説明

接着剤のためのスロットを有するカソード端子を含む固体電解コンデンサ

【課題】改善した固体電解コンデンサアセンブリを提供する。
【解決手段】アノードと、誘電体と、固体電解質を含むカソードとを含む固体電解コンデンサ要素を含むコンデンサを提供する。アノードリードが、アノードから延びてアノード端子に電気的に接続される。同様に、カソード端子が、カソードに電気的に接続される。カソード端子は、コンデンサ要素の下面とほぼ平行に向けられた平面部分を含む。カソード端子をコンデンサ要素に接続する導電性接着剤が内部に配置される内部スロットが、この平面部分によって形成される。カソード端子の平面部分のスロット内部に接着剤を配置することにより、端子のエッジに向けて接着剤が流れ出る傾向を制限することができることを本発明者は見出した。とりわけ、これは、封入時のコンデンサの機械的安定性を改善し、電気性能も高める。

【発明の詳細な説明】
【背景技術】
【0001】
固体電解コンデンサ(例えば、タンタルコンデンサ)は、電子回路の小型化への主な寄与ファクタであり、かつそのような回路の極端な環境での適用を可能にしている。アノード端子は、コンデンサに向けて上方に曲げられてアノードから延びるワイヤに溶接された部分を含むことができる。カソード端子は、平坦とすることができ、かつ導電性接着剤を用いてコンデンサの底面に接続することができる。しかし、こうした従来型固体電解コンデンサに伴う1つの問題は、導電性接着剤がそれが硬化される前に端子のエッジに向けて時に流れ出る可能性があることである。これは、得られた成形材料内に時に亀裂を生じる可能性があり、これは、カソード端子の機械的安定性とコンデンサ要素からのその部分剥離とをもたらす場合がある。
【先行技術文献】
【特許文献】
【0002】
【特許文献1】米国特許第6,322,912号明細書
【特許文献2】米国特許第6,391,275号明細書
【特許文献3】米国特許第6,416,730号明細書
【特許文献4】米国特許第6,527,937号明細書
【特許文献5】米国特許第6,576,099号明細書
【特許文献6】米国特許第6,592,740号明細書
【特許文献7】米国特許第6,639,787号明細書
【特許文献8】米国特許第7,220,397号明細書
【特許文献9】米国特許出願公開第2005/0019581号明細書
【特許文献10】米国特許出願公開第2005/0103638号明細書
【特許文献11】米国特許出願公開第2005/0013765号明細書
【特許文献12】米国特許第6,197,252号明細書
【特許文献13】米国特許第4,085,435号明細書
【特許文献14】米国特許第4,945,452号明細書
【特許文献15】米国特許第5,198,968号明細書
【特許文献16】米国特許第5,357,399号明細書
【特許文献17】米国特許第5,394,295号明細書
【特許文献18】米国特許第5,495,386号明細書
【特許文献19】米国特許第6,191,936号明細書
【特許文献20】米国特許第5,949,639号明細書
【特許文献21】米国特許第3,345,545号明細書
【特許文献22】米国特許出願公開第2005/0270725号明細書
【特許文献23】米国特許第6,674,635号明細書
【特許文献24】米国特許出願公開第2008/232037号明細書
【特許文献25】米国特許第7,515,396号明細書
【特許文献26】米国特許第5,457,862号明細書
【特許文献27】米国特許第5,473,503号明細書
【特許文献28】米国特許第5,729,428号明細書
【特許文献29】米国特許第5,812,367号明細書
【特許文献30】米国特許出願公開第2006/0038304号明細書
【非特許文献】
【0003】
【非特許文献1】Bruanauer,Emmet,及びTeller、米国化学学会誌、第60巻,1938,p.309
【発明の概要】
【発明が解決しようとする課題】
【0004】
従って、現在、改善した固体電解コンデンサアセンブリの必要性が存在する。
【課題を解決するための手段】
【0005】
本発明の一実施形態により、上面と、下面と、前面と、後面とを形成するコンデンサ要素を含むコンデンサを開示する。コンデンサ要素は、アノードと、アノードの上に重なる誘電体層と、固体電解質を含む誘電体層の上に重なるカソードとを含む。アノードリードが、アノードとアノード端子とに電気的に接続される。カソード端子は、カソードに電気的に接続され、かつコンデンサ要素の下面とほぼ平行に向けられた平面部分を含む。平面部分は、内部に導電性接着剤が配置されるスロットを形成し、導電性接着剤は、カソード端子の平面部分をカソード要素に電気的に接続する。成形材料は、コンデンサ要素を封入し、かつアノード端子の少なくとも一部とカソード端子の少なくとも一部とを露出したままに残す。
【0006】
本発明の別の実施形態により、コンデンサ要素とリードフレームからコンデンサを形成する方法を開示する。リードフレームは、アノード部分とカソード部分を含む。カソード部分は、基部を含む。本方法は、カソード部分の基部を曲げて、第2の区画の垂直上方に位置決めされた第1の区画を形成する段階を含み、上述のスロットは、少なくとも第1の区画によって形成される。導電性接着剤は、スロット内に配置される。コンデンサ要素は、コンデンサ要素が導電性接着剤に接触するようにリードフレーム上に位置決めされる。コンデンサ要素のアノードリードは、リードフレームのアノード部分に電気的に接続される。
【0007】
本発明の他の特徴及び態様は、より詳細に以下に説明する。
【0008】
当業者に対する最良のモードを含む本発明の完全かつ権限付与する開示を添付図面への参照を含む本明細書の残り部分でより詳細に説明する。
【0009】
本明細書及び図面における参照文字の反復使用は、本発明の同じか又は類似の特徴又は要素を表すことを意図している。
【図面の簡単な説明】
【0010】
【図1】本発明の電解コンデンサの一実施形態の断面図である。
【図2】本発明の電解コンデンサの別の実施形態の断面図である。
【図3】本発明の電解コンデンサの更に別の実施形態の断面図である。
【図4】図1に示す電解コンデンサを形成するために使用することができるリードフレームの上面図である。
【図5】アノード端子とカソード端子が望ましい構成に折り畳まれた後の図4のリードフレームの側面図である。
【図6】本発明の電解コンデンサの別の実施形態の断面図である。
【図7】本発明の電解コンデンサの更に別の実施形態の断面図である。
【図8】図6に示す電解コンデンサを形成するために使用することができるリードフレームの上面図である。
【図9】アノード端子とカソード端子が望ましい構成に折り畳まれた後の図8のリードフレームの側面図である。
【発明を実施するための形態】
【0011】
本説明は、例示的な実施形態の説明に過ぎず、本発明のより広範な態様の制限を意図しないことは当業者によって理解されるものとする。
【0012】
一般的には、本発明は、アノードと、誘電体と、固体電解質を含むカソードとを含むコンデンサ要素を含むコンデンサに関する。アノードリードがアノードから延びて、アノード端子に電気的に接続される。同様に、カソード端子が、カソードに電気的に接続される。カソード端子は、コンデンサの下面とほぼ平行に向けられた平面部分を含む。平面部分によってスロットが形成され、カソード端子をコンデンサ要素に接続する導電性接着剤がスロット内部に配置される。カソード端子の平面部分のスロット内部に接着剤を配置することにより、端子のエッジに向けて接着剤が流れ出る傾向を制限することができることを本発明者は見出した。とりわけ、これは、封入時にコンデンサの機械的安定性を改善し、電気性能も高める。
【0013】
