サンプリングに関するサンプリングの不正確さを補償する。
【0042】
図3A、図3B、図4、図7、および図11を参照すると、システム2は改良されたHDAおよび/またはLPR測定タイプも提供し、図4は図3AのU13〜U16のスイッチ状態に応じたそれらのモードに対するスイッチングシステム構成を示す。システム2はしたがって、LPRまたはHDA技術を用いて全体の腐食速度ICORRを計算するように構成される。基本的なLPR測定は、典型的にはデフォルトのまたはユーザが入力したB値を用い、HDAの方法はB値および、測定された電流高調波に同時に基づく腐食速度の計算を含む。システム2は測定された電流高調波および電解質抵抗を用いるオンラインの妥当性テストの結果に基づいて、これらの技法(HDAまたはLPR)の一方または他方を選択的に用いる。
【0043】
図7の第2の例示的な測定部分102は、この部分102において印加された励起を示し、そこでは電流高調波のLPRまたはHDAタイプの測定のための補助電極E1を介して、低周波正弦波励起電圧が電池に印加される。この測定タイプにおいて、正弦曲線信号は約0.05Hz以上、例えば約0.1〜0.2Hzの励起周波数であり、図7の例は約0.1Hzの励起周波数を用いる。ある実施形態における処理システム22は、第2の期間102における、10サイクル以上、好ましくは20サイクルの感知された正弦波電流信号を用いる高調波歪み解析またはLPRに基づいて腐食関連値を計算する。図7の第2の期間102は、低周波正弦波励起が、様々な周波数領域成分を有する得られた感知された電流信号を発生させる。周波数領域成分は、プロセッサ22の腐食関連値計算のために用いられる励起周波数および第2および第3の高調波成分において基本成分を含む。この高調波情報は感知された電流信号をサンプリングしてそれをA/D26によってデジタルデータに変換することによって得られる。処理システム22は離散型フーリエ変換(DFT)を行い、感知された電流のための周波数領域スペクトルを生成する。DFT周波数領域スペクトルから、基本波および様々な高調波の振幅が得られ、高調波測定データは腐食速度の計算において用いられる。DFTは正弦波励起電圧生成に合わせて計算されてもよく、正弦波励起電圧は処理システム22またはメモリ24(図2B)におけるメモリルックアップテーブルからDAC32(図3A)によって一連の小さいステップとして生成され、同じルックアップテーブルはDFT計算のために用いられる。この点において、例示的なテーブルはテーブルのサイズを小さく保ち、かつ2、3および4で割り切れるようにするために、1サイクルにつき96個のステップを用いる。DAC32の出力は好ましくは抵抗分割器R52、R53を用いて最小のシングルビットステップのサイズを減少させるようにスケーリングされる。R52およびR53の値は好ましくは電池オフセットの最大の可能な範囲を含めるように選択されることができ、それはシングルビットステップのサイズを最小にし、演算システム22は電池オフセットおよび/または必要な擾乱振幅が有効範囲を超えないことを確実にすることができる。さらに、電池電流の正弦波出力におけるステップの変化の効果がA/D26による電池電流感知/測定に先駆けて行き渡ることを可能にするように、シーケンスの遅延が提供されてもよい。
【0044】
例示的な処理システム22は、測定期間102において得られた高調波データを用いて、各装置サイクルにおいて以下の方程式(1)〜(3)を解き、腐食電流Icorrを計算し、そこから腐食速度が以下のように定まる。
(1)Icorrharm=I/((48)1/2*(2*I*I−I1/2
(2)BHARM=(Icorrharm*正弦波振幅)/I)−(R*Icorrharm
(3)Icorr=((BHARM または BUSER)*I)/((正弦波振幅−(R*I))
ここに、Iは感知された電流の基本成分であり、IおよびIはそれぞれ第2および第3の高調波成分であり、正弦波振幅は期間102において印加された正弦波励起電圧信号の振幅であり、Bはボルト単位の特定腐食プロセス値の印加である。腐食電流Icorrがひとたび計算されると、これに固有の電極サイズ、ファラデー定数、および材料の原子量に関する定数が乗算され、1年につきmmまたはミル単位の腐食速度を計算する。
【0045】
