説明

水溶液中のサーモリシンの安定化

【課題】水溶液中でサーモリシンを安定化形態にする方法および組成物を提供すること。
【解決手段】方法は、サーモリシンを含む固形調製物と水性溶媒を混合して第1の溶液を作製する第1の工程(P)を含み、ここで第1の溶液は(i)pH4.5〜pH9の範囲にpHを維持し得るバッファ塩、(ii)1つ以上の塩、および(iii)サーモリシンを含み、第1の溶液中の(1つまたは複数の)バッファ塩を含む1つ以上の塩の集合体濃度が約0.1mM〜500mMの範囲であり、該方法は、第1の溶液に、測定された量のNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択されるさらなる塩を添加して、さらなる塩を溶解し、それにより溶解したサーモリシンが安定化形態で存在する第2の溶液を調製する次の工程(Q)をさらに含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は生化学の分野に関する。本発明は、水溶液中で不安定になる傾向のあるタンパク質分解酵素サーモリシンに関する。本発明は、水溶液中に溶解したサーモリシンの安定性を高めるための方法および組成物を提供する。サーモリシン、粗製サーモリシンまたはサーモリシンおよび1つ以上の塩を含む凍結乾燥物を、低塩濃度の水性バッファと接触させ、第1の溶液を形成する。続いて、固形のさらなる塩を添加および溶解させて、安定した形態のサーモリシンを含む第2の溶液を形成する。
【背景技術】
【0002】
サーモリシン[EC 3.4.24.27; CAS登録番号9073-78-3]は、バチルス サーモプロテオリティカス(Bacillus thermoproteolyticus)の培養液中で産生される熱安定性の中性メタロプロテイナーゼ(本明細書において「中性プロテアーゼ」ともいう)である(非特許文献1;非特許文献2)。サーモリシンは酵素活性のために1個の亜鉛イオン、および構造安定性のために4個のカルシウムイオンを必要とし(非特許文献3;非特許文献4;非特許文献5)、疎水性アミノ酸残基を含むペプチド結合の加水分解を特異的に触媒する(非特許文献6;非特許文献7)。サーモリシンは、加水分解の逆反応を介するペプチド結合の形成に広く使用されている(非特許文献8;非特許文献9;非特許文献10)。サーモリシンをコードするnpr遺伝子はB. サーモプロテオリティカスから単離された(非特許文献11)。配列解析により、サーモリシンはシグナルペプチド(28残基)、プロ配列(204残基)、および成熟配列(316残基)からなるプレ-プロタンパク質として合成されることが明らかにされている(非特許文献11)。プロ配列は、プロ配列と成熟配列を連結するペプチド結合の自己触媒性切断を引き起こす分子内シャペロンとして作用する(非特許文献12;非特許文献13;非特許文献14)。
【0003】
水中におけるインタクトのサーモリシンの280nmでの理論的な吸光度は、インターネット(http://www.expasy.ch/tools/protparam.html)から公に利用可能である「ProtParamツール」を用いて計算することがきる。ProtParamは、Swiss-ProtもしくはTrEMBLに記録されている所定のタンパク質について、またはユーザーが入力した配列について種々の物理的および化学的パラメーターの計算を可能にするツールである。計算されるパラメーターとしては、分子量、理論的pI、アミノ酸組成、原子組成、吸光係数、推定半減期、不安定性指数、脂肪族指数(aliphatic index)および疎水性親水性指数の大規模平均(grand average of hydropathicity)が挙げられる。従って、水中での理論的吸光値A(1mg/ml)、280nmで1.696を計算することができる。
【0004】
Ohta, Yら(非特許文献15)を参照したサーモリシンの製造(Daiwa Kasei K.K., Japan)では、50mM TrisHClバッファ、pH7中、280nmで1.765の吸光度A(1mg/ml)が示される。
【0005】
Inouye, Kら(非特許文献16)には、10mM CaCl2、40mM TrisHCl、pH7.5中のサーモリシン ロットT8BA51(Daiwa Kasei K.K., Osaka, Japan)について、277nm、25℃で測定された1.83の吸光値A(1mg/ml)が開示される。
【0006】
サーモリシンは凍結乾燥物として市販品供給業者から得ることができる。Daiwa Kasei K.K.(Japan)は分子量34,600Da(ダルトン)、至適pH、pH8.0、至適温度65℃〜70℃の範囲を有するサーモリシンを配布している。製造業者によると、この酵素はpH5.0〜pH8.5のpH範囲で安定である。希釈バッファ液中で0.02%の溶解度を示す。乾燥体中の酵素タンパク質が60%[w/w]以上の、凍結乾燥非晶質粉体として2度結晶化した、サーモリシンを購入することができる。この乾燥体はさらに無水酢酸カルシウム(約20%[w/w])および無水酢酸ナトリウム(約10%[w/w])を含む。さらなる結晶化のために、製造業者は、0.01M酢酸カルシウム水溶液中1%[w/v]〜5%[w/v]の範囲の濃度で凍結乾燥物を懸濁する工程を含む方法を記載している。攪拌しながら0.2Nの充分な水酸化ナトリウムを滴下して懸濁物を溶解し、水溶液のpHをpH11.0〜pH11.4の範囲の値にする。溶解しなかった残渣を除去した後、溶液のpHを0.2N酢酸でpH6.0に調整する。通常、結晶化は約2日で完了する。全工程は約0〜2℃の範囲の温度で行う。
【0007】
サーモリシンの調製物はまた、商標名THERMOASEでDaiwa Kasei K.K.(Japan)から入手可能である。
【0008】
特許文献1には、THERMOASEを溶解して約36mg/mlの濃度とした7mM CaCl2および1.75M NaClの水溶液が開示されている。乾燥THERMOASE粉体中のサーモリシンの純度は約20%であった。純度を考慮すると、水溶液中のサーモリシンの濃度は約7mg/mlであった。
【0009】
Inouye, Kら(非特許文献16)は、サーモリシンは溶解性に乏しいタンパク質であることを報告した。該タンパク質の表面は高度に疎水性であることが提唱され、サーモリシンは疎水性相互作用クロマトグラフィーによって効率的に精製され得るという事実はこの概念を支持する(非特許文献17)。低溶解性の結果、該酵素は新しく溶液を調製してから数時間の内に沈殿する強い傾向を有する。
【0010】
Inouye, Kら(非特許文献16)は、さらに、水性溶媒中のサーモリシンの溶解度は、サーモリシンの凍結乾燥調製物を溶媒と接触させる際に該溶媒中に特定の中性塩を溶解させた場合に、高めることが可能であることを示した。この効果は(1)温度、(2)溶媒中に存在する特定の中性塩、および(3)それぞれの中性塩の濃度に依存することが示された。Inouye, Kら(非特許文献16)の文書中で、図2には過剰な量のサーモリシン凍結乾燥粉末(サーモリシンの3回結晶化および凍結乾燥調製物(Daiwa Kasei K.K., Osaka, Japan; Lot T8BA51)さらに精製することなく使用)を、所定の濃度(0.5M〜5Mの範囲)の塩をさらに含む「標準バッファ」(10mM CaCl2、40mM TrisHCl、pH7.5)と混合した一連の実験の結果が開示されている。277nmで1.83の吸光値A(1mg/ml)および34.6kDaの分子量を用いて、溶解したタンパク質の濃度を分光光度計で決定した。
【0011】
表1〜4には、2つの異なる温度(0℃および37℃)で、Inouye, Kら(非特許文献16)の図2にグラフで示される溶解したタンパク質の濃度を示す大体の数値を再現している。表に示されたタンパク質の濃度はmg/mlの単位である。それぞれの表には、標準バッファに溶解した塩およびそのそれぞれの濃度を示す。
【0012】
【表1】