図1を参照すると、上面37と、下面39と、前面36と、後面38と、側面31と、反対側面(図示せず)とを有するコンデンサ要素33と電気的に接続するアノード端子62及びカソード端子72を含むコンデンサ30の一実施形態が示されている。具体的には示されないが、コンデンサ要素33は、アノードと、誘電体と、固体電解質とを含む。アノードは、約5,000μF*V/g又はそれよりも大きく、一部の実施形態において約25,000μF*V/g又はそれよりも大きく、一部の実施形態において約40,000μF*V/g又はそれよりも大きく、一部の実施形態において約70,000から約200,000μF*V/gのような高比電荷を有するバルブ金属組成物から形成することができる。バルブ金属組成物は、タンタル、ニオブ、アルミニウム、ハフニウム、チタン、それらの合金、それらの酸化物、及びそれらの窒化物などのようなバルブ金属(すなわち、酸化ができる金属)又はバルブ金属基部の化合物を含有する。例えば、バルブ金属組成物は、1:1.0±1.0、一部の実施形態において1:10±0.3、一部の実施形態において1:10±0.1、一部の実施形態において1:1±0.05のニオブの酸素に対する原子比を有するニオブ酸化物のようなニオブの導電性酸化物を含有することができる。例えば、ニオブ酸化物は、NbO0.7、NbO1.0、NbO1.1、及びNbO2とすることができる。好ましい実施形態では、この組成物はNbO1.0を含有し、これは、高温での焼結の後でも化学的に安定した状態を保ち得る導電性ニオブ酸化物である。そのようなバルブ金属酸化物の例は、Fifeに付与された米国特許第6,322,912号明細書、Fife他に付与された第6,391,275号明細書、Fife他に付与された第6,416,730号明細書、Fifeに付与された第6,527,937号明細書、Kimmel他に付与された第6,576,099号明細書、Fife他に付与された第6,592,740号明細書、及びKimmel他に付与された第6,639,787号明細書、及びKimmel他に付与された第7,220,397号明細書、並びにSchnitterの米国特許出願公開第2005/0019581号明細書、Schnitter他の第2005/0103638号明細書、Thomas他の第2005/0013765号明細書に説明されており、それらの全ては、全ての目的に対してその引用により全体的に本明細書に組み込まれている。
【0014】
従来型の製造手順は、アノード本体を形成するために一般的に利用することができる。一実施形態では、所定の粒径を有するタンタル又はニオブ酸化物粉末が最初に選択される。例えば、この粒子は、薄片状、角状、結節状、及びそれらの混合又は変形とすることができる。粒子は、典型的に少なくとも約60メッシュ、一部の実施形態では約60から約325メッシュ、一部の実施形態では約100から約200メッシュの篩サイズ分布も有する。更に、比表面積は、約0.1から約10.0m2/g、一部の実施形態において約0.5から約5.0m2/g、一部の実施形態において約1.0から約2.0m2/gである。用語「比表面積」は、吸着ガスとして窒素を用いたBruanauer,Emmet,及びTeller、米国化学学会誌、第60巻,1938,p.309の物理的ガス吸着(B.E.T.)法によって測定される表面積を意味する。更に、バルク(又はScott)密度は、典型的に約0.1から約5.0グラム/立方センチ(g/cm3)、一部の実施形態において約0.2から約4.0g/cm3、一部の実施形態において約0.5から約3.0g/cm3である。
【0015】
アノードの構成を容易にするために、他の成分を導電性粒子に添加することができる。例えば、導電性粒子は、結合剤及び/又は滑剤と任意的に混合することができ、アノード本体を形成するためにプレスされる時に粒子が相互に適切に接着することが保証される。適切な結合剤は、ショウノウ、ステアリン酸及び他の滑らかな態様の脂肪酸、カーボワックス(Union Carbide)、グリプタル(General Electric)、ポリビニルアルコール、ナフタリン、植物性ワックス、及びマイクロワックス(精製パラフィン)を含むことができる。結合剤は、溶媒中に溶解及び分散させることができる。例示的な溶媒としては、水及びアルコールなどを含むことができる。利用される場合、結合剤及び/又は滑剤の比率は、全量の約0.1重量%から約8重量%まで変えることができる。しかし、本発明において、結合剤及び滑剤は要求されないことを理解すべきである。
【0016】
得られた粉末は、あらゆる従来型の粉末プレス成形を用いて圧密化することができる。例えば、プレス成形は、ダイと1つ又は複数のパンチとを用いる単一ステーション圧密プレス成形とすることができる。代替的に、アンビル型圧密プレス成形を使用することができ、これは、ダイと単一のより低いパンチとだけを用いる。単一ステーション圧密プレス成形は、シングルアクション、ダブルアクション、フローティング・ダイ、可動プラテン、対向ラム、スクリュー、衝撃、ホットプレス、コイニング、又はサイジングのような様々な機能を有するカム、トグル/ナックル、及び偏心/クランクのようないくつかの基本タイプで利用することができる。この粉末は、アノードリード(例えば、タンタルワイヤ)の周囲に圧密化することができる。アノードリードは、代替的に、アノード本体のプレス及び/又は焼結の後でアノード本体に取付(例えば、溶接)可能なことを更に理解すべきである。圧縮の後、形成されたペレットを所定の温度(例えば、約150℃から約500℃)で数分間真空下で加熱することにより、あらゆる結合剤/滑剤を除去することができる。代替的に、Bishop他に付与された米国特許第6,197,252号明細書に説明されているようにペレットと水溶液の接触によって結合剤/滑剤を除去することができ、この特許はその全ての目的に対して引用により全体的に本明細書に組み込まれている。その後、ペレットは焼結され、多孔質で一体化した塊が形成される。例えば、ペレットは、真空又は不活性雰囲気の下で、一実施形態において約1200℃から約2000℃、一部の実施形態において約1500℃から約1800℃の温度で焼結することができる。焼結されると、ペレットは、粒子間の結合の成長により収縮する。上述の技術に加えて、Galvagniに付与された米国特許第4,085,435号明細書、Sturmer他に付与された第4,945,452号明細書、Galvagniに付与された第5,198,968号明細書、Salisburyに付与された第5,357,399号明細書、Galvagni他に付与された第5,394,295号明細書、Kulkarniに付与された第5,495,386号明細書、及びFifeに付与された第6,322,912号明細書に説明されているようなアノード本体を製造するためのあらゆる他の技術も利用することができ、これらの特許はその全ての目的に対して引用により全体的に本明細書に組み込まれている。
【0017】
必ずではないが、アノードの厚みは、コンデンサの電気性能を改善するように選択することができる。例えば、アノードの厚みは、約4ミリメートル又はそれ未満、一部の実施形態において約0.05から約2ミリメートル、一部の実施形態において約0.1から約1ミリメートルとすることができる。アノードの形状も、得られるコンデンサの電気的特性を改善するように選択することができる。例えば、アノード本体は、湾曲、正弦波、矩形、U字形、V字形などである形状を有することができる。アノードは、表面の容積に対する比率を高めてESRをできるだけ低下させ、かつキャパシタンスの周波数応答を拡張させるために、その中に1つ又はそれよりも多くのしわ、溝、凹部、又は欠刻を含む「溝付き」形状も有することができる。そのような「溝付き」アノードは、例えば、Webber他に付与された米国特許第6,191,936号明細書、Maeda他に付与された第5,949,639号明細書、及びBourqault他に付与された第3,345,545号明細書、並びにHahn他の米国特許出願公開第2005/0270725号明細書に説明されており、それらの全ては、全ての目的に対してその引用により全体的に本明細書に組み込まれている。
【0018】
アノードリード16(例えば、ワイヤ、シートなど)もアノードに電気的に接続される。リード16は、タンタル、ニオブ、ニッケル、アルミニウム、ハフニウム、チタンなど、並びにそれらの酸化物及び/又は窒化物のようなあらゆる導電材料から典型的に形成される。リード16が接続される方式は、抵抗溶接又はレーザ溶接を用いたリードの結合、リードのその形成中(例えば、焼結の前)でのアノード本体への埋め込みなどのように当業技術で公知のように様々とすることができる。例えば、図示の実施形態では、リード16は、コンデンサ要素33の前面36から延びる埋め込みワイヤの形態である。
【0019】
