説明

日射調整体

【課題】 断熱性と視認性とを確保し、また、乱反射を防止し、日射の透過性を有しつつ太陽の高度に応じて日射の強さを減少させる日射調整体を提供する。
【解決手段】 第一の透明板部材11と、この第一の透明板部材11と向かい合わせに配置された第二の透明板部材12と、第一の透明板部材11及び第二の透明板部材12より低い透過率を有し、第一の透明板部材11と第二の透明板部材12との間に複数の空間を形成するように設けられる仕切り壁20Aと、を備え、仕切り壁20Aが、第一の透明板部材11と第二の透明板部材12とに直交するように設けられていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、日射を調節する日射調整体に関する。
【背景技術】
【0002】
一般に、太陽光(以下、「日射」という。)が窓のガラスを透過して室内に入り込むと、室内居住者が日射に対して眩しさを感じ、また、その日射によって室内が熱せられて劣悪な温熱環境となり、建物に対する冷房負荷などの悪影響をもたらす(以下、これらを総称して「室内劣悪環境」という。)。これら問題を解決するために、日射を遮りつつ断熱する日射調整体の一つである複層窓が提案されている(例えば、特許文献1参照)。
この複層窓は、外側から第一の透明板状体、中空層、紫外線透過防止層、第二の透明板状体、有機材料溶液、第三の透明板状体の順に積層して構成されている。
ここで、中空層は断熱を行い、また、有機材料溶液は、昇温すると白濁化する性質を有していることから、日射によって温度が上昇すると、自発的に白濁して日射及び日射の熱エネルギを遮断する。つまり、複層窓は、日射によって生じる室内の温度上昇を防止することができる。
また、低温時には有機材料溶液は冷やされるので白濁が解消されて透明度を増すようになっている。これにより、日射及び日射の熱エネルギを室内に取り込むことができる。
【0003】
このほかに、向かい合う2枚の透明板状体の間に中空のガラス管を並べて配置し、このガラス管と透明板状体との間にサーモトロピック水溶液を充填した日射調整体が提案されている(例えば、特許文献2参照)。この日射調整体は、ガラス管の内部が真空状態となっているので断熱性を高くすることができ、また、サーモトロピック水溶液は、昇温すると白濁化する性質を有していることから、日射によって温度が上昇すると白濁して、日射及び日射の熱エネルギを遮断する。また、低温時には、サーモトロピック水溶液が冷やされ、白濁が解消されて透明度を増すようになっている。これにより、日射及び日射の熱エネルギを室内に取り込むことができる。
【0004】
また、向かい合う透明板状体の間にアルミニウム製のハニカム構造を設けた日射調整体も提案されている(例えば、非特許文献1参照)。このハニカム構造を用いると、ハニカム構造の各コアで断熱を行い、太陽の位置に対応してハニカム構造で日射を遮断することができるようになっている。また、ハニカム構造の壁部で遮へいされた日射は、その壁部で反射して室内に入り込んで明るく室内を照らすことができるようにもなっている。これにより、室内への熱負荷となる過度の日射を遮断し、また、室内の照度の向上に寄与する拡散性の高い日射を室内に取り込むことができる。
【特許文献1】特開平7−232938号公報(段落0007〜0024、図1)
【特許文献2】特開平9−124348号公報(段落0008〜0017、図1)
【非特許文献1】Figla Co.,Ltd.、“ECOSS−ハニカム”、[online ]、平成13年2月21日、Figla Co.,Ltd.、[平成16年6月14日検索]、インターネット<URL:http://www.figla.co.jp/eco#hc.htm>
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、日射を遮断する材料として有機材料溶液を用いた場合には、日射が有する紫外線を除去しなくてはならず、このような紫外線透過防止層が劣化した場合は、紫外線により有機材料溶液が白濁してしまい、日射調整体の視認性が悪くなるという問題がある。
【0006】
また、ガラス管を並べて配置する場合は、内部が真空となるガラス管で日射調整体の断熱性が向上する一方で、そのガラス管自体により日射調整体の視認性が悪くなるという問題がある。
【0007】
