説明

撮像装置及び撮像システム

【課題】合成後の画像に合成前の画像を復元するための情報を付与することが可能な撮像装置、撮像方法、撮像システム、画像処理装置、画像処理プログラム及び画像処理方法を提供する。
【解決手段】撮像システム100を、露光時間T1〜T3(T1<T2<T3)で被写体を撮像する撮像部10と、画素信号の出力先を露光時間の種類毎に切り替えるスイッチ(SW)11と、露光時間T1〜T3に対応する画素データを記憶する第1〜第3メモリ12〜14と、露光時間T1〜T3に対応する画素データを合成する画素データ合成部15と、復元対象の画像の画素データを選択する復元対象画像選択部16と、合成後の画素データに復元対象の画素データの復元情報を付与する復元情報付与部17とを含んだ構成とした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮像装置に係り、特に、複数種類の露光時間で被写体を撮像して得られる画素信号を合成して、撮像画像のダイナミックレンジを拡大することができる撮像装置に関する。
【背景技術】
【0002】
従来、監視や防犯を目的としたカメラが様々な場所に設置されている。一般的にカメラのダイナミックレンジは人間のダイナミックレンジよりも狭いため、人間の目であれば確認できるはずの対象物が、カメラ映像では黒つぶれ或いは白とびにより映らない問題があった。そこで広ダイナミックレンジ(HDR(High Dynamic Range))映像を得る手段として、多段階露光による画像合成方法が存在する。多段階露光による画像合成方法を用いた撮像装置としては、例えば、特許文献1に記載された撮像装置及び撮像方法がある。
【0003】
特許文献1に記載の撮像装置及び撮像方法は、多段露光画像を合成してHDR画像を生成する際に、移動物の有無を画素毎に判定して画像の合成比率を変化させる。例えば移動物がある領域では露光時間の小さい(短い)画像を使用し、移動物がなく飽和していない領域では露光時間の大きい(長い)画像を使用する。
【特許文献1】特開2004−254151号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1の従来技術においては、合成後の画像において、重要な画像部分がボケて識別できないようなときに、合成に使用しなかった画素の情報は捨ててしまうので、例えば、合成前の画像を参照したり、合成前の画像を手がかりにして重要な画像部分の識別処理を行うなどすることはできなかった。
そこで、本発明は、このような従来の技術の有する未解決の課題に着目してなされたものであって、合成後の画像に合成前の画像を復元するための情報を付与することが可能な撮像装置及び撮像システムを提供することを目的としている。
【課題を解決するための手段】
【0005】
〔形態1〕 上記目的を達成するために、形態1の撮像装置は、
受光した光を電荷に変換して蓄積する複数の光電変換素子をマトリックス状に配列した構成の光電変換部と、前記光電変換素子の露光時間を制御する機能とを備えた撮像装置であって、
前記光電変換素子の構成する各画素から、複数種類の露光時間で露光された時の前記複数種類の露光時間に対応する画素信号を読み出す画素信号読出手段と、
前記画素信号読出手段で読み出した、前記複数種類の露光時間に対応する画素信号のデータである画素データを前記画素毎に合成する画素データ合成手段と、
前記画素データ合成手段で合成後の画素データに、前記複数種類の露光時間における所定の露光時間に対応する前記合成前の画素データを復元する際に用いる復元情報を付与する復元情報付与手段と、を備えることを特徴とする。
【0006】
このような構成であれば、被写体の撮像において、例えば、光電変換素子が露光時間T1〜TN(T1<T2<・・・<T(N−1)、TN)の順にそれぞれ露光されると、各露光時間で光電変換素子に蓄積された電荷量に応じた画素信号がそれぞれ読み出される。この読出処理においては、例えば、T1〜TNの各露光時間で光電変換素子を露光し、各露光時間で露光された光電変換素子から破壊読み出しによって画素信号を読み出すことが可能である。また、例えば、露光時間TNまでの露光を行い、各露光時間T1〜TNの時点において、光電変換素子から非破壊読み出しで画素信号を読み出すことも可能である。以下、形態19に記載の撮像方法において同じである。
【0007】
複数種類の露光時間(T1〜TN)にそれぞれ対応する画素信号が読み出されると、画素毎に、該読み出された複数種類の露光時間にそれぞれ対応する画素信号のデータである画素データが画素毎に合成される。例えば、露光時間T1〜T3で露光された場合は、対象画素に対する、この3種類の露光時間に対応した画素データが合成され、対象画素の合成画素データが生成される。また、この合成画素データによって、広ダイナミックレンジ(HDR)の撮像画像データが構成されることになる。
【0008】
そして、合成後の画素データには、複数種類の露光時間のうち所定露光時間に対応する合成前の画素データを復元する際に用いる復元情報が付与される。この復元情報は、この情報だけで合成前の画素データを復元できるもの、復元情報に加え合成後の画素データの情報も用いて合成前の画素データを復元できるもの、復元情報に対応するデータが記憶されたデータテーブルを参照して合成前の画素データを復元できるものなどが該当する。以下、形態19の撮像方法、形態20の画像処理装置、形態21の画像処理プログラム、形態22の画像処理方法などにおいて同じである。
【0009】
以上より、合成後の画素データに、所定露光時間の合成前の画素データを復元する際に用いる復元情報を付与することができるので、合成後の画素データに付与された復元情報を用いて合成前の画素データを復元することができる。
これにより、例えば、合成後の画像において、重要な被写体が識別できない状態であるときに、合成前の画像を復元して、その復元された画像から識別したり、復元した合成前の画像と合成後の画像とを用いて識別したりするなど、撮像後において、合成前の画像を利用した識別処理などを行うことができるという効果が得られる。
【0010】
ここで、上記「光電変換部」は、例えば、CCD(charge-coupled device)や、CMOS技術などを用いて構成された撮像素子である。例えば、CMOS技術を利用した非破壊読み出し可能な撮像素子としては、閾値変調型撮像素子(例えば、VMIS(Threshold Voltage Modulation Image Sensor))などがある。以下、形態19の撮像方法において同じである。
【0011】
また、上記露光時間を制御する機能とは、例えば、グローバルシャッタ、フォーカルプレーンシャッタ(ローリングシャッタ)等の方式を含む公知の電子シャッタ機能や、撮像装置の有する絞り機構を制御して露光量を変更する機能などが該当する。電子シャッタ機能は、CCDやCMOSなどから構成される撮像素子に電圧をかけて、撮像素子に光を電荷として蓄積させる機能を有している。絞り機構は、絞り羽と呼ばれる光を遮る羽根がレンズの中に入っており、この羽を開閉させてレンズに入る光の量を調節する機構である。以下、形態19の撮像方法において同じである。
【0012】
また、上記破壊読み出しは、光電変換素子から電荷(画素信号)を読み出すときに、当該光電変換素子に蓄積された電荷を空にするリセット処理を伴うものである。
また、上記非破壊読み出しは、光電変換素子から電荷(画素信号)を読み出すときに、当該光電変換素子に蓄積された電荷を空にせず蓄積状態を維持したままで読み出すものである。つまり、電荷読み出し時にリセット処理を行わないため、設定された露光時間に至るまで、電荷の蓄積途中において、異なる露光時間に対して何度でも電荷の読み出しを行うことができる。従って、非破壊読み出しは、多段階露光を容易に実現することができるという利点がある。以下、形態19に記載の撮像方法において同じである。
【0013】
〔形態2〕 更に、形態2の撮像装置は、形態1に記載の撮像装置において、
前記復元情報は、前記合成前の画素データが有する、単色の輝度情報と色差情報と色信号情報とのうち少なくともいずれか1つを含むことを特徴とする。
このような構成であれば、例えば、画素データがモノクロの画素データであれば、その輝度情報を復元情報として、合成後の画素データに付与することができる。
【0014】
また、例えば、画素データが複数色の色信号情報からなるカラー画素データであれば、いずれか一色の輝度情報もしくはいずれか一色の輝度情報及び色差情報、または各色の色信号情報を復元情報として、合成後の画素データに付与することができる。
ここで、上記色信号情報は、色情報及びその輝度情報を含む信号の情報である。
【0015】
〔形態3〕 更に、形態3の撮像装置は、形態2に記載の撮像装置において、
前記復元情報は、前記合成前の画素データが有する輝度情報と前記合成後の画素データが有する輝度情報との差分値の情報、前記合成前の画素データが有する色差情報と前記合成後の画素データが有する色差情報との差分値の情報、及び前記合成前の画素データが有する色信号情報と前記合成後の画素データが有する色信号情報との差分値の情報のうち少なくともいずれか1つを含むことを特徴とする。
【0016】
このような構成であれば、合成前の画素データが有する輝度情報と合成後の画素データが有する輝度情報との差分値の情報、合成前の画素データが有する色差情報と合成後の画素データが有する色差情報との差分値の情報、及び合成前の画素データが有する色信号情報と合成後の画素データが有する色信号情報との差分値の情報のうちいずれか1つを復元情報として、合成後の画素データに付与することができる。
これにより、復元情報として、付与するデータ量を低減することができるという効果が得られる。
【0017】
〔形態4〕 更に、形態4の撮像装置は、形態1乃至3のいずれか1に記載の撮像装置において、
前記復元情報付与手段は、前記合成後の画素データにおける下位のNCビットのビット列を、前記復元情報のNビットのビット列を圧縮したNCビットのビット列(NC<N)に入れ替えることを特徴とする。
【0018】
このような構成であれば、復元情報として付与する情報のデータ量を低減することができると共に、合成後の画像データの形式を変更することなく復元情報を付与することができるという効果が得られる。例えば、8ビットの輝度情報を復元情報として付与するときに、上位3ビットの情報に圧縮して、この3ビットの復元情報を、合成後の画素データの下位3ビットに代えて埋め込むことで、合成後の画像及び合成前の画像の双方が、オリジナルと殆ど遜色のない画質で得られると共に、画素データの形式を変更することなく復元情報を付与することができるので、特別な処理を施すことなく汎用のアプリケーションソフトなどにおいて復元情報の付与された合成後の画像データを取り扱うことができる。
【0019】
〔形態5〕 更に、形態5の撮像装置は、形態1乃至4のいずれか1に記載の撮像装置において、
前記復元情報付与手段は、前記画素データが複数色の色信号情報を有するときに、前記合成前の画素データが有する前記複数色の色信号情報を復元する際に用いる前記複数色の各色に対応する復元情報を、前記合成後の画素データが有する各色の色信号情報にそれぞれ付与することを特徴とする。
【0020】
このような構成であれば、各画素の画素データを構成する、例えばR、G、Bの三原色にそれぞれ対応する輝度情報を復元するための情報を復元情報として付与することができるので、合成後の各色の色信号情報(各色の画素データ)に付与された復元情報から各色の合成前の画素データを復元することができる。
【0021】
〔形態6〕 更に、形態6の撮像装置は、形態1乃至3のいずれか1に記載の撮像装置において、
前記復元情報付与手段は、前記画素データが複数色の色信号情報を含むときに、前記合成前の画素データの前記複数色のうちのいずれか一色の色信号情報のビット列を前記複数色の色数分に分割し、前記合成後の各色の画素データの下位側のビット列を、前記分割した各ビット列に入れ替えることで、前記合成後の画素データに前記復元情報を付与することを特徴とする。
【0022】
このような構成であれば、合成前の画素データが有する複数色の色信号情報のうち、いずれか一色の色信号情報を情報の損失なく復元情報として合成後の画素データに付与することができると共に、一色分の色信号情報を付与するだけで済むので付与するデータ量を低減することができるという効果が得られる。更に、合成後の画素データの形式を変更することなく復元情報を付与することができるという効果も得られる。
なお、この場合は、例えば、復元情報の色信号情報と、合成後の画素データが有する他の色の色信号情報とを用いることで合成前の画素データを復元することができる。
【0023】
〔形態7〕 更に、形態7の撮像装置は、形態1乃至3のいずれか1に記載の撮像装置において、
前記復元情報付与手段は、前記画素データがR(Red)、G(Green)、B(Blue)の色信号情報を有するときに、前記合成前の画素データが有する色信号情報を、輝度情報及び色差情報に分け、該輝度情報を3つに分割し、前記合成後の各色の画素データの下位側のビット列を、前記分割した各ビット列に入れ替えることで、前記合成後の画素データに前記復元情報を付与することを特徴とする。
【0024】
このような構成であれば、合成前の画素データが有する輝度情報を情報の損失なく復元情報として合成後の画素データに付与することができると共に、輝度情報のみを付与するだけで済むので付与するデータ量を低減することができるという効果が得られる。更に、合成後の画素データの形式を変更することなく復元情報を付与することができるという効果も得られる。
なお、この場合は、合成後の各色信号情報に分割して付与された復元情報(輝度情報)を結合することで、元データに対して輝度情報に損失のないモノクロデータを復元することができる。
【0025】
〔形態8〕 更に、形態8の撮像装置は、形態3に記載の撮像装置において、
前記画素データのビット数よりも少ないビット数Lで表現される各ビット列に対応付けて、それぞれ異なる数値の前記差分値の情報を記憶した差分情報テーブルを備え、
前記復元情報付与手段は、前記合成後の画素データの下位側のLビットを、前記差分情報テーブルにおける、前記合成前の画素データの前記復元情報に最も近い差分値の情報に対応付けられたビット列に入れ替えることを特徴とする。
【0026】
このような構成であれば、復元情報として付与されたビット列に対応した差分値の情報をテーブルから取得して、合成前の画素データを復元することができるので、付与する復元情報のデータ量を低減しつつ、より精度良く合成前の画素データを復元することができるという効果が得られる。更に、テーブルとして有する情報を差分値の情報としたので、差分情報テーブルのサイズを小さくすることができるという効果も得られる。
