説明

撮像装置、異物除去方法及び異物除去プログラム

【課題】 充分な異物除去性能を得る。
【解決手段】 被写体光を光電変換する撮像素子と、撮像素子の前方に配置される光学部材と、光学部材を振動させる加振手段と、光学部材が共振する第1の共振周波数を用いて、光学部材が共振すると推測される推定周波数を第1の共振周波数以外で求める推定手段と、推定周波数を含む周波数帯域の範囲内で周波数を複数回変化させて光学部材を振動させるように加振手段を制御する制御手段と、推定周波数を含む周波数帯域の範囲内で周波数を複数回変化させて光学部材を振動させたときの光学部材の振動状態に基づいて、光学部材が共振する第2の共振周波数を特定する特定手段と、第2の共振周波数を記憶する記憶手段と、を備えたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮像素子の前方に配置された光学部材を振動させて、その表面に付着した異物を除去する撮像装置、異物除去方法および異物除去プログラムに関する。
【背景技術】
【0002】
デジタルカメラに代表される撮像装置は、撮像光学系、撮像素子を備えている。この撮像素子の前方には、塵埃が撮像素子の前面に付着するのを防止するための防塵ガラス等の光学部材が配置されている。このような撮像装置において、例えば共振周波数を含む周波数帯域により光学部材を振動させて光学部材の表面に付着した塵埃などの異物を除去する技術が提案されている(特許文献1参照)。この場合、光学部材のばらつき、経年変化、周辺温度などによる共振周波数が変化した場合でも異物除去性能が低下しないように、共振周波数に対してある程度の周波数の幅を持たせて、光学部材を振動させるようにしている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−188949号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
この場合、設定された周波数帯域の範囲内で所定周波数分ずらしながら光学部材を振動させることから、同一の周波数によって光学部材を振動させる時間を一定とした場合、周波数帯域の全域に対して光学部材を振動させる総時間が長くなるという問題がある。一方、周波数帯域の全域に対して光学部材を振動させる総時間を一定時間とした場合、各周波数において光学部材を振動させる時間が短なり、充分な異物除去性能は得られない。また、設定された周波数帯域の範囲内で変化させる(ずらす)周波数を大きく設定することで各周波数において光学部材を振動させる時間を確保することも考えられる。しかしながら、設定された周波数帯域の範囲内でずらす周波数を大きく設定した場合、光学部材を共振周波数にて振動させることができないこともあり、結果的に充分な異物除去性能を得ることができない。
【0005】
本発明は、充分な異物除去性能を得ることができるようにした撮像装置、異物除去方法および異物除去プログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上述した課題を解決するために、本発明の撮像装置は、被写体光を光電変換する撮像素子と、前記撮像素子の前方に配置される光学部材と、前記光学部材を振動させる加振手段と、前記光学部材が共振する第1の共振周波数を用いて、前記光学部材が共振すると推測される推定周波数を前記第1の共振周波数以外で求める推定手段と、前記推定周波数を含む周波数帯域の範囲内で周波数を複数回変化させて前記光学部材を振動させるように前記加振手段を制御する制御手段と、前記推定周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させて前記光学部材を振動させたときの前記光学部材の振動状態に基づいて、前記光学部材が共振する第2の共振周波数を特定する特定手段と、前記第2の共振周波数を記憶する記憶手段と、を備えたことを特徴とする。
【0007】
また、前記特定手段は、前記推定周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させながら前記光学部材を振動させたときに得られる振幅量のうち、最も振幅量が大きくなるときの周波数を前記第2の共振周波数として特定することが好ましい。
【0008】
また、前記推定手段は、前記第1の共振周波数に係数を乗算することで、前記他の共振周波数を推定することが好ましい。
【0009】
この場合、前記推定手段は、特定された前記第2の共振周波数が前記他の共振周波数と一致した場合に、前記係数を保持することが好ましい。
