説明

植え込み型刺激器具

【課題】セットアップ中、電極作動を最適化することができる植え込み型刺激器具を提供する。
【解決手段】本発明による植え込み型刺激器具は、論理部と、電極(106)を有する。論理部は、同一極性を有する初期持続時間の少なくとも2つのパルス(201a, 202a)を処理して、少なくとも2つのパルスの各々を、それぞれに対応し且つ複数のパルス部分(205, 206)で構成される分割パルス(201b, 202b)に再構成し、最終持続時間中、再構成された分割パルスの一方の複数のパルス部分と、再構成された分割パルスの他方の複数のパルス部分とが同時に印加されないようにプログラムされる。異なる複数の電極が、最終持続時間中、再構成された分割パルスの一方からの複数のパルス部分を受けるように構成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、治療用電気刺激システム及び方法に関し、特に、植え込み型刺激器具の電極の調整に関する。
【0002】
〔関連出願の説明〕
この国際出願は、2008年5月15日に出願された米国特許出願第12/121,281号の優先権主張出願であり、この米国特許出願を参照により引用し、その記載内容全体を本明細書の一部とする。
【背景技術】
【0003】
植え込み型刺激器具は、種々の生物学的障害の治療のために電気刺激を発生させてかかる電気刺激を身体神経及び組織に送り出す器具、例えば、心不整脈を治療するためのペースメーカ、心細動の治療のための除細動器、聴覚消失の治療のための蝸牛刺激器、視覚消失の治療のための網膜刺激器、調和体肢運動を生じさせるための筋肉刺激器、慢性疼痛の治療のための脊髄刺激器、運動性及び心理学的障害の治療のための大脳皮質及び深部脳刺激器、及び尿失禁、睡眠時無呼吸、肩関節亜脱臼等の治療のための他の神経刺激器である。本発明は、かかる全ての用途に利用できる。ただし、以下の説明は、全体として、例えば特許文献1(米国特許第6,516,227号明細書)に開示されている脊髄刺激システム内への本発明の利用に焦点を当てている。なお、この米国特許を参照により引用し、その開示内容全体を本明細書の一部とする。
【0004】
脊髄刺激は、或る特定の割合の患者の疼痛を緩和するための広く受け入れられた臨床的方法である。図1A、図1B、図2A及び図2Bに示されているように、脊髄刺激(SCS)システムは、典型的には、複数の電極106を備えた少なくとも1本の電極リード(102及び(又は)104)並びにオプションとして少なくとも1本の電極リード延長部120のところに植え込み型パルス発生器(IPG)又は高周波(RF)伝送器及び受信器100(これらをひとまとめに「IPG」と称する)を有する。電極106は、電極アレイ110を形成するために所望のパターンで且つリード102,104上に間隔を置いた状態で配置されている。1本又は2本以上のリード102,104内の電線112,114は、アレイ110内の各電極106をIPG100内の適当な電流源/シンク回路に接続している。
【0005】
SCS用途では、電極106を備えた電極リード102,104は、典型的には、脊髄19(図2B)に沿って植え込まれ、IPG100は、電気パルスを発生させ、かかる電気パルスは、電極106を通って脊柱内の神経線維に送られる。IPG100本体それ自体は、通常、例えば患者の臀部又は腹部に設けられた皮下ポケット内に植え込まれる。電極リード102,104は、脊柱から出て、一般に、1本又は2本以上の電極リード延長部120(図2)に取り付けられ、これら電極リード延長部は、典型的には、患者の胴周りを通り抜けて、IPG100が植え込まれている皮下ポケットに至る。変形例として、リード102,104とIPG100との間の距離が短い場合、電極リード102,104は、リード延長部120を用いないでIPG100に直接接続されるのが良い。他のSCSシステム及び他の刺激システムの例としては、特許文献2(米国特許第3,646,940号明細書)及び特許文献3(米国特許第3,822,708号明細書)を参照されたい。なお、これら米国特許を、参照により引用し、これらの記載内容全体を本発明の一部とする。当然のことながら、IPG100は、作動のためのエネルギーを必要とする能動型器具であり、かかる作動のためのエネルギーは、植え込まれた電池又は外部電源によって提供されるのが良い。
【0006】