構成された状態で、アノードを陽極酸化することができ、それによって誘電体がアノードを覆い及び/又はその内部に形成される。陽極酸化は、それによってアノードが酸化されて比較的高い誘電率を有する材料を形成する電気化学処理である。例えば、酸化ニオブ(NbO)アノードは、五酸化ニオブ(Nb25)に陽極酸化することができる。一般的に、陽極酸化は、例えば、アノードを電解質内に浸漬するなどしてアノードに電解質を最初に付加することによって行われる。電解質は、溶液(例えば、水性又は非水性)、分散液、溶融物などのような一般的に液体の形態である。水(例えば、脱イオン水);エーテル(例えば、ジエチルエーテル及びテトラヒドロフラン);アルコール(例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、及びブタノール);トリグリセリド;ケトン(例えば、アセトン、メチルエチルケトン、及びメチルイソブチルケトン);エステル(例えば、酢酸エチル、酢酸ブチル、ジエチレングリコールエーテルアセタート、及びメトキシプロピルアセタート);アミド(例えば、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルカプリリック/カプリック脂肪酸アミド及びN−アルキルピロリドン);ニトリル(例えば、アセトニトリル、プロピオニトリル、ブチロニトリル及びベンゾニトリル);スルホキシド又はスルホン(例えば、ジメチルスルホキシド(DMSO)及びスルホラン);その他のような溶媒が、電解質中に一般的に用いられる。溶媒は、電解質の約50重量%から約99.9重量%、一部の実施形態において約75重量%から約99重量%、一部の実施形態において約80重量%から約95重量%を構成することができる。必ずしも要求されないが、水性溶媒(例えば、水)の使用が、望ましい酸化物を得ることを助けるために多くの場合に望ましい。実際上、水は、電解質中に使用される溶媒の約50重量%又はそれよりも多く、一部の実施形態において約70重量%又はそれよりも多く、一部の実施形態において約90重量%から100重量%を構成することができる。
【0020】
この電解質は、イオン導電性であり、約1ミリジーメンス/センチメートル(mS/cm)又はそれよりも大きく、一部の実施形態では約30mS/cm又はそれよりも大きく、一部の実施形態では約40mS/cmから約100mS/cmの25℃の温度で測定されたイオン導電率を有することができる。電解質のイオン導電率を高めるために、溶媒内で解離してイオンを形成することができる化合物を使用することができる。この目的のための適切なイオン化合物としては、例えば、塩酸、硝酸、硫酸、リン酸、ポリリン酸、ホウ酸、ボロン酸などのような酸と;アクリル酸、メタクリル酸、マロン酸、コハク酸、サリチル酸、スルホサリチル酸、アジピン酸、マレイン酸、リンゴ酸、オレイン酸、没食子酸、酒石酸、クエン酸、ギ酸、酢酸、グリコール酸、シュウ酸、プロピオン酸、フタール酸、イソフタール酸、グルタール酸、グルコン酸、乳酸、アスパラギン酸、グルタミン酸、イタコン酸、トリフルオロ酢酸、バルビツール酸、ケイ皮酸、安息香酸、4−ヒドロキシ安息香酸、アミノ安息香酸などのようなカルボン酸;メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、トリフルオロメタンスルホン酸、スチレンスルホン酸、ナフタレンジスルホン酸、ヒドロキシベンゼンスルホン酸、ドデシルスルホン酸、ドデシルベンゼンスルホン酸などのようなスルホン酸;ポリ(アクリル)又はポリ(メタクリル)酸及びそれらのコポリマー(例えば、マレイン−アクリル、スルホン−アクリル、及びスチレン−アクリル・コポリマー)、カラギニン酸、カルボキシメチルセルロース、アルギン酸などのようなポリマー酸;その他を含む有機酸とを含むことができる。イオン化合物の濃度は、望ましいイオン導電率を得るように選択される。例えば、酸(例えば、リン酸)は、電解質の約0.01重量%から約5重量%、一部の実施形態では約0.05重量%から約0.8重量%、一部の実施形態では約0.1重量%から約0.5重量%を構成することができる。必要に応じて、イオン化合物の配合物も電解質中に用いることができる。
【0021】
電解質を通過して電流が流され、誘電体層が形成される。電圧の値は、誘電体の厚みを管理する。例えば、電源は、必要な電圧に到達するまでガルバノスタットモードに最初に設定することができる。その後、電源は、ポテンショスタットモードに切り換えることができ、望ましい誘電体厚みがアノードの表面を覆って形成されることが保証される。言うまでもなく、パルス又はステップ・ポテンショスタット法のような他の公知の方法を使用することもできる。電圧は、典型的に約4から約200V、一部の実施形態では約9から約100Vの範囲である。陽極酸化中に、電解質は、約30℃又はそれよりも高く、一部の実施形態では約40℃から約200℃、一部の実施形態では約50℃から約100℃のような高めた温度に維持することができる。陽極酸化は、室温又はそれ未満で行うことができる。得られる誘電体層は、アノード表面上及びその空隙内部に形成することができる。
【0022】
誘電体層が形成された状態で、比較的絶縁性のレジン材料(天然又は合成)で製造されたもののような保護コーティングを任意的に付加することができる。そのような材料は、約10Ω/cmよりも大きく、一部の実施形態において約100よりも大きく、一部の実施形態において約1,000Ω/cmよりも大きく、一部の実施形態において約1×105Ω/cmよりも大きく、一部の実施形態において約1×1010Ω/cmよりも大きい比抵抗を有することができる。本発明に利用することができる一部のレジン材料としては、以下に制限されるものではないが、ポリウレタン、ポリスチレン、不飽和又は飽和脂肪酸のエステル(例えば、グリセリド)などが挙げられる。例えば、適切な脂肪酸のエステルとしては、以下に制限されるものではないが、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、エレオステアリン酸、オレイン酸、リノール酸、リノレン酸、アレウリチン酸、シェロール酸、その他のエステルが挙げられる。これらの脂肪酸のエステルは、得られるフィルムが安定した層に迅速に重合することを可能にする「乾性油」を形成する比較的複雑な組合せで使用される時にとりわけ有用であることが公知である。こうした乾性油としては、それぞれ1つ、2つ、及び3つのエステル化された脂肪酸アシル残基を有するモノ−、ジ−、及び/又はトリ−グリセリドを含むことができる。例えば、使用することができる一部の適切な乾性油としては、以下に制限されるものではないが、オリーブ油、アマニ油、ヒマシ油、キリ油、大豆油、及びシェラックが挙げられる。これら及び他の保護コーティングは、Fife他に付与された米国特許第6,674,635号明細書により詳細に説明されており、この特許は、その全ての目的に対して引用により全体的に本明細書に組み込まれている。
【0023】
陽極酸化された部分は、その後、二酸化マンガン、導電性ポリマーなどのような固体電解質を含むカソードを形成する段階を受ける。二酸化マンガン固体電解質は、例えば、硝酸マンガン(Mn(NO32)の熱分解によって生成することができる。そのような技術は、例えば、Sturmer他に付与された米国特許第4,945,452号明細書に説明されており、この特許は、その全ての目的に対して引用により全体的に本明細書に組み込まれている。
【0024】
1つ又はそれよりも多くのポリヘテロ環(例えば、ポリピロール;ポリチオフェン、ポリ(3,4−エチレンジオキシチオフェン)(PEDT);ポリアニリン);ポリアセチレン;ポリ−p−フェニレン;ポリフェノラート;及びそれらの誘導体を含有する導電性ポリマーコーティングを使用することもできる。導電性ポリマーコーティングは、複数の導電性ポリマー層からも形成することができる。例えば、一実施形態では、導電性ポリマーカソードは、PEDTから形成された1つの層とポリピロールから形成された別の層とを含むことができる。導電性ポリマーコーティングをアノード部分上に付加するために、様々の方法を利用することができる。例えば、電解重合、スクリーン印刷、浸漬、電着コーティング、及び吹付けのような従来型技術は、導電性ポリマーコーティングを形成するために使用することができる。
【0025】
1つの特定的な実施形態では、導電性コーティングは、π共役であり真性導電率(例えば、少なくとも約1μScm-1の導電率)を有する置換ポリチオフェンである。この置換ポリチオフェンは、一般式(I)、一般式(II)、又は両方の反復単位を有することができる。

ここで、Aは、任意的に置換されたC1からC5のアルキレン基(例えば、メチレン、エチレン、n−プロピレン、n−ブチレン、n−ペンチレンなど)であり、