また、図11を参照すると、例示的な腐食測定装置のもう1つの特徴は、測定された電流高調波I、I、Iに基づくB値BHARMの計算と、計算されたBHARM値および計算された電解質抵抗Rに基づくLPRまたはHDAアルゴリズムの選択的な使用である。この実施形態において、HDA測定および計算が可能であれば行われ、そしてHDAの結果が所与の装置サイクルにおける1つまたは複数の妥当性テストに基づいて疑わしく思われる場合は、処理システム22はLPRタイプの測定に変化する。特に、装置2は、HDA計算が保証されるかどうかを決定するように3つのタイプのテストのうち1つ以上を自動的に行い、高い電極抵抗状態において、またはHDA測定においてありえる不正確さを示す他の状態において、アルゴリズムを選択的にLPRに変更する。
【0046】
上記図7の例示的な装置サイクルにおける第2の期間102のための202において始まる、動的に変化するHDA/LPR過程200が図11に示される。204において、プロセッサ22がDAC32および励起回路34aに、正弦波励起信号を補助電極E1へ提供させ、206において、A/Dコンバータ26を用いて、感知回路34によって作用電極E3において感知された電流信号を測定する。208において、プロセッサ22はDFTを行い、電流高調波I、I、およびIを同定し、そして210において1つ以上のテストを行い、HDA腐食測定が妥当であるかどうかを確かめる。特に、212において、数(2*I*I−I)が正であるかについて決定が行われる。正でない場合(212のNO)、HDAタイプの測定は妥当でないとみなされる。というのは、テストされる数(2*I*I−I)の平方根が上記方程式(1)の分母に現れるからである。過程200は図11において230に続き、そこでは処理システム22はデフォルトの、またはユーザが提供したBの値BUSERを得て、232で上記LPR腐食方程式(3)においてこれを用いて、電流期間102におけるICORRを計算し、その後サイクルは240で終わる。
【0047】
しかしながら、第1のテストされる数(2*I*I−I)が正であるとわかった場合(212のYES)、過程200は214に進み、分極抵抗Rと比較された電極抵抗Rの相対的なサイズに関する決定が行われ、高調波が正確に測定可能であるかどうかを決定する。ここで、Rが高いと電池の反応が線形になり、高調波レベルを低く導く傾向がある。図示された実施形態では、数(R/(R+R))が214において、一例では約0.1である閾値と比較され、閾値よりも小さい場合(214のNO)、プロセッサ22はHDAが疑わしいと決定し、216に達する前に215でフラグを設定する。代替として、215でフラグが設定された後に、過程は230に進んでLPR操作への切り替えを行う。214におけるテストが高いRを示さない場合(214のYES)、218、218において過程は第3のテストに進み、処理システム22は216で測定された電流高調波I、I、およびIを用いて上記方程式(1)および(2)を解き、計算されたB値BHARMをローパスフィルタリングすることによってICORRHARMとBHARMを計算する。示された例において計算されたB値BHARMはデジタル的にローパスフィルタリングされ(例えば、プロセッサ22によって行われた移動平均または他のローパスタイプのデジタルフィルタリング)、任意の短期間の変動および無効な表示値を取り除き、それによって、測定された高調波が非常に低い振幅でありうる状態における装置の感度を向上させる。
【0048】
そして、218において、計算されたB値BHARMが、最小値BMINと最大値BMAXの間の特定の仮定された有効な範囲内、一例では約10〜60mV(例えばである。水性電気化学が実行可能であると知られている他の範囲でもよい)にあるかどうかの決定が行われる。計算されたB値BHARMの例示的なローパスフィルタリング、例えば移動平均または他のデジタルフィルタリングは、有利には任意の短期間の変動および不定期の孤立した表示値を取り除くように動作して、それによって、フィルタリングされたまたは滑らかにされた計算されたB値を用いることによって、低い振幅の高調波状態に対する装置の感度が向上しうる。一例によれば、フィルタリングされた値BHARMは(1−X)*BHARM(n−1)+X*BHARM(n)として計算され、ここにXは一実装例では約0.05である。BHARMがテスト範囲にない場合(218のNO)、HDA技術は疑わしく、過程200は上記の230および232に進む。そうでない場合(218のYES)、220で処理システム22は、計算されたB値BHARMを用いて上記方程式(3)を計算することによってHDA技術を用いて腐食電流を計算する。