標的神経に対するリード102,104の正確な配置は、満足の行く生理学的反応を達成すると共に電池電力を節約するために刺激しきい値を低く保つ上で重要である。従来型リード植え込み手順では、通常、リード102,104を図3A及び図3Bに示されているように、生理学的正中91のところ又はその近くで脊髄19に平行に配置する。具体的に説明すると、図3Bの断面図に最も良く示されているように、電極リード102,104は、脊髄硬膜外腔70内の硬膜51上に直接配置される。(脳脊髄液72が、電極アレイ110と脊髄19の白質との間に位置している。後根神経50が、灰白質53から出た状態で示されている)。リード102,104が、図示のように生理学的正中91の互いに反対側に配置されると、後柱内の神経をリクルートし(即ち、刺激し)患者の体の左側か右側かのいずれかに発症している症状を治療する能力に追加の融通性が与えられる。
【0007】
電極アレイの正確な配置に加えて、電極の正しい選択、即ち、アレイ中の電極106のうちのどれを決定するかは、所与の患者において有効なはずであり、効果的な刺激療法を達成する上で極めて重要である。しかしながら、神経標的からの電極の距離が不確かであり、電極が配置される特定の伝導環境の性状が未知であること等のため、一般的に言って、かかる選択を前もって且つ活性電極の組み合わせが最適な治療を提供するものとして患者によって認識される正確さで知ることはできない。その結果、患者の治療には、一般的に、種々の電極組み合わせを試すことが必要であると共にどの組み合わせが定性的観点から最も有効であると感じられるかについて患者から受け取るフィードバックが必要である。
【0008】
外部ワイヤレス臨床医又は手持ち型コントローラを利用してIPG100をプログラムすることにより、種々の電極組み合わせ及び他の刺激パラメータを初期化中に試すことができる。(かかるコントローラに関する詳細は、2007年10月11日に公表された特許文献4(米国特許出願公開第2007/0239228号明細書)に見出すことができ、特許文献4に係る出願は、本出願人に譲渡されており、この特許文献4を参照により引用し、その記載内容全体を本明細書の一部とする)。例えば、図3Aに最も良く視覚化されているように、IPG100は、電極E1がアノード(電流のソース(電流が出るところ))を有し、E2がカソード(電流のシンク(電流が入るところ)を有するようプログラムされるのが良い。或いは、IPG100は、電極E1がアノードを有し、E9がカソードを有するようプログラムされても良い。変形例として、2つ以上の電極を電流のソーシング(sourcing)とシンキング(sinking )の両方に用いても良い。例えば、電極E1がアノードを有し、E2とE9の両方がカソードを有しても良い。電流のソーシング量又はシンキング量も又、IPG100にプログラムできる。かくして、最後に記載した例では、電極E1は、5mAをシンキングし、電極E2は、4mAをソーシングすると共に電極E9は、1mAをソーシングする。電極刺激パルスの周波数並びにかかる刺激パルスのパルス幅又は持続時間も又、プログラム可能である。
【0009】
最終的には、どの電極がIPG100によって作動されるか及びこれら作動状態の電極の極性(カソード対アノード)、大きさ(電流の量)及び周波数は、主として、上述したようなIPG初期化中における患者からのフィードバックに基づく。かくして、恐らくは臨床医によって支援された患者は、種々の電極設定値を経験することになり、相対的な快適さ及び治療効果のレベルを報告して所与の患者の治療にとって最善である電極設定値を得る。
【0010】
先行技術において、患者及び(又は)臨床医は、IPGの初期化中、患者の最適電極設定値を求める反復プロセスを保つと共にこれを単純化するための「フィールドステアリング(field steering)」又は「電流ステアリング(current steering)」と呼ばれる技術を用いていた。これについては、例えば、特許文献5(米国特許第6,909,917号明細書)を参照されたい。なお、特許文献5を参照により引用し、その記載内容全体を本明細書の一部とする。電流ステアリングでは、電極によりソーシングされ又はシンキングされた電流は、単一の刺激タイミングチャネルを用いて患者又は臨床医により別々の電極に徐々に再分配される。かかるステアリングは、外部コントローラ、例えばジョイスティック又は他の方向指示型装置と関連した或る種のユーザインタフェースを用いると容易に実施できる。電流ステアリングの単純な例が、図4A、図4B及び図5に示されている。先ず最初に図4Aを参照すると、IPG100が初期状態になっていると仮定し、即ち、電極E1が10mAの電流をシンキングするようプログラムされ、電極E3が、10mAの電流をソーシングするようプログラムされていると仮定する。この初期状態は、或る程度の実験を行った後に得られる可能性があり、又、患者が比較的良好な応答を感じている状態であるかもしれないが、依然として完全には最適化されていない応答であるかもしれない。
