説明

水溶性酸化キチン及びその製造方法

【課題】医薬分野あるいは化粧品分野等様々な分野において有用な、高い親水性や幅広いpH領域での水溶性が付与された高純度の酸化キチン又は酸化キトサンおよび、これらの酸化キチン又は酸化キトサンを簡便な精製工程で容易かつ安価に得ることのできる製造方法を提供する。
【解決手段】キチンの構成単糖であるN−アセチルグルコサミンのピラノース環中、6位炭素を選択的に酸化し、カルボキシル基及び/又はその塩類に変換した構造を有することを特徴とする酸化キチンの製造方法であって、前記キチンとしてアルカリで膨潤または溶解処理したキチンを用いることを特徴とする酸化キチンの製造方法を提供するものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、天然物由来のキチンの酸化物の製造方法に関するものであり、得られた酸化キチンは、医療用、化粧品用、健康食品用など様々な分野に応用できるものである。
【背景技術】
【0002】
キチンはカニやエビなどの甲殻類、カブトムシやコオロギなどの昆虫類の骨格物質として、また菌類や細胞壁にも存在し、N−アセチルD−グルコサミン残基が多数、β−(1,4)−結合した多糖類である。そして地球上でもっとも豊富な有機化合物であるセルロ−スと類似の構造を有し、2位の炭素に結合している水酸基の代わりにアセトアミド基が付加したアミノ多糖類(ムコ多糖類)である。
キチンはセルロースと構造が類似しており、同じ頃に研究が始まったにも関わらず、未だ十分な研究が進んではおらず、有効に利用しきれていない。キチンは一般に水不溶性である上、適正な溶媒が少ない事がこれらの研究の阻害要因となっていた。
【0003】
一方、近年これらの天然多糖類は、新しいタイプの生分解性高分子材料として、また生体親和性材料として注目され、その利用について多くの研究がなされ、数々の知見が得られている。特にキチンはこの分野においての研究が盛んで、創傷治癒促進効果、抗凝血作用、免疫賦活活性、静菌・抗菌活性などさまざまな生物活性効果が報告されている。更にまた、細胞認識やそれに伴う情報伝達機構など生体機能発現において、糖鎖が鍵物質として重要な役割を演じていることも明らかになりつつある。
【0004】
このような用途で天然多糖類を用いる場合、天然多糖類を水可溶化することが望ましく、水可溶化手法としては、水酸基に化学的に置換基を導入した誘導体化手法が主流であるが、これらの誘導体は、置換基の分布など構造が不均一であり、置換基が生体に悪い影響を及ぼす可能性もある。一方、酸化により水可溶化する手法も知られており、二酸化窒素などを用いた酸化方法など、目的の官能基のみを選択的に酸化するとされている方法もあるが、これらの酸化手法では有毒な試薬を用いる上、酸化の選択性も低く、特に酸化度を上げると必要な官能基以外も酸化してしまうことが多い。
また、このような医用材料として利用する場合も、取扱い上の利便性、各種化学薬品、薬剤との相溶性、薬効の均一性、加工性等の観点から、広範なpH領域に於いて水溶性であることが望ましい。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明の目的は、医薬分野あるいは化粧品分野等様々な分野において有用な、高い親水性や幅広いpH領域での水溶性が付与された高純度の酸化キチンを、より安全な試薬を用いて、温和な反応条件下、簡便な精製工程で、容易かつ安価に得ることのできる製造方法を提供することにある。
また、本発明の他の目的は、N−アセチルグルコサミンのピラノース環中6位炭素が選択的に酸化された酸化キチンの製造方法を提供することにある。
【課題を解決するための手段】
【0006】