【0010】
また、前記推定手段は、特定された前記第2の共振周波数と前記推定周波数とが一致しない場合に、前記係数を前記第1の共振周波数及び前記第2の共振周波数から求めた値に置き換えることが好ましい。
【0011】
また、前記制御手段は、予め設定された周波数帯域の範囲内で周波数を複数回変化させて、前記光学部材を振動させるように前記加振手段を制御し、前記特定手段は、予め設定された周波数帯域の範囲内で周波数を複数回変化させたときの前記光学部材の振動状態に基づいて、前記第1の共振周波数を特定することが好ましい。
【0012】
また、前記制御手段は、前記第1の共振周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させながら前記光学部材を振動させる第1の振動動作と、前記第2の共振周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させながら前記光学部材を振動させる第2の振動動作とを実行するように前記加振手段を制御することが好ましい。
【0013】
また、本発明の異物除去方法は、被写体光を光電変換する撮像素子と、前記撮像素子の前方に配置される光学部材と、前記光学部材を振動させる加振手段と、を備えた撮像装置における異物除去方法において、前記光学部材が共振するときの第1の共振周波数を用いて、前記光学部材が共振すると推測される推定周波数を前記第1の共振周波数以外で求める推定処理と、前記推定周波数を含む周波数帯域の範囲内で周波数を複数回変化させて前記光学部材を振動させるように前記加振手段を制御する制御処理と、前記推定周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させて前記光学部材を振動させたときの前記光学部材の振動状態に基づいて、前記光学部材が共振する第2の共振周波数を特定する特定処理と、前記第2の共振周波数を記憶する記憶処理と、を有することを特徴とする。
【0014】
また、本発明の異物除去プログラムは、被写体光を光電変換する撮像素子と、前記撮像素子の前方に配置される光学部材と、前記光学部材を振動させる加振手段と、を備えた撮像装置を制御するための異物除去プログラムにおいて、前記光学部材が共振するときの第1の共振周波数を用いて、前記光学部材が共振すると推測される推定周波数を前記第1の共振周波数以外で求める推定処理と、前記推定周波数を含む周波数帯域の範囲内で周波数を複数回変化させて前記光学部材を振動させるように前記加振手段を制御する制御処理と、前記推定周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させて前記光学部材を振動させたときの前記光学部材の振動状態に基づいて、前記光学部材が共振する第2の共振周波数を特定する特定処理と、前記第2の共振周波数を記憶する記憶処理と、をコンピュータに実行させることが可能なものである。
【発明の効果】
【0015】
本発明によれば、充分な異物除去性能を得ることができる。
【図面の簡単な説明】
【0016】
【図1】デジタルカメラの構成を示す図である。
【図2】撮像ユニットの構成を分解して示す斜視図である。
【図3】防塵ガラスに加振される周波数と振幅との関係を示す図である。
【図4】第1の振動動作の流れを示すフローチャートである。
【図5】第2の振動動作の流れを示すフローチャートである。
【図6】係数kの経年変化の一例を示すグラフである。
【発明を実施するための形態】
【0017】
図1は、撮像装置の一例としてのデジタルカメラ10の構成の概略を示す図である。
【0018】
図1に示すように、デジタルカメラ10は、撮像光学系15、撮像ユニット16、A/D変換器17、圧電素子駆動回路18、バッファメモリ20、画像処理回路21、接続用I/F22、表示制御回路23、表示装置24、レリーズボタン26、操作部27、CPU30及び内蔵メモリ31などを備えている。このうち、A/D変換器17、バッファメモリ20、画像処理回路21、接続用I/F22、表示制御回路23、CPU30及び内蔵メモリ31は、バス33を介して電気的に接続される。また、このデジタルカメラ10は、記憶媒体34が装着される。デジタルカメラ10に記憶媒体34が装着されると、記憶媒体34と、接続用I/F22とが電気的に接続される。
【0019】
撮像光学系15は、複数のレンズからなる。なお、図1においては、便宜上1枚のレンズとして記載している。撮像光学系15の各レンズは、ズーム倍率の変更時に光軸(L)方向に移動する。また、撮像光学系15にはフォーカス調整用のレンズが含まれ、フォーカス調整用のレンズは、フォーカス調整時に光軸(L)方向に微小移動する。