【0011】
一層の最適化を得ようとして、電流ステアリングは、これら初期状態から開始することができる。電流ステアリングによる最適化が最終的には図4Bの最終状態で得られると仮定する。図示のように、この最終状態は、電極E2のところで10mAをシンキングする。かくして、電流ステアリング中、10mAのシンキング電流が、E1(初期状態)からE2(最終状態)に流される。このようにするため、電極E1が選択され、この電極からシンキングされた電流は、例えば、コントローラのジョイスティックを下方にクリックすることにより下方に流される。図5に示されているように、これにより、シンキング中の電流の幾分かの増分(図示のように、2mA単位)が電極E1から電極E2に流れ、その結果、E1は、今や、8mAをシンキングし、E2は、2mAをシンキングするようになる。もう1回下方にクリックすると、更に2mAが流れ、その結果、今や、E1は、6mAをシンキングし、E2は、4mAをシンキングし、そして他についても同様であり、ついには、最終状態に従って、全部で10mAがE2に流れるようになる。
【0012】
小刻みな電流の漸次ステアリングは、一般に、患者にとって不快であり又は危険な場合のある刺激野の急変に対する安全措置として推奨できると考えられる。電流が或る1つの電極から別の電極に残らず急激にシフトすることは、予測がつかない且つ望ましくない効果をもたらす恐れがある。種々の神経は、電極作動のかかる変化によって悪影響を受け、しかも、割り当てられた電流の全てを流すことがこれら神経にどのような影響を及ぼすかについては、必ずしも知られているわけではない。新たな電極に流された場合(例えば、E1からE2に)の電流が小さすぎる場合(即ち、しきい値未満である場合)、たとえ電極が究極的には適当な選択肢であったとしても、臨床上の応答は、気づかれることがない。電流が大きすぎる場合(即ち、しきい値を超えている場合)、結果は、患者にとって苦痛である(又は、危険である)かもしれない。したがって、電流の小刻みな流れは、良好な対策であると考えられる。
【0013】
しかしながら、図示の電流ステアリング方式では、2つの別々の電極(例えば、E1及びE2)が、中間ステアリングステップ中、電流シンクとして同時に働くことが必要である。これは、2つ又は3つ以上の電極の同時選択がソース又はシンクとして働くことができるようにはしないIPGアーキテクチャにおける具体化に関する問題である場合がある。例えば、単純なIPGアーキテクチャの中には、たった1つの電流源回路及びたった1つの電流シンク回路を提供するものがあり、これら回路は、一度に1つの電極にしか結合することができない。かかるアーキテクチャは、シンク又はソースとしての2つ又は3つ以上の電極の同時作動を支援しないので、図5の電流ステアリング方式を用いることができない。
【0014】
他の電流ステアリング方式は、追加の複雑さをもたらす。例えば、図6に示されている電流ステアリング方式は、特許文献4に開示されており、特許文献4は、上述したように既に引用されてその記載内容が本明細書の一部をなしている。この方式では、或る1つの電極から別の電極への電流のステアリングは、ステアリングされた電流を第2のタイミングチャネル内に確立することによって生じる(タイミングチャネルの動作原理は、特許文献4に詳細に説明されているので、これらについてここではそれ以上説明しない)。かくして、図示のように、ソーシング電極(E1)中の電流は、先ず最初に、第1のタイミングチャネル“A”中に確立される。電流がシンキング電極E2に小刻みにステアリングされているとき、このステアリングされた電流は、第2のタイミングチャネル“B”中に生じ、その結果、タイミングチャネルA,B中のパルスは、非オーバーラップ状態になる。電流の数回の小刻みなソーシング後における結果は、シンク電流が全て電極E2内で第2のタイミングチャネルB内に存在する最終状態である。
【先行技術文献】
【特許文献】
【0015】
【特許文献1】米国特許第6,516,227号明細書
【特許文献2】米国特許第3,646,940号明細書
【特許文献3】米国特許第3,822,708号明細書
【特許文献4】米国特許出願公開第2007/0239228号明細書
【特許文献5】米国特許第6,909,917号明細書
【発明の概要】
【発明が解決しようとする課題】
【0016】