【0013】
【表2】

【0014】
【表3】

【0015】
【表4】

【0016】
従って、選択された塩について、可溶性タンパク質の最も高い濃度は、それぞれおよそ


であった。
【0017】
サーモリシンは、溶液中で自己タンパク質分解性攻撃を受ける攻撃性プロテアーゼである。従って、結晶化および凍結乾燥されたサーモリシンの調製物およびかかる調製物の溶液の両方には、大量のサーモリシンの種々の自己タンパク質分解断片が含まれる。
【0018】
自己タンパク質分解性攻撃を制限するために、サーモリシンを含む溶液は、低温にされる。しかしながら、かかる条件下では酵素活性が低下するだけで(すなわち、いくらかのタンパク質分解活性は依然として存在する)完全な停止には至らない。この点で、Inouye, Kら(非特許文献16)が任意の精製工程を行うことなく溶液のタンパク質含有量を測定していることが注目される。そのため、検出されたタンパク質濃度はインタクトのサーモリシンおよびその分解断片の混合物に相当する。
【先行技術文献】
【特許文献】
【0019】
【特許文献1】EP 0 640 687
【非特許文献】
【0020】
【非特許文献1】Endo, S., J., Ferment. Technol. 40 (1962) 346-353
【非特許文献2】Matsubara, H., Feder, J., 第3版、Boyer, P., D.,(編)、The Enzymes, vol. 3, Academic Press, New York, 1971, pp. 721-795
【非特許文献3】Latt, S., A., et al. Biochem. Biophys. Res. Commun. 37 (1969) 333-339
【非特許文献4】Feder, J., et al. Biochemistry 10 (1971) 4552-4556
【非特許文献5】Tajima, M., et al. Eur. J. Biochem. 64 (1976) 243-247
【非特許文献6】Morihara, K., Tsuzuki, H., Eur. J. Biochem. 15 (1970) 374-380
【非特許文献7】Inouye, K., et al. Biochem. J. 315 (1996) 133-138
【非特許文献8】Oyama, K., et al., J. Chem.Soc. Perkin II (1981) 356-360
【非特許文献9】Nakanishi, K., et al., Ann. N.Y.Acad. Sci. 613 (1990) 652-655
【非特許文献10】Trusek-Holownia, A., J. Biotechnol. 102 (2003) 153-163
【非特許文献11】O’Donohue, M., J., et al., Biochem. J. 300 (1994) 599-603
【非特許文献12】O’Donohue, M., J., et al., J. Biol. Chem. 271 (1996) 26477-26481
【非特許文献13】Marie-Claire, C., et al., J. Biol. Chem. 273 (1998) 5697-5701
【非特許文献14】Marie-Claire, C., et al., J. Mol. Biol. 285 (1999) 1911-1915
【非特許文献15】J. Biol. Chem. 241 (1966) 5919-5925
【非特許文献16】J. Biochem. 123 (1998) 847-852
【非特許文献17】Inouye, K., et al., Protein Expression and Purification 46 (2006) 248-255
【発明の概要】
【発明が解決しようとする課題】
【0021】
当該技術分野の状態を鑑みると、水溶液中でサーモリシンを安定化形態にする方法および組成物を提供することが本発明の課題である。安定化形態を提供することにより、サーモリシンの沈殿する傾向を低減し、酵素の溶液は長期間均一な状態のままになる。
【課題を解決するための手段】
【0022】
即ち、本発明の要旨は、
〔1〕溶解したサーモリシンが安定化形態であるサーモリシン(EC 3.4.24.27)の溶液の調製方法であって、該方法は、サーモリシンを含む固形調製物と水性溶媒を混合して第1の溶液を作製する第1の工程(P)を含み、ここで第1の溶液は
(i) pH4.5〜pH9の範囲にpHを維持し得るバッファ塩、
(ii) 1つ以上の塩、および
(iii) サーモリシンを含み、
第1の溶液中の(1つまたは複数の)バッファ塩を含む1つ以上の塩の集合体濃度が約0.1mM〜500mMの範囲であり、
該方法は、第1の溶液に、測定された量のNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択されるさらなる塩を添加して、さらなる塩を溶解し、
それにより溶解したサーモリシンが安定化形態で存在する第2の溶液を調製する次の工程(Q)をさらに含む、方法、
〔2〕工程(P)において、サーモリシンを含む固形調製物がさらに1つ以上の塩を含む、〔1〕記載の方法、
〔3〕工程(P)において、固形調製物が約20%[w/w]〜100%[w/w]の範囲の濃度でサーモリシンを含む、〔1〕または〔2〕記載の方法、
〔4〕工程(P)において、水性溶媒中のサーモリシンを含む調製物の濃度が約1mg/ml〜約100mg/mlの範囲である、〔1〕〜〔3〕いずれか記載の方法、
〔5〕工程(P)において得られた第1の溶液中の硫酸イオンの濃度が約1mM〜約10mMの範囲である、〔1〕〜〔4〕いずれか記載の方法、
〔6〕工程(Q)の後に得られる第2の溶液中のさらなる塩の総濃度が約2M〜約3.5Mの範囲である、〔5〕記載の方法、
〔7〕工程(Q)の後に得られる第2の溶液中のサーモリシンの濃度が約5mg/ml以上、約35mg/ml未満である、〔1〕〜〔6〕いずれか記載の方法、