請求項1の発明は、キチンの構成単糖であるN−アセチルグルコサミンのピラノース環中、6位炭素を選択的に酸化し、カルボキシル基及び/又はその塩類に変換した構造を有することを特徴とする酸化キチンの製造方法であって、前記キチンとしてアルカリで膨潤または溶解処理したキチンを用いることを特徴とする酸化キチンの製造方法である。
【0007】
請求項2の発明は、キチンの構成単糖であるN−アセチルグルコサミンのピラノース環中、6位炭素を選択的に酸化し、カルボキシル基及び/又はその塩類に変換した構造を有することを特徴とする酸化キチンの製造方法であって、前記キチンとしてX線回折法により求めた回折角度2θ=9.2°付近(X線源=CuKα)のピークの半価幅が、1.2°以上のキチン用いることを特徴とする酸化キチンの製造方法である。
【0008】
請求項3の発明は、前記酸化により変換したカルボキシル基及び/又はその塩類が、N−アセチルグルコサミン残基のモル数に対し60%以上(酸化度60%以上)であることを特徴とする請求項1または2記載の酸化キチンの製造方法である。
【0009】
請求項4の発明は、前記酸化により変換したカルボキシル基及び/又はその塩類が、N−アセチルグルコサミン残基のモル数に対し90%以上(酸化度90%以上)であり、水溶性である事を特徴とする請求項1〜3のいずれかに記載の酸化キチンの製造方法である。
【0010】
請求項5の発明は、前記酸化方法が、キチンを水系で処理することを特徴とする上記請求項1〜4のいずれかに記載の酸化キチンの製造方法である。
【0011】
請求項6の発明は、前記酸化方法が、N−オキシル化合物などの触媒の存在下で、キチンを水系で処理することを特徴とする請求項1〜5のいずれかに記載の酸化キチンの製造方法である。
【0012】
請求項7の発明は、前記N−オキシル化合物が、2,2,6,6−テトラメチル−1−ピペリジンN−オキシルであり、水中で臭化アルカリ金属またはヨウ化アルカリ金属の存在下、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸およびそれらの塩のうち少なくとも1種の酸化剤を用いて、アルカリを添加してpHを一定に保ちながら酸化することを特徴とする上記請求項6に記載の酸化キチンの製造方法である。
【0013】
請求項8の発明は、アルカリ添加量により酸化度を制御することを特徴とする上記請求項1〜7記載の酸化キチンの製造方法である。
【発明の効果】
【0014】
本発明によれば、温和な反応条件下で簡便な方法により、キチンを均一かつ効率よくその構成単糖であるN−アセチルグルコサミンの2位や3位の炭素を酸化することなく、6位炭素のみを酸化し、カルボキシル基及び/又はその塩類に変換でき、医薬分野あるいは化粧品分野など様々な分野において有用な、高い親水性や幅広いpH領域での水溶性が付与された高純度の酸化キチンを得る事ができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の詳細を説明する。
本発明は、キチンの構成単糖であるN−アセチルグルコサミンのピラノース環中、6位炭素を選択的に酸化し、カルボキシル基及び/又はその塩類に変換した構造を有することを特徴とする酸化キチンの製造方法に関するものであり、具体的には、例えば下記一般式で表される構造を有する化合物の製造方法に関する。
【0016】
【化1】

【0017】
(R:COOX、CHOH X:H又はアルカリ金属又はアルカリ土類金属 Y:NHCOCH又はNH n:自然数)
【0018】
本発明の原料となるキチンは、N−アセチルD−グルコサミンがβ−(1,4)−結合した多糖類で、蟹やエビ、昆虫、さらには菌類などのキチンを含む共存物質から、脱灰、除タンパク、脂質および色素の除去などの工程を経て精製される。原料や精製方法、重合度等については特に限定されるものではない。
【0019】