また、断熱しつつ日射を遮断する材料としてアルミニウム製のハニカム構造を用いた場合は、ハニカム構造の壁部で日射が乱反射することから、室内居住者が眩しさを感じるという問題がある。また、ハニカム構造にアルミニウムを用いると、そのアルミニウムの熱伝導によって熱貫流率が低下するという問題がある。さらに、ハニカム構造の壁部によって直接室内に入射しようとする日射を防いだ場合は、アルミニウムは日射の透過性がないので、昼間の日射の導入量が、アルミニウム壁部に入射せずに直接室内に入射される分と、ハニカム構造の壁部の反射による日射の室内への入射の分のみに限定されるという課題もある。
【0008】
そこで、本発明では、前記した問題を解決し、断熱性と視認性とを確保し、また、乱反射を防止し、日射の透過性を有しつつ太陽の高度に応じて日射の強さを減少させる日射調整体を提供することを課題とする。
【課題を解決するための手段】
【0009】
前記課題を決するため、請求項1に記載の発明は、第一の透明板部材と、この第一の透明板部材と向かい合わせに配置された第二の透明板部材と、前記第一の透明板部材及び前記第二の透明板部材より低い透過率を有し、前記第一の透明板部材と前記第二の透明板部材との間に複数の空間を形成するように設けられる日射透過性を有する仕切り壁と、を備え、前記仕切り壁が、前記第一の透明板部材と前記第二の透明板部材とに直交するように設けられていることを特徴とする日射調整体である。
【0010】
このように、第一の透明板部材と第二の透明板部材との間に設けられる仕切り壁が第一の透明板部材と第二の透明板部材とに直交し、第一の透明板部材より低い透過率を有して形成されているので、所定の角度以上の入射角度で入射した日射の強さを減少させることができるようになっている。
また、仕切り壁の反射率が低いので仕切り壁の入射面での乱反射を防止することができる。
さらに、仕切り壁によって空間(以下、「コア」という。)が形成され、仕切り壁の面は視線方向にほぼ平行であるので視認性が良く、また、仕切り壁に透過性があるので室内の開放感が高く、また、当該コアによって空気が対流するのを抑制するので断熱性を確保することができるようになっている。
【0011】
また、請求項2に記載の発明は、第一の透明板部材と、この第一の透明板部材と向かい合わせに配置された第二の透明板部材と、前記第一の透明板部材及び前記第二の透明板部材より低い透過率を有し、前記第一の透明板部材と前記第二の透明板部材との間に複数の空間を形成するように設けられる日射透過性を有する仕切り壁と、を備え、前記仕切り壁が、前記第一の透明板部材及び前記第二の透明板部材に対して傾斜して設けられていることを特徴とする日射調整体である。
【0012】
このように、第一の透明板部材と第二の透明板部材との間に設けられる仕切り壁が第一の透明板部材及び第二の透明板部材に対して傾斜し、第一の透明板部材より低い透過率を有して形成されているので、入射した日射の強さを減少させることができるようになっている。
また、日射又は日射の一部が仕切り壁に入射した場合に、この日射又は日射の一部が従来のアルミニウムに比べて反射率が低い仕切り壁によって拡散反射、吸収、透過されるので仕切り壁の入射面での乱反射を防止することができる。
さらに、仕切り壁の面は視線方向にほぼ平行であるので視認性が良く、当該空間(コア)内で空気が対流することを抑制するので断熱性を確保することができるようになっている。
【0013】
また、請求項3に記載の発明は、請求項1又は請求項2に記載の発明であって、前記仕切り壁がハニカム構造となっていることを特徴とする請求項1又は請求項2に記載の日射調整体である。このように、仕切り壁がハニカム構造となっていることにより、断熱性を確保することができ、日射調整体の強度を高めるようになっている。
【発明の効果】
【0014】
このような日射調整体によれば、仕切り壁が第一の透明板部材及び第二の透明板部材より低い透過率を有しているので、室内への熱負荷となる過度の日射の強さを減少させつつ、室内の照度の向上に寄与する拡散性の高い日射の導入量を多くすることができ、また、仕切り壁の反射率が低いので仕切り壁に日射が入射しても当該仕切り壁の入射面での乱反射を防止することができる。
また、コアを形成する仕切り壁が視線方向にほぼ平行であるので視認性の確保ができ、また、仕切り壁に透過性があるので室内の開放感が高く、この各コアによって空気が対流することを抑制するので断熱性を確保することができる。