〔8〕工程(Q)の後に得られる第2の溶液中のサーモリシンの濃度が約10mg/ml以上、約35mg/ml未満であり、工程(Q)においてさらなる塩がNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される、〔7〕記載の方法、
〔9〕水、溶解した形態のサーモリシン、pH4.5〜pH9の範囲にpHを維持し得る溶解したバッファ塩、ならびにNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される溶解した塩を含む液体組成物であって、5時間以上均一な溶液であり、約1mg/ml〜約10mg/mlの範囲の濃度でサーモリシンを含み、〔1〕〜〔8〕いずれか記載の方法により得られ得る、液体組成物、
〔10〕水、溶解した形態のサーモリシン、pH4.5〜pH9の範囲にpHを維持し得る溶解したバッファ塩、ならびにNaCl、NaBr、NaNO3、NaI、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される溶解した塩を含む液体組成物であって、5時間以上均一な溶液であり、約10mg/ml〜約23mg/mlの範囲の濃度でサーモリシンを含み、〔1〕〜〔8〕いずれか記載の方法により得られ得る、液体組成物、
〔11〕水、溶解した形態のサーモリシン、pH4.5〜pH9の範囲にpHを維持し得る溶解したバッファ塩、および500mM未満の濃度の溶解したNaClを含む液体組成物であって、約1mg/ml〜約10mg/mlの範囲の濃度でサーモリシンを含む、液体組成物、
〔12〕組成物の導電率が約20mS/cmである、〔9〕〜〔11〕いずれか記載の液体組成物、
〔13〕組成物中の溶解したナトリウムイオンの濃度が100mM〜250mMの範囲である、〔11〕または〔12〕記載の液体組成物、
〔14〕組成物の形成後、約2℃〜約8℃の範囲の温度で少なくとも5時間、組成物の濁度が参照溶液の濁度とほぼ同等であり、該参照溶液が〔9〕または〔10〕記載の組成物とそれぞれ同じ濃度で同一の溶解した成分からなり、かつ該参照溶液がサーモリシンまたはその断片を欠く、〔9〕または〔10〕記載の液体組成物、
〔15〕サーモリシンの保存、輸送または分配のための〔9〕〜〔14〕いずれか記載の液体組成物の使用であって、サーモリシンが溶解した形態である、使用
に関する。
【発明の効果】
【0023】
本発明により、水溶液中でサーモリシンを安定化形態にする方法および組成物が提供される。
【図面の簡単な説明】
【0024】
【図1】図1は、実施例8に記載される波長スキャンの結果である。縦座標は、800nmで検出器によって測定された任意の単位(a.u.)の光強度を示す。横座標は、入射光の波長を示す。(A)水性バッファを含む液体試料;(B)水性バッファ中にサーモリシンのコロイドを含む液体試料。
【図2】図2は、実施例2に記載される第1の工程から、すなわち、さらなるダイアフィルトレーション工程を行わずに/行う前に、得られたTHERMOASE凍結乾燥物を含む溶液のクロマトグラフィー分析の例示的な結果である。THERMOASE凍結乾燥物を2.3M NaCl、5mM CaCl2、20mM HEPES、pH7.5を含む水性バッファに溶解し、280nmで測光法的に測定すると該溶液のタンパク質含有量は8.2mg/mlであった。図2は50μlの均一な溶液の試料のHPLCクロマトグラムを示す。(i)〜(v)で示される5個のピーク領域が印をつけられる。HPLCの条件およびパラメーターは実施例2に記載される。縦座標:mA.U.;横座標:保持時間「分」。
【図3】図3は、実施例2に記載される第2の工程から、つまりダイアフィルトレーション工程を含む/行った後に、得られたTHERMOASE凍結乾燥物を含む溶液のクロマトグラフィー分析の例示的な結果である。ダイアフィルトレーションの後、THERMOASEは、170mM NaCl、5mM CaCl2、20mM HEPES、pH7.5を含む水性バッファ中に存在し、280nmで測光法的に測定するとダイアフィルトレーション後の溶液のタンパク質含有量は4.9mg/mlであった。図3は50μlの均一な溶液の試料のHPLCクロマトグラムを示す。(vi)〜(viii)で示される3個のピーク領域が印をつけられる。HPLCの条件およびパラメーターは実施例2に記載される。縦座標:mA.U.;横座標:保持時間「分」。
【発明を実施するための形態】
【0025】
本発明者は、まずサーモリシンを低イオン濃度のバッファに溶解し、次いで塩を添加して、すでにサーモリシンを含む溶液中に塩を溶解することで、驚くべきことに高濃度のサーモリシンを有する溶液を形成することが可能になることを予期せずに見出した。同時に、かかる条件下で、本発明に従って、溶解したサーモリシンを溶液中で安定化させる、すなわち、溶液は長時間透明なままであり、その間沈殿は形成されない。
【0026】
本発明は、サーモリシンのアリコートを分配するため、またはコラゲナーゼ酵素などの他の酵素の調製物との混合物を作製するために、大量のサーモリシンを溶液中に維持する必要がある場合に大きな利点をもたらす。タンパク質分解性の酵素のこのような混合物は、生物組織から細胞のサブセットを分離するための生物組織の分離において特に使用される。
【0027】
発明の要旨
本発明の第1の局面は、溶解したサーモリシンが安定化形態であるサーモリシン(EC 3.4.24.27)の溶液の調製方法であって、サーモリシンを含む固体調製物と水性溶媒を混合して第1の溶液を作製する第1の工程(P)、ここで第1の溶液は(i)pH4.5〜pH9の範囲にpHを維持し得るバッファ塩、(ii)1つ以上の塩、および(iii)サーモリシンを含み、第1の溶液中で1つまたは複数のバッファ塩を含む1つ以上の塩の集合体濃度が約0.1mM〜約150mMの範囲であり、さらに、第1の溶液に測定量のNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択されたさらなる塩を添加してさらなる塩を溶解し、それにより溶解されたサーモリシンが安定化形態で存在する第2の溶液を調製するその後の工程(Q)を含む方法である。
【0028】