【0027】
ここで、上記差分値の情報は、合成前の画素データをS、合成後の画素データをPとすると、例えば、画素データS及びPの絶対的な差分量である絶対差分量α「α=S−P」、又は差分値の画素データPに対する相対量である相対差分量β「β=S/P」などが該当する。以下、形態9の撮像装置において同じである。
また、上記差分情報テーブルは、例えば、3ビットから構成される各ビット列に、差分値の情報を対応付けて記憶した差分情報テーブルを作成する場合を例に挙げると、「000」、「001」、・・・、「110」、「111」の8種類のビット列に対して差分値の情報を対応付けて記憶することになる。例えば、絶対差分量であれば、前記8種類のビット列に対して、+192、+128、+64・・・、−192、−255を対応付けて記憶し、一方、相対差分量であれば、175%、150%、・・・、25%、0%などを対応付けて記憶する。なお、ビット列のビット数を増やすことによって、より細かい差分値の情報を用意することができる。以下、形態9の撮像装置において同じである。
【0028】
〔形態9〕 更に、形態9の撮像装置は、形態3乃至8のいずれか1に記載の撮像装置において、
前記合成前の画素データから生成される画像の明るさの情報を、前記合成後の画素データから生成される画像の明るさの情報に近似する近似手段を備えることを特徴とする。
このような構成であれば、例えば、復元情報の付与に差分情報テーブルを用いる場合に、復元情報として付与するビット列に対して、より細かい差分値の情報を対応付けることができる。これによって、各ビット列間の差分値の差を小さくすることができるので、より精度良く合成前の画素データを復元することができるという効果が得られる。また、差分値を小さくできるので、差分値の情報を復元情報としてそのまま付与する場合に、そのデータ量(ビット数)を低減することができるという効果が得られる。また、差分値を圧縮して付与する場合においても、同じビット数でより高精度の情報を付与することができるという効果が得られる。
【0029】
〔形態10〕 更に、形態10の撮像装置は、形態9に記載の撮像装置において、
前記近似手段は、前記合成前の画素データから生成される画像のガンマ値を調整することで、該画像の明るさの情報を、前記合成後の画素データから生成される画像の明るさの情報に近似することを特徴とする。
このような構成であれば、合成前の画素データから生成される画像に対して、画像の明るさの変化と、出入力電圧の比であるガンマ値を調整することで、合成前の画素データから生成される画像の明るさの情報を、合成後の画素データから生成される画像の明るさの情報に適切に近似させることができる。
【0030】
これにより、例えば、復元情報の付与に差分情報テーブルを用いる場合に、復元情報として付与するビット列に対して、より細かい差分値の情報を対応付けることができる。これによって、各ビット列間の差分値の差を小さくすることができるので、より精度良く合成前の画素データを復元することができるという効果が得られる。また、差分値を小さくできるので、差分値の情報を復元情報としてそのまま付与する場合に、そのデータ量(ビット数)を低減することができるという効果が得られる。また、差分値を圧縮して付与する場合においても、同じビット数でより高精度の情報を付与することができるという効果が得られる。
【0031】
〔形態11〕 更に、形態11の撮像装置は、形態9に記載の撮像装置において、
前記近似手段は、前記合成前の画素データから生成される画像のゲインを調整することで、該画像の明るさの情報を、前記合成後の画素データから生成される画像の明るさの情報に近似することを特徴とする。
このような構成であれば、合成前の画素データから生成される画像に対して、その出力信号のゲインを調整することで、合成前の画素データから生成される画像の明るさの情報を、合成後の画素データから生成される画像の明るさの情報に適切に近似させることができる。
【0032】
これにより、差分情報テーブルにおいて、復元情報として付与するビット列に対して、より細かい差分値の情報を対応付けることができる。これによって、各ビット列間の差分値の差を小さくすることができるので、より精度良く合成前の画素データを復元することができるという効果が得られる。
【0033】
〔形態12〕 更に、形態12の撮像装置は、形態1乃至11のいずれか1に記載の撮像装置において、
前記複数種類の露光時間に対応する画素データに基づき、該複数種類の露光時間に対応する画素データの中から、復元対象とする露光時間の画素データを選択する復元画像選択手段を備え、
前記復元情報付与手段は、前記復元画像選択手段で決定された前記復元対象の画素データの復元情報を、前記合成後の画素データに付与することを特徴とする。
【0034】
このような構成であれば、複数種類の露光時間にそれぞれ対応する画像の画素データに基づき、これら各露光時間に対応する画素データのうち、比較的画質の良好となる(被写体が比較的はっきりと表示された)画像を形成する画素データを復元対象として選択することができる。
これにより、合成後の画像の画質が悪かったときなどに参照したり、被写体の識別処理に用いたりするのにより適切な画素データの復元情報を付与することができるという効果が得られる。
【0035】
〔形態13〕 更に、形態13の撮像装置は、形態12に記載の撮像装置において、
前記復元画像選択手段は、前記合成前の画素データから構成される露光時間毎の画像の輝度情報のヒストグラムに基づき、前記復元対象とする露光時間に対応する画素データを選択することを特徴とする。
このような構成であれば、例えば、理想的な輝度情報のヒストグラムの形状と、各露光時間に対応する合成前の画素データから構成される画像のヒストグラムとを比較し、これらのうち、理想的な輝度情報(シャープな画質となる輝度情報)のヒストグラムに最も近い形状のヒストグラムを有する画像を判別することができる。
【0036】
従って、複数種類の露光時間にそれぞれ対応する画素データのうち、理想的なヒストグラムに最も近いヒストグラムを有する画像を形成する画素データの復元情報を、合成後の各画素データに付与することができるので、合成後の画像の画質が悪かったときなどに参照したり、被写体の識別処理に用いたりするのにより適切な画素データの復元情報を付与することができるという効果が得られる。
【0037】
〔形態14〕 更に、形態14の撮像装置は、形態12に記載の撮像装置において、
前記復元画像選択手段は、前記合成前の画素データから構成される露光時間毎の画像の周波数情報に基づき、前記復元対象とする露光時間に対応する画素データを選択することを特徴とする。
このような構成であれば、例えば、合成前の画素データの高周波数成分などから、各露光時間に対応する画素データから構成される画像の画質を判断することができるので、これらを比較することで、画質の最も良い(例えば、ボケた画像とならない又は比較的ボケ具合が軽い)画像や最も情報(オブジェクト)を含む画像などを判別することができる。
【0038】
従って、複数種類の露光時間にそれぞれ対応する画像のうち、例えば、高周波成分をより多く含む画像(よりシャープで且つより多くのオブジェクトを含む画像)を形成する画素データの復元情報を、合成後の各画素データに付与することで、合成後の画像の画質が悪かったときなどに参照したり、被写体の識別処理に用いたりするのにより適切な画像の復元情報を付与することができるという効果が得られる。
ここで、周波数成分の抽出処理は、例えば、ラプラシアンフィルタなどの公知のエッジフィルタ(ハイパスフィルタ)を用いて画素データに含まれるエッジ成分(高周波数成分)を抽出するなどして行われる。
【0039】
〔形態15〕 一方、上記目的を達成するために、形態15の撮像システムは、
形態1乃至14のいずれか1に記載の撮像装置と、
前記合成後の画素データに付与された復元情報に基づき、前記合成前の画素データを復元する画素データ復元手段と、を備えることを特徴とする。
このような構成であれば、上記形態1乃至13に記載の撮像装置と同等の作用が得られると共に、合成後の画素データに含まれる復元情報を用いて所定露光時間に対応する合成前の画素データを復元することができる。
これにより、上記形態1乃至14のいずれか1に記載の撮像装置と同等の効果が得られる。
【0040】
ここで、本システムは、単一の装置、端末その他の機器として実現するようにしてもよいし、複数の装置、端末その他の機器を通信可能に接続したネットワークシステムとして実現するようにしてもよい。後者の場合、各構成要素は、それぞれ通信可能に接続されていれば、複数の機器等のうちいずれに属していてもよい。
【0041】
〔形態16〕 更に、形態16の撮像システムは、形態15に記載の撮像システムにおいて、
前記画素データ復元手段は、前記画素データが複数色の色信号情報を有し、且つ前記合成後の画素データの有する復元情報が前記複数色のうちのいずれか一色の輝度情報であるときに、該輝度情報と、前記合成後の画素データが有する色差情報とに基づき、前記合成前の画素データを復元することを特徴とする。
このような構成であれば、合成前後の画素データにおいて色差には殆ど差がないことから、合成後の画素データの色差情報を用いて合成前の画素データを復元することでオリジナルと殆ど遜色のない画像を復元することができるという効果が得られる。
【0042】
〔形態17〕 更に、形態17の撮像システムは、形態15又は16に記載の撮像システムにおいて、
前記画素データ復元手段は、前記画素データがR(Red)、G(Green)、B(Blue)の色信号情報を含み、且つ前記合成後の画素データに含まれる復元情報が前記R、G、Bの色信号情報を輝度情報と色差情報に分けたときの該輝度情報を色数分に分割した情報であるときに、前記合成後の各色に対応する画素データに付与された前記分割された各輝度情報を結合して、前記合成前の画素データの単色の輝度情報を復元することを特徴とする。
【0043】
このような構成であれば、合成後の各色信号情報に分割して付与された復元情報(輝度情報)を結合することで、元データに対して輝度情報に損失のないモノクロデータを復元することができる。
従って、元データを復元するための情報として、輝度データのみを付与すれば良いので、復元情報のデータ量を小さくできるという効果が得られると共に、色は単色となるが、元データと同じ輝度情報の画像を復元することができるので、画質の良い画像の輝度情報を復元情報として付与することで、画像中の重要物などをはっきりと視認できる画像を復元することができるという効果が得られる。
【0044】
〔形態18〕 更に、形態18の撮像システムは、形態15乃至17のいずれか1に記載の撮像システムにおいて、
前記画素データのビット数よりも少ないビット数Lで表現される各ビット列に対応付けて、それぞれ異なる数値の前記差分値の情報を記憶した差分情報テーブルを備え、
前記画素データ復元手段は、前記合成後の画素データに含まれる復元情報が前記差分値の情報に対応するビット列であるときに、該ビット列に対応する差分値の情報を前記差分情報テーブルから取得し、該取得した差分値の情報に基づき、前記合成前の画素データを復元することを特徴とする。
【0045】
このような構成であれば、復元情報として付与されたビット列に対応した差分値の情報をテーブルから取得して、合成前の画素データを復元することができるので、差分情報テーブルの精度次第で、復元対象の画像により近い画質の画像を復元することができるという効果が得られる。
【0046】
〔形態19〕 一方、上記目的を達成するために、形態19の撮像方法は、
受光した光を電荷に変換して蓄積する複数の光電変換素子をマトリックス状に配列した構成の光電変換部と、前記光電変換素子の露光時間を制御する機能とを備えた撮像装置に用いられる撮像方法であって、
前記光電変換素子の構成する各画素から、複数種類の露光時間で露光された時の前記複数種類の露光時間に対応する画素信号を読み出す画素信号読出ステップと、
前記画素信号読出ステップで読み出した、前記複数種類の露光時間に対応する画素信号のデータである画素データを前記画素毎に合成する画素データ合成ステップと、
前記画素データ合成ステップで合成後の画素データに、前記複数種類の露光時間における所定の露光時間に対応する前記合成前の画素データを復元する際に用いる復元情報を付与する復元情報付与ステップと、を含むことを特徴とする。
これにより、形態1の撮像装置と同等の作用及び効果が得られる。
【0047】
〔形態20〕 また、上記目的を達成するために、形態20の画像処理装置は、
複数種類の露光時間で被写体を撮像して得られる、各露光時間にそれぞれ対応した画素信号から構成される画素データを画素毎に合成する画素データ合成手段と、
前記画素データ合成手段で合成後の画素データに、前記複数種類の露光時間における所定の露光時間に対応する合成前の画素データを復元する際に用いる復元情報を付与する復元情報付与手段と、を備えることを特徴とする。
これにより、形態1の撮像装置と同等の作用及び効果が得られる。
【0048】
〔形態21〕 また、上記目的を達成するために、形態21の画像処理プログラムは、
複数種類の露光時間で被写体を撮像して得られる、各露光時間にそれぞれ対応した画素信号から構成される画素データを画素毎に合成する画素データ合成ステップと、
前記画素データ合成ステップで合成後の画素データに、前記複数種類の露光時間における所定の露光時間に対応する合成前の画素データを復元する際に用いる復元情報を付与する復元情報付与ステップとからなる処理をコンピュータに実行させるためのプログラムを含むことを特徴とする。
このような構成であれば、コンピュータによってプログラムが読み取られ、読み取られたプログラムに従ってコンピュータが処理を実行すると、形態1に記載の撮像装置と同等の作用及び効果が得られる。
【0049】
〔形態22〕 また、上記目的を達成するために、形態22の画像処理方法は、
複数種類の露光時間で被写体を撮像して得られる、各露光時間にそれぞれ対応した画素信号から構成される画素データを画素毎に合成する画素データ合成ステップと、
前記画素データ合成ステップで合成後の画素データに、前記複数種類の露光時間における所定の露光時間に対応する合成前の画素データを復元する際に用いる復元情報を付与する復元情報付与ステップと、を含むことを特徴とする。
これにより、形態1に記載の撮像装置と同等の作用及び効果が得られる。
【発明を実施するための最良の形態】
【0050】
〔第1の実施の形態〕
以下、本発明の第1の実施の形態を図面に基づき説明する。図1〜図7は、本発明に係る撮像装置、撮像システム、撮像方法、画像処理装置、画像処理プログラム及び画像処理方法の第1の実施の形態を示す図である。
まず、本発明に係る撮像システムの構成を図1に基づき説明する。図1は、本発明に係る撮像システム100の構成を示すブロック図である。