また、仕切り壁を第一の透明板部材と第二の透明板部材とに直交して設けられているので、所定の角度以上の入射角度で入射する日射の強さを減少させることができる。
また、仕切り壁を傾斜させたことによって、仕切り壁に入射する日射の比率を高めることができるので、仕切り壁によって吸収・拡散反射される日射量が多くなり、室内に入射する日射の強さを効率よく減少させることができる。
さらに、仕切り壁がハニカム構造となっていることにより、日射調整体の強度が向上し、断熱性を確保することができる。
【発明を実施するための最良の形態】
【0015】
本発明を実施するための最良の一形態(以下「実施形態」という)について、図面を参照して詳細に説明する。
なお、説明において、同一要素には同一符号を用い、重複する説明を省略する。
また、各実施形態において、日射が差し込む側を「外側」、日射が透過した側を「内側(以下、「室内」という場合がある。)」とする。
また、仕切り壁が平面視六角形となるハニカム構造である場合を例示する。
さらに、各実施形態で説明する建物は、一般的な一戸建の建物とする。
【0016】
(第一の実施形態)
本発明の第一の実施形態について、適宜図面を参照しながら詳細に説明する。図1(a)は本発明の第一の実施形態に係る日射調整体の部分断面図であり、図1(b)は本発明の第一の実施形態に係る日射調整体の対流状態を示す状態図である。図2は本発明の第一の実施形態に係る日射調整体の仕切り壁の一例を示す部分斜視図である。図3(a)は本発明の第一の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、図3(b)は「大きい入射角度」で日射を入射した場合を示す概略図である。
【0017】
本発明の日射調整体1は、主として建物の窓に用いられるものであって、日射調整体1を備えた窓に日射が差し込んだ場合に、太陽の高度が高い夏季には建物内の温度を日射の熱(日射熱)によって上昇させないように、また、建物内の居住者が日射による眩しさを感じないようにするために、さらに、建物内から外側が視認できるように、差し込む日射の一部を透過させ、吸収・拡散反射しながら室内に入射して冷房負荷となる日射の強さを減少させるものである。
この日射調整体1は、図1に示すように、外側から順番に、第一の透明板部材11、ハニカム構造となっている仕切り壁20A、第二の透明板部材12を積層して構成したものである。
【0018】
第一の透明板部材11は、図1(a)に示すように、光を透過する部材、例えば透明のガラスからなり、差し込んだ日射をそのまま透過でき、視認性を損なわないようになっている。つまり、第一の透明板部材11を介して対象物を見たときに、この対象物が鮮明に認識できる程度に透明な状態となっている。言い換えれば、第一の透明板部材11は、曇りガラスや擦りガラスのような半透明の状態ではない。なお、視認性を損なわないものであれば、無色透明のものに限らず、有色透明のものであってもよい。
なお、第二の透明板部材12についても同様である。
第二の透明板部材12は、第一の透明板部材11と向かい合わせに配置されている。
【0019】
仕切り壁20Aは、図1(a)に示すように、複数の壁部21,21・・・によってハニカム構造を形成し、また、この各壁部21が第一の透明板部材11及び第二の透明板部材12の透過率よりも低い透過率となっており、透過する日射の強さを減少させることができるようになっている。つまり、透過率が0(ゼロ)ではなく第一の透明板部材11と第二の透明板部材12よりも低くなっている。また、仕切り壁20Aの各壁部21は、第一の透明板部材11及び第二の透明板部材12と直交する向きに設けられている。
この仕切り壁20Aは、図2に示すように、第一の透明板部材11と第二の透明板部材12との間に配置されており、その壁部21が第一の透明板部材11と第二の透明板部材12とで形成している間隔(以下、「ハニカム厚さa」という。)と同じ厚さで、かつ、平面視六角形となる各コアの並行する2つの壁部21,21同士が所定の間隔(以下、「ハニカム径b」という。)となるように形成されている。
【0020】
また、仕切り壁20Aの壁部21の透過率は、日射遮蔽性能及び眩しさ低減性能を重視する場合は0.30〜0.02が好ましい。