Rは、直鎖又は分岐の任意的に置換されたC1からC18のアルキル基(例えば、メチル、エチル、n−又はiso−プロピル、n−,iso−,sec−又はtert−ブチル、n−ペンチル、1−メチルブチル、2−メチルブチル、3−メチルブチル、1−エチルプロピル、1,1−ジメチルプロピル、1,2−ジメチルプロピル、2,2−ジメチルプロピル、n−ヘキシル、n−ヘプチル、n−オクチル、2−エチルヘキシル、n−ノニル、n−デシル、n−ウンデシル、n−ドデシル、n−トリデシル、n−テトラデシル、n−ヘキサデシル、n−オクタデシルなど);任意的に置換されたC5からC12のシクロアルキル基(例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシルなど);任意的に置換されたC6からC14のアリール基(例えば、フェニル、ナフチルなど);任意的に置換されたC7からC18のアラルキル基(例えば、ベンジル、o−,m−,p−トリル,2,3−,2,4−,2,5−,2,6−,3,4−,3,5−キシリル、メシチルなど);任意的に置換されたC1からC4のヒドロキシアルキル基、又はヒドロキシル基であり、
xは、0から8、一部の実施形態において0から2の整数であり、一部の実施形態では、xは0である。化学基「A」又は「R」のための置換基の例としては、例えば、アルキル、シクロアルキル、アリール、アラルキル、アルコキシ、ハロゲン、エーテル、チオエーテル、ジスルフィド、スルホキシド、スルホン、スルホナート、アミノ、アルデヒド、ケト、カルボン酸エステル、カルボン酸、カーボナート、カルボキシラート、シアノ、アルキルシラン及びアルコキシシラン基、カルボキシアミド基などが挙げられる。
【0026】
一般式(I)又は一般式(II)の又は一般式(I)及び(II)の反復単位の総数は、典型的に2から2,000、一部の実施形態において2から100である。
【0027】
とりわけ適切なポリチオフェン誘導体は、「A」が任意的に置換されたC2からC3のアルキレン基であり、xが0又は1であるものである。1つの特定的な実施形態では、ポリチオフェン誘導体は、ポリ(3,4−エチレンジオキシチオフェン)(PEDT)であり、式中「A」がCH2−CH2であり、「x」が0である一般式(II)の反復単位を有する。そのようなポリマーを生成するのに使用されるモノマーは、望むように変えることができる。例えば、とりわけ適切なモノマーは、一般式(III)、(IV)、又は両方を有する置換3,4−アルキレンジオキシチオフェンである。

ここで、A、R、及びXは、上記で定められている。
【0028】
こうしたモノマーの例としては、例えば、任意的に置換された3,4−エチレンジオキシチオフェンが挙げられる。3,4−エチレンジオキシチオフェンの1つの市販の適切な例はClevios(登録商標)Mの名称で「H.C.Starck GmbH」から入手可能である。これらのモノマー前駆体の誘導体を使用することもでき、それらは、上記モノマーの二量体又は三量体である。より高分子の誘導体、すなわち、このモノマーの四量体、五量体などは、本発明での使用に適切である。この誘導体は、同一の又は異なるモノマー単位から構成することができ、かつ純粋な形態で又は互いとの及び/又は複数のモノマーとの混合物の形態で使用することができる。これらの前駆体の酸化又は還元形態を使用することもできる。
【0029】
上述のようなチオフェンモノマーは、酸化触媒の存在下で化学重合することができる。酸化触媒としては、鉄(III)、銅(II)、クロム(VI)、セリウム(IV)、マンガン(IV)、マンガン(VII)、ルテニウム(III)カチオンなどのような遷移金属カチオンが典型的に挙げられる。導電性ポリマーに過剰の電荷を提供してポリマーの導電率を安定化するためにドーパントを使用することもできる。ドーパントとしては、スルホン酸のイオンのような無機又は有機アニオンが典型的に挙げられる。所定の実施形態では、前駆体溶液中に使用される酸化触媒は、それがカチオン(例えば、遷移金属)とアニオン(例えば、スルホン酸)とを含むという理由で触媒機能とドープ機能の両方を有する。例えば、酸化触媒は、ハロゲン化鉄(III)(例えば、FeCl3)又はFe(ClO4)又はFe2(SO43のような他の無機酸の鉄(III)塩、及び有機酸のかつ有機基を含有する無機酸の鉄(III)塩のような鉄(III)カチオンを含む遷移金属塩とすることができる。有機基を有する無機酸の鉄(III)塩の例としては、例えば、C1からC20アルカノールの硫酸モノエステルの鉄(III)塩(例えば、ラウリルスルファートの鉄(III)塩)が挙げられる。同様に、有機酸の鉄(III)塩としては、例えば、C1からC20アルカンスルホン酸(例えば、メタン、エタン、プロパン、ブタン、又はドデカンスルホン酸)の鉄(III)塩;脂肪族ペルフルオロスルホン酸(例えば、トリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸、又はペルフルオロオクタンスルホン酸)の鉄(III)塩;脂肪族C1からC20カルボン酸(例えば、2−エチルヘキシルカルボン酸)の鉄(III)塩;ペルフルオロカルボン酸(例えば、トリフルオロ酢酸又はペルフルオロオクタン酸)の鉄(III)塩;C1からC20アルキル基によって任意的に置換された芳香族スルホン酸(例えば、ベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、又はドデシルベンゼンスルホン酸)の鉄(III)塩;シクロアルカンスルホン酸(例えば、ショウノウスルホン酸)の鉄(III)塩;その他が挙げられる。これら上述の鉄(III)塩の混合物を使用することもできる。p−トルエンスルホン酸鉄(III)、o−トルエンスルホン酸鉄(III)、及びそれらの混合物がとりわけ適切である。市販で適切な例は、「H.C.Starck GmbH」からClevios(登録商標)Cの名称で入手可能であるp−トルエンスルホン酸鉄(III)である。
【0030】
様々な方法を導電性コーティングを形成するために利用することができる。一実施形態では、酸化触媒とモノマーは、順次又は同時のいずれかで付加され、それによって重合反応が部分上に原位置で行われる。導電性コーティングを形成するために使用することができる適切な付加技術としては、スクリーン印刷、浸漬、電着コーティング、及び吹付けが挙げられる。例示的に、モノマーは、最初に酸化触媒と混合することができ、前駆体溶液が形成される。混合物が形成された状態で、混合物は、付加されて重合させることができ、それによって表面上に導電性コーティングが形成される。代替的に、酸化触媒とモノマーは、連続的に付加することができる。例えば、一実施形態では、酸化触媒は、有機溶媒(例えば、ブタノール)に溶解され、次に、浸漬溶液として付加される。この部分は、次に乾燥することができ、それから溶媒が除去される。その後、この部分は、モノマーを含有する溶液中に浸漬することができる。
【0031】
重合は、使用される酸化剤及び望ましい反応時間に基づいて、約−10℃から約250℃、一部の実施形態では約0℃から約200℃の温度で典型的に行われる。上述のような適切な重合技術は、Bilerに付与された米国特許第7,515,396号明細書により詳細に説明されている。こうした導電性コーティングを付加する更に他の方法は、Sakata他に付与された米国特許第5,457,862号明細書、Sakata他に付与された第5,473,503号明細書、Sakata他に付与された第5,729,428号明細書、及びKudoh他に付与された第5,812,367号明細書に説明されており、それらは、全ての目的に対してその引用により全体的に本明細書に組み込まれている。
【0032】
原位置付加によって形成されるコーティングに加えて又はそれと関連して、導電性ポリマー粒子の分散液の形態にある導電性コーティングを使用することもできる。粒子のサイズは、変えることができるが、アノード部分に付加することができる表面積を高めるために、粒子が小さい直径を有することが典型的に望ましい。例えば、この粒子は、約1から約500ナノメートル、一部の実施形態では約5から約400ナノメートル、一部の実施形態では約10から約300ナノメートルの平均直径を有することができる。粒子のD90値(D90値未満又はそれに等しい直径を有する粒子が、全ての固体粒子の合計容積の90%を構成する)は、約15マイクロメートル又はそれ未満、一部の実施形態において約10マイクロメートル又はそれ未満、一部の実施形態において約1ナノメートルから約8マイクロメートルとすることができる。粒径は、超遠心、レーザ回折などによるなどの公知の技術を用いて測定することができる。
