説明

樹脂組成物

【課題】環境・資源保全について少しでも改良し、同時に耐薬品性の改良された、機械的特性、耐熱性に優れた樹脂組成物を提供する。
【解決手段】(A)下記一般式(1)で表されるジヒドロキシ化合物に由来する構成単位を含むポリカーボネート100重量部に対して、(B)芳香族ポリエステル樹脂を1〜80重量部を配合してなる樹脂組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は樹脂組成物に関する。更に詳しくはバイオマス資源であるイソソルビドを含むポリカーボネートと芳香族ポリエステル樹脂からなる樹脂組成物であって、耐薬品性の改良された、流動性、機械的特性及び耐熱性に優れたジヒドロキシ化合物に由来する構成単位を含むポリカーボネート樹脂組成物に関する
【背景技術】
【0002】
芳香族ポリカーボネート樹脂は、エンジニアリングプラスチックの中でも最高の耐衝撃性を有し、機械的特性、耐熱性、寸法精度も良好な樹脂として知られており、これらの特徴を生かし種々の分野に利用されているが、耐薬品性、流動性、成形加工性の欠点を有している。特に耐薬品性が劣るため、有機溶剤等の薬品に接触すると、クラックの発生が起こり、機械的特性が著しく低下するため、用途の制約がある。芳香族ポリカーボネートの耐薬品性の改良のため、特許文献1に示されているように、ポリエチレンテレフタレートをはじめとする芳香族ポリエステルとのアロイが開発されている。
【0003】
ところで、芳香族ポリカーボネート樹脂、芳香族ポリエステル樹脂は一般的に石油資源から誘導される原料を用いて製造される。しかしながら、近年、石油資源の枯渇が危惧されており、植物などのバイオマス資源から得られる原料を用いたプラスチック成形品の提供が求められている。また、二酸化炭素排出量の増加、蓄積による地球温暖化が、気候変動などをもたらすことが危惧されていることからも、使用後の廃棄処分をしてもカーボンニュートラルな、植物由来モノマーを原料としたプラスチックからのプラスチック成形品資材部品の開発が求められており、特に大型成形品の分野においてはその要求は強い。
【0004】
従来、植物由来モノマーとしてイソソルビドを使用し、炭酸ジフェニルとのエステル交換により、カーボネート重合体を得ることが提案されている(例えば、特許文献2参照)。しかしながら、得られたカーボネート重合体は、褐色であり、機械的強度も成形材料として満足できるものではない。また、イソソルビドと他のジヒドロキシ化合物とのカーボネート共重合体として、ビスフェノールAを共重合したポリカーボネートが提案されており(例えば、特許文献2参照)、更に、イソソルビドと脂肪族ジオールとを共重合することにより、イソソルビドからなるホモポリカーボネートの剛直性を改善する試みがなされている(例えば、特許文献4参照)。 これらは機械的強度、耐薬品性において、成形品用途に適用するには不十分であった。
【0005】
このようにイソソルビドを用いたカーボネート重合体の提案はなされているが、まだ、成形品用途に適用するには耐熱性、機械的強度、耐薬品性、流動性などの総合的バランスの取れた樹脂とはいえない状況である。また、これらの文献にて開示されているのは、ガラス転移温度、さらには基本的な機械的特性のみで、成形品用途向けに重要な耐薬品性などの特性について充分開示されていない。
【0006】
また、ビスフェノールAの代わりに、脂環式ジヒドロキシ化合物である1,4−シクロヘキサンジメタノールを重合したポリカーボネートとしては、多数提案されているが(例えば、特許文献5、6)これらのポリカーボネートの分子量は高々4000程度と低いものであり、このため、ガラス転移温度が低いものが多く、機械的強度も成形材料として不十分である。
【特許文献1】特公昭36−14035号公報
【特許文献2】GB1079686号公報
【特許文献3】特開昭56−55425号公報
【特許文献4】WO 2004/111106 公報
【特許文献5】特開平6−145336号公報
【特許文献6】特公昭63−12896号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
上記のように、成形品用途に現在広く使用されている芳香族ポリカーボネート樹脂、および耐薬品性を改良した芳香族ポリカーボネート樹脂と芳香族ポリエステル樹脂のアロイは、より良い未来社会の構築においても環境・石油資源保全という観点から問題を有している。ついては環境・資源保全について少しでも改良し、同時に耐薬品性の改良された、機械的特性、耐熱性に優れた樹脂組成物を提供する目的でなされたものである。
【課題を解決するための手段】
【0008】
上記課題に鑑み、本発明者らは鋭意検討した結果、植物由来のモノマーであるイソソルビドからなるポリカーボネートは、主成分として芳香族基を含有してないにもかかわらず、芳香族ポリエステル樹脂と成形材料としての満足のいく相溶性を有していることを見出し、両者をアロイ化することにより耐薬品性並びに流動性が改良され、本発明を完成するに至った。さらに、脂環式ジヒドロキシ化合物を共重合したポリカーボネートは、ガラス転移温度と耐衝撃性のバランスが良好で、芳香族ポリエステル樹脂との広範囲の配合においても良好な特性を有していることを見出したものである。
【0009】
すなわち、本発明の要旨は以下の[1]〜[8]に存する。
下記一般式(1)で表されるジヒドロキシ化合物に由来する構成単位を含むカーボネート(共)重合体(A)100重量部に対して、芳香族ポリエステル樹脂(B)1〜80重量部とから少なくとも構成されるジヒドロキシ化合物に由来する構成単位を含むカーボネート(共)重合体樹脂組成物に存する。
【0010】
【化2】

【0011】
第2の要旨は、前記のカーボネート(共)重合体(A)のガラス転移温度が90℃以上であることを特徴とする請求項1に記載の樹脂組成物に存する。
【0012】
第3の要旨は、前記のカーボネート(共)重合体(A)が、式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位を含むカーボネート共重合体よりなることを特徴とする請求項1および請求項2のいずれかに記載の樹脂組成物に存する。
【0013】
第4の要旨は、芳香族ポリエステル樹脂(B)が、ポリブチレンテレフタレート樹脂であることを特徴とするジヒドロキシ化合物に由来する構成単位を含むカーボネート(共)重合体樹脂組成物に存する。
【0014】
第5の要旨は、上記樹脂組成物100重量部に対して、更に(C)有機リン化合物を0.01〜1重量部を配合したことを特徴とするジヒドロキシ化合物に由来する構成単位を含むカーボネート(共)重合体樹脂組成物に存する。
【発明の効果】
【0015】
本発明のジヒドロキシ化合物に由来する構成単位を含むポリカーボネート樹脂組成物は、機械的強度、衝撃強度、耐熱性、表面硬度、耐候変色性等に優れるイソソルビドからなるポリカーボネートと芳香族ポリエステル樹脂からなる樹脂組成物であり、イソソルビドからなるポリカーボネートは植物などのバイオマス資源由来のものであり、より良い未来社会の構築においても環境・石油資源保全という観点から環境・資源保全について少しでも改良が可能となる。また、上記ポリカーボネートの耐薬品性、流動性が改良されることにより、自動車分野、OA機器分野及び電子電気機器分野等の各種工業用途に極めて有用である。
【発明を実施するための最良の形態】
【0016】
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
【0017】
(A)ポリカーボネート
本発明のポリカーボネートは、下記一般式(1)で表されるジヒドロキシ化合物に由来する構成単位を含むことを特徴とするものであるが、当該ジヒドロキシ化合物の一部を他種類のジヒドロキシ化合物、例えば脂肪族、芳香族ジヒドロキシ化合物に由来する構成単位、またはポリアルキレングリコールなどの共重合構成単位に置き換えた共重合体であってもよい。
【0018】
【化3】

【0019】
本発明において、上記一般式(1)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド、イソマンニド、イソイデットが挙げられ、これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。
【0020】
これらのジヒドロキシ化合物のうち、資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、光学特性、成形性の面から最も好ましい。