これは、透過率が0.30よりも高い場合は、日射を透過させすぎてしまい、眩しさを感じやすくなってしまうからであり、透過率が0.02よりも低い場合は、日射が透過しにくくなり、昼間の日射の導入量が少なくなってしまうからである。
透過率が0.30よりも高い透過率を持つ仕切り壁であっても、仕切り壁20Aによって日射が拡散するので、直接的な日射による眩しさを低減する効果がある。また、仕切り壁20A面と視線方向の角度が所定の角度以上となる場合は、日射調整体1を介して明瞭な視認性が確保されないものの、透過率が0.90程度の場合では、ある程度の輪郭や色を認識できる場合もあるので、室内の開放感を得ることができる。
なお、透過率は、以下の式1で表される。
透過率=(壁部21を透過した日射の強さ)/(壁部21を透過する前の日射の強さ)・・・(式1)
【0021】
ここで、ハニカム厚さ(中空層厚さ)a及びハニカム径bについて説明する。
ハニカム厚さaとハニカム径bとの関係は、以下の式2によって規定される。
ハニカム厚さa×1/2 ≦ハニカム径b≦ ハニカム厚さa×2・・・(式2)
これは、ハニカム径bが「ハニカム厚さa×1/2」より小さいと視認性が悪くなり、ハニカム厚さaが16mm以上の場合にハニカム径bが「ハニカム厚さa×2」より大きいと、壁部21を透過する日射量がすくなくなるからである。
【0022】
ここで、式2の関係を有した範囲で、ハニカム径bは仕切り壁20Aの各コア内の空気の対流抑制効果(図1(b)参照)と視認性の確保の観点から、10〜20mmとするのが良い。つまり、ハニカム径bが10mm以下だと視認性が悪くなり、20mm以上だと空気の対流抑制効果が悪くなって断熱性が悪くなるからである。
また、式2の関係を有した範囲で、ハニカム厚さaは16mm以上とするのが良い。
これは、ハニカム厚さaが16mm以上の場合には、一般的な複層ガラス(図示せず)又は一般的な中空層(図示せず)と比較して断熱性が向上するからである。ただし、ハニカム厚さaが16mm未満の場合は、一般的な複層ガラスと比較して断熱性の差異が少ない。
【0023】
次に、日射が日射調整体1を透過する状態を説明する。
図3(a),(b)に示すように、日射は、第一の透明板部材11、仕切り壁20A、第二の透明板部材12の順に透過(通過)する。
ここで、日射は、上方から斜めに第一の透明板部材11へ入射することとなるが、この第一の透明板部材11への日射の入射角度(光線と水平面(線)とのなす角度)は、太陽の高度に応じて「小さい入射角度」から「大きい入射角度」へと変化する。
【0024】
なお、一般的に、冬期などの太陽の高度が低い場合においては、日射の入射角度が小さいので、仕切り壁20Aの壁部21を透過する日射が少ない状態となるが、この状態は、一般に日射熱の取得によって暖房負荷の削減効果を得られるため、眩しさを低減する必要がなければ、日射の強さを減少させる必要がない。一方、夏期のように、太陽の高度が高く冷房負荷が発生する場合には、日射の強さを減少させて冷房負荷を削減する必要がある。ここで、日射は、太陽の高度が高くなるにつれて入射角度が大きくなって水平に対して直角に近づき、仕切り壁20Aの壁部21に入射して、吸収あるいは反射する日射が増大する。これにより、昼光利用に適切な日射を透過させつつ冷房負荷となる日射の強さを減少させることができるので、視認性を確保し、室内居住者に眩しさを感じさせることなく室内を明るくすることができる。
【0025】
このとき、日射の入射角度θは、以下の式3で表される。
θ=tan-1(b1/a)・・・(式3)
この日射の入射角度θは、太陽の高度に対応して変化する。そして、この壁部21Aの位置P1に対する垂直距離b1は、日射の入射角度θの変位によって変わることとなる。
このとき、仕切り壁20Aの各コアに入射した日射のすべてが少なくとも1つの壁部21を透過するためには、以下の式4を満たす必要がある(図3(b)参照)。
θ≧θ1=tan-1(b/a)・・・(式4)
ここで、入射角度θ1は、日射が少なくとも1つの壁部21を透過するための境界となる角度である。つまり、壁部21Aの位置P1に対する垂直距離b1がハニカム径bと同じ距離にならなくてはならない。
したがって、以下、式5となる場合は、壁部21に入射する日射と壁部21に入射しない日射とが存在することとなる(図3(a)参照)。
θ<θ1=tan-1(b/a)・・・(式5)
【0026】