しかし、キチンを原料とする場合、キチンの高い結晶性等の物性が酸化反応を阻害し、グリコシド結合の分解等の副反応を起こす可能性が高く、酸化生成物の収率や、生成物の化学的構造の均一さは低くなってしまう。特に、均一な構造を持ち、水溶性またはそれに近い酸化キチンを得たい場合、この副反応を抑えるためにも、予めアルカリなどにより結晶性を下げる等の前処理を行った後、酸化反応を行うのが好ましい。
【0020】
前処理の方法については、キチンを様々な溶媒に溶解した後、再生させる方法、キチンを水に膨潤させ、凍結、解凍を繰り返す方法、爆砕等が挙げられるが、最も簡便かつ確実な方法として、アルカリにより膨潤または溶解処理したキチンを用いる方法が挙げられる。
【0021】
アルカリ処理には、例えば、キチンに対してアルカリ水溶液を散布したり湿潤させる方法、アルカリ水溶液にキチンを浸漬又は懸濁する方法により行なうことができる。なお、浸漬物や懸濁液を撹拌又は振盪することにより処理効率を高めることもできる。アルカリとしては、通常、アルカリ金属成分、例えば、アルカリ金属水酸化物(水酸化ナトリウム,水酸化カリウム,水酸化リチウムなど)、アルカリ金属炭酸塩(炭酸ナトリウム,炭酸カリウムなど)、アルカリ金属炭酸水素塩(炭酸水素ナトリウム,炭酸水素カリウムなど)などが使用できる。これらのアルカリ金属化合物は単独で又は二種以上混合して使用してもよい。
【0022】
生成物の医療・医薬分野への利用など、その後の利用も考え、試薬も安全で、かつ安価で、処理の簡便な水酸化ナトリウムによるアルカリ処理がより好ましい。
しかし、キチンのアセチル基は濃アルカリにより脱離する。この脱アセチル化を防ぐ為には低温で速やかに処理する事が望ましい。
【0023】
アルカリ水溶液の濃度は、特に制限されず、広い範囲(例えば、5〜45重量%程度)から選択できる。
アルカリの使用量は、キチンのN−アセチルグルコサミン単位に対して、例えば、1〜200倍モル(例えば、1.2〜170倍モル)、好ましくは1.5〜150倍モル、さらに好ましくは2〜100倍モル程度の範囲から選択できる。
【0024】
アルカリ処理の温度は、特に限定されず、例えば、−5〜50℃程度の範囲である場合が多いが、キチンの場合、脱アセチル化反応を抑える為や、結晶構造を緩める効率の為から、系の周りを氷冷するなどして、できるだけ低温で反応させた方がよい。
アルカリ処理時間は、結晶性、重合度、表面積などの原料キチンの性状によって異なり、特に限定されないが、通常、10分〜6時間、好ましくは30分〜3時間、特に1〜2時間程度である。
上記のようなアルカリ処理条件でキチンを湿潤または浸漬、懸濁させるだけで結晶性を下げる目的では充分であるが、よりキチンの結晶内部までアルカリ処理を行う為には、脱気や、凍結、氷を添加しながら攪拌する事で溶解まで至らせるなどを併用すると、なお後の酸化反応がスムーズに進む。
【0025】
アルカリ処理終了後、水洗した後、又はそのまま、適当な酸成分(塩酸,硫酸,硝酸など)でアルカリを中和し、キチンを分離し水洗した後、引き続き酸化反応に供される。なお、アルカリを中和し、キチンを分離(単離)・洗浄することなくそのまま酸化反応に供してもよい。また、アルカリ処理されたキチンは、通常、乾燥することなくそのまま酸化反応に供される。乾燥させる場合は、凍結乾燥やアセトンなどで完全に水を置換した後に乾燥させるなど、再び水素結合を形成するのを抑えた状態で酸化に供するのが望ましい。
【0026】
また結晶性は、X線回折法により求めた回折角度2θ=9.2°付近のピーク(X線源=CuKα)のピークの半価幅が大きいほど低く、具体的には、1.2°以上のものが好ましい。結晶性を下げる事により、溶媒としての水への親和性も含め、水や試薬へのアクセシビリティーが高くなり、反応の速度も速く、均一に効率よく酸化でき、酸化度の高いものでは完全な水溶性酸化キチンが高い収率で得られる。