【0020】
撮像ユニット16は、撮像素子36、防塵ガラス37、及び圧電素子38を有している。撮像素子36は、例えばCCDイメージセンサや、CMOSイメージセンサが用いられる。撮像素子36は、複数の画素を備えている。この撮像素子36は、撮像光学系15により取り込まれた被写体光(入射光)をそれぞれの画素にて受光し、信号電荷に変換する。この信号電荷に基づいた電圧が、それぞれの画素の画素信号として出力される。なお、複数の画素の画素信号を1つにまとめた信号が画像信号となる。この画像信号は、クランプ処理、相関二重サンプリング(CDS)処理などの処理が施された後、A/D変換器17に入力される。
【0021】
防塵ガラス37は、撮像光学系15と撮像素子36との間で、撮像素子36の近傍に配置される。この防塵ガラス37により、撮像素子36が保護される。
【0022】
圧電素子38は、防塵ガラス37の周縁部に設けられる(図2参照)。この圧電素子38は、その駆動時に、予め設定された周波数にて防塵ガラス37を加振する。また、圧電素子38は、その駆動時に防塵ガラス37の振動状態を検出する。この検出信号はCPU30に出力される。CPU30は、圧電素子38から出力される検出信号から、圧電素子38により振動する防塵ガラス37の振幅量を算出する。
【0023】
A/D変換器17は、撮像素子36から出力された画像信号をアナログ信号からデジタル信号に変換する。このデジタル化された画像信号はバッファメモリ20に書き込まれる。
【0024】
圧電素子駆動回路18は、圧電素子38の駆動を制御する。この圧電素子駆動回路18は、圧電素子38が防塵ガラス37を加振するときの周波数を任意に変更することが可能に構成されている。
【0025】
バッファメモリ20は、不揮発性のフラッシュメモリなどから構成され、A/D変換器17から出力される画像信号や、画像処理回路21により各種画像処理が施された画像データが一時記憶される。
【0026】
画像処理回路21は、バッファメモリ20に書き込まれた画像信号に対して、ホワイトバランス処理、色補間処理、輪郭補償処理、ガンマ処理などの画像処理を施す。これにより、静止画像データや動画像データが生成される。生成された静止画像データや動画像データは、バッファメモリ20に一時記憶される。
【0027】
接続用I/F22は、デジタルカメラに装着される記憶媒体と電気的に接続されることで、記憶媒体34へのデータの書き込みや、記憶媒体34に記憶されたデータの読み出しを行うことが可能となる。なお、記憶媒体34としては、例えばメモリカード、光学ディスクなどが挙げられる。
【0028】
表示装置24は、例えばLCDパネルやELディスプレイパネルなどから構成される。この表示装置24は、スルー画像や、撮影により得られた画像の他に、設定を行う際の設定用の画像を表示する。なお、この表示装置24における画像表示は、表示制御回路23により制御される。
【0029】
レリーズボタン26は、静止画撮影や動画撮影を行う際に操作される部材である。操作部27は、デジタルカメラ10における基本設定、撮影時の設定(撮影モード、撮影条件の設定)及び画像表示の設定を行う際に操作される。
【0030】
CPU30は、内蔵メモリ31に格納される制御プログラムを読み出し実行することで、デジタルカメラ10の各部を制御する。CPU30は、上述したレリーズボタン26の操作に基づいた撮像処理や、操作部27の操作に基づいた処理を実行する。なお、操作部27の操作に基づいた処理としては、例えばデジタルカメラ10の日時設定や、撮影時の撮影条件の設定に代表される処理が挙げられる。
【0031】
図2は、撮像ユニット16の構成を分解して示す。撮像ユニット16は、撮像素子36、防塵ガラス37、圧電素子38、カバー40、マスク部材41及び回路基板42を備えている。この撮像ユニット16は、撮像素子36が取り付けられた回路基板42に、マスク部材41、防塵ガラス37、カバー40の順で積層した状態で、カバー40を回路基板42にビス等により係止することで形成される。なお、カバー40に設けられた開口部40aにより、開口部40a以外の箇所から入射される光束を遮光し、開口部40aを介して入射される光束を撮像素子36に向けて投光することができる。この構成により、撮像ユニット16の外周部から撮影光束が撮像素子36へと入射することが防止され、反射光によるゴーストの発生が防止される。
【0032】