本発明の別の局面は、水、溶解された形態のサーモリシン、pH4.5〜pH9の範囲にpHを維持し得る溶解したバッファ塩、ならびにNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される溶解した塩を含む液体組成物であって、該組成物は5時間以上均一な溶液であり、約1mg/ml〜約10mg/mlの範囲の濃度でサーモリシンを含む。
【0029】
本発明のさらなる局面は、水、溶解した形態のサーモリシン、pH4.5〜pH9の範囲にpHを維持し得る溶解したバッファ塩、ならびにNaCl、NaBr、NaNO3、NaI、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される溶解した塩を含む液体組成物であって、該組成物は5時間以上均一な溶液であり、約10mg/ml〜約23mg/mlの範囲の濃度でサーモリシンを含む。
【0030】
さらに、本発明の別の局面は、溶解した形態のサーモリシンの保存、輸送、または分配のための本発明の組成物の使用である。
【0031】
発明の詳細な説明
本発明の明細書において、ある用語は特定の意味を持って使用されるか、または最初に定義される。本発明の目的のために、定義が以下に記載される定義と矛盾するかまたは部分的に矛盾する場合を除いて、定義が存在する場合、使用される用語は、本発明の技術分野に許容される定義によって定義される。定義に矛盾がある場合、以下に記載される定義のいずれかによって、用語の意味はまず定義される。
【0032】
用語「含む」は、「含むが、必ずしも限定されない」を意味するように本発明の明細書および特許請求の範囲において使用される。
【0033】
冠詞「a」および「an」は、1つまたは1つより多く(すなわち少なくとも1つ)の冠詞の文法上の目的語のことを言及するように本明細書において使用される。一例として、「a compound」は、1つの化合物または1つより多くの化合物を意味する。
【0034】
濃度範囲(には限定されないが)などの数値の範囲を明示する場合、範囲は第1の値n1および第2の値n2によって示される(例えば、「n1〜n2の範囲」)。示された範囲の下方境界は第1の値以上の値であると理解される。示された範囲の上方境界は第2の値以下の値であると理解される。従って、示された範囲内の値xはn1≦x≦n2によって与えられる。単語「間」を使用して範囲が示される場合、上方境界および下方境界はその間隔内に含まれると理解される。従って、表現「n1とn2の間の値x」はn1≦x≦n2と理解される。
【0035】
他に記載されない場合は、用語「約」および記号「〜」を数値nと併せると(「約n」、「〜n」)、その数値±5%の数値、つまりn-0.05*n≦x≦n+0.05*nで示される間隔中の値xを示すことが理解される。数値nと併せて用語「約」または記号「〜」が本発明の好ましい態様を示す場合、他に示されなければnの値が最も好ましい。
【0036】
「混合物」は、化学反応を起こさずに2種類以上の異なる物質を合わせることにより作製される物質である。混合物中で該物体は結合しない。通常、混合物を分離して、元の成分に戻すことができる。混合物は、化学結合形成または他の化学変化のない元素および化合物などの化学物質の機械的な混和または混合の生成物であるので、それぞれの成分物質はそれ自身の化学的特性および構造を残している。混合物中では化学変化は起こらないが、融点などの混合物の物理的特性はその成分のものとは異なり得る。混合物は均一であるか不均一であるかのいずれかである。
【0037】
均一な混合物とは、一定の、一貫した特性を有する混合物である。粒子は均一に分散される。例えば、任意の量の所定の混合物は同一の組成および同一の特性を有する。均一な混合物は単一の相のみからなる均質な混合物である。本発明の目的で、1つ以上の溶解した塩の溶液は均一な混合物の非限定的な例である。
【0038】
溶液は、別の物質(溶媒)中に溶解(すなわち、解離)された1つ以上の物質(溶質)の均一な混合物である。一般的な例は、液体に溶解している固体である(すなわち、水に溶解した塩またはタンパク質)。溶解度は化合物の特性である。条件によって、溶媒または溶液に溶解可能な物質の量は変化し得る。
【0039】
均一でない(不均一な)混合物の非限定的な例は、コロイドおよび懸濁液である。本発明の文脈において、懸濁液は、沈殿するのに充分な大きさの固体粒子を含む不均一な流体であると理解される。コロイドとは異なり、懸濁された粒子は、乱さないでそのままにしておくと、時間が経てば澄んでくる。このことにより懸濁液と、懸濁粒子がより小さく澄まないコロイドが区別される。
【0040】
溶液中で、溶解した物質は固体としては存在せず、溶質(1つまたは複数)および溶媒は均一に混合される。用語、溶液の「安定性」とは、溶解した物質が溶解した状態のままである傾向のことをいう。つまり、該用語は、所定の期間の間溶液が均一なままである能力のことをいう。そのため、安定性は、前記期間を測定することによる定量において特徴付けることができる。従って、より低い安定性を特徴とする第1の溶液中に溶解した物質は、沈殿するかまたはコロイドもしくは懸濁液を形成するより高い傾向を示し、それに対してより高い安定性を特徴とする第2の溶液はその傾向がより低い。結果的に、一定時間の後に、前記第1の溶液は不均一な混合物となるが、前記第2の溶液は均一な混合物のままである。
【0041】
特定の条件下で、溶液の安定性を増加、つまり溶解した物質が沈殿する傾向を減少させることができる。本発明の目的で、沈殿する傾向が低い物質を「安定化形態」であるという。
【0042】
濁度は、懸濁液またはコロイド中に粒子が存在することで生じる水の曇りの尺度である。濁度の測定にはいくつかの実用的な方法があり、最も直接的なのは、光が水の試料カラムを通過する際の光の減衰(つまり、強度の減少)のいくつかの測定である。従って、濁度を測定するための1つの方法は視覚的な観察、つまり目による観察である。
【0043】
測定の別の方法は、光度計による光減衰の測定である。このことに関して、用語「光学密度」(「OD」ともいう)は、所定の波長λの、所定の長さの光学素子の透過率の単位のない尺度を示す:


(式中、
O=単位当たりの不透明度
T=単位当たりの透過率
I0=入射光線の強度
I=透過光線の強度)。
【0044】
光学密度が高いほど透過率は低くなる。粒子に集束した光線の散乱により、懸濁液またはコロイドの光学密度は透明な溶液に比べて高い。
【0045】
濁度を測定するための好ましい方法は散乱した光を測定することである。このために、光散乱光度計が頻繁に使用される。光の散乱が検出および定量される方向に依存して、当該技術分野に公知のいくつかの型の散乱光光度計がある。原則として、液体試料中の濁度の定量的評価のために全てを使用することができる。用語「光散乱」は、試料中の粒子による光波の散乱、ならびに試料中の粒状物質による反射の両方を集合的に含む。後方散乱は、光源の方に90°未満と定義される。前方散乱は、光源から向こう側に90°未満であるか、またはほぼ光源と同一方向として定義される。今日使用される測定の主要な濁度単位は90°側方散乱測定技術に基づく。
【0046】
散乱した光の強度は、不均一な混合物中の溶解していない(粒状の)物体の量に依存し、式I:


(式中、
Fは、散乱光の強度
I0は、入射光線の強度
Φは、放射された光子対吸収された光子の比
εは、混合物中の粒状物質のモル吸光係数
cは、キュベット中の液体試料(不均一な混合物)の体積当たりの粒状物質の量
dは、キュベット内の空間の厚み)
によって説明することができる。
【0047】
本発明の目的で、蛍光光度計を用いて90°側方散乱測定を行い、粒状物体としてサーモリシンを含む不均一な混合物の曇りを測定する。典型的に、このような混合物はコロイドである。
【0048】
本発明の意味において「粗製サーモリシン」は、主に、実質的に分解されていない(=インタクトの)サーモリシン、およびさらに典型的には自己タンパク質分解性攻撃により生じた分解産物からなるタンパク質の混合物である。通常、粗製サーモリシンの約70%は実質的に分解されていないことが見出されており、粗製サーモリシンの約24%は(種々の程度で)タンパク質分解活性を維持した種々の分解産物からなり、約6%はタンパク質分解的に不活性な断片およびさらなる不純物である。THERMOASEは、本発明の有利な効果を例示するために使用される粗製サーモリシンの調製物である。しかし、本発明はTHERMOASE調製物の使用には限定されず、該酵素の他の調製物を使用して本発明を実施することができる。
【0049】
THERMOASEは、タンパク質含有量が約30%[w/w]〜約35%[w/w]の範囲である凍結乾燥物である。該凍結乾燥物中のタンパク質は、「粗製サーモリシン」からなる。
【0050】
当該技術分野の状態から、塩、好ましくは溶解した中性の塩が、乾燥サーモリシンまたはサーモリシンを含む乾燥組成物の溶媒として使用される水性バッファ中に存在する場合、サーモリシンの溶解度が上昇することが知られている。しかし、サーモリシンの水溶液は、溶解したサーモリシンが遷移を受け、サーモリシンの溶解性が減少するという点で不安定である。遷移の正確な性質は不明であるが、サーモリシンの1つ以上の疎水性ドメイン(1つまたは複数)のアミノ酸残基がこの工程に役割を果たしていると合理的に推測することができる。サーモリシンの溶解度は遷移のために減少する。結果的に、新しく調製された酵素の透明な溶液は不透明になり、結果的にタンパク質のかなりの部分が沈殿する。安定性の欠如についての例が実施例6、表13および14、番号1〜3に示される。凍結乾燥物の濃度が低く、約1.1M NaClの存在下であっても、サーモリシンは溶液になった後で強い沈殿傾向を有する。
【0051】
驚くべきことに、本発明者は、遷移を抑制することができ、溶液中でサーモリシンを安定化することができることを見出した。このために、サーモリシン、粗製サーモリシン、またはサーモリシンおよび1つ以上の塩を含む凍結乾燥物を低塩濃度の水性バッファと接触させて、わずかに短期間だけ安定な溶液を作製する。次いで、固形のさらなる塩を添加して、その後溶液中に溶解させる。この工程後、溶液中のサーモリシンは沈殿傾向が有意に減少することを特徴とする安定化形態である。
【0052】
本発明により、低塩濃度の水性バッファをサーモリシン、粗製サーモリシンまたはサーモリシンを含む凍結乾燥物と接触させる前、バッファ中のバッファ塩を含むに溶解した塩の濃度は、好ましくは150mM未満、好ましくは0.1mM〜150mMの範囲である。サーモリシンの調製物に依存して、水性バッファの塩濃度は、バッファ中に溶解したサーモリシン含有固形調製物中に塩が存在する程度まで上がる。
【0053】
好ましくは、固形の塩は無機硫酸塩以外の中性塩である。好ましい固形塩はNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される。
【0054】
第1の主要な工程は、サーモリシンを含む透明な溶液の作製である。サーモリシンの調製によって均一な透明の溶液を形成することが可能でない場合、さらなる透明化工程が必要である。例えば、ろ過、遠心分離または同等の手段により溶液を透明化することができる。
【0055】
第2の主要な工程として、新しく調製したサーモリシンの透明な溶液に固形の塩を添加する必要がある。約2℃〜約8℃の範囲の温度で、好ましくはサーモリシンの透明な溶液が得られた後30分以内に固形の塩を添加する。15分、10分および5分以内などのより短い時間がより好ましい。
【0056】
サーモリシン溶液中で、約1.5M〜3.5Mの範囲の総濃度の溶解した塩を使用して、溶液中のサーモリシンを安定化させ、溶液を16時間以上までの間透明で均一な混合物のままにする。
【0057】
驚くべきことに、この溶液をより低い塩濃度のバッファに対してダイアフィルトレートすることさえでき、かかる工程において前もって添加された溶解した塩の濃度を低下させることもできる(実施例2参照)。このことに関して、ダイアフィルトレーションは、低分子量種、水および/または溶媒が溶液の体積を変えることなく膜を通過して移動することを可能にする交差流濾過法である。この方法は、残った高分子量種(すなわち実質的にインタクトのサーモリシン)を精製して、サーモリシンのタンパク質分解断片を含む低分子量種を除去するために使用される。同時に、ダイアフィルトレーションの手順によりバッファ交換が可能であり、それによってダイアフィルトレーション法前の所定の溶液の性質を単に変えることが可能である。
【0058】
これらの条件(すなわち、ダイアフィルトレーション法の間)下であっても、サーモリシンは安定化形態のままであり、すなわちサーモリシンは溶液中で安定なままである。本発明の凍結したサーモリシン溶液について、融解後に同じ効果がみられる。
【0059】
従って、本発明は特に、再現可能な条件下で、長時間にわたりサーモリシンの均一な溶液を操作するための手段、組成物および条件を提供する。これは特に、サーモリシンを他の酵素と混合する場合、または例えば自動化デバイスを使用してサーモリシン溶液をアリコートとして分配する場合に有用である。
【0060】
さらに、より詳細には、本発明は以下の項目:
1. 溶解したサーモリシンが安定化形態であるサーモリシン(EC 3.4.24.27)の溶液の調製方法であって、該方法は、サーモリシンを含む固形調製物を水性溶媒と混合して、第1の溶液を作製する第1の工程(P)を含み、ここで第1の溶液は
(i) pHをpH4.5〜pH9の範囲に維持し得るバッファ塩、
(ii) 1つ以上の塩、および
(iii) サーモリシンを含み、
第1の溶液において1種類のバッファ塩または複数のバッファ塩を含む1つ以上の塩の集合体濃度が約0.1mM〜500mMの範囲であり、
該方法は、第1の溶液にNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される測定された量のさらなる塩を添加してさらなる塩を溶解し、
それにより溶解したサーモリシンが安定化形態で存在する第2の溶液を調製する次の工程(Q)をさらに含む、方法、
2. 工程(P)において得られる第1の溶液が均一な溶液である項目1記載の方法、