【0049】
腐食装置2のさらにもう1つの特徴は、LPRタイプの測定を行う際に、事前に定義されたユーザB値BUSERの代わりに計算されたB値BHARM(好ましくはローパスフィルタリングされた)を使用することが可能なことである。一実施形態では、処理システムは上記方程式(2)に基づいて各装置サイクルにおいて感知回路によって感知された電流信号の高調波に基づいてB値を計算し、BHARMに基づいて方程式(3)を用いて腐食関連値を計算する。加えて、ユーザは、LPR測定値と相関する、試験片、電気的抵抗プローブまたは壁圧測定からの質量損失データなどの任意の適切な手段によって得られることが可能な、ユーザB値BUSERを用いるLPR測定のために装置2を構成してもよい。計算されたB値BHARMは、ユーザまたは装置2が接続されるDCSによって監視されてもよい。この点において、電解質成分の変化の過程においての、または過程制御/監視の大局から興味のある他の事象の過程においての観察される変化が、計算されたB値BHARMの変化を表してもよい。
【0050】
また、図12を参照すると、装置2のもう1つの特徴は電極8における相違を補償するための正弦波HDA/LPR励起信号の調整である。この点において、同一の電極8を有する理想的な電池においては、正弦波の励起の1サイクル全体の間に電極間に正味のDC電流が全く流れず、その場合は、作用電極E3の電気化学は妨げられない。しかしながら、同一でない電極8を考えると、目標は、装置2に励起が全く印加されない場合に、作用電極E3を通る電流が確実にゼロとなることである。電極8がドライバ増幅器U10Aのフィードバックループ内にあるので、補助電極E1から作用電極E3へ流れる電流は、参照電極E2と作用電極E3の間の電位を印加された励起の電位と同一にする。
【0051】
図12の例において、処理システム22は254でアナログスイッチを、図4の表70におけるECN測定のために示された状態に切り替える。このように構成され、参照電極E2における励起のない電圧信号が256で測定され、HDA測定の間の励起オフセットとして用いるために記憶される。オンラインの電極オフセット測定は258で終了する。その後、260でスイッチングシステム34cはプロセッサ22によって、図4の表70に示されたHDA構成にスイッチングされ、262で、オフセット値がプロセッサ22の制御下でDAC32によって励起信号に加えられた状態で、HDA測定が行われる。このようにして、電極8の間の相違に起因する任意の不正確さを補償するように、装置2はオフセットを用いて図7の第2の測定機関102の間のHDA測定を行う。HDAが行われる前に電池オフセットを測定することと、印加された正弦波に測定されたオフセットを加えることとによって、電極の相違によって発生する任意の電流はHDA測定の間に効果的に取り除かれ、それによって装置は電極E1〜E3の間の物理的な相違を補償し、したがって、HDA腐食速度の結果の正確さと信頼性を増加させる。
【0052】
図7に示された例示的な装置サイクルの第3の測定部分103は、図1A〜図1Eにおいて上記で例示したように、ECNタイプ測定のための外部励起が全くない自発的なノイズの検出に用いる。一実装例では、システム2は感知された電流(および/または電圧)を測定し、これらをハイパスフィルタまたはバンドパスフィルタ25を用いてフィルタリングし、フィルタリングされた値に基づいて、ある実施形態では平均値、標準偏差(σ)、およびrmsを含む統計学的パラメータを計算し、データの統計学的「モーメント(moment)」からそれらの統計値を計算する。用いられる場合には、電圧または電位ノイズは参照電極E2と接地回路の間で測定され、補助電極E1および作用電極E3はスイッチングシステム34cによって実質的な接地へ効果的に接続される。統計学的モーメント自体は完全なデータセット(例えば、ある時間の間に測定された多数の電圧および電流のサンプル)から計算されてもよいが、そのような方法はプロセッサ22の計算オーバーヘッドが大きくなることと、多くのメモリを使うことを伴う。好ましい実施形態では、必要なメモリを大きく減らすように「ランニングモーメント(running moment)」方式が用いられる。図示された実装例では、プロセッサ22はデジタルフィタリングを行い、電流と電圧の両方、または電流のみの、ノイズデータの第1の2つの統計学的モーメントを計算し、そこから平均値、標準偏差、およびrmsの統計値が計算され、オンライン電気化学的ノイズ(ECN)測定において用いられる。