かくして、特許文献4のこの方式では、互いに異なるタイミングチャネルを支援するのに必要なIPGハードウェア及びソフトウェアが必要である。全てのIPGがかかるハードウェア又はソフトウェアを有しているわけではなく、したがって、図6の電流ステアリング技術から恩恵を受けることはできないであろう。多数のタイミングチャネルを支援することができるIPGにおいても、かかる電流ステアリング技術は、比較的複雑であり、潜在的には制約がある。例えば、図6には示されていないが、当業者であれば理解されるように、一般的に言えば、パルスの後には受動電流回復期間か能動電流回復期間かのいずれかがなければならない。次のタイミングチャネル中のパルスを実行するには、必ず先のタイミングチャネル中のパルスの電流回復が完了していなければならないので、特許文献4の電流ステアリング技術を用いることができるということは、保証されない。例えば、刺激パルスが長い持続時間のもの又は高い周波数のものである場合、特に電流回復時間を考慮する場合、単純に言って、パルスを2つのタイミングチャネル中にインタリーブするのに十分な時間が存在しない場合がある。
【0017】
したがって、植え込み型刺激器具のセットアップ中、電極作動を最適化する改良方法が要望されており、この開示により、かかる解決策の実施形態が提供される。
【課題を解決するための手段】
【0018】
複数の電極を有する植え込み型刺激器具で刺激パルスを構成する方法が開示され、かかる方法は、この器具の初期化中における電流ステアリングによって電極を調整する際に特に有用である。一観点では、患者治療のための1組の理想パルスを決定し、理想パルスのうちの少なくとも2つは、同一極性のものであり、これら2つの理想パルスは、初期持続時間中、植え込み型刺激器具に取り付けられている対応の電極に同時に印加されるようになっている。これらパルスは、各々がパルス部分で構成された分割パルスの状態に再構成される。分割パルスは、最終持続時間中、植え込み型刺激器具に取り付けられている対応の電極に印加されるが、分割パルスのパルス部分は、最終持続時間中、同時には印加されない。
【図面の簡単な説明】
【0019】
【図1A】電極アレイ及び電極アレイをSCSの植え込み型刺激器具に結合する仕方を示す図である。
【図1B】電極アレイ及び電極アレイをSCSの植え込み型刺激器具に結合する仕方を示す図である。
【図2A】脊髄刺激用の経皮リードの配置状態を示す図であり、インライン型電極アレイが硬膜に密接して脊髄硬膜外腔内で脊髄の横に並んで挿入されている状態を示す図である。
【図2B】脊髄刺激用の経皮リードの配置状態を示す図であり、インライン型電極アレイが硬膜に密接して脊髄硬膜外腔内で脊髄の横に並んで挿入されている状態を示す図である。
【図3A】脊髄の生理学的正中の左側及び右側への2つのインライン型電極アレイの配置状態を示す斜視図である。
【図3B】脊髄の生理学的正中の左側及び右側への2つのインライン型電極アレイの配置状態を示す断面図である。
【図4A】先行技術の電極電流ステアリング技術を示す図である。
【図4B】先行技術の電極電流ステアリング技術を示す図である。
【図5】先行技術の電極電流ステアリング技術を示す図である。
【図6】先行技術の別の電極電流ステアリング技術を示す図である。
【図7A】理想的には同時のパルスを開示した技術の実施形態に従って非同時分割パルス部分としてどのように再構成できるかを示す図である。
【図7B】理想的には同時のパルスを開示した技術の実施形態に従って非同時分割パルス部分としてどのように再構成できるかを示す図である。
【図8A】分割パルス部分を電流ステアリング用途においてどのように利用できるかを示す図である。
【図8B】分割パルス部分を電流ステアリング用途においてどのように利用できるかを示す図である。
【発明を実施するための形態】
【0020】
以下の説明は、脊髄刺激(SCS)システム内における本発明の使用法に関する。しかしながら、本発明は、それには限定されない。それどころか、本発明は、任意形式の植え込み型医療用器具システムに利用することができる。例えば、本発明は、植え込み型センサ、植え込み型ポンプ、ペースメーカ、除細動器、蝸牛刺激器、網膜刺激器、調和体肢運動を生じさせるよう構成された刺激器、大脳皮質及び深部脳刺激器を採用したシステムの一部として又は種々の病態のうちの任意のものを治療するために構成された任意他の神経刺激器に用いることができる。
【0021】