【0051】
撮像システム100は、図1に示すように、3種類の露光時間T1〜T3(T1<T2<T3)で被写体を撮像する撮像部10と、撮像部10から出力される露光時間T1〜T3にそれぞれ対応する画素信号の出力先を露光時間の種類毎に切り替えるスイッチ(SW)11と、露光時間T1に対応する画素信号のデータ(以下、第1画素データと称す)を記憶する第1メモリ12と、露光時間T2に対応する画素信号のデータ(以下、第2画素データと称す)を記憶する第2メモリ13と、露光時間T3に対応する画素信号のデータ(以下、第3画素データと称す)を記憶する第3メモリ14とを含んで構成される。
【0052】
撮像部10は、CCD及び受光素子(フォトトランジスタ)を含んで構成されるCCDイメージセンサを備え、レンズを介して被写体からの光を各画素に集光すると共に、電子シャッタ機能により露光時間を制御して、露光時間T1、T2、T3で各画素の受光素子を露光する。そして、露光時間T1、T2、T3でそれぞれ露光された各画素からこれら各露光時間に対応する画素信号(アナログデータ)を読み出し、該読み出したアナログの画素信号を、不図示のAFE(Analog Front End)においてデジタルの画素信号(画素データ)に変換してからSW11に出力する。このとき、撮像部10からは、出力する画素データが露光時間T1、T2、T3のいずれに対応するものなのかを識別する信号も出力する。
【0053】
SW11は、撮像部10から画素データが入力されると、これと対応して入力された識別信号に基づきスイッチを切り替え、第1〜第3メモリ12〜14のうち識別信号が示す露光時間に対応するメモリに、入力された画素データを出力する。
第1〜第3メモリ12〜14は、フレームメモリ及びメモリコントローラから構成され、それぞれ自己に対応する露光時間で撮像された1フレーム分の画素データを記憶する。このとき、メモリコントローラによって、不図示のタイミング制御部からのピクセルクロック、垂直同期信号及び水平同期信号に基づき、各画素データの2次元の格納アドレスを生成し、2次元のメモリ空間上のデータとして管理する。
【0054】
撮像システム100は、更に、露光時間T1〜T3に対応する画素データを合成する画素データ合成部15と、復元対象の画像を選択する復元対象画像選択部16と、画素データ合成部15で合成後の画素データ(以下、合成後画素データと称す)に、復元対象の画素データを復元するための復元情報を付与する復元情報付与部17と、復元情報の付与された合成後画素データ(以下、復元情報付与合成後画素データと称す)を保存する画像保存部18と、復元情報付与合成後画素データに基づき画像を表示する表示部19と、復元情報付与合成後画素データに付与された復元情報に基づき復元対象の画素データを復元する画素データ復元部20とを含んで構成される。
【0055】
画素データ合成部15は、まず、露光時間T1〜T3に対応する画素データをT3に合わせて正規化し、次に、該正規化後のT1〜T3の画素データを合成して合成後画素データを生成する。合成後画素データは、露光時間の異なる3つの画素データを合成して生成されるため、各画素の合成後画素データにより構成される画像は、ダイナミックレンジの広い画像(HDR画像)となる。
【0056】
また、画素データ合成部15は、例えば、外部機器等において、表示部の表示能力が合成後画素データ(HDR画素データ)のダイナミックレンジに対応していないときのために、合成後画素データに対して、ガンマ補正又はLUT(Look-Up Table)による補正を行い、ハイライト部を圧縮することが可能である。
復元対象画像選択部16は、図2に示すように、ヒストグラム生成部16aと、比較部16bと、画素データ選択部16cとを含んで構成される。
【0057】
ここで、図2は、復元対象画像選択部16の詳細な構成を示すブロック図である。
ヒストグラム生成部16aは、第1〜第3メモリから露光時間T1〜T3にそれぞれ対応する第1〜第3画素データを読み出し、該読み出した第1〜第3画素データに基づき、露光時間毎に、画素値(輝度値)と画素数との関係を示すヒストグラムを生成する。該生成された、露光時間T1〜T3の画像にそれぞれ対応するヒストグラムは、比較部16bに出力される。
【0058】
比較部16bは、理想的な分布形状を有するヒストグラム(以下、理想ヒストグラムと称す)を有し、該理想ヒストグラムと、露光時間T1〜T3の画像にそれぞれ対応する第1〜第3ヒストグラムとを比較する。具体的に、理想ヒストグラムと第1〜第3ヒストグラムとで、各輝度レベルあるいは所定範囲の輝度レベルに対する画素数を比較し、両者が最も一致する露光時間の情報を比較結果として、画素データ選択部16cに出力する。
【0059】
画素データ選択部16cは、比較部16bから露光時間の情報が入力されると、第1〜第3メモリ12〜14のうち、露光時間の情報に対応するメモリから画素データを読み出し、該読み出した画素データを復元対象の画素データ(以下、復元対象画素データと称す)として、復元情報付与部17に出力する。
復元情報付与部17は、復元情報生成部17aと、復元情報埋込部17bとを含んで構成される。
【0060】
ここで、図3は、復元情報付与部17の詳細な構成を示すブロック図である。
復元情報生成部17aは、復元対象画像選択部16から入力された復元対象画素データに基づき、該復元対象画素データを復元するための復元情報を生成する。
本実施の形態においては、具体的に、画素データが単色のデータであれば、復元対象画素データ(Nビット)における上位NCビット(NC<N)を抽出する。また、画素データがR、G、Bなどの各色に対応したデータであれば、各色に対応した画素データ(Nビット)の上位NCビットを抽出する。復元情報生成部17aは、これら抽出した上位NCビットのデータを復元情報として、復元情報埋込部17bに出力する。
【0061】
復元情報埋込部17bは、復元情報生成部17aから入力された復元情報を、画素データ合成部15から入力された合成後画素データに埋め込む。
具体的に、合成後画素データの下位NCビットのデータを、復元情報のNCビットのデータに入れ替える。これにより、復元情報の付与された復元情報付与合成後画素データが生成される。該生成された復元情報付与合成後画素データは、画像保存部18及び表示部19にそれぞれ出力される。
【0062】
画像保存部18は、フラッシュメモリやハードディスク等の記憶媒体及びそのドライブ装置を有し、復元情報付与部で復元情報の付与された復元情報付与合成後画素データを、所定のファイル形式で記憶媒体に保存する。
表示部19は、HDRディスプレイ(例えば、コントラスト比が「40000:1」など)から構成されており、復元情報付与部17から入力された復元情報付与合成後画像データ(以下、復元情報付与HDR画像データと称す)、又は画像保存部18によって保存された復元情報付与HDR画像データに基づき、被写体の画像を表示する。また、HDRディスプレイにより、復元情報付与HDR画像データの画像をレンジ圧縮せずに表示することができる。
【0063】
画素データ復元部20は、復元指示に応じて、復元対象の復元情報付与合成後画素データを画像保存部18を介して記憶媒体から読み出し、該読み出した復元情報付与合成後画素データに含まれる復元情報に基づき、復元対象の画素データを復元する。
本実施の形態では、復元対象画素データの上位NCビットが復元情報として付与されているので、該NCビットを、Nビットのデータに戻す(下位(N−NC)ビットを全て0)にしたデータに変換することで、復元対象画素データを復元する。
【0064】
なお、撮像システム100の上記各構成部の機能は、ハードウェアのみ、ソフトウェアのみ、ハードウェアとソフトウェアとの組み合わせのいずれかで実現される。従って、撮像システム100は、ソフトウェアを用いて機能を実現する構成部がある場合に、図示していないが、ソフトウェアを実行するためのプロセッサ、ソフトウェアを記憶するためのROM等の記憶媒体、ソフトウェアの実行に用いるRAM等の記憶媒体、各構成部とのデータの授受を行うためのバスなどを備える。
【0065】
また、上記各構成部は、1つの装置内に全てが含まれる構成(この場合は、撮像装置=撮像システムとなる)としても良いし、撮像部10、SW11、第1〜第3メモリ12〜14、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17を1つの装置内で構成(この場合は、撮像装置に対応する)し、画像保存部18、表示部19及び画素データ復元部20は1つ又は複数の装置で構成しても良い。後者の場合は、撮像装置と、画像保存部18、表示部19及び画素データ復元部20とは、有線又は無線で接続する。
【0066】
次に、図4〜図7に基づき、本実施の形態の動作を説明する。
ここで、図4は、直線合成した合成後画素データと、ガンマ補正によってハイライト部を圧縮した合成後画素データとの関係を示す図である。また、図5(a)〜(d)は、理想形のヒストグラムと、露光時間T1〜T3に対応する画像のヒストグラムとの一例を示す図である。また、図6は、復元情報の生成処理及び復元情報の埋込処理の概念の一例を示す図である。また、図7(a)〜(f)は、画素データ合成処理、復元対象画像選択処理、復元情報の埋込処理、復元対象画像の復元処理を含む一連の処理の流れを示す図である。
【0067】
撮像システム100は、まず、電子シャッタ機能によりシャッタ速度(露光時間)を制御して、露光時間T1(15H)、T2(100H)、T3(500H)の順で、撮像部10の各画素を露光し、各露光時間における露光量に応じた画素信号を読み出す。ここで、Hは、1水平期間の時間(s)を表す。従って、例えば15Hであれば、露光時間は、15×H(s)となる。
【0068】
読み出した画素信号(アナログデータ)は、不図示のラインメモリに一旦蓄えられた後、不図示のAFEを介してデジタルの画素データへと変換され、露光時間T1〜T3を識別する識別信号と共にSW11へと出力される。SW11は、画素データ及び識別信号が入力されると、第1〜第3メモリ12〜14のうち、識別信号の示す露光時間に対応したメモリへとスイッチを切り替え、該メモリに向けて画素データを出力する。ここで、画素データは、8ビットの階調値(輝度値)を有するデータであるとする。
【0069】
一方、第1〜第3メモリ12〜14は、画素データが入力されると、メモリコントローラによって、不図示のタイミング制御部から入力される垂直同期信号、水平同期信号、ピクセルクロックに基づき、入力された画素データに対する2次元のアドレス(x,y)を生成すると共に、該アドレスに対応する記憶領域に画素データを記憶する。なお、第1〜第3メモリ12〜14において、同一画素のアドレス値を共通とする。
【0070】
ここでは、露光時間T1〜T3において、図7(a)〜(c)に示すような画像に対応した第1〜第3画素データがそれぞれ得られたとする。
このようにして、第1〜第3メモリ12〜14に、1フレーム分の露光時間T1〜T3に対応する画素データが記憶されると、画素データ合成部15は、第1〜第3メモリ12〜14から、画素毎に、露光時間T1〜T3に対応する第1〜第3画素データをそれぞれ読み出す。一方、復元対象画像選択部16は、第1〜第3メモリ12〜14から、画像毎に、第1〜第3画素データを読み出す。
画素データ合成部15は、読み出した各画素に対する第1〜第3画素データを合成する。
合成の方法としては、第1〜第3画素データを直線合成して、その後、必要に応じて、ガンマ補正又はLUTによる補正を行い、ハイライト部を圧縮する。
【0071】
具体的に、下式(1)に従って、露光時間T1〜T3に対応する第1〜第3画素データを直線合成する。

IMG_HDR_Linear=(IMG_T1×T3/T1+IMG_T2×T3/T2+IMG_T3×T3/T3)/(255×T3/T1+255×T3/T2+255×T3/T3) ・・・(1)

上式(1)において、IMG_HDR_Linearは合成後画素データの画素値、IMG_T1〜IMG_T3は第1〜第3画素データの画素値である。
上式(1)に示すように、第1〜第3画素データを露光時間T3に合わせて正規化して、その総和を求め、更に、この総和を、ハイライトの輝度レベルを第1〜第3画素データと同様に正規化した総和で除算することによって、合成後画素データを得る。
【0072】
更に、ハイライト部を圧縮する場合は、下式(2)に従って、図4に示す入出力関係を有するガンマ値によってガンマ補正を行い、合成後画素データのハイライト部を圧縮する。

IMG_HDR_Gamma=255×IMG_HDR_Linear0.3 ・・・(2)

ここでは、ガンマ補正によるハイライト部の圧縮を行っているが、これに限らず、LUTを用いた補正を行うことも可能である。LUTを用いることによって、より確実にハイライト部の圧縮を行うことができる。
【0073】
なお、上記ハイライト部の圧縮/非圧縮に関わらず合成後の画素データを合成後画素データと称す。また、上式(1)は、ガンマ補正によるハイライト部の圧縮を前提とした式となっているので、ガンマ補正を行わない場合でも、上式(1)で算出した合成後の画素値に対して「255」を乗算する必要がある。
このようにして、画素毎に合成後画素データが生成されると、該生成された合成後画素データは復元情報付与部17に出力される。
【0074】
なお、この時点では、上記合成後画素データから、図7(d)に示すような合成画像が得られる。
一方、復元対象画像選択部16は、各露光時間に対応した画素データ群に基づき、画像毎に、各輝度値(輝度レベル)に対応する画素数を計数し、輝度レベルと画素数との関係を示す輝度ヒストグラムを生成する。
【0075】
ここでは、露光時間T1〜T3の各画像に対して、図5(b)〜(d)に示す第1〜第3ヒストグラムが生成されたとする。
これら生成された第1〜第3ヒストグラムの情報は、比較部16bに出力される。
比較部16bは、ヒストグラム生成部16aから第1〜第3ヒストグラムの情報が入力されると、該第1〜第3ヒストグラムと、図5(a)に示す理想ヒストグラムとを比較する。
【0076】
図5(a)に示すように、理想ヒストグラムは、「0〜255」の輝度レベルの範囲に対して、輝度値「0」、「255」の画素数を「0」とし、輝度値127の画素数を最大数として、これら「0」、「127」、「255」を各頂点として結んだ二等辺三角形を形成している。
一方、図5(b)に示すように、露光時間T1に対応する第1ヒストグラムは、輝度レベルの比較的低い範囲(輝度値85以下の範囲)の画素数が多くなっている。また、図5(c)に示すように、露光時間T2に対応する第2ヒストグラムは、中間範囲(輝度値86〜169の範囲)の輝度レベルの画素数が多くなっている。また、図5(d)に示すように、露光時間T3に対応する第3ヒストグラムは、輝度レベルの比較的高い範囲(輝度値170以上の範囲)の画素数が多くなっている。