3. 工程(P)において水性溶媒が水およびバッファ塩を含む項目1および2いずれか記載の方法、
4. 工程(P)においてサーモリシンを含む固形調製物がさらに1つ以上の塩を含む項目1および2いずれか記載の方法、
5. 工程(P)において水性溶媒が水である項目4記載の方法、
6. 工程(P)において固形調製物が約20%[w/w]以上の濃度のサーモリシンを含む項目1〜5いずれか記載の方法、
7. 工程(P)において固形調製物が約20%[w/w]〜100%[w/w]の範囲、より好ましくは約20%[w/w]〜約80%[w/w]の範囲、さらに好ましくは約20%[w/w]〜約60%[w/w]の範囲の濃度でサーモリシンを含む、項目1〜5いずれか記載の方法、
8. 工程(P)において固形調製物が約20%[w/w]〜約50%[w/w]の範囲、より好ましくは約20%[w/w]〜約40%[w/w]の範囲、さらに好ましくは約20%[w/w]〜約30%[w/w]の範囲の濃度でサーモリシンを含む、項目6または項目7記載の方法、
9. 工程(P)において固形調製物が約20%[w/w]の濃度でサーモリシンを含む項目8記載の方法、
10. 工程(P)において水性溶媒中のサーモリシンを含む調製物の濃度が約1mg/ml〜約100mg/mlの範囲である、項目1〜9いずれか記載の方法、
11. 工程(P)において固形調製物の濃度が約20mg/ml〜約60mg/mlの範囲、より好ましくは約25mg/ml〜約50mg/mlの範囲、さらに好ましくは約30mg/mlである、項目10記載の方法、
12. 工程(P)において第1の溶液中の1つ以上の塩(ii)がNaCl、Na2SO4およびそれらの組合せからなる群より選択される塩を含む、項目1〜11いずれか記載の方法、
13. 工程(P)においてサーモリシンを含む固形調製物中の1つ以上の塩がNaCl、Na2SO4およびそれらの組合せからなる群より選択される、項目4記載の方法、
14. 工程(P)において固形調製物が約50%[w/w]〜約70%[w/w]の範囲のNaCl、および/または約0.5%[w/w]〜約7.5%[w/w]の範囲のNa2SO4を含み、より好ましくは固形調製物が約60%[w/w]〜約65%[w/w]の範囲のNaCl、および/または約3%[w/w]〜約6%[w/w]の範囲のNa2SO4を含む、項目13記載の方法、
15. 工程(P)において固形調製物が粗製サーモリシンを含む項目12〜14いずれか記載の方法、
16. 工程(P)において第1の溶液中の硫酸イオンの濃度が約1mM〜約10mMの範囲であり、より好ましくは第1の溶液中の硫酸イオンの濃度が約5mMである、項目1〜15いずれか記載の方法、
17. 次の工程(Q)においてさらなる塩が固形形態で添加される項目1〜16いずれか記載の方法、
18. 工程(Q)の後に得られる第2の溶液中のさらなる塩の総濃度が約1.5M〜約5Mの範囲である、項目1〜17いずれか記載の方法、
19. 工程(Q)の後に得られる第2の溶液中のさらなる塩の総濃度が約2M〜約3.5Mの範囲である、項目18記載の方法、
20. 工程(Q)の後に得られる第2の溶液中のさらなる塩の総濃度が約2M〜約2.5Mの範囲である、項目19記載の方法、
21. 工程(Q)の後に得られる第2の溶液中のさらなる塩の総濃度が約2.3Mである、項目19記載の方法、
22. 工程(Q)の後に得られる第2の溶液中の硫酸イオンの濃度が約10mM未満である、項目17〜21いずれか記載の方法、
23. 工程(Q)の後に得られる第2の溶液中の硫酸イオンの濃度が約1mM〜約10mMの範囲であり、より好ましくは約1mM〜約5mMの範囲である、項目22記載の方法、
24. 工程(P)中に得られる第1の溶液において、1種類のバッファ塩または複数のバッファ塩を含む1つ以上の塩の集合体濃度が約100mM〜500mMの範囲であり、より好ましくは約300mM〜400mMの範囲である、項目1〜23いずれか記載の方法、
25. 工程(P)において水性溶媒がCa2+イオンを含む、項目1〜24いずれか記載の方法、
26. 水性溶媒中のCa2+イオンの濃度が約0.1mM〜約10mMの範囲であり、さらに好ましくは約1mM〜約10mMの範囲である、項目25記載の方法、
27. 水性溶媒中のCa2+イオンの濃度が約5mMである項目26記載の方法、
28. 工程(P)において水性溶媒が約0.1mM〜約100mMの範囲、より好ましくは約1mM〜約100mMの範囲の濃度でバッファ塩を含む、項目1〜27いずれか記載の方法、
29. 水性溶媒中のバッファ塩の濃度が約5mM〜約50mMの範囲である項目28記載の方法、
30. 水性溶媒中のバッファ塩の濃度が約15mM〜約25mMの範囲である項目29記載の方法、
31. 水性溶媒中のバッファ塩の濃度が約20mMである項目30記載の方法、
32. バッファ塩がBES(N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸)、トリス(トリス(ヒドロキシメチル)アミノメタン)、ビストリス(ビス(2-ヒドロキシエチル)アミノ-トリス(ヒドロキシメチル)メタン)、ビストリスプロパン(1,3-ビス(トリス(ヒドロキシメチル)メチルアミノ)プロパン)、HEPES(N-(2-ヒドロキシエチル)-ピペラジン-N'-2-エタンスルホン酸)、MES(2-(N-モルホリノ)エタンスルホン酸)、MOPS(3-(N-モルホリノ)プロパンスルホン酸)、MOPSO(3-モルホリノ-2-ヒドロキシプロパンスルホン酸)、PIPES(ピペラジン-1,4-ビス(2-エタンスルホン酸))、TAPS(N-トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸)、TES(N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸)、TEA(トリエタノールアミン)およびトリシン(N-(2-ヒドロキシ-1,1-ビス(ヒドロキシメチル)エチル)グリシン)からなる群より選択される、項目28〜31いずれか記載の方法、
33. 工程(P)において第1の溶液のpHが約pH5.5〜約pH8.5の範囲である項目1〜32いずれか記載の方法、
34. pHが約pH7.5である項目33記載の方法、
35. 工程(Q)の後に得られる第2の溶液中で実質的にインタクトのサーモリシンの濃度が約5mg/ml以上であり、溶液中のサーモリシンが安定化形態である、項目1〜34いずれか記載の方法、
36. 工程(Q)の後に得られる第2の溶液中で実質的にインタクトのサーモリシンの濃度が約5mg/ml以上、約35mg/ml未満である、項目35記載の方法、
37. さらなる塩がKCl、LiCl、NaCl、NaBr、NaI、NaNO3、MgCl2、CaCl2およびそれらの混合物からなる群より選択される項目35記載の方法、
38. 安定化形態のサーモリシンの濃度が約10mg/ml以上、約35mg/ml未満である項目37記載の方法、
39. 安定化形態のサーモリシンの濃度が約20mg/mlである項目38記載の方法、
40. 水、溶解した形態のサーモリシン、pHをpH4.5〜pH9の範囲に維持し得る溶解したバッファ塩、ならびにNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される溶解した塩を含む液体組成物であって、約1mg/ml〜約10mg/mlの範囲の濃度でサーモリシンを含む、液体組成物、
41. 水、溶解した形態のサーモリシン、pHをpH4.5〜pH9の範囲に維持し得る溶解したバッファ塩、ならびにNaCl、NaBr、NaNO3、NaI、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される溶解した塩を含む液体組成物であって、5時間以上均一な溶液であり、約10mg/ml〜約23mg/mlの範囲の濃度のサーモリシンを含む、液体組成物、
42. 項目1〜39いずれか記載の方法によって得られ得る項目40または項目41いずれか記載の液体組成物、