複数の電極を有する植え込み型刺激器具で刺激パルスを構成する方法が開示され、かかる方法は、この器具の初期化中における電流ステアリングによって電極を調整する際に特に有用である。一観点では、患者治療のための1組の理想パルスを決定し、理想パルスのうちの少なくとも2つは、同一極性のものであり、これら2つの理想パルスは、初期持続時間中、植え込み型刺激器具に取り付けられている対応の電極に同時に印加されるようになっている。これらパルスは、各々がパルス部分で構成された分割パルスの状態に再構成される。分割パルスは、最終持続時間中、植え込み型刺激器具に取り付けられている対応の電極に印加されるが、分割パルスのパルス部分は、最終持続時間中、同時には印加されない。
【0022】
植え込み型刺激器具のための改良型電流ステアリング技術が、図8A及び図8Bに示されている。しかしながら、この技術を説明する前に、この技術の技術的観点及び生物的観点についての基本的な理解を得るための内容が、図7A及び図7Bに示されている。
【0023】
図7Aは、電流ステアリング中に望ましいと思われる中間の組をなすパルスを示している。図示のように、電極E1,E2は、各々が5mAシンクを提供するパルス201a,202aとして同時にアサートされることが望ましい。この同時性条件は、シンク電流をE1からE2に移送する際に見られる場合があり、これについては上述した。
【0024】
本発明の一観点によるかかる理想化されたパルスの実際の具体例は、同時ではない分割されたパルス201b,202bとしてのこれら理想パルス201a,202aの再構築から成っている。図7Aの底部の拡大図で理解できるように、分割パルス部分205又は206が1つだけで任意所与の時点でアサートされる。したがって、分割パルス部分205,206がインタリーブされる。
【0025】
図示の例における分割パルス部分205,206の周波数は、1/tpに等しく、この場合、tpは、パルス部分周期である。パルス部分周期tpは、理想パルスtpの持続時間よりも非常に短いので、典型的には、多くの分割パルス部分205又は206が持続時間tp内に生じるであろう。なお、ほんの幾つかのかかる部分が、説明を容易にするために図7Aに示されている。
【0026】
分割パルス201b,202bを用いたシミュレーションにより、リクルートされたニューロンが、パルス部分205,206に加法的に反応する。例えば、減極シーケンスの場合、膜電位は、平均して、各追加のパルス部分と共にゆっくりと減極する。パルス部分205,206のシーケンスは、リクルートされたニューロンを減極に向かって動かす傾向がある非線形メンブレン力学を利用している。具体的に言えば、短いパルス部分は、ナトリウムチャネルの“m”個のゲートを開く傾向がある。ゲートが開くと、細胞膜は、よりゆっくりと減極する傾向がある。次に、パルス部分の組み合わせは、膜を十分に減極することができ、ついには、理想パルス201a,202aの場合と同様、リクルートされたニューロン中に活動電位が生じるようになる。換言すると、電極E1,E2によってリクルートされた神経は、分割パルス201b,202bが中断され、これらの理想のパルス201,202aとは異なり非同時であっても、効果的な治療を受けることになろう。
【0027】
パルス部分周期tp(周波数1/tp)は、クロナキシー時間よりも短く保たれるのが良く、このクロナキシー時間は、約100〜150マイクロ秒(10000〜6666.7Hz)そこらであるので、パルス部分周期tpは、200マイクロ秒(5000Hz)よりも短いのがよい。しかしながら、tpは又、クロナキシー時間を超える場合がある。ただし、かかる用途では、以下に更に説明するように高いエネルギー(例えば、パルス部分振幅)が必要であるかもしれない。しかしながら、エネルギーが増加する場合であっても、治療の有効性は、tpが500マイクロ秒(2000Hz)そこらを超えたときに、減少することが見込まれる。
【0028】
図示の例では、分割パルス部分205,206は、約50%のデューティサイクルを有し、分割パルス201b,202bからの1つのパルス部分205又は206のみ任意所与の時点でアサートされるようになっている。また、これらパルス部分205,206の振幅(−10mA)は、対応の理想パルス201a,201bに必要な振幅(−5mA)の2倍であることに注目されたい。この振幅は、パルス部分のデューティサイクルに関連しており、注入された電荷の総量は、効果的な患者治療における重要な1次変数のままであるという認識に基づいている。かくして、理想パルス201a,202aとこれらの分割された実際の対応のパルス202,202bと比較すると、電荷量(即ち、これらの曲線の下の面積)は、同一である。したがって、分割部分のデューサイクルが50%である場合、2倍の振幅が必要であり、デューティサイクルが33.3%(3つの電極が一度に源かシンクかのいずれかとして働くことが必要である場合に生じる可能性がある)、振幅の3倍が必要であろう。他についても同様である。