【0033】
微粒子形態への導電性ポリマーの形成は、置換ポリチオフェンによって担持された陽電荷を相殺する個別のカウンタイオンの使用によって容易にされる。場合によっては、ポリマーは、構造単位内に陽及び陰電荷を有し、陽電荷は主鎖上に位置し、陰電荷は任意的にスルホナート基又はカルボキシラート基のような化学基「R」の置換基上に位置決めされる。主鎖の陽電荷は、化学基「R」上に任意的に存在するアニオン基によって部分的又は全体的に飽和することができる。全体的にみると、このポリチオフェンは、これらの場合には、カチオン性、中性、又は更にはアニオン性とすることができる。それにも関わらず、それらは、ポリチオフェン主鎖が陽電荷を有するので、全てカチオン性ポリチオフェンと見なされる。
【0034】
カウンタイオンは、モノマーアニオン又はポリマーアニオンとすることができる。ポリマーアニオンは、例えば、ポリマーカルボン酸(例えば、ポリアクリル酸、ポリメタクリル酸、ポリマーレイン酸など);ポリマースルホン酸(例えば、ポリスチレンスルホン酸(PSS)、ポリビニルスルホン酸など);その他とすることができる。この酸は、ビニルカルボン酸及びビニルスルホン酸と、アクリル酸エステル及びスチレンのような他の重合可能モノマーとのコポリマーのようなコポリマーであるとすることができる。更に、適切なモノマーアニオンとしては、例えば、C1からC20のアルカンスルホン酸(例えば、ドデカンスルホン酸);脂肪族ペルフルオロスルホン酸(例えば、トリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸、又はペルフルオロオクタンスルホン酸);C1からC20の脂肪族カルボン酸(例えば、2−エチルヘキシルカルボン酸);脂肪族ペルフルオロカルボン酸(例えば、トリフルオロ酢酸、又はペルフルオロオクタン酸);C1からC20のアルキル基によって任意的に置換された芳香族スルホン酸(例えば、ベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、又はドデシルベンゼンスルホン酸);シクロアルカンスルホン酸(例えば、ショウノウスルホン酸、又はテトラフルオロボラート、ヘキサフルオロホスファート、ペルクロラート、ヘキサフルオロアンチモナート、ヘキサフルオロアルセナート又はヘキサクロロアンチモナート);その他のアニオンが挙げられる。とりわけ適切なカウンタイオンは、ポリマーカルボン酸又はポリマースルホン酸(例えば、ポリスチレンスルホン酸(PSS))のようなポリマーアニオンである。こうしたポリマーアニオンの分子量は、一般的に、約1,000から約2,000,000、一部の実施形態では約2,000から約500,000の範囲にある。
【0035】
用いられる時に、所定の層中の置換ポリチオフェンに対するこのようなカウンタイオンの重量比率は、典型的に約0.5:1から約50:1、一部の実施形態では約1:1から約30:1、一部の実施形態では約2:1から約20:1である。上述の重量比率に対応する置換ポリチオフェンの重量は、重合中に完全な変換が行われると見なして、使用されたモノマーの計量した部分を意味する。
【0036】
分散液は、1つ又はそれよりも多くの結合剤を含有することができ、ポリマー層の付加特性が更に改善され、分散液内の粒子の安定性も高められる。結合剤は、本質的に有機性とすることができ、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリ酪酸ビニル、ポリアクリル酸エステル、ポリアクリル酸アミド、ポリメタクリル酸エステル、ポリメタクリル酸アミド、ポリアクリロニトリル、スチレン/アクリル酸エステル、酢酸ビニル/アクリル酸エステル及びエチレン/酢酸ビニルコポリマー、ポリブタジエン、ポリイソプレン、ポリスチレン、ポリエーテル、ポリエステル、ポリカーボネート、ポリウレタン、ポリアミド、ポリイミド、ポリスルホン、メラミン・ホルムアミドレジン、エポキシレジン、シリコーンレジン又はセルロースのようなものである。結合剤の付加機能を高めるために、架橋剤を使用することもできる。こうした架橋剤としては、例えば、メラミン化合物、マスクドイソシアナート又は3−グリシドキシプロピルトリアルコキシシラン、テトラエトキシシラン及びテトラエトキシシラン加水分解物のような官能性シラン又はポリウレタン、ポリアクリラート又はポリオレフィンのような架橋性ポリマーを含むことができ、並びに事後的架橋を含むことができる。当業技術で公知のように、分散剤(例えば、水)、界面活物質などのような他の成分を分散液中に含めることもできる。
【0037】
必要に応じて、上述の付加段階のうちの1つ又はそれよりも多くは、コーティングの望ましい厚みが得られるまで反復することができる。一部の実施形態では、コーティングの比較的薄い層のみが一度に形成される。コーティングの合計目標厚みは、コンデンサの望ましい特性に基づいて一般的に変えることができる。得られる導電性ポリマーコーティングは、一般的に、約0.2マイクロメートル(μm)から約50μm、一部の実施形態において約0.5μmから約20μm、一部の実施形態において約1μmから約5μmの厚みを有する。コーティングの厚みは、全ての箇所で同じであるとは限らないことを理解すべきである。それにも関わらず、コーティングの平均厚みは、ほぼ上述の範囲に入る。
【0038】
導電性ポリマーコーティングは、任意的にヒーリング処理することができる。ヒーリング処理は、導電性ポリマー層の各々の付加後又は導電性ポリマーコーティング全体の付加後に行うことができる。一部の実施形態では、導電性ポリマーは、電解質溶液中にこの部分を浸漬し、その後、電流が予め設定したレベルに低下するまで一定電圧を印加することにより、ヒーリング処理することができる。必要に応じて、こうしたヒーリング処理は、複数の段階で行うことができる。例えば、電解質溶液は、アルコール溶媒(例えば、エタノール)中のモノマー、触媒、及びドーパントの希薄溶液とすることができる。コーティングは、必要に応じて次に洗浄することができ、様々な副産物、過剰試薬などが除去される。
【0039】
必要に応じて、この部分には、任意的に外部コーティングを付加することができる。外部コーティングは、少なくとも1つの炭素質層と、炭素質層の上に重なる少なくとも1つの金属層とを含むことができる。金属層は、コンデンサのための半田可能導体、接触層、及び/又は電荷コレクターとして機能を果たすことができ、銅、ニッケル、銀、ニッケル、亜鉛、錫、パラジウム、鉛、銅、アルミニウム、モリブデン、チタン、鉄、ジルコニウム、マグネシウム、及びそれらの合金のような導電性金属から形成することができる。この層での使用ためには、銀がとりわけ適切な導電性金属である。炭素質層は、そうでなければコンデンサの抵抗を増大させることになる金属層と固体電解質層の間の接触を制限することができる。炭素質層は、グラファイト、活性炭、カーボンブラックなどのような様々な公知の炭素質材料から形成することができる。炭素質層の厚みは、典型的に約1μmから約50μm、一部の実施形態において約2μmから約30μm、一部の実施形態において約5μmから約10μmの範囲である。同様に、金属層の厚みは、典型的に約1μmから100μm、一部の実施形態において約5μmから約50μm、一部の実施形態において約10μmから約25μmの範囲である。
【0040】
図1を再度参照すると、コンデンサ要素33が形成される方式に関わらず、それには、アノード端子62とカソード端子72とが電気的接続の状態で一般的に装着される。アノード端子62がコンデンサ要素33に接続される方式は重要でない。例えば、図1において、アノード端子62は、比較的平坦でありかつコンデンサ要素33の下面39とほぼ平行に向けられた平面部分63と、平面部分63と実質的に直角(例えば、90°±5°)に位置決めされた直立部分64とを含むように示されている。図示のように、直立部分64は、アノードリード16を受け取るためのスロット51も形成する。スロット51は、様々な異なる形状及び/又はサイズのいずれをも有することができる。図示の実施形態では、例えば、スロット51は、リード16の表面接触と機械的安定性とを更に高めるために「U字形状」を有する。
【0041】