【0021】
なお、イソソルビドは酸素によって徐々に酸化されやすいので、保管や、製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが肝要である。イソソルビドが酸化されると、蟻酸をはじめとする分解物が発生する。例えば、これら分解物を含むイソソルビドを用いてポリカーボネートを製造すると、得られるポリカーボネートに着色が発生したり、物性を著しく劣化させる原因となる。また、重合反応に影響を与え、高分子量の重合体が得られないこともある。また、蟻酸の発生を防止するような安定剤を添加してあるような場合、安定剤の種類によっては、得られるポリカーボネートに着色が発生したり、物性を著しく劣化させたりする。安定剤としては還元剤や制酸剤が用いられ、このうち還元剤としては、ナトリウムボロハイドライド、リチウムボロハイドライドなどが挙げられ、制酸剤としては水酸化ナトリウム等のアルカリが挙げられるが、このようなアルカリ金属塩の添加は、アルカリ金属が重合触媒ともなるので、過剰に添加し過ぎると重合反応を制御できなくなることもある。
酸化分解物を含まないイソソルビドを得るために、必要に応じてイソソルビドを蒸留しても良い。また、イソソルビドの酸化や、分解を防止するために安定剤が配合されている場合も、必要に応じて、イソソルビドを蒸留しても良い。この場合、イソソルビドの蒸留は単蒸留であっても、連続蒸留であっても良く、特に限定されない。雰囲気はアルゴンや窒素などの不活性ガス雰囲気にした後、減圧下で蒸留を実施する。
このようなイソソルビドの蒸留を行うことにより、本発明では蟻酸含有量が20ppm未満、更に10ppm以下、特に5ppm以下であるような高純度のイソソルビドを用いることが好ましい。
【0022】
一方、本発明に用いるに適した共重合構成単位のジヒドロキシ化合物としては、直鎖脂肪族、環式脂肪族、芳香族系ジヒドロキシ化合物のいずれでも良い。直鎖脂肪族ジヒドロキシ化合物として、例えば1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、2−エチルー1,6−ヘキサンジオール、2,2,4−トリメチルー1,6−ヘキサンジオール、1,10−デカンジオール、水素化ジリノレイルグリコール,水素化ジオレイルグリコールなどを挙げることができる。
【0023】
また、本発明に使用できる環式脂肪族(脂環式)ジヒドロキシ化合物としては、例えば1,2-シクロヘキ サンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、2−メチル−1,4−シクロヘキサンジオールなどのヘキサンジオール類、1,2-シクロ ヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノールなどのノルボルナンジメタノール類、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、1,3−アダマンタンジオール、2,2−アダマンタンジオール類などが挙げられる。これらのうち、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,2−シクロヘキサンジメタノールが好ましい。
【0024】
芳香族ジヒドロキシ化合物としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4−ジヒドロキシジフェニル等が挙げられ、好ましくはビスフェノールAが挙げられる。
【0025】
また、共重合構成単位のポリアルキレングリコールとしては炭素数2〜4のアルコシル基を1分子あたり2〜40個含有するものが好ましく、例えばポリエチレングリコール、ポリプロピレングリコールなどを挙げることができる。
【0026】
これらの共重合構成単位であるヒドロキシ化合物は1種を単独で用いても良く、2種以上を混合して用いても良い。直鎖脂肪族ジヒドロキシ化合物あるいはポリアルキレングリコールを共重合成分として使用すると、ガラス転移温度の低下が激しく、自動車、電気電子部品としての用途に制約が生じ好ましくない。芳香族ジヒドロキシ化合物を共重合成分として使用すると、成形材料として十分な機械的特性を有するものを得ることが困難である。また、一般式(1)で表されるジヒドロキシ化合物単独のポリカーボネート樹脂は、一般的に高分子量のものを得るのが困難である。一方、環式脂肪族(脂環式と表記することがある)ジヒドロキシ化合物を共重合成分として使用する場合は、以下に示すように一般式(1)で表されるジヒドロキシ化合物と脂環式ジヒドロキシ化合物との反応性のバランスが良好であり、且つ高分子量化も比較的容易であり、ガラス転移温度の低下も直鎖脂肪族ジヒドロキシ化合物よりも程度が小さく、表面硬度、機械的強度も十分高いという点で望ましい。
【0027】
上記のように本発明において好ましいポリカーボネートである、一般式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位とを共重合したポリカーボネートはいまだ報告されておらず、その詳細を以下に述べるが、他のジヒドロキシ化合物との共重合体についても基本的には類似であり、また上記特許文献などを参考に製造等も可能である。
【0028】
一般式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位との含有割合については、任意の割合で選択できる。しかし、示差走査熱量測定(DSC)を行ったとき、単一のガラス転移温度を与えるが、本発明のポリカーボネートは、一般式(1)で表されるジヒドロキシ化合物と脂環式ジヒドロキシ化合物の種類や配合比を調整することで、そのガラス転移温度を、用途に応じて、45℃程度から155℃程度まで任意のガラス転移温度を持つ重合体として得ることができる。
【0029】
したがって、本発明の樹脂組成物向けには、ガラス転移温度を90℃以上にすることにより、耐熱性(使用可能温度)で80℃以上が確保できることから、一般式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位との比率を適切に選択する必要がある。当該比率は100:0〜45:55(モル%)、特に95:5〜50:50(モル%)、さらには90:10〜65:35(モル%)であることが好ましい。上記範囲よりも一般式(1)で表わされるジヒドロキシ化合物に由来する構成単位が多く脂環式ジヒドロキシ化合物に由来する構成単位が少ないと着色しやすくなり、逆に一般式(1)で表されるジヒドロキシ化合物に由来する構成単位が少なく脂環式ジヒドロキシ化合物に由来する構成単位が多いと分子量が上がりにくく、またガラス転移温度が低下する傾向がある。
【0030】
また、本発明のポリカーボネートの重合度は、溶媒としてフェノールと1,1,2,2,−テトラクロロエタンの重量比1:1の混合溶液を用い、ポリカーボネート共重合体濃度を1.00g/dlに精密に調整し、温度30.0℃±0.1℃で測定した還元粘度(以下、単に「カーボネート(共)重合体の還元粘度」と称す。)として、0.40dl/g以上、特に0.40dl/g以上で2.0dl/g以下であるような重合度であることが好ましい。このポリカーボネートの還元粘度が極端に低いものでは成形品の機械的強度が弱い。また、ポリカーボネートの還元粘度が大きくなると、成形する際の流動性が低下し、サイクル特性を低下させ、成形品のひずみが大きくなり熱により変形し易い傾向がある。従って、本発明のポリカーボネートの還元粘度は0.40dl/g以上2.0dl/g以下、特に0.45dl/g以上1.5dl/g以下の範囲内であることが好ましい。
【0031】
本発明のポリカーボネートは、一般に用いられる重合方法で製造することができ、その重合方法は、ホスゲンを用いた溶液重合法、炭酸ジエステルと反応させる溶融重合法のいずれの方法でも良いが、重合触媒の存在下に、ジヒドロキシ化合物を、より環境への毒性の低い炭酸ジエステルと反応させる溶融重合法が好ましい。
【0032】
この溶融重合法で用いられる炭酸ジエステルとしては、通常、下記一般式(2)で表されるものが挙げられる。
【0033】
【化4】

【0034】
(一般式(2)において、A及びA’は、置換基を有していても良い炭素数1〜18の脂肪族基又は置換基を有していても良い芳香族基であり、A及びA’は同一であっても異なっていても良い。)
【0035】