【0029】
しかしながら、厳密に言えば、理想パルスと分割パルスの電荷量が互いに同一である必要はなく、所与の用途では、分割パルス部分205,206の振幅は、理想パルス201a,202aの注入電荷量よりも僅かに多い又は少ない電荷量を提供するよう調節する必要があるかもしれない。一例では、上記において示唆したように、長いパルス部分周期は、これらと対応した理想のパルスによって示される電荷量よりも多い電荷量を必要とするかもしれない。例えば、デューティサイクルが50%であり、パルス部分周期tpがクロナキシー時間を僅かに超えると仮定すると、分割パルス部分205,206の振幅は、対応の理想パルス201a,202aの振幅の2倍よりも大きい(例えば、2.1倍)場合があり、その結果、電荷量が多くなる。tpが更にそれよりも大きくされた場合、分割パルス部分の振幅は、更にそれ以上増大することになろう(例えば、2.2倍まで)。他についても同様である。
【0030】
IPG100中の電流発生回路は、分割パルス部分205,206の振幅の増大に鑑みて、高いコンプライアンス電圧に耐えることができなければならない。これについては、2007年5月3日に公開された米国特許出願公開第2007/0097719号明細書を参照されたい。なお、この米国特許出願公開を参照により引用し、IPGにおけるコンプライアンス電圧の発生についてのその記載内容全体を本明細書の一部とする。
【0031】
図7Bは、同時パルスを本発明に従って再構成できる別の手法を示している。図7Aの場合と同様、理想パルス201a,201bを分割して符号201c,202cのところに示されているようにインタリーブする。しかしながら、分割パルス部分205′,206′は、これらの対応の理想パルスと同様に同一の振幅(−5mA)を有するが、分割パルス201c,202cは、理想パルスの持続時間tDの2倍の持続時間tD′を有する。結果は、図7Aの場合と同様、理想パルス及び分割パルスは、ほぼ同一の電荷量で構成される。図7Bの再構成方法は、理想パルスの持続時間を改変しているが(即ち、tDからtD′に)、かかるパルス持続時間の改変は、2次変数として患者の治療に影響を及ぼすに過ぎず、全電荷量のより重要な1次変数は、本質的には不変のままであり、したがって、患者の治療は、持続時間の変更によってはそれほど影響を受けない。当然のことながら、電荷量がほぼ同一の保たれていると仮定すると、理想パルスの持続時間よりも長い他の持続時間とこれよりも短い他の持続時間の両方を実際の分割パルスに用いることができる。したがって、図7Bに示されている持続時間の2倍の増加は、単なる例示である。
【0032】
システムは、便宜上、両方の技術、即ち、高いパルス振幅(図7A)又は高いパルス持続時間(図7B)を利用することができる。例えば、IPG100の論理(論理部)は、エネルギーを節約する適当なパルス分割方式を選択することができる。または、IPG100の論理は、出力の飽和を阻止するために分割パラメータを選択することができ、例えば、振幅を最大にした場合、パルス幅又は持続時間を増大させる。他についても同様である。
【0033】
理想パルスを図7A及び図7Bに示されているように分割パルスとして再構築することには顕著な利点がある。患者の神経が同時刺激を生物学的に感知した場合であっても、現実としては、インタリーブされた分割パルス部分205,206が所与の場合、1つ以下の電極が、本当のところは、任意所与の時点で源又はシンクとして働いているに過ぎない。したがって、この技術及び後で図8A及び図8Bを参照して説明するステアリング技術を源又はシンク回路が一度に単一の電極にしか結合可能ではない簡単なアーキテクチャを持つIPGに具体化できる。
【0034】
実際の具体化例では、電流シンク回路をE1からE2に切り換えるのに必要な幾分かのセットアップ時間があり、したがって、分割パルス部分205,206のデューティサイクルは、例えば理想の50%に至らない場合がある。しかしながら、かかるセットアップ時間は、パルス部分周期tpと比較して比較的短く、したがって、かかるセットアップ時間は、無視でき、したがって図には示されていない。例えば、電流を或る1つの電極から別の電極に、例えば、パルス部分205からパルス部分206に切り換えるのに1マイクロ秒のほんの数十分の一しかかからない場合がある。しかしながら、当業者であれば認識されるように、移行時間及び他の非理想的状況は、分割パルスの実際の電荷は、理想パルスによって特定された電荷に近似するに過ぎない場合があるということを意味している。