【0077】
以上より、中間範囲の画素数が最も多い露光時間T2に対応する第2ヒストグラムが、理想ヒストグラムと形状が一番似ていると判断できるので、比較部16bは、露光時間T2の情報を、画素データ選択部16cに出力する。
画素データ選択部16cは、露光時間T2の情報が入力されると、露光時間T2に対応する第2メモリ13に対して、画素データのリードコマンドを出力する。
【0078】
第2メモリ13は、画素データ選択部16cからリードコマンドを受け取ると、メモリコントローラによってフレームメモリの先頭アドレスから順次第2画素データを読みだして、該読み出した第2画素データを画素データ選択部16cに転送する。
画素データ選択部16cは、第2メモリ13から転送されてきた第2画素データを、復元対象画素データとして、復元情報付与部17に出力する。
【0079】
復元情報付与部17は、復元対象画像選択部16から復元対象画素データ(ここでは、第2画素データ)が入力され、画素データ合成部15から合成後画素データが入力されると、まず、復元情報生成部17aにおいて、復元対象画素データの上位NCビットのデータを抽出する。
ここでは、画素データがモノクロデータであるとして、図6に示すように、合成後画素データをP「10101010(2進数)」、復元対象画素データをS「10101010(2進数)」とする。
【0080】
そして、図6に示すように、復元対象画素データS「10101010」の上位3ビット「101」を抽出する。
具体的に、復元対象画素データSの上位3ビットを右(下位側)に5ビットシフトすると共に、シフト後の上位5ビットを全て「0」にしたデータ「00000101」を生成する。
【0081】
そして、上記生成した「00000101」を復元情報として、復元情報埋込部17bに出力する。
復元情報埋込部17bは、復元情報生成部17aから復元情報「00000101」が入力されると、合成後画素データP「10101010」の上位5ビット「10101」を抽出する。
【0082】
具体的に、内部論理回路によって、合成後画素データP「10101010」と「11111000」との論理積を演算し、下位3ビットを「0」とした「10101000」を得る。
そして、合成後画素データPの上位5ビットが抽出されると、復元情報埋込部17bは、内部論理回路によって、復元情報「00000101」と、「10101000」との論理和を演算し、図6に示すように、復元対象画素データSの上位3ビット「101」を、合成後画素データPの下位3ビットに埋め込む。これにより、合成後画素データに対して、復元情報が付与された、復元情報付与合成後画素データ「10101101」が生成される。
【0083】
なお、第1〜第3画素データがカラーデータである場合は、各色の色信号に対応した画素データに対して、上記モノクロデータと同様の処理を行う。具体的に、第1〜第3画素データが、例えば、R、G、Bの三原色に対応する3種類の画素データを含んでいるときに、上記モノクロデータのときと同様に、R、G、B各色の画素データの上位3ビットをそれぞれ抽出し、該抽出した3ビットのデータを、合成後画素データにおける各色の画素データの下位3ビットに、同じ色同士でそれぞれ埋め込む。
【0084】
上記一連の処理を、被写体の撮像領域に対応する全画素に対して行うことで、広ダイナミックレンジで且つ復元情報が付与された画像データ(復元情報付与HDR画像データ)が生成される。該生成された復元情報付与HDR画像データは、表示部19に出力されると共に、画像保存部18に出力される。
画像保存部18は、復元情報付与部17から入力された復元情報付与HDR画像データを、所定のファイル形式で記憶媒体に保存する。
【0085】
表示部19は、復元情報付与部17から入力された復元情報付与HDR画像データに基づき、被写体の広ダイナミックレンジの画像をリアルタイムに表示する。一方、リアルタイムに映像を表示しない場合は、表示部19は、ユーザからの指示に応じて、画像保存部18によって保存された復元情報付与HDR画像データを記憶媒体から読み出し、該読み出した復元情報付与HDR画像データに基づき、図7(e)に示すように、被写体の広ダイナミックレンジの画像を表示する。
【0086】
復元情報が付与された合成後画素データにおいては、下位3ビットのデータの一部又は全部が付与前の合成後画素データと異なる場合があるが、上位5ビットが付与前のデータと同じであるため、付与後の画質は付与前の画質と殆ど遜色がない。
一方、被写体の広ダイナミックレンジ画像において、例えば、重要な情報が識別できない状態となっており、合成前の画像を参照したいときなどに、画素データ復元部20において、復元対象(合成前)の画像を復元することができる。
【0087】
復元対象の画像を復元する場合は、画素データ復元部20に対して、復元したい復元情報付与HDR画像データの情報を含む復元指示を与える。
画素データ復元部20は、復元指示が入力されると、復元対象の復元情報付与HDR画像データを画像保存部18を介して記憶媒体から読み出す。
そして、読み出した復元情報付与HDR画像データに基づき、復元情報付与画素データ毎(画素毎)に、復元対象画素データの復元を行う。
【0088】
本実施の形態においては、復元情報付与画素データ(8ビット)における下位3ビットが復元情報となるので、下位3ビットを左(上位側)に5ビットシフトし、シフト後の下位5ビットを「0」として(そのままでも良い)、復元対象画素データを復元する。例えば、復元情報付与画素データが「10101101(2進数)」である場合に、下位3ビット「101」を左に5ビットシフトし、シフト後の下位5ビットを全て「0」にした「10100000」が復元された復元対象画素データ(以下、復元データと称す)となる。
【0089】
このようにして復元されたデータから、図7(f)に示すように、復元対象の画像である露光時間T2に対応した画像を得ることができる。
なお、復元データは、元のデータ「10101010」に対して、下位5ビットの一部又は全部のデータが異なる場合があるが、少なくとも上位3ビットは元データと同じ値となるので、復元データから構成される画像データの画像は、元の画像データの画像と殆ど遜色のない画質となる。
【0090】
以上、本実施の形態の撮像システム100は、CCDイメージセンサの各画素を、3種類の露光時間T1〜T3で露光して得られた画素データを合成して広ダイナミックレンジの画像に対応した合成後画素データを生成することができる。
また、露光時間T1〜T3にそれぞれ対応する第1〜第3の画素データから、露光時間毎に、輝度のヒストグラム(第1〜第3ヒストグラム)を生成し、該生成した第1〜第3ヒストグラムと、理想ヒストグラムとを比較して、該比較結果から、最も理想ヒストグラムに近いヒストグラムに対応する露光時間の画素データを対象画素データとして選択することができる。
【0091】
また、上記選択した復元対象画素データの上位NCビットのデータから復元情報を生成し、合成後画素データの下位NCビットを、復元情報に入れ替えることで、合成後画素データに復元情報を付与することができる。
また、復元情報の付与された画素データから、復元対象の画素データを復元することができる。
【0092】
以上より、露光時間T1〜T3のうち、画質の最も良い露光時間の画素データを復元対象画素データとして選択し、この復元対象画素データを復元するための復元情報を合成画素データに付与することができる。
また、復元対象画素データを圧縮したデータを復元情報として、これを合成画素データの下位ビットと入れ替えることで付与するようにしたので、合成後画素データの形式を変更せずに復元情報を付与することができる。これにより、復元情報として付与するデータを小さくできると共に、復元情報付与合成後画素データの形式を変換することなく汎用のアプリケーションなどで使用できる。
【0093】
また、復元情報付与合成画素データから、復元対象の画素データを復元することができるので、合成画像において、重要な被写体の画像がボケていたりした場合に、復元対象画素データを復元し、その復元データから構成される画像を参照したり、該画像の画像データを用いて識別処理などを行ったりすることができる。
上記第1の実施の形態において、撮像部10のCCDイメージセンサは、形態1又は19に記載の光電変換部に対応し、撮像部10における各画素から画素信号を読み出す処理は、形態1に記載の画素信号読出手段又は形態19に記載の画素信号読出ステップに対応し、画素データ合成部15は、形態1又は20に記載の画素データ合成手段に対応し、復元対象画像選択部16は、形態12又は13に記載の復元画像選択手段に対応し、復元情報付与部17は、形態1、4、5、12及び20のいずれか1に記載の復元情報付与手段又は形態19、21及び22のいずれか1に記載の復元情報付与ステップに対応し、画素データ復元部20は、形態15に記載の画素データ復元手段に対応する。
【0094】
また、上記第1の実施の形態において、撮像システム100における、撮像部10、SW11、第1〜第3メモリ12〜14、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17から構成されるブロックは、形態1、2、3、4、5、12及び13のいずれか1に記載の撮像装置に対応し、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17から構成されるブロックは、形態20に記載の画像処理装置に対応する。
〔第1の実施の形態の変形例1〕
次に、図8〜図10に基づき、本発明に係る撮像装置、撮像システム、撮像方法、画像処理装置、画像処理プログラム及び画像処理方法の第1の実施の形態の変形例1を説明する。
【0095】
上記第1の実施の形態において、復元対象画像選択部16で、各露光時間に対応した画像のヒストグラムに基づき復元対象の画素データを選択しているのに対して、本変形例1は、各露光時間に対応する周波数成分に基づき復元対象の画素データを選択している点が異なる。
更に、上記第1の実施の形態において、復元情報付与部17において、復元対象の画素データがカラー画像データであるときに、各色に対応する画素データの上位3ビットを抽出して、該上位3ビットのデータを、各色に対応する合成後画素データの下位3ビットにそれぞれ埋め込むことで合成後画素データに対して復元情報を付与しているのに対して、本変形例1は、複数色に対応する画素データのうち、いずれか一色に対応する画素データの情報を複数色の色数分に分割し、該分割したデータを復元情報として、合成後画素データの各色の画素データの下位ビットに埋め込むことで合成後画素データに対して復元情報を付与する点が異なる。
【0096】
また、画素データ復元部20における復元対象の画素データの復元方法が、上記相違点に伴い上記第1の実施の形態と異なる。
具体的に、本変形例1の撮像システム100は、復元対象画像選択部16が、復元対象画像選択部16’に変更され、更に、復元情報付与部17及び画素データ復元部20の処理内容が異なっており、それ以外の構成部は、上記第1の実施の形態の撮像システム100と同様となる。
【0097】
以下、上記第1の実施の形態と同様の構成部には同じ符号を付して説明を適宜省略し、上記第1の実施の形態と異なる部分を詳細に説明する。
まず、図8に基づき、復元対象画像選択部16’の詳細な構成を説明する。
ここで、図8は、復元対象画像選択部16’の詳細な構成を示すブロック図である。
復元対象画像選択部16’は、図8に示すように、周波数成分抽出部16dと、比較部16eと、画素データ選択部16cとを含んで構成される。
【0098】
公知のエッジ抽出フィルタを用いたエッジ抽出などによって、露光時間T1〜T3の画素信号の周波数成分を抽出(算出)する。
周波数成分抽出部16dは、公知のラプラシアンフィルタ(ハイパスフィルタ)を用いて、エッジ抽出対象の画素とその周辺画素の画素データに対してフィルタ処理を行い、対象画素データに対するエッジ成分(高周波成分)を抽出する。
【0099】
比較部16eは、周波数成分抽出部16dで抽出された露光時間T1〜T3の画素データにそれぞれ対応したエッジ成分に基づき、露光時間T1〜T3に対応する画像のうち、エッジ成分量の最も多い画像の露光時間の情報を、比較結果として画素データ選択部16cに出力する。
次に、本変形例1における復元情報付与部17について説明する。
【0100】
なお、本実施の形態においては、各画素データが、R、G、Bの三原色の各色信号に対応する、画素データR(Nビット)、画素データG(Nビット)、画素データB(Nビット)の3種類の画素データをそれぞれ含むものとする。
本変形例1における復元情報生成部17aは、復元対象画像選択部16’から復元対象画素データRsGsBsが入力されると、本実施の形態においては、まず、復元対象画素データRsGsBsを構成するRs、Gs、Bsの各色に対応する画素データRs、Gs、Bsの中から画素データGsを選択し、該画素データGs(Nビット)を色数(3)で分割する。
【0101】
本実施の形態においては、画素データGs(Nビット)が均等に3分割できないビット数のデータである場合は、画素データGsを倍にするなどして、均等に3分割できるビット数のデータに変換する。例えば、画素データGsが8ビットである場合は、2倍にして9ビットのデータに変換し、該変換後の画素データGsを3分割する。
このようにして3分割して得られた3種類の分割データGsA〜GsC(N/3ビット)は復元情報として、復元情報埋込部17bに出力される。例えば、画素データGsが「101010101(2進数)」であった場合に、上位ビット側から順に、分割データGsAは「101」、分割データGsBは「010」、分割データGsCは「101」となる。
【0102】
本変形例1における復元情報埋込部17bは、復元情報生成部17aから分割データGsA〜GsCが入力されると、該分割データGsA〜GsCを、合成後画素データRpGpBpにおける各色に対応する画素データRp、Gp、Bpの下位「N/3」ビットに埋め込むことで、合成後画素データに復元情報を付与する。
具体的に、画素データRpの下位「N/3」ビットに分割データGsAを埋め込み、画素データGpの下位「N/3」ビットに分割データGsBを埋め込み、画素データBpの下位「N/3」ビットに分割データGsCを埋め込む。
【0103】
このようにして、分割データGsA〜GsCが埋め込まれた画素データRp、Gp、Bpは、復元情報付与合成後画素データとして、画像保存部18及び表示部19にそれぞれ出力される。
次に、本変形例1における画素データ復元部20について説明する。