上記一般式(2)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート、ジトリルカーボネートに代表される置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート及びジ−t−ブチルカーボネート等が例示されるが、特に好ましくはジフェニルカーボネート及び置換ジフェニルカーボネートが挙げられる。これらの炭酸ジエステルは、1種を単独で用いても良く、2種以上を混合して用いても良い。
【0036】
炭酸ジエステルは、ジヒドロキシ化合物に対して、0.90〜1.10のモル比率で用いることが好ましく、さらに好ましくは、0.94〜1.04のモル比率である。このモル比が0.90より小さくなると、製造されたポリカーボネートの末端OH基が増加して、ポリマーの熱安定性が悪化し、また、モル比が1.10より大きくなると、同一条件下ではエステル交換反応の速度が低下し、所望とする分子量のポリカーボネートの製造が困難となるばかりか、製造されたポリカーボネート中の残存炭酸ジエステル量が増加し、この残存炭酸ジエステルが、成形時、または成形品の臭気の原因となり好ましくない。
【0037】
また、溶融重合における重合触媒(エステル交換触媒)としては、アルカリ金属化合物及び/又はアルカリ土類金属化合物が使用される。アルカリ金属化合物及び/又はアルカリ土類金属化合物と共に補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、アルカリ金属化合物及び/又はアルカリ土類金属化合物のみを使用することが特に好ましい。
【0038】
重合触媒として用いられるアルカリ金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩、2セシウム塩等が挙げられる。
【0039】
また、アルカリ土類金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられる。
【0040】
これらのアルカリ金属化合物及び/又はアルカリ土類金属化合物は1種を単独で用いても良く、2種以上を併用しても良い。
【0041】
またアルカリ金属化合物及び/又はアルカリ土類金属化合物と併用される塩基性ホウ素化合物の具体例としては、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩、あるいはストロンチウム塩等が挙げられる。
【0042】
塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン、あるいは四級ホスホニウム塩等が挙げられる。
【0043】
塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
【0044】
アミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン等が挙げられる。
【0045】
これらの塩基性化合物も1種を単独で用いても良く、2種以上を併用しても良い。
【0046】
上記重合触媒の使用量は、アルカリ金属化合物及び/又はアルカリ土類金属化合物を用いる場合、一般式(1)で表されるジヒドロキシ化合物と脂環式ジヒドロキシ化合物との合計1モルに対して、金属換算量として、通常、0.1〜100μモルの範囲内で用い、好ましくは0.5〜50μモルの範囲内であり、さらに好ましくは1〜25μモルの範囲内である。重合触媒の使用量が少なすぎると、所望の分子量のポリカーボネートを製造するのに必要な重合活性が得られず、一方、重合触媒の使用量が多すぎると、得られるポリカーボネートの色相が悪化し、副生成物が発生したりして流動性の低下やゲルの発生が多くなり、目標とする品質のポリカーボネートの製造が困難になる。
【0047】
このような本発明のポリカーボネートの製造に当たり、前記一般式(I)で表されるジヒドロキシ化合物などのジヒドロキシ化合物は、固体として供給しても良いし、加熱して溶融状態として供給しても良いし、水溶液として供給しても良い。これらの原料ジヒドロキシ化合物を溶融状態や、水溶液で供給すると、工業的に製造する際、計量や搬送がしやすいという利点がある。
【0048】
本発明において、一般式(I)で表されるジヒドロキシ化合物あるいは共重合成分を重合触媒の存在下で炭酸ジエステルと反応させる方法は、通常、2段階以上の多段工程で実施される。具体的には、第1段目の反応は140〜220℃、好ましくは150〜200℃の温度で0.1〜10時間、好ましくは0.5〜3時間実施される。第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げながら反応温度を上げていき、同時に発生するフェノールを反応系外へ除きながら、最終的には反応系の圧力が200Pa以下で、210〜280℃の温度範囲のもとで重縮合反応を行う。
【0049】
この重縮合反応における減圧において、温度と反応系内の圧力のバランスを制御することが重要である。特に、温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比を狂わせ、重合度が低下することがある。例えば、ジヒドロキシ化合物としてイソソルビドと1,4−シクロヘキサンジメタノールを用いる場合は、全ジヒドロキシ化合物に対し、1,4−シクロヘキサンジメタノールのモル比が50モル%以上の場合は、1,4−シクロヘキサンジメタノールがモノマーのまま留出しやすくなるので、反応系内の圧力が13kPa程度の減圧下で、温度を1時間あたり40℃以下の昇温速度で上昇させながら反応させ、さらに、6.67kPa程度までの圧力下で、温度を1時間あたり40℃以下の昇温速度で上昇させ、最終的に200Pa以下の圧力で、200から250℃の温度で重縮合反応を行うと、十分に重合度が上昇したポリカーボネートが得られるため、好ましい。
【0050】
また、全ジヒドロキシ化合物に対し、1,4−シクロヘキサンジメタノールのモル比が50モル%より少なくなった場合、特に、モル比が30モル%以下となった場合は、1,4−シクロヘキサンジメタノールのモル比が50モル%以上の場合と比べて、急激な粘度上昇が起こるので、例えば、反応系内の圧力が13kPa程度の減圧下までは、温度を1時間あたり40℃以下の昇温速度で上昇させながら反応させ、さらに、6.67kPa程度までの圧力下で、温度を1時間あたり40℃以上の昇温速度、好ましくは1時間あたり50℃以上の昇温速度で上昇させながら反応させ、最終的に200Pa以下の減圧下、220から290℃の温度で重縮合反応を行うと、十分に重合度が上昇したポリカーボネート共重合体が得られるため、好ましい。
【0051】
反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよい。
【0052】
本発明のポリカーボネートを溶融重合法で製造する際に、着色を防止する目的で、リン酸化合物や亜リン酸化合物を重合時に添加することができる。
【0053】
リン酸化合物としては、リン酸トリメチル、リン酸トリエチル等のリン酸トリアルキルの1種又は2種以上が好適に用いられる。これらは、全ヒドロキシ化合物成分に対して、0.0001モル%以上0.005モル%以下添加することが好ましく、さらに好ましくは0.0003モル%以上0.003モル%以下添加することが好ましい。リン化合物の添加量が上記下限より少ないと、着色防止効果が小さく、上記上限より多いと、ヘイズが高くなる原因となったり、逆に着色を促進させたり、耐熱性を低下させたりする。
【0054】
亜リン酸化合物を添加する場合は、下記に示す熱安定剤を任意に選択して使用できる。特に、亜リン酸トリメチル、亜リン酸トリエチル、トリスノニルフェニルホスファイト、トリメチルホスフェート、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトの1種又は2種以上が好適に使用できる。これらの亜リン酸化合物は、全ヒドロキシ化合物成分に対して、0.0001モル%以上0.005モル%以下添加することが好ましく、さらに好ましくは0.0003モル%以上0.003モル%以下添加することが好ましい。亜リン酸化合物の添加量が上記下限より少ないと、着色防止効果が小さく、上記上限より多いと、ヘイズが高くなる原因となったり、逆に着色を促進させたり、耐熱性を低下させたりすることもある。
【0055】