導電性接着剤を含むためにカソード端子内のスロットを使用する様々な異なる構成は、本発明で一般的に用いることができる。例えば、図1に示す実施形態では、内部スロットが、カソード端子の平面部分の折り畳み区画内に形成される。特に、カソード端子72は、コンデンサ要素33の下面39とほぼ平行に向けられた平面部分79を含む。平面部分79は、第2の平面区画73の垂直上方に折り畳まれた(例えば、−z方向に)第1の平面部分75から形成される。この実施形態では一体として示されているが、区画73と区画75が分離して図示の方式で折り畳まれることを要しない場合があることを理解すべきである。こうした「折り畳み」構成は、平面部分の全厚を増大させることができ、これは、コンデンサ要素の位置決め及びアラインメントを助けることができる。更に、そのより高い垂直位置のために、第1の平面部分75を成形材料によって実質的に封入することができ、これは、成形材料の一部がたとえ割れたとしても剥離の可能性を低減することができる。いずれの場合でも、コンデンサ要素33にカソード端子72を接続する導電性接着剤81を含むために、スロット77は、少なくとも第1の平面区画75の内部に形成される。特別に示されないが、スロット77は、必要に応じて第2の平面区画73内にも延びることができることを理解すべきである。スロットのプロフィールは、スロットが導電性接着剤をその中にほぼ収容できる限り、必要に応じて変えることができる。例えば、矩形プロフィールが、図1のスロット77で使用される。他の適切なプロフィール形状としては、例えば、正方形、三角形、楕円形、円形などを含むことができる。
【0042】
図1のカソード端子72は、コンデンサ要素33の下面39に対してかつ平面区画73及び75に対して実質的に直角(例えば、90°±5°)に向けられた直立部分74も含む。直立部分74は、コンデンサ要素33の後面38に電気的に接触してそれと実質的に平行である。任意的に、直立部分74は、コンデンサ製造時のこの部分の折り畳まれる機能を容易にするために開口76を形成することができる。一体化して描かれているが、平面部分及び直立部分は、代替的に、直接に又は付加的な導電性要素(例えば、金属)を通じて共に接続された個別の部分とすることができることも理解すべきである。
【0043】
様々な異なる技術のいずれも、図1に示すスロットを有するカソード端子を形成するために一般的に使用することができる。一実施形態では、例えば、接着剤スロットを形成するための望ましい構成に処理されるリードフレームを提供することができる。例えば、図4を参照すると、図1のコンデンサを形成するためのリードフレームの一実施形態は、要素200として示されている。簡単にするために、単一のコンデンサのみの形成を以下に説明する。しかし、リードフレームが個別コンデンサアセンブリに切断される複数の区画を含むことができることは理解すべきである。リードフレームの一部分のみが示されており、リードフレームが明確には示されない他の構成要素を含むことができることを理解すべきである。例えば、端子は、コンデンサの製造中にその後に除去される金属シートによって最初に接続することができる。
【0044】
リードフレーム200は、金属(例えば、銅、ニッケル、銀、ニッケル、亜鉛、錫、パラジウム、鉛、銅、アルミニウム、モリブデン、チタン、鉄、ジルコニウム、マグネシウム、及びそれらの合金)のような導電材料から形成することができる。とりわけ適切な導電性金属としては、例えば、銅、銅合金(例えば、銅−ジルコニウム、銅−マグネシウム、銅−亜鉛、又は銅−鉄)、ニッケル、及びニッケル合金(例えば、ニッケル−鉄)が挙げられる。1つの例示的な導電材料は、Wieland(ドイツ国)から市販されている銅−鉄合金メタルプレートである。必要に応じて、回路基板に完成部分が装着可能であることを保証するために、当業技術で公知のように、リードフレーム200の表面は、ニッケル、銀、金、錫などで電気メッキすることができる。1つの特定的な実施形態では、リードフレーム200の両面は、それぞれニッケル及び銀フラッシュでメッキされ、装着着の表面は、錫半田層でこれもメッキされる。
【0045】
図4のリードフレーム200は、初期の「平坦な」構成で示されている。この実施形態では、アノード端子は、基部163とそれから延びるタブ164から形成される。タブ164は、折り曲げ軸「A1」に沿って上方に曲げることができ、直立部分64及びU字形状スロット51(図1−図2)が形成される。カソード端子は、基部173とそれから延びるタブ174から同様に形成される。タブ174は、折り曲げ軸「A3」に沿って上方に曲げることができ、直立部分74が形成される。平面区画73及び75を形成するために、基部173が軸「A2」に沿って上方に折り畳まれる。このようにして、基部173の前方部分は、第1の平面区画75を構成することになり、後方部分は、第2の平面区画73を構成することになる(図1)。凹部181(例えば、穴)も基部173に形成され、それによって折り畳まれた時に凹部が第2の区画73の上面に隣接して位置し、導電性接着剤のための内部スロット77を形成するようになっている(図1)。凹部181は、図示のように基部173を完全に通過して延びることができ、又は基部の高さの一部分を通過するのみで延びることができる。更に、この実施形態では円形を有するとして示されているが、正方形、矩形、楕円形、三角形、台形などのようなあらゆる断面形状を凹部181及びスロット77のために使用することができることを理解すべきである。
【0046】
上述のようにリードフレームを折り曲げることにより、アノード端子及びカソード端子を望ましい構成に形成することができる。例えば、図5を参照すると、リードフレーム200は、折り畳まれた構成にあり、アノード端子62とカソード端子72とを含む。上述のように、この実施形態のアノード端子62は、平面部分63と、アノードリードを受け取るためのスロット51を形成する直立部分64とを含む。同様に、カソード端子72は、開口76を形成する直立部分74と、第1の平面区画75及び第2の平面区画73によって形成された内部スロット77とを含む。
【0047】
スロットの厚みは、一般的に、それが望ましい量の導電性接着剤を含むことができるように十分に厚いが、コンデンサの体積効率に悪影響を与えないように十分に薄いものである。例えば、スロットの厚みは、約0.01から約1ミリメートル、一部の実施形態において約0.02から約0.5ミリメートル、一部の実施形態において約0.05から約0.2ミリメートルとすることができる。図5を再び参照すると、上述の範囲に入ることができる厚み「H2」を有するスロットの1つの特定的な実施形態が示されている。必ずではないが、この実施形態における第1の平面区画75の厚みも、厚み表示「H2」によって表され、従って、上述の範囲に入ることができる。十分な機械的安定性を提供するためには、スロット77の厚みが、カソード端子72平面部分79の全厚(H3)を過度に占めないことが典型的に望ましい。すなわち、平面部分79の全厚「H3」に対するスロット厚み「H2」の比率は、約0.1から約1、一部の実施形態において約0.2から約0.8、一部の実施形態において約0.3から0.6である。全厚「H3」は、例えば、約0.02から約2ミリメートル、一部の実施形態において約0.04から約1ミリメートル、一部の実施形態において約0.1から約0.4ミリメートルの範囲とすることができる。必ずしも要求されないが、カソード端子72の平面部分79の全厚(H3)は、アノード端子62の平面部分63の全厚(H1)よりも大きいとすることができ、とりわけ、これは、端子上のコンデンサ要素の位置決め及びアラインメントを助けることができる。例えば、平面部分63の全厚「H1」に対する平面部分79の全厚「H3」の比率は、約0.4から約5、一部の実施形態において約0.5から約4、一部の実施形態において約1から約3とすることができる。全厚「H1」は、例えば、約0.01から約1ミリメートル、一部の実施形態において約0.02から約0.5ミリメートル、一部の実施形態において約0.05から約0.2ミリメートルとすることができる。
【0048】