【0035】
図8A及び図8Bは、再構成された分割パルスを改良型電流ステアリング方式でどのように利用できるかを示している。図5及び図6の場合と同様、図8A及び図8Bは、10mAのシンク電流を電極E1から電極E2に漸次ステアリングする簡単な例を示している。図8Aの最上部の初期状態は、単一のタイミングチャネル中に定められ、このタイミングチャネルは、理想刺激パルスの振幅、持続時間及び周波数を特定している。この初期状態から始まって、ユーザ(患者又は臨床医)は、シンク電流の増分(例えば、2mA)を恐らくは上述したように外部コントローラのジョイスティックの下方クリックによりE1からE2に動かすことを選択する。この時点において、IPG100の論理は、シンク電流が同時にE1(8mA)とE2(2mA)の両方に存在することは必要であることを認識する。したがって、IPGの論理は、これら理想パルスを図8Aの第2の状態に示されているように再構成する。この第2の状態は、パルスを分割パルスとして再構成する。これらパルスは、分割されると共にインタリーブされるので、これらの振幅は、2倍となり、所望の投入量をほぼ保つ(この例では)。かくして、E1(デューティサイクルが約50%)のところにおける分割パルス部分は、初期パルスと同一の持続時間にわたり約−16mAの振幅を有し、かくして、望ましい−8mAパルスをシミュレートし、同様に、E2のところにおけるインタリーブされたパルス部分は、約−4mAの振幅を有し、所望の−2mAパルスをシミュレートする。
【0036】
IPG100の論理は、必要な場合に所定の仕方でパルスを自動的に分割するようプログラム可能なので、これは、1つの実施形態であるに過ぎないことは注目されるべきである。分割をどのように実行するかについての決定も又、ワイヤレス外部コントローラを用いてユーザにより実施できる。例えば、ユーザは、外部コントローラに設けられているユーザインタフェースにアクセスして分割パラメータ、例えば振幅、持続時間、周期等を特定することができ、かかるパラメータは、IPG100の不揮発性記憶装置にワイヤレス送信される。外部コントローラは、当該技術分野において周知なので、かかる外部コントローラについてはこれ以上説明しない。
【0037】
かかる分割を行うことは、好ましい実施形態では、初期状態を特定したタイミングチャネルを再書き込みすることにより達成される。換言すると、初期状態から第2の状態に移行するには、第2のタイミングチャネルの確立は必要ではない。というのは、IPG100の論理は、好ましくは、第1のタイミングチャネルを再書き込みして追加の電極(E2)を追加し、第1及び第2のインタリーブされたパルスのデューティサイクル及び周期(tp)を特定するからである。他についても同様である。これは、追加のタイミングチャネルを用いたステアリングの利用を必要とする先行技術の電流ステアリング技術、例えば上述した特許文献4と比較して技術進歩である。つまり、本明細書において開示した電流ステアリング技術では、単一のタイミングチャネルが必要であるに過ぎず、それにより、この技術を、単一のタイミングチャネルしか取り扱うことができないハードウェア又はソフトウェアを備えたIPGアーキテクチャに適用することができる。このように言った上で、本発明は、複数のタイミングチャネルを備えたIPGにおいても具体化でき、したがって、単一のタイミングチャネル装置に限定されることはないということは認識されるべきである。
【0038】
さらに図8Aに示されているように、電流の別の増分をステアリングする別のユーザ選択の結果として、電流が出ている電極E1のところでの分割パルス部分の振幅が減少する(−16mAから−12mAに)と同時に、電流が入っている電極E2のところでの分割パルス部分の振幅が増大する(−4mAから−8mAに)。かかる調整では、第1(最初の)タイミングチャネルの振幅をアップデートすることが必要であるに過ぎず、第2のタイミングチャネルは不要である。選択を続けると、最終結果として、図8Bの底部のところに示された最終の所望の状態が得られ、かかる最終の状態では、シンク電流の総量(−10mA)は、今や、電極E2のところに全て存在する。この最終状態は、電極E1,E2が両方共、電流を同時にシンキングする必要はないので、E2のところのパルスをその通常の振幅において100%デューティサイクルパルスで再構成できる。この場合も又、これは、第1のタイミングチャネルを再書き込みすることにより起こる。
【0039】
「植え込み型刺激器具の電極」という表現は、植え込み型刺激装置に設けられている電極若しくは関連の電極リードに設けられている電極、又は組織を直接的に又は間接的に刺激する任意他の構造体を含むことは理解されるべきである。