リン酸化合物と亜リン酸化合物は併用して添加することができるが、その場合の添加量はリン酸化合物と亜リン酸化合物の総量で、先に記載した、全ヒドロキシ化合物成分に対して、0.0001モル%以上0.005モル%以下とすることが好ましく、さらに好ましくは0.0003モル%以上0.003モル%以下である。この添加量が上記下限より少ないと、着色防止効果が小さく、上記上限より多いと、ヘイズが高くなる原因となったり、逆に着色を促進させたり、耐熱性を低下させたりすることもある。
【0056】
また、このようにして製造された本発明のポリカーボネートには、成形時等における分子量の低下や色相の悪化を防止するために熱安定剤を配合することができる。
【0057】
かかる熱安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられ、具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル等が挙げられる。なかでも、トリスノニルフェニルホスファイト、トリメチルホスフェート、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびベンゼンホスホン酸ジメチルが好ましく使用される。 これらの熱安定剤は、1種を単独で用いても良く、2種以上を併用しても良い。
【0058】
かかる熱安定剤は、溶融重合時に添加した添加量に加えて更に追加で配合することができる。即ち、適当量の亜リン酸化合物やリン酸化合物を配合して、ポリカーボネートを得た後に、後に記載する配合方法で、さらに亜リン酸化合物を配合すると、重合時のヘイズの上昇、着色、及び耐熱性の低下を回避して、さらに多くの熱安定剤を配合でき、色相の悪化の防止が可能となる。
【0059】
これらの熱安定剤の配合量は、ポリカーボネートを100重量部とした場合、0.0001〜1重量部が好ましく、0.0005〜0.5重量部がより好ましく、0.001〜0.2重量部が更に好ましい。
【0060】
また、本発明のカーボネート(共)重合体には、酸化防止の目的で通常知られた酸化防止剤を配合することもできる。
【0061】
かかる酸化防止剤としては、例えばペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等の1種又は2種以上が挙げられる。
【0062】
これら酸化防止剤の配合量は、ポリカーボネートを100重量部とした場合、0.0001〜0.5重量部が好ましい。
【0063】
(B)芳香族ポリエステル樹脂
本発明で使用される(B)芳香族ポリエステル樹脂としては、公知の芳香族ポリエステル樹脂を広く用いることができる。芳香族ポリエステル樹脂は、1種のみでも、2種以上を併用してもよい。 芳香族ポリエステル樹脂として、好ましくは、ジカルボン酸またはその誘導体と、ジオールとからなる芳香族ポリエステル樹脂である。
【0064】
ジカルボン酸またはその誘導体としては、芳香族ジカルボン酸、脂環式ジカルボン酸、および、脂肪族ジカルボン酸、ならびに、これらの低級アルキルまたはグリコールのエステルが好ましく、芳香族ジカルボン酸またはこの低級アルキル(例えば、炭素原子数1〜4)あるいはグリコールのエステルがより好ましく、テレフタル酸またはこの低級アルキルエステルがさらに好ましい。
【0065】
芳香族ジカルボン酸としては、テレフタル酸、フタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ベンゾフェノンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸および2,6−ナフタレンジカルボン酸が好ましい例として挙げられる。脂環式ジカルボン酸としては、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸および1,4−シクロヘキサンジカルボン酸が好ましい例として挙げられる。脂肪族ジカルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸およびセバシン酸等が好ましい例として挙げられる。これらのジカルボン酸またはその誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
【0066】
ジオールとしては、脂肪族ジオール、脂環式ジオールおよび芳香族ジオールが好ましい。脂肪族ジオールとしては、好ましくは、炭素数2〜20の脂肪族ジオールであり、エチレングリコール、1,4−ブタンジオール、ジエチレングリコール、ポリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ポリプロピレングリコール、ポリテトラメチレングリコール、ジブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオールおよび1,8−オクタンジオールを好ましい例として挙げることができる。脂環式ジオールとしては、好ましくは、炭素数2〜20の脂環式ジオールであり、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,1−シクロヘキサンジメチロールおよび1,4−シクロヘキサンジメチロールを好ましい例として挙げることができる。 芳香族ジオールとしては、好ましくは、炭素数6〜14の芳香族ジオールであり、キシリレングリコール、4,4’−ジヒドロキシビフェニル、2,2−ビス(4−ヒドロキシフェニル)プロパンおよびビス(4−ヒドロキシフェニル)スルホンを好ましい例として挙げることができる。これらのジオールは、1種のみを用いてもよいし、2種以上を併用してもよい。
【0067】
本発明に使用される芳香族ポリエステル樹脂は、ヒドロキシカルボン酸、単官能成分、および/または三官能以上の多官能成分を有していてもよい。ヒドロキシカルボン酸としては、乳酸、グリコール酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフタレンカルボン酸およびp−β−ヒドロキシエトキシ安息香酸が好ましい例として挙げられる。単官能成分としては、アルコキシカルボン酸、ステアリルアルコール、ベンジルアルコール、ステアリン酸、安息香酸、t−ブチル安息香酸およびベンゾイル安息香酸が好ましい例として挙げられる。三官能以上の多官能成分としては、トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロールおよびペンタエリスリトールが好ましい例として挙げられる。
【0068】
(B)芳香族ポリエステル樹脂としては、ポリブチレンテレフタレート樹脂(PBT樹脂)、ポリエチレンテレフタレート樹脂(PET樹脂)、ポリエチレンナフタレート樹脂(PEN樹脂)などの芳香族ポリエステル樹脂が好ましく、PBT樹脂がより好ましい。PBT樹脂はテレフタル酸を唯一のジカルボン酸単位とし、1,4−ブタンジオールを唯一のジオール単位とするポリブチレンテレフタレート単独重合体が耐熱性の観点では好ましいが、加工性の容易さなどの観点からは、他のモノマー成分、例えばイソフタル酸を共重合した共重合体も使用される。本発明においては、PBT樹脂とは、テレフタル酸が全ジカルボン酸成分の50モル%以上を占め、1,4−ブタンジオールが全ジオールの50モル%以上を占めることをいう。PBT樹脂は、さらに、ジカルボン酸単位中のテレフタル酸の割合が70モル%以上のものが好ましく、90モル%以上のものがより好ましい。また、ジオール単位中の1,4−ブタンジオールの割合は、70モル%以上が好ましく、90モル%以上がより好ましい。このようなPBT樹脂を用いることにより、機械的性質および耐熱性がより向上する傾向にあり好ましい。
【0069】
本発明におけるPBT樹脂の固有粘度は、テトラクロルエタンとフェノールが1:1(重量比)の混合溶媒中、30℃の測定で0.5〜3.0dl/gが好ましく、0.5〜1.5dl/gがより好ましく、0.6〜1.3dl/gであることがさらに好ましい。固有粘度を0.5以上とすることにより、機械的特性がより効果的に発揮され、3.0以下とすることにより、成形加工がより容易になる。さらに、2種以上の固有粘度のPBT樹脂を併用してもよい。
【0070】