例えば、仕切り壁20Aの各コアのハニカム厚さaを16mm、ハニカム径bを16mmとする。
また、図3(a),(b)に示すように、仕切り壁20Aの所定の壁部21A(21)について注目すると、その壁部21Aが第一の透明板部材11と当接している位置をP1、壁部21Aが第二の透明板部材12と当接している位置をP2、位置P1より下方の壁部21B(21)が第一の透明板部材11と当接している位置をP3、壁部21B(21)が第二の透明板部材12と当接している位置をP4、とする。
また、壁部21Aの位置P1に対して上方に離れた距離b1がハニカム径bの二分の一(b×1/2)となる位置をP5とする。
また、壁部21B(21)の下方の壁部21C(21)において、壁部21C(21)が第一の透明板部材11と当接している位置をP6、壁部21C(21)が第二の透明板部材12と当接している位置をP7とする。
さらに、日射の入射角度が式4の状態となる場合を「大きい入射角度」、日射の入射角度が式5の状態となる場合を「小さい入射角度」とする。
【0027】
つまり、日射の入射角度が「小さい入射角度」となる場合は、図3(a)に示すように、壁部21Aの位置P1から位置P5の範囲に入射した日射が壁部21A(21)を透過して室内に入り込むこととなる(図中、点を付した部位)。
具体的には、壁部21Aに注目して説明すると、図3(a)に示すように、「小さい入射角度」で壁部21Aを透過する日射は、壁部21Aを透過可能となる境界の一の境界点となる壁部21Aの位置P1から入射し、壁部21Aの位置P2と壁部21Bの位置P4との中間の位置P8で出射する。
また、日射は、壁部21Aを透過可能となる境界の他の境界点となる位置P2を含む直線上に位置する位置P5から入射し、壁部21A(21)の位置P2へ出射し、そのまま第二の透明板部材12を透過する。
このように、位置P1から位置P5の範囲に入射した日射のみが壁部21を透過して室内に入り込み、位置P5から壁部21A(21)の上方の壁部21までの範囲で入射した日射は、壁部21を透過しないでそのまま室内へ入り込むこととなる。
【0028】
また、日射の入射角度が「大きい入射角度」となる場合は、図3(b)に示すように、日射は、少なくとも1つの壁部21を透過することとなる。
具体的には、壁部21Bに注目して説明すると、図3(b)に示すように、日射が「小さい入射角度」から「大きい入射角度」に変化した場合、「大きい入射角度」で壁部21B(21)を透過する日射は、壁部21B(21)を透過可能となる境界の一の境界点となる壁部21Bの位置P3から入射し、壁部21B(21)の下の壁部21C(21)の第二の透明板部材12と当接する位置P7へ出射する。
また、日射は、壁部21Bを透過可能となる境界の他の境界点となる位置P4を含む直線上に位置する壁部21A(21)の位置P1から入射し、壁部21Bの位置P4で出射する。
このように、位置P1から位置P3の範囲で入射する日射は、少なくとも1つの壁部21を透過して室内に入り込む。
【0029】
したがって、日射調整体1は、仕切り壁20Aによって、太陽の高度に応じて日射の強さを調節することができ、各壁部21に入射した日射を吸収あるいは反射させつつ日射の強さを減少させることができるので、昼間の日射の導入量を多くすることができる。
また、日射の強さを減少させつつ、ハニカム構造となる仕切り壁によって視認性が確保され、断熱性も確保される。また、仕切り壁で形成したコアにより視認性の確保ができ、この各コアによって空気が対流することを抑制するので断熱性を確保することができる。
また、仕切り壁が第一の透明板部材と第二の透明板部材とに直交して設けられているので、所定の角度以上の入射角度で入射する日射の強さを減少させることができる。
【0030】
(第二の実施形態)
次に本発明の第二の実施形態について、適宜図面を参照しながら詳細に説明する。図4(a)は本発明の第二の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、図4(b)は「大きい入射角度」で日射を入射した場合を示す概略図である。
本発明の第二の実施形態に係る日射調整体2は、第一の実施形態における仕切り壁20Aのハニカム径bより仕切り壁20Bのハニカム径b´が小さい点で第一の実施形態と異なる。
【0031】
例えば、ハニカム径b´を第一の実施形態のハニカム径bの二分の一となる8mmとする。