【0027】
また、酸化により変換したカルボキシル基が、N−アセチルグルコサミン残基のモル数に対して60%以上であると生体適合性がよく、水との親和性も高まるので好ましい。また、90%以上であると、高い水溶性を付与できるため特に好ましい。
【0028】
更に、本発明における酸化方法はN−オキシル化合物などの触媒の存在下で、水に溶解又は分散させたキチンを水系で処理することを特徴とする。
【0029】
本発明の酸化キチンは、N−オキシル化合物(オキソアンモニウム塩)の存在下、酸化剤を用いて、原料のキチンを酸化することにより得ることができる。N−オキシル化合物には、2,2,6,6−テトラメチル−1−ピペリジンN−オキシル(以下TEMPOと称する)、などが含まれる。この酸化方法では、酸化の程度に応じて、カルボキシル基を均一かつ効率よく導入できる。本酸化反応は、前記N−オキシル化合物と、臭化物又はヨウ化物との共存下で行うのが有利である。臭化物又はヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などが使用できる。酸化剤としては、ハロゲン、次亜ハロゲン酸,亜ハロゲン酸や過ハロゲン酸又はそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。
【0030】
本発明の酸化では、N−アセチルグルコサミン骨格中の6位の水酸基を選択的に酸化するものである。N−オキシル化合物は触媒量で済み、例えば、キチンの構成単糖のモル数に対し、10ppm〜4%あれば充分であるが、0.05%から2%が好ましい。
【0031】
本発明の酸化反応条件などは特に限定されず、原料の性状、使用する設備などによって最適化されるべきであるが、臭化物やヨウ化物との共存下で酸化反応を行うと、温和な条件下でも酸化反応を円滑に進行させることができ、カルボキシル基及び/又はその塩類の導入効率を大きく改善できる。
臭化物及び/又はヨウ化物の使用量は、酸化反応を促進できる範囲で選択でき、例えば、キチンの構成単糖のモル数に対し0〜100%である。しかし、反応効率の点から、10〜50%が好ましい。
【0032】
本発明における酸化キチンの酸化反応系は、N−オキシル化合物にはTEMPOを用い、臭化ナトリウムの存在下、酸化剤として次亜塩素酸ナトリウムを用いるのが好ましい。
【0033】
本発明における酸化キチンの酸化反応では、N−アセチルグルコサミン残基の1級水酸基への酸化の選択性を上げ、副反応を抑える目的で、反応温度は室温以下、より好ましくは系内を5℃以下で反応させることが望ましい。
【0034】
また、本発明の酸化キチンの製造方法では、その反応効率を上げる為に反応中は系内をアルカリ性に保つことが好ましい。この時のpHは9〜13、より好ましくはpH10〜11.5に保つとよい。更に、本発明ではこのpHを一定に保つ際に添加されるアルカリの量により酸化度を制御できる事を特徴としている。N−アセチルグルコサミン残基1モルに対し、添加するアルカリが1モルとなるところが100%となり、全てのN−アセチルグルコサミン残基が酸化され、6位炭素の一級水酸基がカルボキシル基となる。
【0035】
このように酸化された酸化キチンは非常に高い選択性で1級水酸基と還元末端のみが酸化されており、2級水酸基やアミンの酸化は殆ど見られない。酸化キチンはN−アセチルグルコサミン残基の6位炭素がカルボキシル基及び/又はその塩類に変換されたウロン酸構造を有しており、保湿剤をはじめ広く利用されているヒアルロン酸とよく似た構造をもつ、天然物由来の高分子のため、今後の利用が期待される。また、この酸化キチンを脱アセチル化して得られる酸化キトサンは、グルコサミン残基の6位炭素が酸化されたウロン酸構造を有する為、1分子内、1ユニット内にアニオン性とカチオン性の両方の官能基をもち、両性高分子としての利用が期待できる。