43. 溶解したサーモリシンが安定化形態である項目40〜42いずれか記載の液体組成物、
44. 組成物の形成後、約2℃〜約8℃の範囲の温度で少なくとも5時間、組成物の濁度が参照溶液の濁度とほぼ等しく、ここで参照溶液は項目41および42いずれか記載の組成物とそれぞれ同じ濃度で同一の溶解した成分からなり、参照溶液がサーモリシンまたはその断片を欠く、項目40〜43いずれか記載の液体組成物、
45. 項目1〜39いずれか記載の方法により得られ、約2℃〜約8℃の範囲の温度でインキュベートされる、項目40〜44いずれか記載の液体組成物であって、0〜5時間のインキュベーション期間、さらに好ましくは5時間より長いインキュベーション期間中、均一な溶液である、液体組成物、
46. 溶解したサーモリシンが実質的にインタクトである項目44および45いずれか記載の液体組成物、
47. 組成物の形成後、約2℃〜約8℃の範囲の温度で少なくとも5時間、組成物の濁度が参照溶液の濁度とほぼ等しく、ここで参照溶液は項目44〜46いずれか記載の組成物とそれぞれ同じ濃度で同一の溶解した成分からなり、参照溶液がサーモリシンまたはその断片を欠く、項目44〜46いずれか記載の液体組成物、
48. 水、溶解した形態のサーモリシン、pHをpH4.5〜pH9の範囲に維持し得る溶解したバッファ塩および500mM未満の濃度の溶解したNaClを含む液体組成物であって、約1mg/ml〜約10mg/mlの範囲の濃度でサーモリシンを含む液体組成物、
49. 組成物のpHがpH7〜pH8の範囲、さらに好ましくは約pH7.5である項目48記載の液体組成物、
50. Ca2+イオン、より好ましくは約0.1mM〜約10mMの範囲、さらに好ましくは約1mM〜約10mMの範囲の濃度でCa2+イオンを含む、項目48および49いずれか記載の液体組成物、
51. 組成物中の1種類のバッファ塩または複数のバッファ塩を含む溶解した塩の集合体濃度が約200mM〜約400mMの範囲であり、より好ましくは1種類のバッファ塩または複数のバッファ塩を含む溶解した塩の集合体濃度が約200mMである、項目48〜50いずれか記載の液体組成物、
52. 組成物中の溶解したナトリウムイオンの濃度が100mM〜250mMの範囲であり、より好ましくは溶解したナトリウムイオンの濃度が150mM〜200mMの範囲であり、さらに好ましくは溶解したナトリウムイオンの濃度が約170mMである、項目48〜51いずれか記載の液体組成物、
53. 組成物の導電率が約20mS/cmである項目48〜52いずれか記載の液体組成物、
54. 組成物中で実質的にインタクトのサーモリシンの濃度が0.1mg/ml〜10mg/mlの範囲、より好ましくは1mg/ml〜7.5mg/mlの範囲、さらに好ましくは1mg/ml〜5mg/ml、さらに好ましくは2.5mg/mlまたは5mg/mlである、項目48〜53いずれか記載の液体組成物、
55. 項目1〜39いずれか記載の方法、その後工程(Q)の後に得られた第2の溶液を、pHをpH4.5〜pH9の範囲に維持し得る溶解したバッファ塩および500mM未満の濃度の溶解したNaClを含むダイアフィルトレーションバッファに対してダイアフィルトレーションするその後の工程により得られる、項目48〜54いずれかい記載の液体組成物、
56. ダイアフィルトレーションバッファが約0.1mM〜約10mMの範囲の濃度でCa2+イオンを含む項目55記載の液体組成物、
57. ダイアフィルトレーションバッファ中の1種類のバッファ塩または複数のバッファ塩を含む溶解した塩の集合体濃度が約200mM〜約400mMの範囲であり、より好ましくは1種類のバッファ塩または複数のバッファ塩を含む溶解した塩の集合体濃度が約200mMである、項目55および56いずれか記載の液体組成物、
58. サーモリシンの保存、輸送または分配のための項目47〜57いずれか記載の液体組成物の使用であって、サーモリシンが溶解した形態である、使用
を含む。
【0061】
以下の実施例および図面は、本発明の理解を補助するために提供され、本発明の真の範囲は添付の特許請求の範囲に記載される。本発明の精神を逸脱することなく記載される手順において変更がなされ得ることが理解される。
【実施例】
【0062】
実施例1
水性バッファおよびTHERMOASE調製物由来のサーモリシンの混合物の調製
製造業者から提供された情報に従うと、凍結乾燥物の約60〜65%[w/w]はNaClであった。また、該凍結乾燥物は約5%[w/w] Na2SO4(10水和物)を含んだ。ここで使用した約30%[w/w]〜約35%[w/w]の範囲の量のTHERMOASE凍結乾燥物は、下記の実施例と同様に、粗製サーモリシンからなった(実施例2も参照)。以下に記載される全ての作業工程は、他に示されない場合は2℃〜8℃の範囲の温度で実施した。
【0063】
2M NaCl、5mM CaCl2、20mM HEPES、pH7.5を含む8lの水性バッファ(A)を調製した。200gの乾燥THERMOASE凍結乾燥物を水性バッファと混合して、混合物を継続的に攪拌した。しかし、均一な混合物は得られず、混合物は濁ったままで完全に透明になることはなかった。凍結乾燥物の添加後約60分で、混合物は徐々に不透明になり、サーモリシンは沈殿し始めた。
【0064】
驚くべきことに、バッファ(A)を用いて得られた不均一な混合物の形成は、低イオン強度のバッファにTHERMOASE調製物をまず溶解することおよびその後に塩のみを添加することによって避けることができた。従って、第1の工程において5mM CaCl2、pH4.5〜pH9の範囲にpHを維持し得る20mM のバッファを含む6.5lの水性バッファ(B)を調製し、pHを7.5に調整した。200gの乾燥したTHERMOASE凍結乾燥物をバッファ(B)に溶解して透明な溶液を得た。次いで、第2の工程として、935gの固体NaClを添加して該溶液に溶解した。第3の工程として、さらなる体積の水性バッファ(B)を添加し攪拌によって混合し、溶液の体積を8lに調整した。均一な溶液が得られた。
【0065】
凍結乾燥物の約60〜65%[w/w]がNaClからなることを考慮すると、溶液中のNaClの終濃度は約2.3Mであった。溶液中の粗製サーモリシンの終濃度は約7.5mg/ml〜8.8mg/mlの範囲であり、約5.7mg/ml(約5.2mg/ml〜6.1mg/mlの範囲)の実質的に分解されていないサーモリシンの濃度に相当した。
【0066】
バッファ(B)は、種々のバッファ塩を使用して調製された。各場合において、pHは、7.5に調整され、THERMOASE凍結乾燥物およびNaClの添加前のそれぞれのバッファ塩の濃度は、20mMであった。バッファB中のバッファ塩は、
−BES(N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸)、
−トリス(トリス(ヒドロキシメチル)アミノメタン)、
−ビストリス(ビス(2-ヒドロキシエチル)アミノ-トリス(ヒドロキシメチル)メタン)、
−ビストリスプロパン(1,3-ビス(トリス(ヒドロキシメチル)メチルアミノ)プロパン)、
−HEPES(N-(2-ヒドロキシエチル)-ピペラジン-N'-2-エタンスルホン酸)、
−MES(2-(N-モルホリノ)エタンスルホン酸)、
−MOPS(3-(N-モルホリノ)プロパンスルホン酸)、
−MOPSO(3-モルホリノ-2-ヒドロキシプロパンスルホン酸)、
−PIPES(ピペラジン-1,4-ビス(2-エタンスルホン酸))、
−TAPS(N-トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸)、
−TES(N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸)、
−TEA(トリエタノールアミン)、および
−トリシン(N-(2-ヒドロキシ-1,1-ビス(ヒドロキシメチル)エチル)グリシン)
からなる群より選択された。以下において、データは、HEPESバッファを使用した実験について示す。上記任意のバッファ塩について、同一の結果が得られた。
【0067】
【表5】