【0040】
本発明の特定の実施形態を図示すると共に説明したが、上述の説明は、本発明をこれら実施形態に限定するものではないことは理解されるべきである。本発明の精神及び範囲から逸脱することなく、種々の変更及び改造を行うことができることは当業者には明らかであろう。かくして、本発明は、特許請求の範囲に記載された本発明の精神及び範囲に属する変形例、改造例及び均等例を含むものである。
【符号の説明】
【0041】
102,104 電極リード
106 電極
201a,202a パルス
201b,202b 分割パルス
201c,202c 分割パルス
205,206 パルス部分

【特許請求の範囲】
【請求項1】
植え込み型刺激器具であって、
論理部と、電極と、を有し、
前記論理部は、同一極性を有する初期持続時間の少なくとも2つのパルスを処理して、前記少なくとも2つのパルスの各々を、それぞれに対応し且つ複数のパルス部分で構成される分割パルスに再構成し、最終持続時間中、前記再構成された分割パルスの一方の複数のパルス部分と、前記再構成された分割パルスの他方の複数のパルス部分とが同時に印加されないようにプログラムされ、
異なる複数の前記電極が、最終持続時間中、前記再構成された分割パルスの一方からの複数のパルス部分を受けるように構成される、植え込み型刺激器具。
【請求項2】
前記複数のパルス部分は、200マイクロ秒よりも短い周期を有する、請求項1に記載の植え込み型刺激器具。
【請求項3】
前記少なくとも2つのパルスは、第1の振幅を有し、各分割パルスの複数のパルス部分は、第2の振幅を有し、前記第1の振幅及び前記第2の振幅は互いに異なる、請求項1に記載の植え込み型刺激器具。
【請求項4】
初期持続時間と最終持続時間は異なる、請求項1に記載の植え込み型刺激器具。
【請求項5】
初期持続時間と最終持続時間は等しい、請求項1に記載の植え込み型刺激器具。
【請求項6】
前記少なくとも2つのパルスは、初期電荷量を有し、各分割パルスの複数のパルス部分は、最終電荷量を有する、請求項1に記載の植え込み型刺激器具。
【請求項7】
初期電荷量及び最終電荷量は略等しい、請求項6に記載の植え込み型刺激器具。
【請求項8】
前記少なくとも2つのパルスに対応する複数の分割パルスは、前記植え込み型刺激器具の単一のタイミングチャネル中に定められる、請求項1に記載の植え込み型刺激器具。
【請求項9】
植え込み型刺激器具であって、
論理部と、電極と、を有し、
前記論理部は、複数のパルスのグループを規則的に発生させるようにプログラムされ、複数の前記グループは、第1の周波数で発生され、前記グループの各々の中の複数のパルスの第2の周波数は、2000Hzよりも大きく、
前記電極は、複数のパルスの複数の前記グループを受けるように構成される、植え込み型刺激器具。
【請求項10】
前記論理部は、規則的に印加される複数のパルスの複数の前記グループの間にパルスを発生させないようにプログラムされる、請求項9に記載の植え込み型刺激器具。
【請求項11】
複数の前記グループの各々の中の複数のパルスは、デューティサイクルを有する、請求項9に記載の植え込み型刺激器具。
【請求項12】
前記デューティサイクルは、約50%である、請求項11に記載の植え込み型刺激器具。
【請求項13】
更に、前記電極を支持する電極リードを有し、前記電極は、前記電極リードによって前記植え込み型刺激装置に結合される、請求項9に記載の植え込み型刺激装置。
【請求項14】
複数の前記グループの各々の中の複数のパルスの周期は、神経が電気刺激に応答することができる期間よりも短い、請求項9に記載の植え込み型刺激器具。
【請求項15】
複数の前記グループの各々の中のパルスの第2の周波数は、10000Hzよりも高い、請求項9に記載の植え込み型刺激器具。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate


【公開番号】特開2013−106975(P2013−106975A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2013−42809(P2013−42809)
【出願日】平成25年3月5日(2013.3.5)
【分割の表示】特願2010−512439(P2010−512439)の分割
【原出願日】平成21年3月30日(2009.3.30)
【出願人】(507213592)ボストン サイエンティフィック ニューロモデュレイション コーポレイション (34)
【Fターム(参考)】