また、両端が位置P6,P7となる壁部21C(21)の下方の壁部21D(21)において、壁部21D(21)が第一の透明板部材11と当接している位置をP9、壁部21D(21)が第二の透明板部材12と当接している位置をP10とし、この壁部21D(21)の下方の壁部21E(21)において、壁部21E(21)が第一の透明板部材11と当接している位置をP11、壁部21E(21)が第二の透明板部材12と当接している位置をP12とする。以下、日射の強さが壁部21で減少する境界部分について説明する。
【0032】
ここで、仕切り壁20Bの各コアに入射する日射のすべてが少なくとも1つの壁部21を透過するためには、日射の入射角度が第一の透明板部材11に対する法線より鉛直方向に約26度傾斜した角度以上の範囲を満たす必要がある。
また、各コアに入射するすべての日射が少なくとも1つの壁部21を透過するためには、以下の式6を満たす必要がある。
θ≧θ2=tan-1(b´/a)・・・(式6)
したがって、
ここで、θ2は、日射が少なくとも1つの壁部21を透過するための境界となる角度である。
また、以下、式7となる場合は、各コアに入射するすべての日射が少なくとも2つの壁部21を透過することとなる。
θ≧θ3=tan-1(2×b´/a)・・・(式7)
このとき、日射の入射角度が式6の状態となる場合を「小さい入射角度」、日射の入射角度が式7の状態となる場合を「大きい入射角度」とする。
【0033】
つまり、日射の入射角度が「小さい入射角度」となる場合は、図4(a)に示すように、日射は、少なくとも1つの壁部21を透過することとなる。
具体的には、壁部21Bに注目して説明すると、図4(a)に示すように、「小さい入射角度」で壁部21B(21)を透過する日射は、壁部21B(21)を透過可能となる境界の一の境界点となる壁部21Bの位置P3から入射し、壁部21Cの位置P7で出射することとなる。また、日射は、壁部21Bを透過可能となる境界の他の境界点となる位置P4を含む直線上に位置する壁部21A(21)の位置P1から入射し、壁部21Bの位置P4で出射する。
このように、位置P1から位置P3の範囲で入射した日射は、少なくとも1つの壁部21を透過して室内に入り込む(図中、点を付した部位)。
【0034】
また、日射の入射角度が「大きい入射角度」となる場合は、図4(b)に示すように、日射は、少なくとも2つの壁部21を透過することとなる。
具体的には、壁部21Cに注目して説明すると、図4(b)に示すように、日射が「小さい入射角度」から「大きい入射角度」に変化した場合、「大きい入射角度」で壁部21C(21)を透過する日射は、壁部21Cを透過可能となる境界の一の境界点となるP7を含む直線上に位置する壁部21Aの位置P1から入射し、壁部21B(21)の位置P3と位置P4との中間の位置P13を透過し、さらにその下方の壁部21C(21)における位置P7を透過する。
また、日射は、壁部21Cを透過可能となる境界の他の境界点となる壁部21Cの位置P6から入射し、壁部21D(21)の位置P9と位置P10との中間の位置P14を透過し、さらにその下方の壁部21E(21)における位置P12で出射する。
このように、位置P1から位置P6の範囲で入射する日射は、少なくとも2つの壁部21を透過して室内に入り込む(図中、密度が最も高い点を付した部位)。
【0035】
したがって、仕切り壁20Bを用いると、太陽の高度に応じて日射の強さを大きく減少させることができる。
また、日射の強さを減少させつつ、ハニカム構造となる仕切り壁によって視認性が確保され、断熱性も確保される。
【0036】
(第三の実施形態)
次に本発明の第三の実施形態について、適宜図面を参照しながら詳細に説明する。図5は本発明の第三の実施形態に係る日射調整体の部分断面図である。図6は本発明の第三の実施形態に係る日射調整体の仕切り壁の一例を示す部分斜視図である。図7(a)は本発明の第三の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、図7(b)は「大きい入射角度」で日射を入射した場合を示す概略図である。
本発明の第三の実施形態に係る日射調整体3は、仕切り壁20Cの壁部21が傾斜している点で第二の実施形態と異なる。
【0037】