芳香族ポリエステル樹脂を製造する場合、公知の方法を広く採用できる。例えば、テレフタル酸成分と1,4−ブタンジオール成分とからなるPBT樹脂の場合、直接重合法およびエステル交換法のいずれの方法も採用できる。直接重合法は、例えば、テレフタル酸と1,4−ブタンジオールを直接エステル化反応させる方法であり、初期のエステル化反応で水が生成する。エステル交換法は、例えば、テレフタル酸ジメチルを主原料として使用する方法であり、初期のエステル交換反応でアルコールが生成する。直接エステル化反応は原料コスト面から好ましい。
【0071】
また、芳香族ポリエステル樹脂は、原料供給またはポリマーの払い出し形態について、回分法および連続法のいずれの方法で製造してもよい。さらに、初期のエステル化反応またはエステル交換反応を連続操作で行って、それに続く重縮合を回分操作で行ったり、逆に、初期のエステル化反応またはエステル交換反応を回分操作で行って、それに続く重縮合を連続操作で行う方法もある。
【0072】
本発明において使用されるポリブチレンテレフタレート樹脂は、末端カルボキシル基濃度が80eq/ton以下、また60eq/ton以下、更には40eq/ton以下であることが好ましい。本発明において末端カルボキシル基濃度の測定は、ベンジルアルコール25mLにポリアルキレンテレフタレート0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定により実施した。末端カルボキシル基濃度を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調節する方法や、末端封鎖剤を反応させる方法などを適宜適用することができる。本発明に規定する末端カルボキシル基濃度のポリブチレンテレフタレートを得る方法は特に限定されるものではないが、例えば、テレフタル酸と1,4−ブタンジオールを溶融重縮合して比較的分子量の小さい、例えば固有粘度0.1〜0.9のポリブチレンテレフタレートを製造し,次いで所望の分子量となるまで固相重縮合する方法により得ることができる。末端カルボキシル基は、低い方が長期熱老化性、耐加水分解性、低エステル交換反応性の点では好ましいが,樹脂の生産性にも影響するので、実用的には,末端カルボキシル基濃度の下限は10eq/ton程度である。
【0073】
また、本発明において使用されるポリブチレンテレフタレート樹脂は、チタン含有量がチタン原子として10ppmより多く、80ppm以下であることが更に好ましい。チタンは、通常、ポリブチレンテレフタレートの重合触媒に由来するが、チタンの量が10ppm以下でも、80ppmより多くても情報機器、自動車分野においては重要特性である長期熱老化性、耐加水分解性が低下する。その理由は定かではないが,触媒由来のチタン含量が多いと高温でのポリブチレンテレフタレートの分解が促進され、長期耐性が低下すると考えられる。本発明に規定するチタン含量のポリブチレンテレフタレートは、例えばテレフタル酸と1,4−ブタンジオールに、触媒であるテトラブチルチタネートをポリブチレンテレフタレートの理論収量に対しチタン原子として10〜80ppmとなる分量添加し、温度180〜240℃の範囲で常圧でエステル交換反応させてオリゴマーを得て、それを230〜270℃、減圧下で重縮合を進めて得ることができる。
【0074】
更に、本発明に用いるポリブチレンテレフタレート樹脂は、(a)チタン化合物と、(b)1族金属化合物及び/または2族金属化合物とを含有し、(a)チタン化合物の含有量が、チタン原子換算で10ppm以上80ppm以下であり、(b)1族金属化合物及び/または2族金属化合物の含有量が、その金属原子換算で1ppm以上50ppm以下であることが最も好ましい。
【0075】
本発明に用いるポリブチレンテレフタレート樹脂は、1,4−ブタンジオールとテレフタル酸(又はテレフタル酸ジアルキル)とのエステル化反応(又はエステル交換反応)で得られたオリゴマーを重縮合したものであり、中でも、この重縮合の際に用いる触媒(重縮合触媒)として、(a)チタン化合物と、(b)1族金属化合物及び/又は2族金属化合物を用いることによって、ポリブチレンテレフタレート樹脂中における(a)、(b)の金属化合物の分散性を良好なものとすることができるので、好ましい。
【0076】
これらの重縮合触媒の使用時期は任意であり、具体的には使用方法として例えば以下の(1)〜(4)等の方法が挙げられる。尚、以下、(a)チタン化合物をチタン触媒、また(b)1族金属化合物及び2族金属化合物を、各々、1族金属触媒、2族金属触媒と言うことがある。
(1) エステル化反応(またはエステル交換反応)に(a)、(b)、両方を使用し、重縮合反応に持ち込む方法。
(2) エステル化反応(またはエステル交換反応)に(a)、(b)、両方を一部使用し、重縮合反応開始時又は反応中に追加する方法。
(3) エステル化反応(またはエステル交換反応)では(a)、(b)、どちらか一方の触媒を使用し、他方を重縮合反応開始時又は反応中に追加する方法。
(4) エステル化反応(またはエステル交換反応)では(a)、(b)、いずれも使用せず、重縮合反応開始時に両方を追加する方法。
【0077】
本発明に用いる(a)チタン化合物としては特に制限はなく、具体的には例えば、酸化チタン、四塩化チタン等の無機チタン化合物類;テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタンアルコラート類;テトラフェニルチタネート等のチタンフェノラート類;等が挙げられる。中でもチタンアルコラート類が好ましく、更にはテトラアルキルチタネート類が好ましく、特にテトラブチルチタネートが好ましい。
【0078】
本発明に用いる(b)1族金属化合物及び/又は2族金属化合物としては特に制限はなく、具体的には例えば、1族金属化合物としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウムの、水酸化物類;酸化物類;アルコラート類;酢酸塩、リン酸塩、炭酸塩等の各種有機酸塩類;等の各種化合物が挙げられ、また2族金属化合物としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムの、水酸化物類;酸化物類;アルコラート類;酢酸塩、リン酸塩、炭酸塩等の各種有機酸塩類;等の各種化合物が挙げられる。これらは単独で使用しても、また併用してもよい。
【0079】
中でも、取り扱いや入手の容易さ、触媒効果の点から、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム等の化合物が好ましく、更には触媒効果と色調に優れる、リチウム又はマグネシウムの化合物が好ましく、特にマグネシウム化合物が好ましい。マグネシウム化合物としては、具体的には例えば酢酸マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸化マグネシウム、マグネシウムアルコキサイド、燐酸水素マグネシウム等が挙げられる。中でも有機酸塩類が好ましく、特に酢酸マグネシウムが好ましい。
【0080】
本発明に用いるポリブチレンテレフタレート樹脂における、(a)チタン化合物の含有量は、チタン原子換算で10ppm以上80ppm以下である。このチタン化合物の含有量が多過ぎると、PBTの色調や耐加水分解性が低下したり、またチタン触媒の失活による溶液ヘイズや異物が増加する場合がある。逆に少な過ぎても、PBTの重合性が低下してしまう。よって(a)チタン化合物の含有量は、70ppm以下、中でも60ppm以下、更には50ppm以下、特に40ppm以下であることが好ましく、その下限は15ppm以上、中でも20ppm以上、特に30ppm以上であることが好ましい。
【0081】
本発明に用いるPBTにおける、(b)1族金属化合物及び/又は2族金属化合物の含有量は、各々の金属原子換算で、1ppm以上50ppm以下である。この1族金属化合物及び/又は2族金属化合物の含有量が多過ぎると、本発明の樹脂成形品の耐加水分解性が低下する場合がある。逆に少な過ぎても、成形品の表面外観が低下する場合がある。よって(b)1族金属化合物及び/又は2族金属化合物の含有量は、40ppm以下、中でも30ppm以下、更には20ppm以下、特に15ppm以下であることが好ましく、その下限は3ppm以上、中でも5ppm以上、特に10ppm以上であることが好ましい。
【0082】
チタン原子などの金属含有量は、湿式灰化などの方法でポリマー中の金属を回収した後、原子発光、原子吸光、Inductively Coupled Plasma(ICP)等の方法を使用して測定することが出来る。
【0083】