次に、異物除去処理について説明する。図3(a)に示すように、本発明の異物除去処理においては、第1の周波数帯域の範囲内で変化量Δfずつ変化させる第1の振動動作と、第1の振動動作とは異なる第2の周波数帯域の範囲内で変化量Δfずつ変化させる第2の振動動作が実行される。
【0033】
まず、異物除去処理における第1の振動動作について図4に示すフローチャートに基づいて説明する。以下、第1の振動動作にて用いられる第1の周波数帯域の下限値を周波数fs1、上限値を周波数fe1とする。なお、この第1の周波数帯域は、防塵ガラス37が共振する共振周波数(第1の共振周波数F1)を含む周波数帯域である。ここで、第1の周波数帯域の下限値fs1及び上限値fe2は、実験、検査などにより求められる値であり、第1の共振周波数F1のばらつきを考慮した値からなり、これら値は第1の共振周波数F1の±5〜±10%の範囲の値に設定される。
【0034】
図4は、異物除去処理における第1の振動動作を行う際の処理の流れを示すフローチャートである。
【0035】
ステップS101は、第1の周波数帯域の下限値fs1及び上限値fe1を読み出す処理である。CPU30は、内蔵メモリ31に記憶された第1の周波数帯域の下限値fs1及び上限値fe1を読み出す。
【0036】
ステップS102は、防塵ガラス37を振動させる周波数fを下限値fs1(f=fs1)に設定する処理である。このステップS102の処理はCPU30にて実行される。
【0037】
ステップS103は、設定された周波数fにて防塵ガラスを加振する処理である。CPU30は、設定された周波数fの情報を圧電素子駆動回路18に出力する。これを受けて、圧電素子駆動回路18は、入力された周波数fにて防塵ガラス37を加振するように、圧電素子38を駆動する。これにより、圧電素子38により防塵ガラス37が加振され、防塵ガラス37が振動する。
【0038】
ステップS104は、振幅を測定する処理である。ステップS103の処理により、防塵ガラス37が振動する。防塵ガラス37が振動したときに、圧電素子38により防塵ガラス37の振動状態(振幅)が検出される。この検出信号はCPU30に出力される。CPU30は、検出信号から防塵ガラス37の振幅量を算出し、内蔵メモリ31に書き込む。
【0039】
ステップS105は、周波数fに変化量Δfを加算する処理である。CPU30は、ステップS102により設定された周波数fに変化量Δfを加算する。これにより、次に防塵ガラス37を振動させる周波数が設定される。ここで、変化量Δfの値としては、例えば20Hzが挙げられる。
【0040】
ステップS106は、周波数fが上限値fe1を超過するか否かを判定する処理である。ステップS105にて設定された周波数fが上限値fe1を超過する場合には、CPU30は、ステップS105の判定処理をYesとする。この場合、ステップS107に進む。一方、設定された周波数fが上限値fe1以下である場合には、CPU30は、ステップS105の判定処理をNoとし、ステップS103に戻る。つまり、このステップS106の判定処理でNoとなる場合には、ステップS103〜ステップS105の処理が繰り返し実行される。これにより、周波数fs1から周波数fe1の間で変化量Δf変化させたときの防塵ガラス37の振幅量が測定される。
【0041】
ステップS107は、ピーク判定を行う処理である。ステップS103からステップS105の処理を繰り返し実行することで、周波数fs1から周波数fe1の間の各周波数における防塵ガラス37の振幅量が測定されている。CPU30は、各周波数に対する防塵ガラス37の振幅量を読み出し、読み出した防塵ガラス37の振幅量を用いたピーク判定を行う。つまり、CPU30は、防塵ガラス37の振幅量が最大となるときの周波数を、第1の共振周波数F1として特定する。
【0042】
ステップS108は、特定された第1の共振周波数F1を記憶する処理である。CPU30は、ステップS107の処理により特定された第1の共振周波数F1を内蔵メモリ31に記憶する。このステップS108の処理を行うことで、第1の振動処理が終了する。
【0043】
図3(a)に示すように、防塵ガラス57を振動させる周波数fを周波数fs1から周波数fe1の範囲内でΔfずつ変化させていく。この周波数fs1から周波数fe1の範囲内で振幅値の頂点(最大点)があれば、その頂点となるときの周波数が共振周波数となる。この場合、振幅値A1が頂点となるときの周波数F1が第1の共振周波数となる。
【0044】