この仕切り壁20Cは、図5及び図6に示すように、第一の透明板部材11から第二の透明板部材12に向かうにしたがって上方に上がるように傾斜している。
例えば、図5に示す仕切り壁20Cの傾斜角度αは、水平に対して30度の角度で第一の透明板部材11から第二の透明板部材12へ向かうにつれて上方に上がるように傾斜させている。また、図7(a),(b)に示すように、壁部21C(21)の下方の壁部21D(21)において、壁部21D(21)が第一の透明板部材11と当接している位置をP9、壁部21D(21)が第二の透明板部材12と当接している位置をP10とする。
【0038】
ここで、図示しないが、各コアに入射するすべての日射が少なくとも1つの壁部21を透過するためには、日射が第一の透明板部材11に対して垂直となる方向で入射する必要がある。
また、各コアに入射するすべての日射が少なくとも2つの壁部21を透過するためには、以下の式8、式9、式10を満たす必要がある。
仕切り壁20Cの各コアの傾斜角度をαとすると、
θ3≦θ<θ4・・・(式8)
θ3=tan-1((2c−atanα)/a)・・・(式9)
θ4=tan-1((3c−atanα)/a)・・・(式10)
ここで、θ3は、日射が少なくとも2つの壁部21を透過するための境界となる角度である。θ4は、日射が少なくとも3つの壁部21を透過するための境界となる角度である。また、cは、仕切り壁20Cの各コアにおける並行する2つの壁部21,21の端部同士の間隔である。つまり、仕切り壁20Cと第一の透明板部材11(第二の透明板部材12)とが接した位置における並行する2つの壁部21,21の端部同士の間隔である。
なお、前記したとおり、aはハニカム厚さ(中空層厚さ)であり、bはハニカム径である。
【0039】
以下、式11となる場合は、各コアに入射するすべての日射が少なくとも3つの壁部21を透過することとなる。
θ≧θ4=tan-1((3c−atanα)/a)・・・(式11)
このとき、日射の入射角度が式8の状態となる場合を「小さい入射角度」、日射の入射角度が式9の状態となる場合を「大きい入射角度」とする。
【0040】
つまり、日射の入射角度が「小さい入射角度」となる場合は、図7(a)に示すように、日射は、少なくとも2つの壁部21を透過することとなる。
具体的には、壁部21Cに注目して説明すると、図7(a)に示すように、「小さい入射角度」で壁部21C(21)を透過する日射は、壁部21C(21)を透過可能となる境界の一の境界点となる壁部21Aの位置P1から入射し、壁部21B(21)の位置P3と位置P4との中間の位置P15を透過し、さらにその下方の壁部21C(21)における位置P7を透過する。
また、日射は、壁部21Cを透過可能となる境界の他の境界点となる壁部21Cの位置P6から入射し、壁部21D(21)の位置P9と位置P10との中間の位置P16を透過し、さらにその下方の壁部21E(21)における位置P12で出射する。
このように、位置P1から位置P6の範囲で入射した日射は、少なくとも2つの壁部21を透過して室内に入り込む(図中、密度が最も高い点を付した部位)。
【0041】
また、日射の入射角度が「大きい入射角度」となる場合は、図7(b)に示すように、日射は、少なくとも3つの壁部21を透過することとなる。
具体的には、壁部21Dに注目して説明すると、図7(b)に示すように、日射が「小さい入射角度」から「大きい入射角度」に変化した場合、「大きい入射角度」で壁部21D(21)を透過する日射は、壁部21Dを透過可能となる境界の一の境界点となる壁部21Aの位置P1から入射し、壁部21B(21)の位置P3と位置P4との間の位置P21を透過し、壁部21C(21)の位置P6と位置P7との間の位置P22を透過し、さらにその下方の壁部21D(21)における位置P10で出射する。
また、日射は、壁部21Dを透過可能となる境界の他の境界点となる壁部21Dの位置P9から入射し、壁部21E(21)の位置P11と位置P12との間の位置P23を透過し、壁部21F(21)の位置P17と位置P18との間の位置P24を透過し、さらにその下方の壁部21G(21)における位置P20を透過する。
このように、位置P1から位置P9の範囲で入射した日射は、少なくとも3つの壁部21を透過して室内に入り込む(図中、密度が最も高い点を付した部位)。
【0042】