ECNは有利には装置2において、ノイズ指標または局部的な腐食指標値27を計算するために用いられるが、任意の形態のそのような局部的な腐食指標値27が、所与の電解質における局部的な腐食攻撃への電極8の傾向を示す装置2において計算されてよい。一実施形態では、無次元の局部的な腐食値27が、低周波数成分を取り除き、標準偏差を計算し、標準偏差σを上記のようにスケーリングすることによって計算され、それがあるレベルを超えた場合は、所与の設備において発生している局部的な腐食攻撃の可能性を示す。
【0053】
作用電極E3を介して装置2において電流ノイズがサンプリングされ、重み付けされた平均またはランニングモーメントが計算され、電流ノイズ統計値を用いて局部的な腐食値27が計算される。一実施形態では、さらに、電圧(電位)ノイズが同様に、プローブインターフェイス30の電圧感知回路およびA/D26への第2の入力チャネルを用いて測定されることができる。好ましい一実装例では、装置2は局部的な腐食値27を導く際の標準偏差σを計算する際にランニングモーメント計算を用い、それによって、システム2は大量のデータを記憶する必要がなく、各装置サイクルにおける必要な計算の数が削減される。一実装例では、ノイズ統計値が各A/Dサンプルにおけるランニングモーメントとして計算され、過程はある数の、一例では1000のサンプル“n”が得られるまで繰り返す。この場合には、2つのモーメント変数M1およびM2は処理システム22によってゼロに初期化され、nに関する変数は1に設定される。プロセッサ22はしたがって、スイッチングシステムをECN構成に設定し、サンプリングされた電流および電圧の測定値はランニング計算に組み込まれ、各サンプリング時間においてモーメントの値を更新する。以下の式はモーメントの更新を提供し、xnは現在の電流サンプルの値であり、nは現在のサンプルの数である(例えば、この例ではnは1から1000まで変動する)。
d=(xn−M1)
M2=M2+(1/n)*(d(1−(1/n)−M2))
M1=M1+(d/n)
【0054】
この実装例では、さらに、電流サンプルと同時に得られる電圧サンプルに対して同様の計算が行われ、処理システム22は電圧ノイズに関する移動モーメント値M1およびM2も同様に計算する。さらに、例えば、各パスごとに(1−1/n)のような共通係数を事前に計算することによって、上記計算は好ましくは実行時間およびメモリ使用の点で最適化される。所定の数の測定値(例えばn=1000または300)が電流および電圧両方の測定値に関して得られるまで、M2およびM1の計算は各サンプルサイクルに関して上記のオーダーでなされる。その後に、電流統計値は以下のように計算されてよい。
平均値=M1
電流標準偏差σ=(M2)1/2
【0055】
プロセッサ22は同様に、電圧ノイズに関する同様の統計値を計算し、そして電流腐食ノイズIcorrnoiseを以下のように計算する。
corrnoise=((BHARM または BUSER)*σ)/(ln(10)*σ
【0056】
可能なもう1つの実施形態によれば、プロセッサ22はサンプリングされた電流信号の標準偏差σに基づいて局部的な腐食指標値27を計算し、標準偏差σはランニングモーメント計算に基づいている。この実装例では、電圧信号は感知される必要がなく、対応する電圧ノイズ統計値は局部的な腐食測定に関して計算される必要がなく、それによってプロセッサ22の計算およびメモリ記憶のオーバーヘッドを減少させる。この方法では、モーメントM1およびM2は測定された電流ノイズ(励起が全くない)に関して計算される。
【0057】
システム2はまた、ECN測定の間にプローブインターフェイスシステム30の実質的な接地に補助電極E1および作用電極E3を接続することによって、これらの電極を効果的に短絡する。一実施形態では、図4のテーブル70のECN入力において示されるように、処理システムはスイッチング構成要素U13〜U16を選択的に再構成する。それによって、プロセッサ22が上記測定および計算を行う間の第3の測定期間103におけるECN測定の間に図3Aに示されるように、補助電極E1は抵抗器R54およびR58を通り、実質的な接地を提供する増幅器U10Aの反転入力へのスイッチU14の“0”状態を通って接続され、また、作用電極E3はU09Aの反転入力における実質的な接地への抵抗器R56を介して接続される。