次に、異物除去動作における第2の振動動作について、図5のフローチャートを用いて説明する。この第2の振動動作にて用いられる第2の周波数帯域の下限値を周波数fs2、上限値を周波数fe2とする。なお、第2の周波数帯域の下限値fs2及び上限値fe2は、第1の振動動作により求めた第1の共振周波数F1から推定される推定周波数を用いることで設定される。
【0045】
例えば図3(b)に示すように、防振ガラスを振動させたときには、防塵ガラスの個体差などにより、共振周波数がばらつくのが一般的である。ここで、図3(b)中実線で示される振幅の変化となる防塵ガラスを防塵ガラス37Aとする。また、図3(b)中点線で示される振幅の変化となる防塵ガラスを防塵ガラス37Bとし、二点鎖線で示される振幅の辺顔なる防塵ガラスを防塵ガラス37Cとする。例えば、防塵ガラス37Aと防塵ガラス37Bとを比較すると、防塵ガラス37Aにおける共振周波数がF1A及びF2Aとなる場合、防塵ガラス37Bにおける共振周波数F1B及びF2Bは、防振ガラス37Aの共振周波数F1A及びF2Aよりも小さくなる。また、防塵ガラス37Aと防塵ガラス37Cとを比較すると、防塵ガラス37Cにおける共振周波数F1C及びF2Cは、防振ガラス37Aの共振周波数F1A及びF2Aよりも大きくなる。つまり、防塵ガラスにおける共振周波数は、他の共振周波数に対して一定の関係が成立すると仮定することができる。つまり、第2の振動動作は、ある共振周波数と、他の共振周波数に対して一定の関係が成立することを利用することで実行される。
【0046】
ステップS201は、第1の共振周波数F1、係数k及び係数f2を読み出す処理である。上述した第1の振動動作により、第1の共振周波数F1が特定される。係数kは、第1の共振周波数F1から第2の共振周波数F2を推定する際に用いられる係数である。例えば同一の部材を振動させたときの共振周波数は複数存在し、それぞれの共振周波数の関係は一定となる。つまり、第1の共振周波数F1と第2の共振周波数F2とは、第2の共振周波数F2=第1の共振周波数F1×係数kの関係が成立する。このため、実験や検査等により、防塵ガラス37が共振するときの共振周波数や各共振周波数の平均値を求め、これら値から、係数kを求めることができる。
【0047】
また、係数f2は、防塵ガラス37を振動させる周波数帯域を求める際に使用する値である。この係数f2は、防塵ガラス37が共振するときの共振周波数のばらつきを考慮した値である。この値f2もまた、実験や検査等から求められる。
【0048】
ステップS202は、推定周波数F2’と、防塵ガラス37を振動させる周波数帯域を求める処理である。CPU30は、ステップS201にて読み出した第1の共振周波数F1と係数kとを乗算することで他の共振周波数を推定するための推定周波数を求める。本実施形態では、第2の共振周波数F2を求める場合について説明しているので、推定周波数F2’と称して説明する。
【0049】
また、CPU30は、求めた推定周波数F2’と係数f2とを用いて、防塵ガラス37を振動させる周波数帯域の下限値fs2(=F2’−f2)と、上限値fe2(=F2’+f2)とを求める。
【0050】
ステップS203は、求めた推定周波数F2’、周波数の下限値fs2及び上限値fe2を記憶する処理である。CPU30は、ステップS202にて求めた値を、内蔵メモリ31に記憶する。
【0051】
ステップS204は、防塵ガラス37を振動させる周波数fを下限値fs2(f=fs2)に設定する処理である。
【0052】
ステップS205は、設定された周波数fにて防塵ガラスを加振する処理である。CPU30は、設定された周波数fの情報を圧電素子駆動回路18に出力する。これを受けて、圧電素子駆動回路18は、入力された周波数fにて防塵ガラス37を加振するように、圧電素子38を駆動する。
【0053】
ステップS206は、振幅を測定する処理である。ステップS205の処理により、防塵ガラス37が振動する。この防塵ガラス37が振動したときに、圧電素子38により、振動する防塵ガラス37の振幅が検出される。この検出信号はCPU30に出力される。CPU30は、検出信号から、防塵ガラス37の振幅量を算出し、内蔵メモリ31に書き込む。
【0054】
ステップS207は、周波数fに変化量Δfを加算する処理である。CPU30は、ステップS204により設定された周波数fに変化量Δfを加算する。これにより、次に防塵ガラス37を振動させる周波数が設定される。ここで、変化量Δfの値としては、例えば20Hzが挙げられる。
【0055】