【0036】
更に、酸化キチンは天然物由来の高分子で、生成したウロン酸も安全性が高く、食品、化粧品などの分野はもちろん、生体材料などとして、医療・医薬分野での利用も期待できる。例えば、本発明の酸化キチンを布系基材などに塗布または含浸させた創傷被覆材などが挙げられる。
【実施例】
【0037】
以下、本発明を実施例に基づいて具体的に説明する。
原料となるキチンには蟹ガラから脱灰、除タンパク、脂質および色素の除去などの工程を経て得られた市販のキチンを用いた。
(アルカリ処理1)
キチンを10g、45%水酸化ナトリウム水溶液100gに浸漬し、室温以下で2時間攪拌した。これに、砕いた氷を350g、周りを氷水などで冷やし、攪拌しながら添加した。このアルカリ処理によりキチンはほぼ溶解する。塩酸で中和し、十分に水洗した後、乾燥させないものを酸化の試料とした。
(アルカリ処理2)
キチンを10g、20%水酸化ナトリウム水溶液180gに浸漬し、周りを氷水などで冷やしながら攪拌した。2時間後、1N―塩酸で中和し、十分に水洗した後、乾燥させずに酸化試料とした。
【0038】
(結晶性)
乾燥状態の試料を凍結粉砕し、粉末法によりリガクRAD−rX(X線源=CuKα、電圧40kV、電流100mA、)を用い、回折角度2θ=9.2°辺りのピークの半価幅を算出し、結晶性を評価した。
【0039】
【表1】

【0040】
<実施例1>
(アルカリ処理1)の5%キチン懸濁液100gに、TEMPO 0.1g、臭化ナトリウム 1.25gを溶解させた水溶液を加え、キチンの固形重量の全体に対する濃度が約2wt%になるよう調製した。反応系を冷却し、次亜塩素酸ナトリウム水溶液(Cl=5%)35gを添加し、酸化反応を開始する。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。6位の1級水酸基の全モル数に対し、100%のモル数に対応するアルカリ添加量に達した時点、約2時間後では系内全体が完全に透明になった。エタノールを添加し、反応を停止させ、水:アルコール=2:8により充分洗浄した後、アセトンで脱水し、40℃で乾燥させ、白い粉末状の酸化度100%の酸化キチンを得た。
【0041】
<実施例2>
(アルカリ処理2)の5%キチン懸濁液を用いる以外は実施例1と同様に、酸化度100%の酸化キチンを得た。
【0042】
<実施例3>
次亜塩素酸ナトリウム水溶液の添加量を21gとする以外は上記の酸化方法を繰り返し、アルカリの添加量が60%に達した時点で反応を停止させ、酸化度60%の酸化キチンを得た。
【0043】
<実施例4>
(アルカリ処理2)の5%キチン懸濁液を用いる以外は実施例3を繰り返し、酸化度60%の酸化キチンを得た。
【0044】
<比較例1>
市販のキチンをアルカリ処理することなく、それ以外は実施例1と同様の試薬量で酸化し、酸化キチンを得た。
【0045】
<構造分析>
(NMR測定)
重水に溶解し、NMRを測定した。
(赤外分光法)
KBr錠剤法により赤外分光スペクトルを測定し、構造を解析した。
【0046】
実施例1はアルカリ添加量100%の反応終了時、反応系内が完全に透明になった。また、酸化キチンは、pH7の水によっても、10%以上の水溶液にする事が可能で、完全にN−アセチルグルコサミンの6位炭素が酸化され、カルボン酸ナトリウムに変わっていることが確認された。それに対し、実施例2では、アルカリ添加量100%の反応終了時、僅かに不溶解分が残るものの、ろ過によって除去する事も可能で、得られた酸化キチンは完全にN−アセチルグルコサミンの6位炭素が酸化され、カルボン酸ナトリウムに変わっていることが確認された。