本発明に用いるPBTの重縮合触媒としては、上述したような(a)チタン化合物や(b)1族金属化合物及び/又は2族金属化合物が挙げられるが、その他の重縮合触媒としては、例えばスズやその化合物が挙げられる。スズは通常、スズ化合物として使用され、具体的には例えば、ジブチルスズオキサイド、メチルフェニルスズオキサイド、テトラエチルスズ、ヘキサエチルジスズオキサイド、シクロヘキサヘキシルジスズオキサイド、ジドデシルスズオキサイド、トリエチルスズハイドロオキサイド、トリフェニルスズハイドロオキサイド、トリイソブチルスズアセテート、ジブチルスズジアセテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、トリブチルスズクロライド、ジブチルスズサルファイド、ブチルヒドロキシスズオキサイド、メチルスタンノン酸、エチルスタンノン酸、ブチルスタンノン酸等が挙げられる。
【0084】
但し、スズやスズ化合物はPBTの色調を悪化させるため、本発明に用いるPBT中におけるスズ化合物の含有量は低い方が好ましく、含有しないことが好ましい。具体的には、通常、スズ化合物の含有量が、スズ原子換算で200ppm以下、中でも100ppm以下、更には10ppm以下であることが好ましい。
【0085】
また本発明に用いるPBTの製造においては、先述のチタン触媒や、1族金属触媒、2族金属触媒の他に、三酸化アンチモン等のアンチモン化合物;二酸化ゲルマニウム、四酸化ゲルマニウム等のゲルマニウム化合物;マンガン化合物;亜鉛化合物;ジルコニウム化合物;コバルト化合物;正燐酸、亜燐酸、次亜燐酸、ポリ燐酸等やこれらのエステルや金属塩などの燐化合物;等の反応助剤を用いてもよい。
【0086】
本発明の樹脂組成物は、(A)ポリカーボネート100重量部に対して(B)芳香族ポリエステル樹脂1〜80重量部とから少なくとも構成されており、好ましくは3〜60重量部であり、さらに好ましくは5〜50重量部である。成分(B)の含有量が80重量部より多いと、本発明の重要な目標である資源・環境保全に対する効果が少なく、収縮率が大きくなり、ポリカーボネートの特性から大幅に異なった樹脂組成物になる。また成分(A)の含有量が1重量部より少ないと耐薬品性、流動性の改善効果が十分でない。
【0087】
本発明のポリカーボネートは芳香族基を含有していなくても予想外に芳香族ポリエステル樹脂との相溶性は良好で、ピーリングや真珠光沢等の相溶性不良を連想するような欠陥の発生はほとんど認められないが、更に改善するためには、相溶化剤を配合してもよく、例えば相溶化剤として、エポキシ化合物、エポキシ変性スチレン系エラストマーやスチレン−無水マレイン酸共重合体を挙げることができる。
【0088】
(C)有機リン化合物
上記のポリカーボネートの芳香族ポリエステル樹脂と混合する際、エステル交換反応を制御し、耐熱性を維持し易くするために有機リン化合物を配合することも可能である。有機リン化合物としては、有機ホスフェート化合物、有機ホスファイト化合物又は有機ホスホナイト化合物等が挙げられ、前記ポリカーボネートの熱安定剤と併用することも可能であり、好ましくは有機ホスフェート化合物である。
【0089】
有機ホスフェート化合物としては、好ましくは式(3)で表される長鎖ジアルキルアシッドホスフェート化合物等が挙げられる。
【0090】
【化5】

【0091】
(式中、R1 及びR2 は、それぞれ、炭素原子数8〜30のアルキル基を示す。)
炭素原子数8〜30のアルキル基の具体例としては、オクチル基、2−エチルヘキシル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、トリアコンチル基等が挙げられる。長鎖ジアルキルアシッドホスフェート化合物の具体例としては、ジオクチルホスフェート、ジ(2−エチルヘキシル)ホスフェート、ジイソオクチルホスフェート、ジノニルホスフェート、ジイソノニルホスフェート、ジデシルホスフェート、ジイソデシルホスフェート、ジラウリルホスフェート、ジトリデシルホスフェート、ジイソトリデシルホスフェート、ジミリスチルホスフェート、ジパルミチルホスフェート、ジステアリルホスフェート、ジエイコシルホスフェート、ジトリアコンチルホスフェート等が挙げられる。好ましくは、ジステアリルホスフェート、ジパルミチルホスフェート、ジミリスチルホスフェートが選ばれる。
【0092】
有機リン化合物の配合量は、成分(A)と成分(B)の合計量100重量部に対して、0.01〜1重量部、好ましくは0.05〜0.5重量部、より好ましくは0.07〜0.4重量部である。配合量が0.01重量部未満であると、有機リン化合物が本来持つ材料の加熱安定性及び熱滞留安定性の向上効果は発現されない。また、配合量が1重量部を超えると、加熱安定性や滞留安定性以外の性能に悪影響を及ぼす。また、有機リン化合物は、1種又は2種以上を併用して使用してもよい。
【0093】
また本発明の熱可塑性樹脂には、溶融成形時の金型からの離型性をより向上させるために、本発明の目的を損なわない範囲で離型剤を配合する事ことも可能である。かかる離型剤としては、オレフィン系ワックス、シリコーンオイル、オルガノポリシロキサン、一価または多価アルコールの高級脂肪酸エステル、パラフィンワックス等が挙げられる。かかる離型剤の配合量は、A成分のポリカーボネート100重量部に対し、0.01〜2重量部が好ましい。
【0094】
本発明の熱可塑性樹脂組成物には、本発明の目的を損なわない範囲で、紫外線吸収剤、光安定剤を配合することができる。かかる化合物としては、例えば2−(2’−ヒドロキシ−5’−t−オクチルフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)等が挙げられる。かかる安定剤の配合量は、A成分であるポリカーボネート重量部に対して0.01〜2重量部が好ましい。
【0095】
本発明の熱可塑性樹脂組成物には、本発明の目的を損なわない範囲で、帯電防止剤を配合することができる。かかる帯電防止剤としては、例えばポリエーテルエステルアミド、グリセリンモノステアレート、ドデシルベンゼンスルホン酸アンモニウム塩、ドデシルベンゼンスルホン酸ホスホニウム塩、無水マレイン酸モノグリセライド、無水マレイン酸ジグリセライド等が挙げられる。
【0096】
本発明に使用する熱可塑性樹脂組成物は、上記成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。更に、本発明の目的を損なわない範囲で、樹脂組成物に通常用いられる核剤、難燃剤、無機充填剤、衝撃改良剤、発泡剤、染顔料等が含まれても差し支えない。
【0097】
本発明の熱可塑性樹脂組成物には、本発明の目的を損なわない範囲で、難燃剤等を配合してもよい。添加する難燃剤としては、臭素系難燃剤、リン酸エステル系難燃剤、および赤リン系難燃剤が挙げられる。
【0098】
まず、臭素系難燃剤としては、臭素化ビスフェノール、臭素化ポリスチレン、臭素化ビスフェノールAのカーボネートオリゴマー、臭素化ビスフェノールAとビスフェノールAとのコポリマー及び共重合オリゴマーに代表されるハロゲン系難燃剤が挙げられ、さらにリン酸エステル系難燃剤の中でも、モノホスフェート化合物としてはトリフェニルホスフェート、縮合リン酸エステルとしてはレゾルシノールビス(ジキシレニルホスフェート)が、難燃性が良好でありかつ成形時の流動性が良好である等の理由により好ましく使用できる。
【0099】