図1に示す実施形態は、本発明で使用することができるコンデンサの一例に過ぎないことを理解すべきである。実際には、図1に示す実施形態の様々な構成要素は、一部の実施形態において削除することができる。例えば、ある一定の場合には、直立部分のないカソード端子を使用することができる。そのような形態の例は、図2に示されており、端子72には直立部分がなく、−z方向において第2の平面区画73の垂直上方に折り畳まれた第1の平面区画75から形成された平面部分79を単に含むことを除いて、コンデンサ要素33は、図1に類似の方式でアノード端子62とカソード端子72とに接続される。更に別の実施形態では、カソード端子は、単一の区画のみから形成された平面部分を含むことができる。例えば、図3を参照すると、直立部分274と水平カソード端子272とを含むカソード端子272が示されている。この実施形態では、平面部分279は、導電性接着剤281を含むための内部スロット277を形成する単一の区画である。
【0049】
更に他の実施形態では、接着剤のためのスロットは、図1−図5に示すように平面部分の内部に形成されることを要しない。例えば、図6を参照すると、スロットがカソード端子の第1の平面区画の内部に形成されていないことを除いて、図1のコンデンサと実質的に類似なコンデンサ30が示されている。正確には、図6において、スロット77は、第1の平面区画75のエッジと、直立部分74と出会う第2の平面区画73のエッジとの間に形成された空間である。図7は、スロット77が第1の平面区画のエッジと直立部分74と出会わない第2の平面区画のエッジとの間に形成されること以外は同様である一部の実施形態を示している。こうしたスロット構成は、様々な異なる方法で形成することができる。
【0050】
例えば、図8−図9は、図6のコンデンサ30を形成するために使用することができるリードフレーム300の一実施形態を示している。図8において、リードフレーム300は、その最初の「平坦」構成で示されている。この実施形態では、アノード端子は、基部363とそれから延びるタブ364から形成される。タブ364は、折り曲げ軸「A1」に沿って上方に曲げることができ、直立部分64とU字形状スロット51とが形成される(図6)。同様に、カソード端子は、基部373とそれから延びるタブ374から形成される。タブ374は、折り曲げ軸「A3」に沿って上方に曲げることができ、直立部分74が形成される。平面区画73及び75を形成するために、基部373は軸「A2」に沿って上方に折り畳まれる。このようにして、基部373の前方部分は、第1の平面区画75を構成することになり、後方部分は、第2の平面区画73を構成することになる。上述のようにリードフレームを折り曲げることにより、カソード端子は、望ましい構成に形成することができる。例えば、図9を参照すると、リードフレーム300は、その折り曲げた構成で示されており、アノード端子62とカソード端子72とを含む。上述のように、この実施形態のアノード端子62は、平面部分63とアノードリードを受け取るためのスロット51を形成する直立部分64とを含む。同様に、カソード端子72は、開口76を形成する直立部分74と、第1の平面区画75と、第2の平面区画73とを含む。図示の実施形態では、平面部分79は、第1の区画75が第2の区画73の全長を超えて延びないようにして折り畳まれる。換言すれば、第1の区画75の長さは、第2の区画73の長さよりも短い。このようにして、第1の区画75のエッジ95と第2の区画73のエッジ97との間に形成されるスロット77が定められる。図9に示す実施形態におけるL1、L2、L3、H1、H2、及びH3の値は、例えば、上述の範囲で選択的に制御することができる。
【0051】
用いられた特定の構成に関わらず、端子が望ましい構成にある状態で、コンデンサ要素は、その上に位置決めされる。例えば、図1を再び参照すると、コンデンサ要素33は、アノードリード16がスロット51によって受け取られるように位置決めすることができる。機械化溶接、レーザ溶接、導電性接着剤などのような当業技術で公知のあらゆる技術を用いて、アノードリード16をスロット51に電気的に接続することができる。コンデンサ要素33の下面39は、アノード端子とカソード端子とを絶縁する絶縁材料(図示せず)を通じてアノード端子62の平面部分63上に置かれる。下面39は、カソード端子72の第1の平面区画75上にも置かれ、導電性接着剤81によってそれに接続される。導電性接着剤としては、例えば、レジン組成物で封じ込めた導電性金属粒子を含むことができる。金属粒子は、銀、銅、金、白金、ニッケル、亜鉛、ビスマスなどとすることができる。レジン組成物は、熱硬化性レジン(例えば、エポキシレジン)、硬化剤(例えば、酸無水物)、及びカプリング剤(例えば、シランカプリング剤)を含むことができる。適切な導電性接着剤は、Osako他の米国特許出願公開第2006/0038304号明細書に説明されており、この出願は、全ての目的に対してその引用により全体的に本明細書に組み込まれている。いずれの公知の技術も導電性接着剤を硬化処理するために使用することができる。例えば、熱及び圧力を印加するためにヒートプレスを使用することができ、この接着剤によってコンデンサ要素33がカソード端子72に適切に接着することが保証される。
【0052】
リードフレームに取り付けられた状態で、コンデンサ要素は、エポキシレジン、シリカ、又はあらゆる公知の密封材料のような成形材料58を用いて封入することができる(図1−図2)。ケースの幅及び長さは、意図された用途に基づいて変えることができる。適切なケーシングとしては、例えば、「A」、「B」、「F」、「G」、「H」、「J」、「K」、「L」、「M」、「N」、「P」、「R」、「S」、「T」、「W」、「Y」、又は「X」ケース(AVX Corporation)を含むことができる。採用されるケースサイズに関わらず、コンデンサ要素33は、アノード端子62及びカソード端子72の少なくとも一部分が回路基板への装着のために露出するようにして封入される。例えば、図1に示す実施形態では、アノード端子62の平面部分63は露出されるが、直立部分64は、成形材料58内部に封入される。同様に、カソード端子72の第2平面部分73も露出されるが、第1の平面部分75と直立部分74の両方は、成形材料58内部に封入される。とりわけ、カソード端子の平面部分と直立部分の両方の封入は、より良好な機械的安定性及び従って改善した電気性能を有するコンデンサをもたらすことができる。
【0053】
本発明は、以下の実施例の参照によって更に良好に理解することができる。
【0054】
試験手順
等価直列抵抗(ESR):
等価直列抵抗は、2.2ボルトDCバイアス及び0.5ボルトピーク間正弦波信号でKelvinリードを付した「Keithley 3330 Precision LCZ」メーターを使用して測定された。作動周波数は、100kHzで、温度は23℃±2℃であった。
キャパシタンス(Cap):
キャパシタンスは、2.2ボルトDCバイアス及び0.5ボルトピーク間正弦波信号でKelvinリードを付した「Keithley 3330 Precision LCZ」メーターを使用して測定された。作動周波数は、120Hzで、温度は23℃±2℃であった。
漏れ電流:
漏れ電流(DCL)は、25℃の温度かつ定格電圧で最低限60秒後での漏れ電流を測定する漏電試験セットを用いて測定された。
【実施例1】
【0055】
タンタルアノード(2.30mm×0.50mm×2.30mm)が、液体電解質中17.1Vで150μFまで最初に陽極酸化された。次に、導電性ポリマーコーティングが、アノードをトルエンスルホン酸鉄(III)(CLEVIOS(登録商標)C)のブタノール溶液中に15分、その後3,4−エチレンジオキシチオフェン(CLEVIOS(登録商標)M)中に1分間浸漬することによって形成された。重合の45分後に、ポリ(3,4−エチレンジオキシチオフェン)の薄層が誘電体の表面上に形成された。この部分は、反応副産物を除去するためにメタノール中で洗浄され、液体電解質中で再陽極酸化され、メタノール中で再び洗浄された。重合サイクルは12回反復された。この部分は、次に当業技術で公知のようにグラファイト及び銀によって被覆された。形成された状態で、コンデンサ要素は、図1に示すように、リードフレームのポケット内に置かれた。図1に示すように、リードフレームは、第2の平面区画73の垂直上方に折り畳まれた第1の平面区画75を有するカソード端子を含みた。スロット77は、第1の平面区画75の内部に形成された。この部分がリードフレーム上に置かれる前に、導電性接着剤81がスロット77内に配置された。望ましい方式に位置決めされた状態で、アノードワイヤは、パルスレーザビームを用いてアノード端子に溶接された。コンデンサ要素は、次に、約3.50mmの長さ、1.00mmの高さ、及び約2.80mmの幅を有する「L」ケース内部に封入された。完成部分は、鉛のないリフローで処理された。756個の部分が、上述の方法によって製造された。