ステップS208は、周波数fが上限値fe2を超過するか否かを判定する処理である。CPU30は、ステップS207にて設定された周波数fが上限値fe2を超過する場合には、CPU30は、ステップS208の判定処理をYesとする。この場合、ステップS209に進む。一方、設定された周波数fが上限値fe2以下である場合には、CPU30は、ステップS208の判定処理をNoとし、ステップS205に戻る。つまり、このステップS208の判定処理でNoとなる場合には、ステップS205〜ステップS207の処理が繰り返し実行される。これにより、防塵ガラス37を加振するときの周波数を、周波数fs2から周波数fe2の間で変化量Δf変化させながら、防塵ガラス37の振幅量を測定する。
【0056】
ステップS209は、ピーク判定を行う処理である。ステップS205からステップS207の処理を繰り返し実行することで、周波数fs2から周波数fe2の間の各周波数における防塵ガラス37の振幅量が測定されている。CPU30は、各周波数に対する防塵ガラス37の振幅量を読み出し、読み出した防塵ガラス37の振幅量を用いたピーク判定を行う。つまり、CPU30は、防塵ガラス37の振幅量が最大となるときの周波数を、第2の共振周波数F2として特定する。
【0057】
ステップS210は、特定された第2の共振周波数F2を記憶する処理である。CPU30は、ステップS209の処理により特定された第2の共振周波数F2を内蔵メモリ31に記憶する。
【0058】
ステップS211は、推定周波数F2’と特定された第2の共振周波数F2とが異なる値であるか否かを判定する処理である。CPU30は、内蔵メモリ31に記憶された推定周波数F2’と特定された第2の共振周波数F2とを読み出す。例えば、推定周波数F2’と第2の共振周波数F2とが異なる値であれば、CPU30は、ステップS211の判定処理をYesとし、ステップS212に進む。一方、推定周波数F2’と第2の共振周波数F2とが同一の値であれば、CPU30は、ステップS211の判定処理をNoとし、第2の振動動作が終了する。つまり、推定周波数F2’と第2の共振周波数F2とが同一の値であれば、係数kの値がそのまま保持される。
【0059】
ステップS212は、係数kを算出する処理である。CPU30は、内蔵メモリ31に記憶される第1の共振周波数F1と第2の共振周波数F2とを読み出す。そして、第2の共振周波数F2を第1の共振周波数F1にて除算することで、係数kを算出する。
【0060】
ステップS213は、係数kを記憶する処理である。CPU30は、算出した係数kを内蔵メモリ31に記憶する。これにより、係数kが更新される。このステップS213の処理が終了することで、第2の振動動作が終了する。
【0061】
第2の振動動作においては、第1共振周波数と第2共振周波数との関係を利用することで、推定周波数F2’を求めることできる。この推定周波数F2’を求めることで、第2の振動動作によって防塵ガラス37を振動させる周波数帯域の幅を狭く設定することができる。これにより、第2の振動動作における動作時間を短縮することができ、また、異物除去処理に係る時間を短縮することができる。
【0062】
ここで、上述した第1の振動動作及び第2の振動動作の各処理にて防塵ガラス37を振動させている。つまりこれら振動動作を行うことで、防塵ガラス37の表面に付着する塵埃を除去することができる。なお、第1の振動動作によって防塵ガラス37の表面に付着する塵埃が除去できなくとも、異なる周波数帯域を用いて第2の振動動作を行うので、防塵ガラス37の表面から除去しきれなかった塵埃を確実に除去することができる。このように、本発明の異物除去処理を行うことで、充分な異物除去性能を得ることが可能となる。
【0063】
また、図3(c)に示すように、防塵ガラスのばらつき、経年変化、周辺温度により共振周波数がそれぞれ変化する場合もある。このような場合であっても、上述した第1の共振周波数F1と共振周波数F2との間において一定の関係が成立することを考慮することができるので、推定された共振周波数に対して防塵ガラス37を振動させる周波数帯域が設定される。このような場合であっても、第2の振動動作を適切に実行でき、異物除去性能を低下させることはない。
【0064】
本実施形態では、第1の振動動作時のピーク判定時に第1の共振周波数を、第2の振動動作時のピーク判定時に第2の共振周波数をそれぞれ特定しているが、これら共振周波数は、必ずしも異物除去処理を行う際に求める必要はない。
【0065】