本変形例1における画素データ復元部20は、画像保存部18から復元情報付与合成後画素データを取得すると、該復元情報付与合成後画素データに含まれる各色の画素データRp、Gp、Bpに含まれる復元情報に基づき、復元対象の画素データRs、Gs、Bsを復元する。
【0104】
具体的には、復元情報付与合成後画素データRp、Gp、Bpの下位「N/3」ビットに復元情報GsA、GsB、GsCがそれぞれ埋め込まれているので、まず、Rp、Gp、Bpから、復元情報GsA、GsB、GsCの各ビット列を抽出し、更に、抽出したビット列を、復元対象の画素データGsの対応するビット位置へとシフトしたデータを生成する。これらシフトしたデータの論理和を演算することで、復元対象の画素データGsを求めることができる。
【0105】
画素データGsが復元されると、該画素データGsと画素データGpとの比を、画素データRp、Bpにそれぞれ乗じることで、復元対象の画素データRs(「Rs=Rp×Gs/Gp」)、画素データBs(「Bs=Bp×Gs/Gp」)を求めることができる。
次に、図9〜図10に基づき、本実施の形態の動作を説明する。
ここで、図9(a)は、ハイパスフィルタの一例を示す図であり、(b)は処理対象画素とその周辺8画素の画素値の一例を示す図である。また、図10は、図9(a)のハイパスフィルタでフィルタ処理後の各露光時間の画像及び合成後の画像の一例を示す図である。
【0106】
なお、画素データ合成部15までの動作は、上記第1の実施の形態と同様となるので説明を省略する。
以下、復元対象画像選択部16’の動作から説明する。
復元対象画像選択部16は、周波数成分抽出部16dにおいて、露光時間T1〜T3にそれぞれ対応した画素データ群に基づき、画像毎に、各画素データに対してラプラシアンフィルタ(ハイパスフィルタ)を用いたフィルタ処理を行い、各露光時間に対応する画像のエッジ成分量を抽出する。
【0107】
ここでは、まず、処理対象の画素データ(x,y)と、該画素データの画素の周辺8画素の画素データに対して、図9(a)に示すようなハイパスフィルタを用いてフィルタ処理し、各画素のエッジ成分(高周波成分)を抽出する。
例えば、処理対象画素とその周辺8画素の画素値が、図9(b)に示すようになっている場合は、処理対象画素のエッジ成分は、図9(a)のハイパスフィルタを用いて、「60×1+60×1+60×1+60×1+60×−9+60×1+60×1+60×1+60×1=−60」と抽出される。
【0108】
このようなエッジ成分の抽出処理を、露光時間T1〜T3にそれぞれ対応する画像の全画素に対して行い、更に、画像毎に抽出した各画素のエッジ成分の絶対値の総和を画像のエッジ成分量として算出する。ここで、露光時間T1、T2、T3に対応するエッジ成分量を、それぞれE1、E2、E3とする。該算出されたエッジ成分量E1〜E3は、比較部16eに出力される。
【0109】
比較部16eは、周波数成分抽出部16dから、エッジ成分量E1〜E3が入力されると、該E1〜E3に基づき、復元対象として復元情報を付与する露光時間の画像を選択する。本実施の形態においては、エッジ成分量が多いほど画像の先鋭度が高いと定義し、エッジ成分量E1〜E3のそれぞれの値の大小を比較して、最も大きい値のエッジ成分量に対応する露光時間の画像を、復元対象の画像として選択し、該画像の露光時間の情報を、画素データ選択部16cに出力する。
【0110】
ここでは、露光時間T1〜T3に対応するフィルタ処理後の画像が、図10(a)〜(c)に示すようになったとする。各画像の白色の部分が、エッジ成分となる。図10(a)〜(c)を見ると解るように、これらのうちでは、露光時間T3に対応する画像にエッジ成分が最も多く含まれている。つまり、露光時間T3に対応する画像には、より多くのオブジェクトが写っていることが期待されるので、露光時間T3の時間情報が画素データ選択部16cに出力される。
【0111】
画素データ選択部16cは、露光時間T3の情報が入力されると、露光時間T3に対応する第3メモリ14に対して、画素データのリードコマンドを出力する。
第3メモリ14は、画素データ選択部16cからリードコマンドを受け取ると、メモリコントローラによってフレームメモリの先頭アドレスから順次第3画素データを読みだして、該読み出した第3画素データを画素データ選択部16cに転送する。
【0112】
画素データ選択部16cは、第3メモリ14から転送されてきた第3画素データを、復元対象画素データとして、復元情報付与部17に出力する。
復元情報付与部17は、復元対象画像選択部16から復元対象画素データ(ここでは、第3画素データ)が入力され、画素データ合成部15から合成後画素データが入力されると、まず、復元情報生成部17aにおいて、第3画素データに含まれる画素データRs、Gs、Bsのうち、画素データGsを3分割する。ここでは、画素データGsが8ビットであるとして、これを2倍にして9ビットのデータに変換してから3分割する。3分割して得られた分割データGsA〜GsCは復元情報として、復元情報埋込部17bに出力される。
【0113】
復元情報埋込部17bは、画素データ合成部15から合成後画素データが入力され、復元情報生成部17aから復元情報(GsA〜GsC)が入力されると、合成後画素データを構成する各色の画素データRp、Gp、Bpの下位3ビットに、分割データGsA、GsB、GsCをそれぞれ埋め込む。例えば、画素データRp、Gp、Bpがいずれも「10101010(2進数)」であり、GsA、GsB、GsCが、「101」、「010」、「101」である場合には、上記第1の実施の形態における復元情報埋込部17bと同様に、画素データRpの下位3ビットにGsAを、Gpの下位3ビットにGsBを、Bpの下位3ビットにGsCをそれぞれ埋め込み、各色の画素データが、Rp「10101101」、Gp「10101010」、Bp「10101101」で構成される復元情報付与合成後画素データを生成する。
【0114】
上記一連の処理を、被写体の撮像領域に対応する全画素に対して行うことで、復元情報付与HDR画像データが生成される。該生成された復元情報付与HDR画像データは、画像保存部18及び表示部19にそれぞれ出力される。
一方、上記のような復元情報付与HDR画像データから復元対象の画像を復元する場合の、画素データ復元部20の動作を説明する。
【0115】
画素データ復元部20は、復元指示が入力されると、復元対象の復元情報付与HDR画像データを画像保存部18を介して記憶媒体から読み出す。
そして、読み出した復元情報付与HDR画像データに基づき、復元情報付与画素データ毎(画素毎)に、復元対象画素データの復元を行う。
本実施の形態においては、例えば、復元情報付与合成後画素データの各色の画素データRp、Gp、Bpが、それぞれ「10101101(2進数)」、「10101010(2進数)」、「10101101(2進数)」である場合に、これらの下位3ビットが復元情報となるので、Rpに付与されたGsの復元情報GsAは、Rp「10101101」と「00000111」との論理積を演算して「00000101」を抽出し、次に、「00000101」の下位3ビット「101」を左に5ビットシフトして、「10100000」と求めることができる。
【0116】
また、Gpに付与されたGsの復元情報GsBは、まず、Gp「10101010」と「00000111」との論理積を演算して「00000010」を抽出し、次に、「00000010」の下位3ビットを左に2ビットシフトして、「00001000」と求めることができる。
また、Bpに付与されたGsの復元情報GsCは、まず、Bp「10101101」と「00000111」との論理積を演算して「00000101」を抽出し、次に、「00000101」の下位3ビットを右に1ビットシフトして、「00000010」と求めることができる。ここで、右に1ビットシフトして最下位ビットを削除するのは、分割データの作成時に画素データGsを乗算器などで2倍にして9ビットのデータとして扱っているからである。
【0117】
そして、このようにして求められたGsA、GsB、GsCの論理和を演算することで、復元対象の画素データGs「10101010」を求めることができる。
画素データGsが求まると、更に、該画素データGsと画素データGpとの比「Gs/Gp」を、画素データRp、画素データBpにそれぞれ乗じることで、復元対象の画素データRs(「Rs=Rp×Gs/Gp」)、画素データBs(「Bs=Bp×Gs/Gp」)を求める。
【0118】
以上、露光時間T1〜T3にそれぞれ対応する第1〜第3の画素データから、露光時間毎に、周波数成分量(エッジ成分量E1〜E3)を抽出し、該抽出したエッジ成分量の値の大小を比較して、最も値の大きいエッジ成分量に対応した露光時間の画素データを対象画素データとして選択することができる。
また、上記選択した復元対象画素データ(Nビット)の複数色の各色に対応する画素データのうちいずれか一色の画素データを色数Cで分割し、該分割して得られた分割データを(いずれもN/Cビット)を、合成後画素データの各色に対応する画素データの下位「N/C」ビットに埋め込むことで、合成後画素データに復元情報を付与することができる。
【0119】
また、復元情報の付与された画素データから、復元情報として付与した一色に対応する画素データと、合成後画素データの複数色に対応する画素データとを用いて、復元対象の各色の画素データを復元することができる。
以上より、露光時間T1〜T3のうち、先鋭度の最も大きい露光時間の画素データを復元対象画素データとして選択し、この復元対象画素データを復元するための復元情報を合成画素データに付与することができる。
【0120】
また、復元対象画素データの各色の画素データのうちいずれか一色の画素データを色数で分割したものを復元情報として、合成画素データの各色の画素データの下位ビットに分散して埋め込むようにしたので、合成後画素データの形式を変更せずに復元情報を付与することができる。これにより、復元情報として付与するデータを小さくできると共に、復元情報付与合成後画素データをそのまま汎用のアプリケーションなどで使用できる。
【0121】
また、復元情報付与合成画素データから、復元対象の画素データを復元することができるので、合成画像において、重要な被写体の画像がボケていたりした場合に、復元対象画素データを復元し、その復元データから構成される画像を参照したり、該画像の画像データを用いて識別処理などを行ったりすることができる。
上記変形例1において、復元対象画像選択部16は、形態12又は14に記載の復元画像選択手段に対応し、復元情報付与部17は、形態1、6、12及び20のいずれか1に記載の復元情報付与手段又は形態19、21及び22のいずれか1に記載の復元情報付与ステップに対応し、画素データ復元部20は、形態15又は16に記載の画素データ復元手段に対応する。
【0122】
また、上記第1の実施の形態において、撮像システム100における、撮像部10、SW11、第1〜第3メモリ12〜14、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17から構成されるブロックは、形態1、2、3、6、12及び14のいずれか1に記載の撮像装置に対応し、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17から構成されるブロックは、形態20に記載の画像処理装置に対応する。
〔第1の実施の形態の変形例2〕
次に、本発明に係る撮像装置、撮像システム、撮像方法、画像処理装置、画像処理プログラム及び画像処理方法の第1の実施の形態の変形例2を説明する。
【0123】
本変形例2は、R、G、Bの各色に対応する画素データを輝度データと色差データとに分割し、更に、輝度データを3分割して得られたデータを復元情報として、合成後画素データの各色の画素データの下位ビットに埋め込むことで合成後画素データに対して復元情報を付与する点が、上記第1の実施の形態及び上記変形例1と異なる。
また、画素データ復元部20において、復元対象の画素データの復元方法が、上記相違点に伴い上記第1の実施の形態及び上記変形例1と異なる。
【0124】
具体的に、本変形例1の撮像システム100は、復元情報付与部17及び画素データ復元部20の処理内容が異なる以外は、上記第1の実施の形態の撮像システム100と同様となる。
以下、上記第1の実施の形態と同様の構成部には同じ符号を付して説明を適宜省略し、上記第1の実施の形態と異なる部分を詳細に説明する。
【0125】
まず、本変形例2における復元情報付与部17について説明する。
なお、本実施の形態においては、各画素データが、R、G、Bの三原色の各色信号に対応する、画素データR(Nビット)、画素データG(Nビット)、画素データB(Nビット)の3種類の画素データをそれぞれ含むものとする。
本変形例2における復元情報生成部17aは、復元対象画像選択部16から復元対象画素データRsGsBsが入力されると、復元対象画素データRsGsBsを構成するR、G、Bの各色に対応する画素データRs、Gs、Bsを、輝度データYと、色差データCb、Crとに分割し、輝度データYを3分割する。
【0126】
ここでは、色差データの情報は復元情報として付与しないので、輝度データYのみを、下式(4)に従って求める。

Y=0.30×Rs+0.59×Gs+0.11×Bs ・・・(4)

本実施の形態においては、輝度データY(Nビット)が均等に3分割できないビット数のデータである場合は、輝度データを求める際の係数を倍にするなどして、均等に3分割できるビット数のデータに変換する。例えば、各画素データが8ビットである場合は、下式(5)に示すように、輝度データYを求めるときの係数を2倍にして9ビットの輝度データを求め、該輝度データYを3分割する。

Y=0.60×Rs+1.17×Gs+0.23×Bs ・・・(5)

上記式(4)又は(5)に従って算出した輝度データYを3分割して得られた3種類の分割データYA〜YC(N/3ビット)は復元情報として、復元情報埋込部17bに出力される。なお、輝度データYの上位〜下位に向かって分割データYA、YB、YCとなる。
【0127】
本変形例2における復元情報埋込部17bは、復元情報生成部17aから分割データYA〜YCが入力されると、該分割データYA〜YCを、合成後画素データRpGpBpを構成する各色の画素データRp、Gp、Bpの下位「N/3」ビットに埋め込むことで、合成後画素データに復元情報を付与する。
具体的に、画素データRpの下位「N/3」ビットに分割データYAを埋め込み、画素データGpの下位「N/3」ビットに分割データYBを埋め込み、画素データBpの下位「N/3」ビットに分割データYCを埋め込む。
【0128】
このようにして、分割データYA〜YCが埋め込まれた画素データRp、Gp、Bpは、復元情報付与合成後画素データとして、画像保存部18及び表示部19にそれぞれ出力される。