比較例では、2時間反応を続けたが、アルカリ添加量は60%以上消費されず、系内全体が透明になることはなかった。酸化生成物のうち、水に溶解する部分はNMRにより確認したところ、6位の水酸基を示すピークがなくなりカルボキシル基に変換しており、酸化は進んでいることが確認された。
また、実施例3、4の酸化度60%の酸化キチンは完全には水に溶解しない。赤外分光スペクトルにより構造を解析したところ、1600cm−1付近にカルボキシル基(ナトリウム塩型)由来のピークを確認した。
【0047】
<測定>
実施例1のサンプルを重水に溶解させ、13C−NMRを測定した(図1)。
【図面の簡単な説明】
【0048】
【図1】酸化前のキチンと実施例1による酸化キチンの13C−NMRスペクトル(重水)である。
【符号の説明】
【0049】
(A) 酸化前のキチンのNMRスペクトル
(B) 実施例1の酸化キチンのNMRスペクトル

【特許請求の範囲】
【請求項1】
キチンの構成単糖であるN−アセチルグルコサミンのピラノース環中、6位炭素を選択的に酸化し、カルボキシル基及び/又はその塩類に変換した構造を有することを特徴とする酸化キチンの製造方法であって、前記キチンとしてアルカリで膨潤または溶解処理したキチンを用いることを特徴とする酸化キチンの製造方法。
【請求項2】
キチンの構成単糖であるN−アセチルグルコサミンのピラノース環中、6位炭素を選択的に酸化し、カルボキシル基及び/又はその塩類に変換した構造を有することを特徴とする酸化キチンの製造方法であって、前記キチンとしてX線回折法により求めた回折角度2θ=9.2°付近(X線源=CuKα)のピークの半価幅が、1.2°以上のキチン用いることを特徴とする酸化キチンの製造方法。
【請求項3】
前記酸化により変換したカルボキシル基及び/又はその塩類が、N−アセチルグルコサミン残基のモル数に対し60%以上(酸化度60%以上)であることを特徴とする請求項1または2記載の酸化キチンの製造方法。
【請求項4】
前記酸化により変換したカルボキシル基及び/又はその塩類が、N−アセチルグルコサミン残基のモル数に対し90%以上(酸化度90%以上)であり、水溶性である事を特徴とする請求項1〜3のいずれかに記載の酸化キチンの製造方法。
【請求項5】
前記酸化方法が、キチンを水系で処理することを特徴とする上記請求項1〜4のいずれかに記載の酸化キチンの製造方法。
【請求項6】
前記酸化方法が、N−オキシル化合物などの触媒の存在下で、キチンを水系で処理することを特徴とする請求項1〜5のいずれかに記載の酸化キチンの製造方法。
【請求項7】
前記N−オキシル化合物が、2,2,6,6−テトラメチル−1−ピペリジンN−オキシルであり、水中で臭化アルカリ金属またはヨウ化アルカリ金属の存在下、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸およびそれらの塩のうち少なくとも1種の酸化剤を用いて、アルカリを添加してpHを一定に保ちながら酸化することを特徴とする上記請求項6に記載の酸化キチンの製造方法。
【請求項8】
アルカリ添加量により酸化度を制御することを特徴とする上記請求項1〜7記載の酸化キチンの製造方法。

【図1】
image rotate


【公開番号】特開2009−68014(P2009−68014A)
【公開日】平成21年4月2日(2009.4.2)
【国際特許分類】
【出願番号】特願2008−240653(P2008−240653)
【出願日】平成20年9月19日(2008.9.19)
【分割の表示】特願2001−341565(P2001−341565)の分割
【原出願日】平成13年11月7日(2001.11.7)
【出願人】(000003193)凸版印刷株式会社 (10,630)
【Fターム(参考)】