【0058】
一実施形態のシステム2はスタンドアローンなデータ取得および記憶装置として動作可能であり、それは4〜20mAの制御ループ11を介するループ電源式であってもよく、図2Bの電池13を介した電池式であってもよい。電池13はソーラーパネルまたは他の手段によって充電可能であってもよい。この点において、処理システム22は、一連の装置周期のそれぞれにおいて、上記の例えばR、腐食速度、局部的な腐食指標などの腐食関連値を計算し、ユーザによる後の検索のために、通信装置を介してまたはUSB(またはマイクロSD)インターフェイス17を用いて不揮発メモリ24(図2B)に計算された値を記憶する。装置2は、中心ループ11を介してユーザの通信装置(図示せず)によって、または他の有線または無線手段によってアクセスされ、例えばHARTまたは他の適切な通信プロトコルを用いて、蓄積された腐食データをダウンロードすることを可能にする。装置2は、さらに、1日以上分の、計算された腐食関連の値を記憶するために動作可能であり、例えば示された実施形態では長い装置サイクル時間において5日以上分のデータを記憶する。この点において、サイクル時間を短くすると、例えば数ヶ月分や数年分のデータといった、より多くのデータが記憶されることができる。この特徴は遠隔的な用途において有利であり、装置2が分散された制御システムから孤立してもよく、一回に数日の腐食情報を得るように電池またはソーラーパワーで独立して動作してもよい。そして、そのデータは数分の間に装置2から読み取られることができ、したがって、さらなる評価のためにスプレッドシートまたはもう1つのシステムに転送するために外部のユーザ通信装置において記憶される。電池11はある実装例では装置2に接続されたソーラーパネルに変更されてもよい。
【0059】
上記例は、本開示の様々な特徴の、単にいくつかの可能な実施形態を示したものであり、本明細書および添付の図面を読んで理解すれば、当業者には同等の変更および/または改良が思い浮かぶであろう。上記の構成要素(アセンブリ、装置、システム、回路など)によって果たされる様々な機能に特に関して、そのような構成要素を記述するために用いられる用語(「手段」への言及を含む)は、他に指示がない限り、本開示に示された実装例における機能を果たす開示された構造とたとえ構造的に同等でなかったとしても、上記構成要素の特定の機能を果たす(すなわち、機能的に同等である)、例えばハードウェア、ソフトウェア、またはそれらの組み合わせなどの任意の構成要素に相当するものと意図される。加えて、本開示の特定の特徴がいくつかの実装形態の1つにのみ関して開示されていたとしても、そのような特徴は、任意の所与のまたは特定の用途のために望ましく有利であるように、他の実装形態の1つ以上の他の特徴と組み合わされてよい。また、用語「含む(including、includes)」、「有する(having、has)」、「備える(with)」またはその変形が発明の詳細な説明および/または特許請求の範囲で用いられる限りでは、これらの用語は用語「からなる(comprising)」と同様に包括的であるものと意図される。

【特許請求の範囲】
【請求項1】
電解質に晒された構造体の局部的な腐食を測定または監視する腐食測定システムであって、
前記電解質内に位置する複数の測定電極とインターフェイスする信号調整回路を備え、前記信号調整回路が、少なくとも1つの電極を介して腐食関連信号を感知するように動作する感知回路を含む、プローブインターフェイスシステムと、
感知された前記腐食関連信号から低周波成分を取り除くように動作するフィルタと、
フィルタリングされた前記腐食関連信号に少なくとも部分的に基づいて、構造体の局部的な腐食の存在を示す標準偏差の値を計算するように動作する処理システムと、を含む腐食測定システム。
【請求項2】
処理システムがさらに、局部的な腐食値を提供するために標準偏差をスケーリングするように動作する請求項1に記載の腐食測定システム。
【請求項3】
前記フィルタが、感知された腐食関連信号から約0.05Hz以下の低周波成分を取り除く請求項2に記載の腐食測定システム。
【請求項4】
感知された腐食関連電気信号をプローブインターフェイスから受信し、前記感知された腐食関連信号のデジタル表現を生成するように、動作的に結合されたアナログ−デジタルコンバータをさらに備える請求項3に記載の腐食測定システム。
【請求項5】