次に、本変形例2における画素データ復元部20について説明する。
本変形例2における画素データ復元部20は、画像保存部18から復元情報付与合成後画素データを取得すると、該復元情報付与合成後画素データに含まれる各色の画素データRp、Gp、Bpに含まれる復元情報に基づき、復元対象の輝度データYを復元する。また、本実施の形態においては、復元対象のカラー画像を、モノクロ画像として復元する。
【0129】
具体的には、復元情報付与合成後画素データRp、Gp、Bpの下位「N/3」ビットに復元情報YA、YB、YCがそれぞれ埋め込まれているので、上記第1の実施の形態の変形例1と同様の方法で、輝度データYを求めることができる。この輝度データYが復元対象のモノクロ画像データとなる。
以上、復元対象画素データのR、G、Bの各色に対応する画素データ(Nビット)を、輝度データY及び色差データCb、Crに分割し、輝度データYを3分割し、該分割して得られた分割データYA〜YC(いずれもN/Cビット)を、合成後画素データの各色に対応する画素データの下位「N/C」ビットに埋め込むことで、合成後画素データに復元情報を付与することができる。
【0130】
また、復元情報の付与された画素データから、復元情報として付与した輝度データを復元することで、復元対象のモノクロ画素データを復元することができる。
以上より、復元対象画素データの各色の画素データから求めた輝度データを3分割したものを復元情報として、合成画素データの各色の画素データの下位ビットに分散して埋め込むようにしたので、復元対象の画像の輝度情報を損失無く復元情報として付与できると共に、復元情報付与合成後画素データを、形式変換等せずにそのまま汎用のアプリケーションなどで使用できる。
【0131】
また、復元情報付与合成画素データから、復元対象の画素データを復元することができるので、合成画像において、重要な被写体の画像がボケていたりした場合に、復元対象画素データを復元し、その復元データから構成される画像を参照したり、該画像の画像データを用いて識別処理などを行ったりすることができる。
上記変形例2において、復元情報付与部17は、形態1、7、12及び20のいずれか1に記載の復元情報付与手段又は形態19、21及び22のいずれか1に記載の復元情報付与ステップに対応し、画素データ復元部20は、形態15又は17に記載の画素データ復元手段に対応する。
【0132】
また、上記変形例2において、撮像システム100における、撮像部10、SW11、第1〜第3メモリ12〜14、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17から構成されるブロックは、形態1、2、3、7、12及び14のいずれか1に記載の撮像装置に対応し、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17から構成されるブロックは、形態20に記載の画像処理装置に対応する。
【0133】
〔第2の実施の形態〕
以下、本発明の第2の実施の形態を図面に基づき説明する。図11〜図13は、本発明に係る撮像装置、撮像システム、撮像方法、画像処理装置、画像処理プログラム及び画像処理方法の第2の実施の形態を示す図である。
【0134】
上記第1の実施の形態、上記変形例1及び上記変形例2においては、復元対象画素データの情報を圧縮又は分割したものを復元情報として、合成後画素データに付与しているのに対して、本実施の形態は、所定ビット列から構成される検出ビット列に対応付けて差分情報が登録された差分情報テーブルを有し、復元対象画素データを復元するための差分情報に対応する検出ビット列を復元情報として、合成後画素データに付与する点が異なる。
【0135】
具体的に、本実施の形態の撮像システム200は、上記第1の実施の形態の撮像システム100において、復元情報付与部17が、本実施の形態の動作処理に対応した復元情報付与部21に変更され、差分情報テーブル記憶部22が追加され、更に、こられの変更及び追加に応じて画素データ復元部20の処理内容が異なり、それ以外は、上記第1の実施の形態の撮像システム100と同様となる。
【0136】
以下、上記第1の実施の形態と同様の構成部には同じ符号を付して説明を適宜省略し、上記第1の実施の形態と異なる部分を詳細に説明する。
まず、図11に基づき、本実施の形態の撮像システム200の構成を説明する。
ここで、図11は、撮像システム200の構成を示すブロック図である。
撮像システム200は、図11に示すように、撮像部10と、スイッチ(SW)11と、第1〜第3メモリ12〜14と、画素データ合成部15と、復元対象画像選択部16と、差分情報テーブルに基づき復元対象の画素データの復元情報を合成後画素データに付与する復元情報付与部21と、差分情報テーブルを記憶する差分情報テーブル記憶部22と、画像保存部18と、表示部19と、差分情報テーブルに基づき復元対象の画素データを復元する画素データ復元部20と、を含んで構成される。
【0137】
復元情報付与部21は、図12に示すように、復元情報生成部21aと、復元情報埋込部21bとを含んで構成される。
ここで、図12は、復元情報付与部21の詳細な構成を示すブロック図である。
復元情報生成部21aは、画素データ合成部15から入力された合成後画素データと、復元対象画像選択部16から入力された復元対象画素データと、差分情報テーブル記憶部22に記憶された差分情報テーブルとに基づき、復元対象画素データを復元するための復元情報を生成する。
【0138】
本実施の形態においては、具体的に、画素データが単色のデータであれば、まず、復元対象画素データS(Nビット)と、合成後画素データP(Nビット)とに基づき差分情報を生成する。
具体的に、復元対象画素データSと合成後画素データPとの絶対的な差分量を差分情報とする場合は、「絶対差分量α=S−P」を演算で求める。また、復元対象画素データSと合成後画素データPとの相対的な差分量を差分情報とする場合は、「相対差分量β=S/P」を演算で求める。
【0139】
また、画素データがR、G、Bなどの各色に対応したデータであれば、復元対象画素データの各色に対応した画素データRs、Gs、Bs(Nビット)と、合成後画素データの各色に対応した画素データRp、Gp、Bp(Nビット)との色毎の差分情報を求める。
更に、復元情報生成部21aは、差分情報テーブルの各差分情報と、上記演算で求めた差分情報とを比較し、該差分情報と最も近い差分情報に対応付けられた検出ビット列(NCビット(NC<N))を取得する。そして、該取得した検出ビット列を復元情報として、復元情報埋込部21bに出力する。
【0140】
復元情報埋込部21bは、復元情報生成部21aから入力された復元情報を、画素データ合成部15から入力された合成後画素データに埋め込む。
具体的に、復元情報埋込部21bは、上記第1の実施の形態の復元情報埋込部17bと同様に、合成後画素データの下位NCビットのデータを、復元情報のNCビットのデータに入れ替える。これにより、復元情報の付与された復元情報付与合成後画素データが生成される。該生成された復元情報付与合成後画素データは、画像保存部18及び表示部19にそれぞれ出力される。
【0141】
図11に戻って、差分情報テーブル記憶部22は、NCビットのビット列から構成される各検出ビット列に対応付けて、差分情報(画素データの階調範囲に応じた離散的な絶対差分量又は相対差分量の情報)が記憶された差分情報テーブルを記憶する。
画素データ復元部20は、復元指示に応じて画像保存部18から復元情報付与合成後画素データを取得し、該取得した復元情報付与合成後画素データに含まれる検出ビット列を抽出し、該抽出した検出ビット列に対応する差分情報を、差分情報テーブル記憶部22に記憶された差分情報テーブルから取得する。
【0142】
更に、画素データ復元部20は、上記取得した差分情報と合成後画素データとから復元対象画素データSを復元する。
具体的に、差分情報が絶対差分量αであれば「S=P+α」を演算して復元対象画素データSを復元する。また、差分情報が相対差分量βであれば「S=P×β」を演算することで復元対象画素データSを復元する。
【0143】
なお、一般的に、合成前の画像は、合成後の画像と比較して暗い画像となるため、差分情報テーブルには、なるべく負の係数(復元時に輝度を減少させる値)を持たせることが望ましい。
ここで、撮像システム200の上記各構成部の機能は、ハードウェアのみ、ソフトウェアのみ、ハードウェアとソフトウェアとの組み合わせのいずれかで実現される。従って、撮像システム200は、ソフトウェアを用いて機能を実現する構成部がある場合に、図示していないが、ソフトウェアを実行するためのプロセッサ、ソフトウェアを記憶するためのROM等の記憶媒体、ソフトウェアの実行に用いるRAM等の記憶媒体、各構成部とのデータの授受を行うためのバスなどを備える。
【0144】
また、上記各構成部は、1つの装置内に全てが含まれる構成(この場合は、撮像装置=撮像システムとなる)としても良いし、撮像部10、SW11、第1〜第3メモリ12〜14、画素データ合成部15、復元対象画像選択部16、復元情報付与部21及び差分情報テーブル記憶部22を1つの装置内で構成(この場合は、撮像装置に対応する)し、画像保存部18、表示部19及び画素データ復元部20は1つ又は複数の装置で構成しても良い。後者の場合は、撮像装置と、画像保存部18、表示部19及び画素データ復元部20とは、有線又は無線で接続する。
【0145】
次に、図13に基づき、本実施の形態の動作を説明する。
ここで、図13は、差分情報テーブルの一例を示す図である。
なお、復元対象画像選択部16までの動作は、上記第1の実施の形態と同様となるので説明を省略する。
以下、復元情報付与部21の動作から説明する。
【0146】
なお、ここでは、画素データはモノクロのデータであるとする。
復元情報付与部21は、復元対象画像選択部16から復元対象画素データ(ここでは、第2画素データとする)が入力され、画素データ合成部15から合成後画素データが入力されると、まず、復元情報生成部21aにおいて、復元対象画素データと、合成後画素データとに基づき差分情報を生成する。
【0147】
例えば、合成後画素データPの画素値が「140」、復元対象画素データSの画素値が「85」であったとすると、絶対差分量αは「α=85−140=−55」となり、相対差分量βは「β=85/140≒61[%]」となる。
次に、復元情報生成部21aは、上記生成した差分情報と、差分情報テーブルの差分情報とを比較して、最も近い値を有する差分情報に対応した検出ビット列を、復元情報として取得する。
【0148】
ここで、差分情報テーブルが、3ビットの検出ビット列に対して、図13に示すような絶対差分量又は相対差分量を有しているとする。
αが「−55」の場合は、図13に示すように、「−64」が最も近い値となっているので、復元情報生成部21aは、差分情報テーブル記憶部22に記憶された差分情報テーブルから、「−64」に対応する検出ビット列「100」を復元情報として取得する。
【0149】
また、βが「61[%]」の場合は、図13に示すように、「50[%]」が最も近い値となっているので、復元情報生成部21aは、差分情報テーブル記憶部22に記憶された差分情報テーブルから、「50[%]」に対応する「101」を復元情報として取得する。
従って、差分情報を絶対差分量αとした場合は「100」が、差分情報を相対差分量βとした場合は「101」が復元情報として、復元情報埋込部21bに出力される。
【0150】
復元情報埋込部21bは、復元情報生成部21aから復元情報が入力されると、合成後画素データ「10001100(2進数)」の下位3ビットを、該入力された復元情報(3ビット)に入れ替える。この具体的な方法は、上記第1の実施の形態と同様となるので説明を省略する。
なお、第1〜第3画素データがカラーデータである場合は、各色の色信号に対応した画素データに対して、上記モノクロデータと同様の処理を行う。具体的に、第1〜第3画素データが、例えば、R、G、Bの三原色に対応する3種類の画素データを含んでいるときに、上記モノクロデータのときと同様に、R、G、B各色の画素データと、合成後画素データにおけるR、G、B各色の画素データとの差分情報を色毎に生成し、該生成した差分情報に対応する検出ビット列(例えば、3ビット)を差分情報テーブルから取得し、該取得した検出ビット列を、合成後画素データにおける各色の画素データの下位3ビットに、同じ色同士でそれぞれ埋め込む。
【0151】
上記一連の処理を、被写体の撮像領域に対応する全画素に対して行うことで、広ダイナミックレンジで且つ復元情報が付与され画像データ(以下、復元情報付与HDR画像データと称す)が生成される。該生成された復元情報付与HDR画像データは、表示部19に出力されると共に、画像保存部18に出力される。
一方、上記のような復元情報付与HDR画像データから復元対象の画像を復元する場合の、画素データ復元部20の動作を説明する。
【0152】
画素データ復元部20は、復元指示が入力されると、復元対象の復元情報付与HDR画像データを画像保存部18を介して記憶媒体から読み出す。
そして、読み出した復元情報付与HDR画像データに基づき、復元情報付与画素データ毎(画素毎)に、復元対象画素データの復元を行う。
復元情報付与画素データの下位3ビットには、差分情報テーブルに対応した検出ビットが埋め込まれているので、画素データ復元部20は、まず検出ビットを抽出する。
【0153】
ここでは、絶対差分量αに対応する検出ビット列「100」が抽出されたとする。
次に、この抽出した検出ビット列「100」を用いて、図13に示すような絶対差分量を有する差分情報テーブルを検索する。これにより、図13に示すように、「100」に対応する絶対差分量「−64」が索出される。
復元情報に対応する絶対差分量αが索出されると、索出された該絶対差分量α「−64」と、合成後画素データP「140」とから、復元対象画素データS「S=P+α=140−64=76」を復元する。
【0154】
一方、相対差分量βに対応する検出ビット列「101」が抽出された場合は、この抽出した検出ビット列「101」を用いて、図13に示すような絶対差分量を有する差分情報テーブルを検索する。これにより、図13に示すように、「101」に対応する相対差分量「50[%]」が索出される。
復元情報に対応する相対差分量βが索出されると、索出された該相対差分量β「50[%]」と、合成後画素データP「140」とから、復元対象画素データS「S=P×β=140×0.5=70」を復元する。
【0155】
以上より、復元対象画素データの画素データと、合成後画素データとの差分情報を生成し、該生成した差分情報に最も近い値の、差分情報テーブルに記憶された差分情報に対応する検出ビット列を復元情報として、合成画素データの下位ビットに埋め込むことで、復元対象の画素データの復元情報を、合成後画素データに付与することができる。