例えば第1の共振周波数F1を特定する処理として図4のフローチャートに示す処理を、係数kや第2の共振周波数F2を同定する処理として図5のフローチャートに示す処理を、それぞれ異物除去動作とは異なる処理として実行してもよい。つまり、第1の共振周波数F1を特定する処理や第2の共振周波数F2や計数kを同定する処理を予め実行する。そして、異物除去動作において、特定される第1の共振周波数や第2の共振周波数に対して、第1の振動動作や第2の振動動作にて防塵ガラスを加振する周波数帯域を設定し、それぞれの振動動作を実行する。この場合、予め第1の共振周波数や第2の共振周波数を求めることで、各振動動作時に設定される周波数帯域を狭く設定することができるので、異物除去処理にかかる時間を短縮でき、また、充分な異物除去性能を得ることが可能となる。
【0066】
本実施形態では、第1の共振周波数F1と第2の共振周波数F2との関係をF1<F2としているが、これに限定する必要はなく、F1>F2であってもよい。
【0067】
本実施形態では、第2の共振周波数F2を第1の共振周波数F1にて除算した値を係数kとしているが、これに限定されるものではない。例えば、防塵ガラス37の経年変化やばらつきにより、第1の共振周波数F1と第2の共振周波数F2との関係が比例関係ではなく、二次曲線、或いは対数曲線や指数曲線で表される関係となる場合もあるので、係数kをこれら関係に基づいて変更されるように設定することも可能である。
【0068】
図6は、係数kの経年変化の一例を示すグラフである。図6に示すように、この係数kの値は、5年経過すると半減する。つまり、係数kの初期値をkとすると、5年経過後の係数kはk=k/2となり、さらに5年経過すると、係数kはk=k/4となる。なお、さらに5年経過したときには、係数kの値は半減することはなく、10年経過した後は係数kの値は緩やかに減少し、所定値に収束する。なお、収束する値は、10年経過したときの係数kの値の半分を超える値(言い換えれば、k/8を超過する値)である。
この図6に示すグラフに基づく係数kの経年変化のデータをデジタルカメラの内蔵メモリに予め記憶させておく。そして、デジタルカメラが製造されてからの年数と、係数kの経年変化のデータとから係数kを求め、上述した異物除去動作の際の推定周波数の算出時に用いることができる。
【0069】
本実施形態では、異物除去処理にて用いる第1の共振周波数F1を含む周波数帯域から、第1の共振周波数F1に最も近い共振周波数を第2の共振周波数として特定しているが、これに限定される必要はなく、実際に異物除去処理を実行する際に用いない共振周波数を基準にして、実際に異物除去処理を実行する際に用いる共振周波数を求めることも可能である。
【0070】
本実施形態では、異物除去処理を実行することが可能なデジタルカメラ10について説明しているが、デジタルカメラ10を製造する過程で、図4及び図5に示すフローチャートに示す異物除去処理を行うことも可能である。この場合、でデジタルカメラ10を製造する過程で、図4及び図5に示すフローチャートに示す処理を行って、予め第1の共振周波数F1、第2の共振周波数F2を特定する。これら特定された第1の共振周波数F1、第2の共振周波数F2をデジタルカメラ10の内蔵メモリ31に記憶させておく。そして、デジタルカメラ10における異物除去処理の際に、記憶された第1の共振周波数F1を用いた第1の振動動作及び第2の共振周波数F2を用いた第2の振動動作を行う。
【0071】
また、この他に、図1に示す構成のデジタルカメラ10において、図4及び図5に示すフローチャートの処理をCPU30が実行することができる異物除去プログラムであってもよい。この場合、記憶媒体34に記憶される異物除去プログラムを記憶しておき、記憶媒体をデジタルカメラに装着したときに、CPUが読み出し実行する。なお、記憶媒体としては、例えば、メモリカード、光ディスク、磁気ディスクなどが挙げられる。
【符号の説明】
【0072】
10…デジタルカメラ、16…撮像ユニット、18…圧電素子駆動回路、30…CPU、36…撮像素子、37…防塵ガラス、38…圧電素子

【特許請求の範囲】
【請求項1】
被写体光を光電変換する撮像素子と、
前記撮像素子の前方に配置される光学部材と、
前記光学部材を振動させる加振手段と、
前記光学部材が共振する第1の共振周波数を用いて、前記光学部材が共振すると推定される推定周波数を前記第1の共振周波数以外で求める推定手段と、
前記推定周波数を含む周波数帯域の範囲内で周波数を複数回変化させて前記光学部材を振動させるように前記加振手段を制御する制御手段と、
前記推定周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させて前記光学部材を振動させたときの前記光学部材の振動状態に基づいて、前記光学部材が共振する第2の共振周波数を特定する特定手段と、