前記フィルタが処理システム内で実装されるデジタルフィルタである請求項4に記載の腐食測定システム。
【請求項6】
前記フィルタがハイパスフィルタまたはバンドパスフィルタである請求項5に記載の腐食測定システム。
【請求項7】
感知された腐食関連電気信号をプローブインターフェイスから受信し、前記感知された腐食関連信号のデジタル表現を生成するように、動作的に結合されたアナログ−デジタルコンバータをさらに備える請求項2に記載の腐食測定システム。
【請求項8】
前記フィルタが処理システム内で実装されるデジタルフィルタである請求項2に記載の腐食測定システム。
【請求項9】
前記フィルタがハイパスフィルタまたはバンドパスフィルタである請求項2に記載の腐食測定システム。
【請求項10】
前記プローブインターフェイスがさらに、
前記電極の第1のひとつを介して電解質に励起信号を供給するように動作可能な励起回路と、
前記励起回路および前記感知回路と結合された複数のアナログスイッチング構成要素を有するスイッチングシステムと、を含み、前記スイッチング構成要素が、前記励起回路および前記感知回路の回路構成要素と、複数の異なる構成の電極と、を選択的に相互接続するように、対応する制御信号に応じて動作可能である、請求項1に記載の腐食測定システム。
【請求項11】
前記フィルタが、感知された腐食関連信号から約0.05Hz以下の低周波成分を取り除く請求項1に記載の腐食測定システム。
【請求項12】
感知された腐食関連電気信号をプローブインターフェイスから受信し、前記感知された腐食関連信号のデジタル表現を生成するように、動作的に結合されたアナログ−デジタルコンバータをさらに備える請求項1に記載の腐食測定システム。
【請求項13】
前記フィルタが処理システム内で実装されるデジタルフィルタである請求項1に記載の腐食測定システム。
【請求項14】
前記フィルタがハイパスフィルタまたはバンドパスフィルタである請求項1に記載の腐食測定システム。
【請求項15】
前記システムが野外装置として実装され、前記システムがさらに不揮発メモリを備え、前記処理システムが、各一連の装置サイクルにおいて、計算された標準偏差の値に少なくとも部分的に基づいて局部的な腐食値を計算し、ユーザによるさらなる検索のために前記不揮発メモリに前記局部的な腐食値を記憶するように動作可能である、請求項1に記載の腐食測定システム。
【請求項16】
前記野外装置が電池式である請求項15に記載の腐食測定システム。
【請求項17】
前記野外装置が4〜20mAループを電源とする請求項15に記載の腐食測定システム。
【請求項18】
電極に晒された構造体の局部的な腐食を測定または監視する方法であって、
システムにおいてECN信号を感知し、
低周波成分を取り除くように前記感知されたECN信号をフィルタリングし、フィルタリングされたECN信号を生成し、
前記フィルタリングされたECN信号の標準偏差を計算し、
局部的な腐食値を提供するように前記標準偏差をスケーリングする、
ことを含む方法。
【請求項19】
ユーザによる後の検索のために前記局部的な腐食値を記憶することをさらに含む、請求項18に記載の方法。
【請求項20】
前記感知されたECN信号がハイパスフィルタまたはバンドパスフィルタを用いてフィルタリングされる、請求項18に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図1D】
image rotate

【図1E】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図9C】
image rotate

【図9D】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図11】
image rotate

【図12】
image rotate


【公表番号】特表2011−527013(P2011−527013A)
【公表日】平成23年10月20日(2011.10.20)
【国際特許分類】
【出願番号】特願2011−516793(P2011−516793)
【出願日】平成21年6月30日(2009.6.30)
【国際出願番号】PCT/US2009/049155
【国際公開番号】WO2010/002831
【国際公開日】平成22年1月7日(2010.1.7)
【出願人】(509012463)ペッパール アンド フックス インコーポレーテッド (2)
【Fターム(参考)】