また、使用する赤リン系難燃剤は、一般の赤リンの他に、赤リン表面を熱硬化樹脂及び/または無機材料を用いてマイクロカプセル化されている赤リンを使用することができる。更に、かかるマイクロカプセル化されている赤リンの使用は、安全性、作業性を良好とするためマスターペレット化したものが好ましく使用される。かかるマイクロカプセル化に使用される無機材料としては、水酸化マグネシウム、水酸化アルミニウム、水酸化チタン、水酸化スズ、水酸化セリウム等があげられ、熱硬化樹脂としてはフェノール・ホルマリン系、尿素・ホルマリン系、メラミン・ホルマリン系樹脂等が挙げられる。更にかかる無機材料で被覆されたものの上に、熱硬化性樹脂を用いた被覆を形成し、二重に被覆処理した赤リン等も好ましく使用できる。また、使用する赤リンは無電解メッキしたものも使用可能であり、無電解メッキ被膜としては、ニッケル、コバルト、銅、鉄、マンガン、亜鉛またはこれらの合金から選ばれた金属メッキ被膜を使用することができる。更に無電界メッキされた赤リンに更に上記に記載の無機材料及び熱硬化性樹脂で被覆された赤リンを使用することもできる。かかる無機材料、熱硬化性樹脂及び無電界メッキ等のマイクロカプセル化に使用する成分の量としては赤リン系難燃剤100重量%中20重量%以下であることが望ましく、より好ましくは5〜15重量%である。20重量%を越えると、ホスフィンの抑制、安全性の確保等の効果よりも難燃性の低下、機械的特性の低下等の悪影響が大きくなるため好ましくない。赤リン系難燃剤の平均粒径としては、1〜100μm、好ましくは1〜40μmが使用される。かかるマイクロカプセル化した赤リン系難燃剤の市販品としては、ノーバエクセル140、ノーバエクセルF−5(燐化学工業(株)製:商品名)、ヒシガードTP−10(日本化学工業(株)製:商品名)、ホスタフラムRP614(クラリアント・ジャパン(株)製:商品名)等が挙げられる。更にかかるマイクロカプセル化した赤リンを更に熱可塑性樹脂でマスターペレット化した赤リン系難燃剤を使用することは、良好な難燃性、機械的特性を達成し、製造時の安全性も高められるため好ましく使用できる。本発明においては、芳香族ポリカーボネート樹脂を主とする熱可塑性樹脂でマスターペレット化されたものをより好ましく使用することができる。
【0100】
また難燃助剤として、例えば三酸化アンチモン、アンチモン酸ナトリウム等、ドリップ防止剤として例えばフィブリル形成能を有するポリテトラフルオロエチレン等の添加剤を添加可能である。
【0101】
本発明において使用される無機充填剤としては繊維状、板状、粒状物などの一般的に樹脂組成物において使用されるものであり、またこれらの混合物が挙げられる。具体的にはガラス繊維、玄武岩繊維、セラミックスウイスカー、ワラストナイト、カーボン繊維等の繊維状物;ガラスフレーク、マイカ、タルクなどの板状物;シリカ、アルミナ、ガラスビーズ、カーボンブラック、炭酸カルシュウム等の粒状物など周知のものが挙げられる。これらの選定の基準は製品の必要とされる特性によるが、機械的強度や剛性については繊維状物、特にガラス繊維が選定され、成形品の異方性および反りの低減が重要な際は板状物、特にマイカが選ばれる。また、粒状物は成型時の流動性も加味された全体的なバランスのもとで最適なものが選ばれる。
【0102】
ガラス繊維は、一般に樹脂強化用に使用されるものならば特に限定されない。例えば、長繊維タイプ(ロービング)や短繊維タイプ(チョップドストランド)などから選択して用いることができ、繊維断面は円形でも、異形断面でもかまわず、また繊維径(異形断面は、その断面積を円で換算したときの直径で表す)のは6〜25μm が一般的である。また、ガラス繊維は集束剤(例えば、ポリ酢酸ビニル、ポリエステル等)、カップリング剤(例えば、シラン化合物、ボロン化合物等)、その他の表面処理剤等で処理されていてもよい。
【0103】
上記無機充填材の配合量は、(A) ポリカーボネートと(B)芳香族ポリエステル樹脂の合計量100重量部に対して0〜100重量部であり、好ましくは0.01〜80重量部である。100重量部より多いと、機械的性質が低下するが、無機充填剤の配合量は、機械的強度の改善が目標となる場合は、5重量部以上が好ましく選定される。
【0104】
その他衝撃改質剤として、例えばアクリル−ブタジエン系衝撃改質剤、ポリオルガノシロキサン成分とポリ(メタ)アルキルアクリレート成分と分離できないように相互に絡み合った構造を有している複合ゴムに、アルキル(メタ)アクリレート及び任意に共重合可能なビニル重合体がグラフトした重合体を挙げることができる。前者の具体例としては呉羽化学(株)製HIA15(商品名)、後者の具体例としては三菱レイヨン(株)製メタブレンS2001(商品名)を挙げることができる。尚、かかる衝撃改質剤には通常単量体成分が基体ゴム成分に共重合されることなく重合した成分が混在するが、かかる成分の分子量は通常標準ポリスチレン換算のGPC測定で算出される重量平均分子量において50,000〜500,000のものである。
【0105】
本発明で得られた熱可塑性樹脂組成物は、通常の射出成形、押出成形、吹込成形、圧縮成形など既知の成形法に適用することが可能であり、特に射出成形法に適したものである。射出成形の樹脂温度としては230〜270℃、さらには大型成形品に際しては、射出成形機内で滞留時間が長くなるので、ポリカーボネートと芳香族ポリエステル樹脂とのエステル交換反応の抑制のためには、好ましくは235〜260℃である。
【実施例】
【0106】
以下実施例を挙げ、本発明を詳述するが、本発明は実施例に限定されるものではない。なお実施例中の部は重量部を意味する。
【0107】
なお、下記の製造例1〜5で用いたイソソルビドの蟻酸含有量は5ppmであった。イソソルビドに含まれる蟻酸の定量方法は、次のような方法によって実施した。
<蟻酸の定量>
イソソルビドに含まれる蟻酸量をイオンクロマトグラフで測定した。イソソルビド0.5gを精秤し50mlのメスフラスコに採取して純水で定容した。標準試料にはギ酸ナトリウム水溶液を用い、標準試料とリテンションタイムの一致するピークを蟻酸として、ピーク面積から絶対検量線法で定量した。
イオンクロマトグラフは、Dionex社製のDX−500型を用い、検出器には電気伝導度検出器を用いた。測定カラムとして、Dionex社製ガードカラムにAG−15、分離カラムにAS−15を用いた。測定試料を100μlのサンプルループに注入し、溶離液に10mM−NaOHを用い、流速1.2ml/min、恒温槽温度35℃で測定した。サプレッサーには、メンブランサプレッサーを用い、再生液には12.5mM−H2SO4水溶液を用いた。
【0108】
[製造例1]
(A)ポリカーボネートの製造
イソソルビド(ロケットフルーレ社製)27.7重量部(0.516モル)に対して、1,4−シクロヘキサンジメタノール(イーストマン社製、以下「1,4−CHDM」と略する。)13.0重量部(0.221モル)、ジフェニルカーボネート(三菱化学社製、以下、「DPC」と略する。)59.2重量部(0.752モル)、および触媒として、炭酸セシウム(和光純薬社製)2.21×10−4重量部(1.84×10−6モル)を反応容器に投入し、窒素雰囲気下にて、反応の第1段目の工程として、加熱槽温度を150℃に加熱し、必要に応じて攪拌しながら、原料を溶解させた(約15分)。
次いで、圧力を常圧から13.3kPaにし、加熱槽温度を190℃まで1時間で上昇させながら、発生するフェノールを反応容器外へ抜き出した。
【0109】
反応容器全体を190℃で15分保持した後、第2段目の工程として、反応容器内の圧力を6.67kPaとし、加熱槽温度を230℃まで、15分で上昇させ、発生するフェノールを反応容器外へ抜き出した。攪拌機の攪拌トルクが上昇してくるので、8分で250℃まで昇温し、さらに発生するフェノールを取り除くため、反応容器内の圧力を0.200kPa以下に到達させた。所定の攪拌トルクに到達後、反応を終了し、生成した反応物を水中に押し出して、ポリカーボネートのペレットを得た。得られたポリカーボネートの特性(還元粘度、ガラス転移温度)について、それぞれ下記の(1)、(2)の方法に従って測定した。結果を表1に示す。なお、本製造例で得られたポリカーボネートを「ISOB−PC1」とした。
【0110】
[製造例2]
製造例1において、イソソルビド19.7重量部(0.363モル)、1,4−CHDM21.6重量部(0.404モル)、DPC58.8重量部(0.741モル)、触媒として、炭酸セシウム2.19×10−4重量部(1.82×10−6モル)に変更した以外は、同様に実施した。得られたポリカーボネートの特性(還元粘度、ガラス転移温度)について、それぞれ下記の(1)、(2)の方法に従って測定した。結果を表1に示す。本製造例で得られたポリカーボネートを「ISOB−PC2」とした。
【0111】
[製造例3]
製造例1において、イソソルビド15.7重量部(0.288モル)、1,4−CHDM25.8重量部(0.480モル)、DPC58.6重量部(0.734モル)、及び触媒として、炭酸セシウム2.18×10−4重量部(1.80×10−6モル)に変更した以外は、同様に実施した。得られたポリカーボネートの特性(還元粘度、ガラス転移温度)について、それぞれ下記の(1)、(2)の方法に従って測定した。結果を表1に示す。本製造例で得られたポリカーボネートを「ISOB−PC3」とした。
【0112】
[製造例4]