【実施例2】
【0056】
カソード端子が、単一の平面区画のみを含みたことを除いて、コンデンサが実施例1に記載の方式で形成された。すなわち、カソード端子には、図1に示す平面区画75とスロット77とが無かった。代替的に、カソード端子は、コンデンサ要素の下面に隣接する単一の平面区画とコンデンサ要素の後面に隣接する直立部分とを単に含みた。コンデンサ要素をカソード端子に接続するために接着剤が平面区画の上面に配置された。756個の部分が本方法によって製造された。実施例1及び実施例2のこれらの部分は、次に、電気的試験を受けた。結果(中央値)は、表1で以下に示されている。
【0057】
(表1)

【0058】
示すように、実施例1に説明したカソード端子を用いて組み立てられた部分は、実施例2の部分よりも低い漏れ電流及びESRを有した。更に、実施例1の部分の98%よりも多くが電気性能試験に合格と判断されたが、それに対して実施例2の部分では91%だけであった。この低い収率は、アノードがケース内部に対称的には位置せず、そのことがカソード端子からの剥離の可能性を高めたなどの事実に起因したと考えられている。
【0059】
本発明のこれら及び他の修正及び変形は、本発明の精神及び範囲から逸脱することなく当業者によって実施することができる。更に、様々な実施形態の態様は、全部又は一部の両方で入れ替えることができることを理解すべきである。更に、以上の説明は、単に例証であり、特許請求の範囲に更に説明される本発明を制限する意図ではないことを当業者は理解するであろう。
【符号の説明】
【0060】
30 コンデンサ
33 コンデンサ要素
37 上面
39 下面
62 アノード端子
72 カソード端子

【特許請求の範囲】
【請求項1】
上面と、下面と、前面と、後面とを形成し、アノードと、該アノードの上に重なる誘電体層と、固体電解質を含む該誘電体層の上に重なるカソードとを含むコンデンサ要素であって、アノードリードが該アノードに電気的に接続された前記コンデンサ要素と、
前記アノードリードに電気的に接続されたアノード端子と、
前記カソードに電気的に接続され、かつ前記コンデンサ要素の前記下面とほぼ平行に向けられた平面部分を含むカソード端子であって、該平面部分が、内部に導電性接着剤が配置されるスロットを形成し、該導電性接着剤が、該カソード端子の該平面部分を該コンデンサ要素に接続する前記カソード端子と、
前記コンデンサ要素を封入し、かつ前記アノード端子の少なくとも一部と前記カソード端子の少なくとも一部とを露出したままに残す成形材料と、
を含むことを特徴とするコンデンサ。
【請求項2】
前記スロットは、ほぼ矩形又は三角形の形状であるプロフィールを有することを特徴とする請求項1に記載のコンデンサ。
【請求項3】
前記スロットは、ほぼ円形の断面寸法を有することを特徴とする請求項1に記載のコンデンサ。
【請求項4】
前記スロットは、前記カソード端子の前記平面部分の内部に形成されることを特徴とする請求項1に記載のコンデンサ。
【請求項5】
前記カソード端子の前記平面部分は、第2の平面区画の垂直上方に折り畳まれた第1の平面区画を含み、
前記スロットは、少なくとも前記第1の平面区画によって形成される、
ことを特徴とする請求項1に記載のコンデンサ。
【請求項6】
前記スロットは、少なくとも前記第1の平面区画の内部に形成されることを特徴とする請求項5に記載のコンデンサ。
【請求項7】
前記第1の平面区画の長さが、前記第2の平面区画の長さよりも短いことを特徴とする請求項5に記載のコンデンサ。
【請求項8】
前記スロットは、前記第1の平面区画のエッジと前記第2の平面区画のエッジの間に形成されることを特徴とする請求項7に記載のコンデンサ。
【請求項9】
前記第1の平面区画は、前記成形材料によって封入され、
前記第2の平面区画の少なくとも一部が、露出したままに残る、
ことを特徴とする請求項5に記載のコンデンサ。
【請求項10】
前記カソード端子の前記平面部分の全厚に対する前記スロットの厚みの比率が、約0.2から約0.8であることを特徴とする請求項1に記載のコンデンサ。
【請求項11】
前記カソード端子の前記平面部分は、単一区画から形成され、該単一区画は、該単一区画の内部に前記スロットを形成することを特徴とする請求項1に記載のコンデンサ。
【請求項12】
前記カソード端子の前記平面部分は、前記コンデンサ要素の前記下面に隣接して位置決めされることを特徴とする請求項1に記載のコンデンサ。
【請求項13】
前記カソード端子は、前記コンデンサ要素の前記下面とほぼ直角に位置決めされた直立部分を更に含むことを特徴とする請求項1に記載のコンデンサ。
【請求項14】
前記カソード端子の前記直立部分は、前記コンデンサ要素の前記後面に隣接して位置決めされることを特徴とする請求項13に記載のコンデンサ。
【請求項15】
前記カソード端子の前記直立部分は、前記成形材料によって封入されることを特徴とする請求項13に記載のコンデンサ。
【請求項16】
前記アノード端子は、前記コンデンサ要素の前記下面とほぼ直角に位置決めされた直立部分と該コンデンサ要素の該下面とほぼ平行に位置決めされた平面部分とを含むことを特徴とする請求項1に記載のコンデンサ。
【請求項17】
前記アノードリードは、前記アノード端子の前記直立部分に電気的に接続されることを特徴とする請求項16に記載のコンデンサ。
【請求項18】
絶縁材料が、前記コンデンサ要素と前記アノード端子の前記平面部分との間に配置されることを特徴とする請求項17に記載のコンデンサ。
【請求項19】
前記アノード端子の前記直立部分は、前記アノードリードを受け取るためのスロットを形成することを特徴とする請求項17に記載のコンデンサ。
【請求項20】
前記アノードは、タンタル、ニオブ、又はその導電性酸化物を含むことを特徴とする請求項1に記載のコンデンサ。
【請求項21】
前記固体電解質は、導電性ポリマーを含むことを特徴とする請求項1に記載のコンデンサ。
【請求項22】
前記導電性ポリマーは、ポリ(3,4−エチレンジオキシチオフェン)であることを特徴とする請求項21に記載のコンデンサ。
【請求項23】
コンデンサ要素とリードフレームからコンデンサを形成する方法であって、
前記リードフレームは、アノード部分とカソード部分を含み、該カソード部分は、基部を含み、更に、
前記コンデンサ要素は、アノードと、該アノードの上に重なる誘電体層と、固体電解質を含む該誘電体層の上に重なるカソードとを含み、
前記方法が、
前記カソード部分の前記基部を曲げて、第2の区画の垂直上方に位置決めされた第1の区画を形成する段階であって、スロットが、少なくとも該第1の区画によって形成される前記第1の区画を形成する段階と、
前記スロット内に導電性接着剤を配置する段階と、
前記コンデンサ要素を該コンデンサ要素が前記導電性接着剤に接触するように前記リードフレームの上に位置決めする段階と、
前記コンデンサ要素の前記アノードリードを前記リードフレームの前記アノード部分に電気的に接続する段階と、
を含む、
ことを特徴とする方法。
【請求項24】
前記スロットは、少なくとも前記第1の区画の内部に形成されることを特徴とする請求項23に記載の方法。
【請求項25】
前記コンデンサ要素を前記リードフレームの前記アノード部分の少なくとも一部と前記カソード部分の少なくとも一部とが露出したままに残るように成形材料で封入する段階を更に含むことを特徴とする請求項23に記載の方法。
【請求項26】
前記カソード部分は、前記基部から延びるタブを更に含み、
方法が、前記タブを曲げて直立カノード端子部分を形成する段階を更に含む、
ことを特徴とする請求項23に記載の方法。
【請求項27】
前記リードフレームの前記アノード部分を曲げて直立アノード端子部分を形成する段階を更に含み、
前記アノードリードは、前記直立アノード端子部分に電気的に接続される、
ことを特徴とする請求項23に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−191199(P2012−191199A)
【公開日】平成24年10月4日(2012.10.4)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−37993(P2012−37993)
【出願日】平成24年2月7日(2012.2.7)
【出願人】(511167272)エイヴィーエックス コーポレイション (17)