したがって、日射調整体3は、仕切り壁が第一の透明板部材及び第二の透明板部材より低い透過率を有しており、また表面で拡散的に反射するので、仕切り壁に日射が入射しても当該仕切り壁の入射面での乱反射を防止することができ、昼間の日射の導入量を多くすることができる。
また、コアを形成する仕切り壁は視線方向にほぼ平行であるので視認性の確保ができ、この各コアによって空気が対流することを抑制するので断熱性を確保することができる。
また、仕切り壁を傾斜させたことによって、日射を仕切り壁に入射させ吸収あるいは反射させやすくすることができるので、日射の強さを効率よく減少させることができる。
【0043】
以上、本発明の実施形態について説明したが、本発明は前記実施形態には限定されない。例えば、各実施形態では、網目材料をハニカム構造として説明したが、網目材料はこれに限られず、平面視多角形となる網目や、平面視円形、平面視において曲線を有する形状となっていても良い。
また、仕切り壁の傾斜する方向は、第一の透明板部材11から第二の透明板部材12へ向かうにしたがって上方に傾斜させてもよい。このように仕切り壁を傾斜させることによって、高層ビル等の窓に本発明の日射調整体を用いた場合に、下方から入射する日射の強さを減少させることができる。
【図面の簡単な説明】
【0044】
【図1】(a)は本発明の第一の実施形態に係る日射調整体の部分断面図であり、(b)は本発明の第一の実施形態に係る日射調整体の対流状態を示す状態図である。
【図2】本発明の第一の実施形態に係る日射調整体の仕切り壁の一例を示す部分斜視図である。
【図3】(a)は本発明の第一の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、(b)は本発明の第一の実施形態に係る日射調整体に「大きい入射角度」で日射を入射した場合を示す概略図である。
【図4】(a)は本発明の第二の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、(b)は本発明の第二の実施形態に係る日射調整体に「大きい入射角度」で日射を入射した場合を示す概略図である。
【図5】本発明の第三の実施形態に係る日射調整体の部分断面図である。
【図6】本発明の第三の実施形態に係る日射調整体の仕切り壁の一例を示す部分斜視図である。
【図7】(a)は本発明の第三の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、(b)は本発明の第三の実施形態に係る日射調整体に「大きい入射角度」で日射を入射した場合を示す概略図である。
【符号の説明】
【0045】
1、2、3 日射調整体
11 第一の透明板部材
12 第二の透明板部材
20A,20B,20C 仕切り壁
21 壁部

【特許請求の範囲】
【請求項1】
第一の透明板部材と、この第一の透明板部材と向かい合わせに配置された第二の透明板部材と、
前記第一の透明板部材及び前記第二の透明板部材より低い透過率を有し、前記第一の透明板部材と前記第二の透明板部材との間に複数の空間を形成するように設けられる日射透過性を有する仕切り壁と、を備え、
前記仕切り壁が、前記第一の透明板部材と前記第二の透明板部材とに直交するように設けられていることを特徴とする日射調整体。
【請求項2】
第一の透明板部材と、この第一の透明板部材と向かい合わせに配置された第二の透明板部材と、
前記第一の透明板部材及び前記第二の透明板部材より低い透過率を有し、前記第一の透明板部材と前記第二の透明板部材との間に複数の空間を形成するように設けられる日射透過性を有する仕切り壁と、を備え、
前記仕切り壁が、前記第一の透明板部材及び前記第二の透明板部材に対して傾斜して設けられていることを特徴とする日射調整体。
【請求項3】
前記仕切り壁がハニカム構造となっていることを特徴とする請求項1又は請求項2に記載の日射調整体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−37499(P2006−37499A)
【公開日】平成18年2月9日(2006.2.9)
【国際特許分類】
【出願番号】特願2004−218593(P2004−218593)
【出願日】平成16年7月27日(2004.7.27)
【出願人】(000206211)大成建設株式会社 (1,602)
【出願人】(504182255)国立大学法人横浜国立大学 (429)