前記第2の共振周波数を記憶する記憶手段と、
を備えたことを特徴とする撮像装置。
【請求項2】
請求項1に記載の撮像装置において、
前記特定手段は、前記推定周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させながら前記光学部材を振動させたときに得られる振幅量のうち、最も振幅量が大きくなるときの周波数を前記第2の共振周波数として特定することを特徴とする撮像装置。
【請求項3】
請求項1又は請求項2に記載の撮像装置において、
前記推定手段は、前記第1の共振周波数に係数を乗算することで、前記推定周波数を求めることを特徴とする撮像装置。
【請求項4】
請求項3に記載の撮像装置において、
前記推定手段は、特定された前記第2の共振周波数が前記推定周波数と一致した場合に、前記係数を保持することを特徴とすることを特徴とする撮像装置。
【請求項5】
請求項3に記載の撮像装置において、
前記推定手段は、特定された前記第2の共振周波数と前記推定周波数とが一致しない場合に、前記係数を前記第1の共振周波数及び前記第2の共振周波数から求めた値に置き換えることを特徴とする撮像装置。
【請求項6】
請求項1から請求項5のいずれか1項に記載の撮像装置において、
前記制御手段は、予め設定された周波数帯域の範囲内で周波数を複数回変化させて、前記光学部材を振動させるように前記加振手段を制御し、
前記特定手段は、予め設定された周波数帯域の範囲内で周波数を複数回変化させたときの前記光学部材の振動状態に基づいて、前記第1の共振周波数を特定することを特徴とする撮像装置。
【請求項7】
請求項1から請求項6のいずれか1項に記載の撮像装置において、
前記制御手段は、前記第1の共振周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させながら前記光学部材を振動させる第1の振動動作と、前記第2の共振周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させながら前記光学部材を振動させる第2の振動動作とを実行するように前記加振手段を制御することを特徴とする撮像装置。
【請求項8】
被写体光を光電変換する撮像素子と、
前記撮像素子の前方に配置される光学部材と、
前記光学部材を振動させる加振手段と、
を備えた撮像装置における異物除去方法において、
前記光学部材が共振するときの第1の共振周波数を用いて、前記光学部材が共振すると推定される推定周波数を前記第1の共振周波数以外で求める推定処理と、
前記推定周波数を含む周波数帯域の範囲内で周波数を複数回変化させて前記光学部材を振動させるように前記加振手段を制御する制御処理と、
前記推定周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させて前記光学部材を振動させたときの前記光学部材の振動状態に基づいて、前記光学部材が共振する第2の共振周波数を特定する特定処理と、
前記第2の共振周波数を記憶する記憶処理と、
を有することを特徴とする異物除去方法。
【請求項9】
被写体光を光電変換する撮像素子と、
前記撮像素子の前方に配置される光学部材と、
前記光学部材を振動させる加振手段と、
を備えた撮像装置を制御するための異物除去プログラムにおいて、
前記光学部材が共振するときの第1の共振周波数を用いて、前記光学部材が共振すると推定される推定周波数を前記第1の共振周波数以外で求める推定処理と、
前記推定周波数を含む周波数帯域の範囲内で周波数を複数回変化させて前記光学部材を振動させるように前記加振手段を制御する制御処理と、
前記推定周波数を含む周波数帯域の範囲内で前記周波数を複数回変化させて前記光学部材を振動させたときの前記光学部材の振動状態に基づいて、前記光学部材が共振する第2の共振周波数を特定する特定処理と、
前記第2の共振周波数を記憶する記憶処理と、
をコンピュータに実行させることが可能な異物除去プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−25150(P2013−25150A)
【公開日】平成25年2月4日(2013.2.4)
【国際特許分類】
【出願番号】特願2011−160799(P2011−160799)
【出願日】平成23年7月22日(2011.7.22)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】