これにより、差分情報テーブルの設定内容次第で、復元対象の画像を精度良く復元できる復元情報を付与できると共に、差分情報によってテーブルを構成することで画素データそのものを用いるよりもテーブルの容量を低減することができる。また、復元情報を合成後画素データの下位ビットに埋め込む構成としたので、復元情報付与合成後画素データを、形式変換等せずにそのまま汎用のアプリケーションなどで使用できる。
【0156】
また、復元情報(検索ビット列)を検索キーとして、差分情報テーブルを検出し、検索キーに対応する差分情報を取得して、該取得した差分情報と、合成後画素データとから復元対象の画素データを復元することができる。
合成画像において、重要な被写体の画像がボケていたりした場合に、復元対象画素データを復元し、その復元データから構成される画像を参照したり、該画像の画像データを用いて識別処理などを行ったりすることができる。
【0157】
上記第2の実施の形態において、復元情報付与部21は、形態1、8、12及び20のいずれか1に記載の復元情報付与手段又は形態19、21及び22のいずれか1に記載の復元情報付与ステップに対応し、画素データ復元部20は、形態15又は17に記載の画素データ復元手段に対応する。
また、上記第2の実施の形態において、撮像システム100における、撮像部10、SW11、第1〜第3メモリ12〜14、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17から構成されるブロックは、形態1、2、3、8、12及び14のいずれか1に記載の撮像装置に対応し、画素データ合成部15、復元対象画像選択部16及び復元情報付与部17から構成されるブロックは、形態20に記載の画像処理装置に対応する。
【0158】
〔第2の実施の形態の変形例〕
次に、図14〜図17に基づき、本発明に係る撮像装置、撮像システム、撮像方法、画像処理装置、画像処理プログラム及び画像処理方法の第2の実施の形態の変形例を説明する。
【0159】
本変形例は、復元情報を生成及び付与する前処理として、復元対象の画像(以下、復元対象画像と称す)の明るさを合成後の画像(以下、合成画像と称す)の明るさに近似する処理を行うことで、差分情報テーブルを構成する絶対差分量α及び相対差分量βの値をより細かい値にした点が上記第2の実施の形態と異なる。
具体的に、本変形例の撮像システム200’は、上記第2の実施の形態の撮像システム200に、上記明るさを近似する処理を行う近似部23を追加し、更に、差分情報テーブル記憶部22に記憶される差分情報テーブルが近似部23の近似内容に応じたものとなっている。
【0160】
以下、上記第1及び第2の実施の形態と同様の構成部には同じ符号を付して説明を適宜省略し、上記第1及び第2の実施の形態と異なる部分を詳細に説明する。
まず、図14に基づき、本実施の形態の撮像システム200’の構成を説明する。
ここで、図14は、撮像システム200’の構成を示すブロック図である。
撮像システム200’は、図14に示すように、撮像部10と、スイッチ(SW)11と、第1〜第3メモリ12〜14と、画素データ合成部15と、復元対象画像選択部16と、復元情報付与部21と、差分情報テーブル記憶部22と、復元対象画像の明るさを合成画像の明るさに近似させる近似部23と、画像保存部18と、表示部19と、画素データ復元部20と、を含んで構成される。
【0161】
近似部23は、復元対象画像選択部16から入力された復元対象画素データを補正することで画像の入出力特性を調整し、復元対象画像の明るさを合成画像の明るさに近似させる。
本実施の形態において、近似部23は、第1の明るさ近似処理として、復元対象画素データから生成される復元対象画像のガンマ値を調整することで、復元対象画像の明るさを合成画像の明るさに近似させる処理を実行することができる。
【0162】
更に、近似部23は、第2の明るさ近似処理として、復元対象画素データから生成される復元対象画像のゲインを調整することで、復元対象画像の明るさを合成画像の明るさに近似させる処理を実行することができる。
ここで、撮像システム200’の上記各構成部の機能は、ハードウェアのみ、ソフトウェアのみ、ハードウェアとソフトウェアとの組み合わせのいずれかで実現される。従って、撮像システム200’は、ソフトウェアを用いて機能を実現する構成部がある場合に、図示していないが、ソフトウェアを実行するためのプロセッサ、ソフトウェアを記憶するためのROM等の記憶媒体、ソフトウェアの実行に用いるRAM等の記憶媒体、各構成部とのデータの授受を行うためのバスなどを備える。
【0163】
また、上記各構成部は、1つの装置内に全てが含まれる構成(この場合は、撮像装置=撮像システムとなる)としても良いし、撮像部10、SW11、第1〜第3メモリ12〜14、画素データ合成部15、復元対象画像選択部16、復元情報付与部21、差分情報テーブル記憶部22及び近似部23を1つの装置内で構成(この場合は、撮像装置に対応する)し、画像保存部18、表示部19及び画素データ復元部20は1つ又は複数の装置で構成しても良い。後者の場合は、撮像装置と、画像保存部18、表示部19及び画素データ復元部20とは、有線又は無線で接続する。また、後者の場合に、差分情報テーブル記憶部22を別々に有する構成としても良い。
【0164】
次に、図15に基づき、近似部23における第1の明るさ近似処理の流れを説明する。なお、第1の明るさ近似処理は、プロセッサによって、ROM等の記憶媒体に記憶された専用のプログラムを実行することで実現される処理である。
ここで、図15は、第1の明るさ近似処理を示すフローチャートである。
第1の明るさ近似処理が開始されると、図15に示すように、まずステップS100に移行し、近似部23において、暫定ガンマに対応する変数γTに「0.1」を代入して、ステップS102に移行する。
【0165】
ステップS102では、近似部23において、最小値に対応する変数minに、最小値のとり得る最大値(最大階調値×画素数)よりも大きい値を代入して、ステップS104に移行する。
ステップS104では、近似部23において、復元対象画像の画像データに対する、ガンマ調整後の復元対象の画素値に対応する変数S’(x,y)に、ガンマ調整前の復元対象の画素値S(x,y)をγT乗した値(SγT)を代入して、ステップS106に移行する。
【0166】
ステップS106では、近似部23において、復元対象画像の画像データに対する、ガンマ調整後の復元対象の画素値に対応した変数S’(x,y)の値と、合成後画素データP(x,y)との差分値の絶対値の合計値を算出し、該算出値を差分量に対応する変数dqに代入して、ステップS108に移行する。
ステップS108では、近似部23において、差分量に対応する変数dqの値が、変数minの値よりも小さいか否かを判定し、小さいと判定したときは、ステップS110に移行し、そうでない場合(No)は、ステップS114に移行する。
【0167】
ステップS110に移行した場合は、近似部23において、変数minに変数dqの値を代入して、ステップS112に移行する。
ステップS112では、近似部23において、ガンマに対応する変数γに、暫定ガンマに対応する変数γTの値を代入して、ステップS114に移行する。
ステップS114では、近似部23において、変数γTの値が「10」になったか否かを判定し、「10」になったと判定したときは、ステップS116に移行し、そうでない場合(No)は、ステップS118に移行する。
【0168】
ステップS116に移行した場合は、近似部23において、ガンマ調整後の復元対象の画素値に対応する変数S’(x,y)に、ガンマ調整前の復元対象の画素値S(x,y)の値を変数γの値乗した値(Sγ)を代入して、処理を終了する。
一方、ステップS118に移行した場合は、近似部23において、変数γTに、現在のγTの値に0.1を加算した値を代入して、ステップS104に移行する。
【0169】
次に、図16に基づき、近似部23における第2の明るさ近似処理の流れを説明する。なお、第2の明るさ近似処理は、プロセッサによって、ROM等の記憶媒体に記憶された専用のプログラムを実行することで実現される処理である。
ここで、図16は、第2の明るさ近似処理を示すフローチャートである。
第2の明るさ近似処理が開始されると、図16に示すように、まずステップS200に移行し、近似部23において、暫定ゲインに対応する変数GTに「0.1」を代入して、ステップS202に移行する。
【0170】
ステップS202では、近似部23において、最小値に対応する変数minに、最小値のとり得る最大値(最大階調値×画素数)よりも大きい値を代入して、ステップS204に移行する。
ステップS204では、近似部23において、復元対象画像の画像データに対する、ガンマ調整後の復元対象の画素値に対応する変数S’(x,y)に、ゲイン調整前の復元対象の画素値S(x,y)に変数GTの値を乗じた値(S×GT)を代入して、ステップS206に移行する。
【0171】
ステップS206では、近似部23において、復元対象画像の画像データに対する、ゲイン調整後の復元対象の画素値に対応した変数S’(x,y)の値と、合成後画素データP(x,y)との差分値の絶対値の合計値を算出し、該算出値を差分量に対応する変数dqに代入して、ステップS208に移行する。
ステップS208では、近似部23において、変数dqの値が、変数minの値よりも小さいか否かを判定し、小さいと判定したときは、ステップS210に移行し、そうでない場合(No)は、ステップS214に移行する。
【0172】
ステップS210に移行した場合は、近似部23において、変数minに変数dqの値を代入して、ステップS212に移行する。
ステップS212では、近似部23において、ゲインに対応する変数Gに、暫定ゲインに対応する変数GTの値を代入して、ステップS214に移行する。
ステップS214では、近似部23において、変数GTの値が「10」になったか否かを判定し、「10」になったと判定したときは、ステップS216に移行し、そうでない場合(No)は、ステップS218に移行する。
【0173】
ステップS216に移行した場合は、近似部23において、ゲイン調整後の復元対象の画素値に対応する変数S’(x,y)に、ゲイン調整前の復元対象の画素値S(x,y)の値にゲインに対応する変数Gの値を乗じた値(S×G)を代入して、処理を終了する。
一方、ステップS218に移行した場合は、近似部23において、変数GTに、現在のGTの値に0.1を加算した値を代入して、ステップS204に移行する。
【0174】
次に、図17に基づき、本実施の形態の動作を説明する。
ここで、図17は、明るさ近似処理を前提にした差分情報テーブルの一例を示す図である。
ここで、復元対象画像選択部16までの動作は、上記第1の実施の形態と同様となるので説明を省略する。
【0175】
以下、近似部23の動作から説明する。
まず、第1の近似処理の実際の動作を説明する。
ここでは、画素データが8ビットの階調値(0〜255)を有することとする。
近似部23は、画素データ合成部15から合成後画素データが入力され、復元対象画像選択部16から復元対象画素データが入力されると、暫定ガンマに対応する変数γTに初期値「0.1」を代入し(ステップS100)、最小値に対応する変数minに、初期値として、ここでは「255×復元対象画像の画素数」よりも大きな値を代入する(ステップS102)。
【0176】
次に、復元対象画像の各復元対象画素データS(x,y)の値(輝度値)をγTの値乗した値(255×(S(x,y)/255)0.1)を算出し、該算出値を、ガンマ調整後の復元対象画素データに対応する変数S’(x,y)に代入する(ステップS104)。この処理は、復元対象画像の全画素に対して行う。
復元対象画像の全画素に対する現在の暫定ガンマによる調整後の画素値が算出されると、次に、復元対象画像のガンマ調整後の復元対象画素データS’(x,y)の値と、合成後画素データP(x,y)の値との差分値を算出する。具体的に、同じ画素位置の両者の画素値の差分値(S’(x,y)−P(x,y))を全画素分算出する。そして、これら全画素分の差分値の絶対値の総和(合計)を算出し、該算出値を差分量として変数dqに代入する(ステップS106)。
【0177】
そして、変数dqの値が、変数minの値よりも小さいか否かを判定する(ステップS108)。現時点では、変数minに初期値が代入されているので、必ず変数dqの値が小さくなる(ステップS108の「Yes」の分岐)。従って、変数minに、変数dqの値を代入し(ステップS110)、変数γに現在の変数γTの値「0.1」を代入する(ステップS112)。
【0178】
次に、変数γTの値が「10」になったか否かを判定する(ステップS114)。現時点では、変数γTの値は「0.1」となっているので(ステップS114の「No」の分岐)、変数γTの値を0.1増やす(ステップS118)。この時点で、変数γの値は「0.1」、変数γTの値は「0.2」となる。
上記一連の処理を繰り返し行うことで、1回前の差分量(変数minの値)と、今回のガンマ調整後の差分量(変数dqの値)との大小比較が繰り返し行われ、今回の差分量の方が小さい間は変数minの値が今回の差分量の値に更新されると共に、変数γの値が変数γTの値に更新される。一方、今回の差分量が1回前の差分量以上となった場合は、更新処理を行わずに、変数γTの値が10になるまでループを繰り返し、変数γTの値が10になると、変数S’(x,y)に、復元対象画素データS(x,y)の値を変数γの値乗した値(S(x,y)γ)を代入して処理を終了する(ステップS116)。
【0179】
これにより、復元対象画像の全画素に対応する復元対象画素データが、調整後のガンマ値で補正される。
つまり、上記一連の処理を繰り返し行うことによって、ガンマ値を、復元対象画像の輝度値と合成画像の輝度値との差分値の絶対値の合計が最小値(できるだけ小さい値)となる値に調整し、この調整後のガンマ値で復元対象画素データを補正することで、復元対象画像の明るさを合成画像の明るさに近似させる。
【0180】
次に、第2の近似処理の動作について説明する。
近似部23は、画素データ合成部15から合成後画素データが入力され、復元対象画像選択部16から復元対象画素データが入力されると、暫定ゲインに対応する変数GTに初期値「0.1」を代入し(ステップS200)、最小値に対応する変数minに、初期値として、ここでは「255×復元対象画像の画素数」よりも大きな値を代入する(ステップS202)。
【0181】