製造例1において、イソソルビド35.9重量部(0.674モル)、1,4−CHDM4.4重量部(0.083モル)、DPC59.7重量部(0.764モル)、触媒として、炭酸セシウム2.22×10−4重量部(1.87×10−6モル)に変更した以外は、同様に実施した。得られたポリカーボネートの特性(還元粘度、ガラス転移温度)について、それぞれ下記の(1)、(2)の方法に従って測定した。結果を表1に示す。本製造例で得られたポリカーボネートを「ISOB−PC4」とした。
【0113】
[製造例5]
製造例1において、イソソルビド40.1重量部(0.581モル)、DPC59.9重量部(0.592モル、触媒として、炭酸セシウム2.23×10−4重量部(1.45×10−6モル)に変更した以外は、同様に実施した。得られたポリカーボネートの特性(還元粘度、ガラス転移温度)について、それぞれ下記の(1)、(2)の方法に従って測定した。結果を表1に示す。本製造例で得られたポリカーボネートを「ISOB−PC5」とした。
【0114】
[ポリカーボネートの評価法]
(1)還元粘度
ウベローデ型粘度計を用い、溶媒としてフェノールと1,1,2,2,−テトラクロロエタンの重量比1:1の混合溶液を用い、濃度を1.00g/dlに精密に調整し、温度30.0℃±0.1℃で測定した。この数値が高いほど分子量が大きい。
【0115】
(2)ガラス転移温度(Tg)
示差走査熱量計(メトラー社製「DSC822」)に試料約10mgを用いて、10℃/minの昇温速度で加熱して測定し、JIS K 7121(1987)に準拠して、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた折線との交点の温度である、補外ガラス転移開始温度Tgを求めた。
【0116】
(B)芳香族ポリエステル樹脂
下記の実施例では(B)芳香族ポリエステル樹脂として、次のものを用いた。
・ポリブチレンテレフタレート樹脂:三菱エンジニアリングプラスチックス社製 商品名ノバデュラン5010 固有粘度=1.1、末端カルボキシル基量=35eq/ton(以下、「PBT」と略記する。)
また、有機リン酸化合物としては、次の有機リン酸エステルを用いた。
・ジステアリルホスフェート:旭電化(株)製、商品名AX−71
【0117】
[評価項目および方法]
(3)流動性評価
6mm径半円の流路のアルキメデス型スパイラル長を射出成形機(東芝機械社製IS150)によりシリンダー温度250℃、金型温度40℃、射出圧力98.1MPaで測定した。
【0118】
(4)耐薬品性評価
カスタム・サイエンティフィック(Custom Scientific)社製ミニマックス射出成形機「CS−183MMX」を用いて、シリンダー温度250℃、金型温度60℃で射出成形し、平行部長さ9mm、平行部直径1.5mmの引張試験片を採取した。
その引張試験片を、常温でメチルアルコールに30日間、、トルエンに1日に浸漬し、その浸漬前後の試験片に対して、カスタム・サイテンティフィック社製引張試験機「CS−183TE型」を用いて、引張速度1cm/分の条件で引張試験を行い、引張強度を測定し、その保持率を計算し、耐薬品性評価とした。数値が高いほど、耐薬品性が良好であることを示す。
【0119】
(5)耐衝撃強度評価
カスタム・サイエンティフィック(Custom Scientific)社製ミニマックス射出成形機「CS−183MMX」を用いて、温度240〜300℃で、長さ31.5mm、幅6.2mm、厚さ3.2mmの棒状試験片を射出成形にて得た。
本棒状試験片に深さ1.2mmのノッチをノッチングマシンで付け、アイゾット衝撃強度測定用試験片とした。 この衝撃強度用試験片について、カスタム・サイエンティフィック社製ミニマックスアイゾット衝撃試験機「CS−183TI型」を用いて、23℃におけるノッチ付きのアイゾット衝撃強度を測定した。
【0120】
(6)熱変形温度評価
射出成形機(住友重機械(株)製:型式SG−75 MIII)にて、シリンダー温度250℃、金型温度80℃にて得たISO試験片を用いて熱変形温度をISO 75に準じて測定した。荷重は0.45MPaで測定した。
【0121】
[実施例1〜6および比較例1〜5]
実施例および比較例の樹脂組成物を次のようにして得た。
二軸押出機(日本製鋼所製、TEX30XCT、L/D=42、バレル数12)を用いて、シリンダー温度260℃、スクリュー回転数400rpmの条件にて、表2に示す割合にて成分(A)ポリカーボネート、(B)芳香族ポリエステル、および有機リン化合物をタンブラーミキサーにて均一に混合した後、バレル1よりフィードし溶融混合させて組成物を作成した。得られた組成物に対して前記(3)〜(6)の評価を行った。なお評価用の試験片はいずれも真珠光沢などの色むらもなく、良好な白色不透明な外観であった。結果を表2に示す。
【0122】
【表1】

【0123】
【表2】

【0124】
上記結果より、次のことが判明する。
実施例1〜6の本発明の組成物に用いたポリカーボネートには芳香族基を含有してないにもかかわらず真珠光沢などの色むらもなく、成形材料として十分な相溶性を有しており、且つ芳香族ポリエステル樹脂を配合してない比較例1〜5に比べ流動性が改良され、耐薬品性が改良されている。有機リン化合物を配合した実施例2の組成物は、実施例1に比べ耐薬品性が改良され良好な相溶性を有していることを窺わせる。
【産業上の利用可能性】
【0125】
イソソルビドを含むポリカーボネートからなる本発明の樹脂組成物は、イソソルビドを含むポリカーボネート重合体そのものより耐薬品性、流動性が改良され、特にジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位を含むポリカーボネートを用いた熱可塑性樹脂組成物は機械的強度、衝撃強度、耐熱性、表面硬度、耐候変色性等にも優れる樹脂組成物であり、同時にイソソルビドを含むポリカーボネートは植物などのバイオマス資源由来のものであり、より良い未来社会の構築においても環境・石油資源保全という観点から環境・資源保全について少しでも改良が可能となった。耐薬品性が改良されたことにより、自動車分野、OA機器分野及び電子電気機器分野等の各種工業用途にも極めて有用であり、また流動性が改良されたことにより、特に自動車分野の外装材用途、内装材用途、及び電子機器筐体のように比較的大型成形品が必要となる用途にも好適である。

【特許請求の範囲】
【請求項1】
(A)下記一般式(1)で表されるジヒドロキシ化合物に由来する構成単位を含むポリカーボネート100重量部に対して、(B)芳香族ポリエステル樹脂を1〜80重量部を配合してなる樹脂組成物。
【化1】

【請求項2】
前記(A)ポリカーボネートのガラス転移温度が90℃以上であることを特徴とする請求項1に記載の樹脂組成物。
【請求項3】
前記の(A)ポリカーボネートが、更に脂環式ジヒドロキシ化合物に由来する構成単位を含むことを特徴とする請求項1又は2に記載の樹脂組成物。
【請求項4】
前記(A)ポリカーボネートに含まれる、式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位との比率(モル%)が100:0〜45:55の範囲であることを特徴とする請求項3に記載の樹脂組成物。
【請求項5】
前記(A)ポリカーボネートに含まれる、式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位との比率(モル%)が90:10〜50:50の範囲であることを特徴とする請求項3に記載の樹脂組成物。
【請求項6】
前記(A)ポリカーボネートに含まれる、式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位との比率(モル%)が85:15〜65:35の範囲であることを特徴とする請求項3に記載の樹脂組成物。
【請求項7】
前期(B)芳香族ポリエステル樹脂が、ポリブチレンテレフタレート樹脂であることを特徴とする請求項1〜6のいずれかに記載の樹脂組成物。
【請求項8】
請求項1〜7いずれかに記載の樹脂組成物100重量部に対して、更に(C)有機リン化合物を0.01〜1重量部を配合してなる樹脂組成物。

【公開番号】特開2009−144017(P2009−144017A)
【公開日】平成21年7月2日(2009.7.2)
【国際特許分類】
【出願番号】特願2007−321404(P2007−321404)
【出願日】平成19年12月12日(2007.12.12)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】