次に、復元対象画像の各復元対象画素データS(x,y)の値(輝度値)を変数GTの値で乗じた値(S(x,y)×0.1)を算出し、該算出値を、ゲイン調整後の復元対象画素データに対応する変数S’(x,y)に代入する(ステップS204)。この処理は、復元対象画像の全画素に対して行う。
復元対象画像の全画素に対する現在の暫定ゲインによる調整後の画素値が算出されると、次に、復元対象画像のゲイン調整後の復元対象画素データS’(x,y)の値と、合成後画素データP(x,y)の値との差分値を算出する。そして、全画素分の差分値の絶対値の総和(合計)を算出し、該算出値を差分量として変数dqに代入する(ステップS206)。
【0182】
そして、変数dqの値が、変数minの値よりも小さいか否かを判定する(ステップS208)。現時点では、変数minに初期値が代入されているので、必ず変数dqの値が小さくなる(ステップS208の「Yes」の分岐)。従って、変数minに、変数dqの値を代入し(ステップS210)、変数Gに現在の変数GTの値「0.1」を代入する(ステップS212)。
【0183】
次に、変数GTの値が「10」になったか否かを判定する(ステップS214)。現時点では、変数GTの値は「0.1」となっているので(ステップS214の「No」の分岐)、変数GTの値を0.1増やす(ステップS218)。この時点で、変数Gの値は「0.1」、変数GTの値は「0.2」となる。
上記一連の処理を繰り返し行うことで、1回前の差分量(変数minの値)と、今回のゲイン調整後の差分量(変数dqの値)との大小比較が繰り返し行われ、今回の差分量の方が小さい間は変数minの値が今回の差分量の値に更新される共に、変数Gの値が変数GTの値に更新される。一方、今回の差分量が1回前の差分量以上となった場合は、更新処理を行わずに、変数GTの値が10になるまでループを繰り返し、変数GTの値が10になると、変数S’(x,y)に、復元対象画素データS(x,y)の値を変数Gの値で乗じた値(S(x,y)×G)を代入して処理を終了する(ステップS216)。
【0184】
これにより、復元対象画像の全画素に対応する復元対象画素データが、調整後のゲインで補正される。
つまり、上記一連の処理を繰り返し行うことによって、ゲインを、復元対象画像の輝度値と合成画像の輝度値との差分値の絶対値の合計が最小値(できるだけ小さい値)となる値に調整し、この調整後のゲインで復元対象画素データを補正することで、復元対象画像の明るさを合成画像の明るさに近似させる。
【0185】
上記第1の近似処理又は第2の近似処理のいずれかによって、復元対象画像の明るさを合成画像の明るさに近似させる前処理を実行することで、この復元対象画素データS’と合成後画素データPとの差分値(S’−P)は、前処理をしない場合の差分値と比較して小さな値となる。従って、差分情報テーブルの値を、図17に示すように、上記第2の実施の形態における図13に示す値よりも細かく(各値を小さく)することができる。
【0186】
例えば、合成後画素データPの画素値が「140」、復元対象画素データSの画素値が「85」であったとすると、上記前処理を行わない場合は、絶対差分量αは「α=85−140=−55」となり、相対差分量βは「β=85/140≒61[%]」となる。
一方、上記前処理によって、調整後のガンマ値が「0.6」になったとすると、復元対象画素データSの画素値「85」は、「S’=255×(85/255)0.6≒132」と補正されることになる。従って、絶対差分量αは「α=132−140=−8」となり、相対差分量βは「β=132/140≒94[%]」となる。
【0187】
従って、復元情報生成部21aは、差分情報を絶対差分量αにした場合は、図17に示す値を有する差分情報テーブルから、絶対差分量α「−8」に最も近い「0」に対応する検出ビット列「011」を取得する。
また、差分情報を相対差分量βにした場合は、図17に示す値を有する差分情報テーブルから、相対差分量β「94[%]」と同じ値の「94[%]」に対応する検出ビット列「100」を取得する。
【0188】
以降の処理は、上記第2の実施の形態と同様となるので説明を省略する。
以上より、本変形例の撮像システム200’は、近似部23において、復元対象画素データから生成される復元対象画像の明るさを、合成後画素データから生成される合成画像の明るさに近似することができる。
また、明るさ近似処理に対応する差分情報テーブルの値を用いて、復元情報の生成及び付与を行うことができる。
【0189】
これにより、復元対象画素データと合成後画素データとの差を小さくできるので、差分情報テーブルの値を細かい値にすることができると共に、テーブルの値同士の差も小さくできるので、より高精度に復元対象画像の復元をすることができる差分情報が得られる復元情報を付与することができる。
上記第2の実施の形態の変形例において、近似部23は、形態9、10及び11のいずれか1に記載の近似手段に対応する。
【0190】
なお、上記各実施の形態並びに各変形例においては、撮像部10を、CCDイメージセンサを有する構成としたが、これに限らず、各画素がCMOS素子で構成されるCMOSイメージセンサを有する構成など他の構成としても良い。CMOSイメージセンサを有する構成であれば、各画素から非破壊で画素信号を読み出すことができるので、1フレームの期間において、複数種類の露光時間に対応する画素信号を読み出すことができる。これにより、例えば、ローリングシャッタ方式の電子シャッタ機能を有するものであれば、画像のライン単位で順次露光時間の異なる画素信号を読み出すことができるようになるため、各露光時間の画素データを全画素分取得してから処理を行うのと比較して、上記各処理を高速に行うことができる。
【0191】
また、上記第1の実施の形態の変形例2においては、各画素データの周波数成分として、エッジ量を抽出する構成としたが、これに限らず、FFTを用いて周波数成分を抽出するなど他の構成としても良い。
また、上記各実施の形態並びに各変形例においては、輝度ヒストグラムや周波数成分に基づき、復元対象の画素データを選択する構成としたが、これに限らず、予め決められた露光時間に対応する画素データを復元対象として選択する構成としても良いし、全ての露光時間に対応する画素データを復元対象として選択する構成としても良い。
【0192】
また、上記各実施の形態並びに各変形例においては、露光時間T1、T2、T3を、それぞれ15H、100H、500Hとしたが、これに限らず、T1<T2<T3の関係が保たれれば、他の露光時間としても良い。また、この露光時間の設定をユーザが任意に設定できる構成としても良いし、被写体の種類や撮像環境に応じて動的に変化させる構成としても良い。
【図面の簡単な説明】
【0193】
【図1】本発明に係る撮像システム100の構成を示すブロック図である。
【図2】復元対象画像選択部16の詳細な構成を示すブロック図である。
【図3】復元情報付与部17の詳細な構成を示すブロック図である。
【図4】直線合成した合成後画素データと、ガンマ補正によってハイライト部を圧縮した合成後画素データとの関係を示す図である。
【図5】(a)〜(d)は、理想形のヒストグラムと、露光時間T1〜T3に対応する画像のヒストグラムとの一例を示す図である。
【図6】復元情報の生成処理及び復元情報の埋込処理の概念の一例を示す図である。
【図7】(a)〜(f)は、画素データ合成処理、復元対象画像選択処理、復元情報の埋込処理、復元対象画像の復元処理を含む一連の処理の流れを示す図である。
【図8】復元対象画像選択部16’の詳細な構成を示すブロック図である。
【図9】(a)は、ハイパスフィルタの一例を示す図であり、(b)は処理対象画素とその周辺8画素の画素値の一例を示す図である。
【図10】図9(a)のハイパスフィルタでフィルタ処理後の各露光時間の画像及び合成後の画像の一例を示す図である。
【図11】撮像システム200の構成を示すブロック図である。
【図12】復元情報付与部21の詳細な構成を示すブロック図である。
【図13】差分情報テーブルの一例を示す図である。
【図14】撮像システム200’の構成を示すブロック図である。
【図15】第1の明るさ近似処理を示すフローチャートである。
【図16】第2の明るさ近似処理を示すフローチャートである。
【図17】明るさ近似処理を前提にした差分情報テーブルの一例を示す図である。
【符号の説明】
【0194】
100,200,200’…撮像システム、10…撮像部、11…SW、12…第1メモリ、13…第2メモリ、14…第3メモリ、15…画素データ合成部、16,16’…復元対象画像選択部、17,21…復元情報付与部、18…画像保存部、19…表示部、20…画素データ復元部、22…差分情報テーブル記憶部、23…近似部、16a…ヒストグラム生成部、16b,16e…比較部、16c…画素データ選択部、17a,21a…復元情報生成部、17b,21b…復元情報埋込部

【特許請求の範囲】
【請求項1】
受光した光を電荷に変換して蓄積する複数の光電変換素子をマトリックス状に配列した構成の光電変換部と、前記光電変換素子の露光時間を制御する機能とを備えた撮像装置であって、
前記光電変換素子の構成する各画素から、複数種類の露光時間で露光された時の前記複数種類の露光時間に対応する画素信号を読み出す画素信号読出手段と、
前記画素信号読出手段で読み出した、前記複数種類の露光時間に対応する画素信号のデータである画素データを前記画素毎に合成する画素データ合成手段と、
前記画素データ合成手段で合成後の画素データに、前記複数種類の露光時間における所定の露光時間に対応する前記合成前の画素データを復元する際に用いる復元情報を付与する復元情報付与手段と、を備えることを特徴とする撮像装置。
【請求項2】
前記復元情報は、前記合成前の画素データが有する、単色の輝度情報と色差情報と色信号情報とのうち少なくともいずれか1つを含むことを特徴とする請求項1に記載の撮像装置。
【請求項3】
前記復元情報は、前記合成前の画素データが有する輝度情報と前記合成後の画素データが有する輝度情報との差分値の情報、前記合成前の画素データが有する色差情報と前記合成後の画素データが有する色差情報との差分値の情報、及び前記合成前の画素データが有する色信号情報と前記合成後の画素データが有する色信号情報との差分値の情報のうち少なくともいずれか1つを含むことを特徴とする請求項1に記載の撮像装置。
【請求項4】
前記復元情報付与手段は、前記合成後の画素データにおける下位のNCビットのビット列を、前記復元情報のNビットのビット列を圧縮したNCビットのビット列(NC<N)に入れ替えることを特徴とする請求項1乃至請求項3のいずれか1項に記載の撮像装置。
【請求項5】
前記復元情報付与手段は、前記画素データが複数色の色信号情報を有するときに、前記合成前の画素データが有する前記複数色の色信号情報を復元する際に用いる前記複数色の各色に対応する復元情報を、前記合成後の画素データが有する各色の色信号情報にそれぞれ付与することを特徴とする請求項1乃至請求項4のいずれか1項に記載の撮像装置。
【請求項6】
前記復元情報付与手段は、前記画素データが複数色の色信号情報を含むときに、前記合成前の画素データの前記複数色のうちのいずれか一色の色信号情報のビット列を前記複数色の色数分に分割し、前記合成後の各色の画素データの下位側のビット列を、前記分割した各ビット列に入れ替えることで、前記合成後の画素データに前記復元情報を付与することを特徴とする請求項1乃至請求項3のいずれか1項に記載の撮像装置。
【請求項7】
前記復元情報付与手段は、前記画素データがR(Red)、G(Green)、B(Blue)の色信号情報を有するときに、前記合成前の画素データが有する色信号情報を、輝度情報及び色差情報に分け、該輝度情報を3つに分割し、前記合成後の各色の画素データの下位側のビット列を、前記分割した各ビット列に入れ替えることで、前記合成後の画素データに前記復元情報を付与することを特徴とする請求項1乃至請求項3のいずれか1項に記載の撮像装置。
【請求項8】
前記画素データのビット数よりも少ないビット数Lで表現される各ビット列に対応付けて、それぞれ異なる数値の前記差分値の情報を記憶した差分情報テーブルを備え、
前記復元情報付与手段は、前記合成後の画素データの下位側のLビットを、前記差分情報テーブルにおける、前記合成前の画素データの前記復元情報に最も近い差分値の情報に対応付けられたビット列に入れ替えることを特徴とする請求項3に記載の撮像装置。
【請求項9】
前記合成前の画素データから生成される画像の明るさの情報を、前記合成後の画素データから生成される画像の明るさの情報に近似する近似手段を備えることを特徴とする請求項3乃至請求項8のいずれか1項に記載の撮像装置。
【請求項10】
前記近似手段は、前記合成前の画素データから生成される画像のガンマ値を調整することで、該画像の明るさの情報を、前記合成後の画素データから生成される画像の明るさの情報に近似することを特徴とする請求項9に記載の撮像装置。
【請求項11】
前記近似手段は、前記合成前の画素データから生成される画像のゲインを調整することで、該画像の明るさの情報を、前記合成後の画素データから生成される画像の明るさの情報に近似することを特徴とする請求項9に記載の撮像装置。
【請求項12】
前記複数種類の露光時間に対応する画素データに基づき、該複数種類の露光時間に対応する画素データの中から、復元対象とする露光時間の画素データを選択する復元画像選択手段を備え、
前記復元情報付与手段は、前記復元画像選択手段で決定された前記復元対象の画素データの復元情報を、前記合成後の画素データに付与することを特徴とする請求項1乃至請求項11のいずれか1項に記載の撮像装置。
【請求項13】
前記復元画像選択手段は、前記合成前の画素データから構成される露光時間毎の画像の輝度情報のヒストグラムに基づき、前記復元対象とする露光時間に対応する画素データを選択することを特徴とする請求項12に記載の撮像装置。
【請求項14】
前記復元画像選択手段は、前記合成前の画素データから構成される露光時間毎の画像の周波数情報に基づき、前記復元対象とする露光時間に対応する画素データを選択することを特徴とする請求項12に記載の撮像装置。
【請求項15】
請求項1乃至請求項14のいずれか1項に記載の撮像装置と、
前記合成後の画素データに付与された復元情報に基づき、前記合成前の画素データを復元する画素データ復元手段と、を備えることを特徴とする撮像システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2009−17336(P2009−17336A)
【公開日】平成21年1月22日(2009.1.22)
【国際特許分類】
【出願番号】特願2007−178139(P2007−178139)
【出願日】平成19年7月6日(2007.7.6)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】