【0068】
【表6】

【0069】
【表7】

【0070】
実施例2
低NaCl濃度を有するサーモリシンの溶液の安定性
まず、実施例1に記載されるようにバッファ(B)および3段階の手順を使用してTHERMOASE凍結乾燥物の溶液を調製した。その後の工程で、溶液をダイアフィルトレートし、液体組成物のバッファを20mM HEPES、5mM CaCl2、170mM NaCl、pH7.5に変えた。驚くべきことに、サーモリシンは安定なまま、すなわち、ダイアフィルトレーション溶液は5時間、5時間より長くさえ、均一なままであった。
【0071】
ダイアフィルトレーションの前後で、定常相としてSUPERDEXTM 75pg 10mm/300mm GLカラム(GE Bioscience)を用いるHPLCを使用して、THERMOASE凍結乾燥物の溶液のHPLC分析を実施した。移動相は200mM NaCl、1mM CaCl2、50mM HEPES、pH7.5を含む水性バッファであった。試料の体積はそれぞれ50μlであった。流速は0.5ml/分で、それぞれのHPLC操業(run)は80分間実施した。検出ユニットは280nmで操作されるUV-Vis吸光度検出器であった。
【0072】
それぞれの試料において、主要ピークは約27分34秒の平均保持時間で溶出された(図2に示される領域(i)および図3に示される領域(vi)のピークを参照)。
【0073】
第1の工程(ダイアフィルトレーションなし)後に分析された試料は、典型的に、図2に示されるように5個の異なる領域に分類することができるピークを示した。主要ピーク下の領域((i)で示される)は実質的に分解されていない(=インタクトの)サーモリシンを反映する。約20分15秒の保持時間後の溶出に相当するピーク肩部はサーモリシンダイマーを反映すると推測された。(ii)、(iii)および(iv)で示された領域のピークは主にサーモリシンの分解産物に相当した。(v)で示された領域のピークは主により激しく(異なる程度で)分解されたサーモリシン断片および不純物を反映した。
【0074】
第2の工程後、すなわちダイアフィルトレーション後に分析された試料は、図3に例示的に示される結果を示した。最も注意すべきこととして、(vii)および(viii)で示されるピーク領域に相当する分解断片および不純物の相対量はダイアフィルトレーション調製物中で減少した。また、(vi)で示される領域の主要ピークは、典型的に、図2の対応部と比較した場合にかなり大きく異なっていた。従って、ダイアフィルトレーション後のクロマトグラムは、分解されていないサーモリシンの実質的な分離および精製を示した。
【0075】
【表8】

【0076】
【表9】

【0077】
さらなる試験のために、2種類の異なるサーモリシンのストック溶液(i)5mg/mlおよび(ii)2.5mg/mlを調製して、両方の濃度でダイアフィルトレーションにより水性バッファを20mM HEPES、5mM CaCl2、170mM NaCl、pH7.5に調整した;サーモリシンが溶解したバッファの導電率は約20mS/cmであった。両溶液を滅菌ろ過により滅菌してアリコートに分配した。
【0078】
凍結乾燥物を第1の水性バッファに溶解した時点から2種類のストック溶液のアリコートが得られるまで、サーモリシンは約6時間溶液中に溶解したままであった。両ストック溶液はこのプロセスを通じて透明なままであった。
【0079】
さらに、5mgのTHERMOASE凍結乾燥物を、1mM CaCl2および5mM HEPES、pH7.5を含む1mlの水性バッファに溶解した。溶液の50μlアリコートを、Superdex(登録商標)75カラム10/300、ポンプ速度0.5ml/分を用いて280nmのUV/Vis検出で、標準的な条件(上述参照)下でHPLCによって分析した。移動相は水中の1mM CaCl2、200mM NaCl、50mM HEPES、pH 7.5であった。得られた他のピークに対してサーモリシンピークを定量した。このアプローチを使用して、実質的にインタクトのサーモリシンの相対量をTHERMOASEのいくつかのロットにおいて測定した。4つの独立した測定により、THERMOASEのタンパク質画分の平均約70%がインタクトのサーモリシンであることが示された。見出されたそれぞれの値は59%、72%、71%および76%であった。
【0080】
100gの例示的な量のTHERMOASE凍結乾燥物は、約33gの粗製サーモリシン、約65gのNaClおよび約2gのNa2SO4を含んだ。THERMOASE調製物中のタンパク質含有量の変動は100gの凍結乾燥物当たり30g〜35gの範囲で見られた。典型的には、実質的に分解されておらず酵素的に活性な約34,600Daの分子量を有するサーモリシンの画分(「サーモリシン」ともいう)は、乾燥した凍結乾燥物中約23%であった。乾燥した凍結乾燥物中の残りの約10%のタンパク質は、主に、その約80%がタンパク質分解活性を保持するサーモリシンの分解産物からなった。残りは、より激しく分解されたサーモリシン断片および他の不純物を含んだ。従って、本発明の意味において「粗製サーモリシン」は、(a)約70%の実質的に分解されていないサーモリシン、(b)タンパク質分解活性を(異なる程度に)保持した約24%のサーモリシンの分解産物、および(c)約6%のタンパク質分解不活性断片およびさらなる不純物からなるタンパク質の混合物であると解される。
【0081】
実施例3
低NaCl濃度のサーモリシンストック溶液の種々の温度での安定性
実施例2の手順に従って得られる(すなわちダイアフィルトレーションを含む)(i)5mg/mlおよび(ii)2.5mg/mlの濃度のサーモリシンの2種類のストック溶液のアリコートを種々の温度でインキュベートした。30分間隔で、視覚的観察および実施例9に記載される測定により濁度を評価した。溶液が濁る前のそれぞれの温度にさらした時間を記録した。結果を表10にまとめる。
【0082】
これまでは、全ての作業工程を8℃以下、すなわち2℃〜8℃の範囲の温度で実施した。両方のストック溶液はこのプロセスを通じて透明なままであった。
【0083】
【表10】

【0084】
実施例4
凍結および融解後の2.5mg/mlのサーモリシン濃度を有する溶液の安定性
4、6、8および10℃で21時間のインキュベーションの後、2.5mg/mlを含むアリコート(実施例3参照)を-20℃で凍結しその温度で6日間保存した。融解後、アリコートを8℃でインキュベートした。溶液が濁る前の、該温度にさらした時間を記録した。結果を表11にまとめる。
【0085】
【表11】

【0086】
実施例5
凍結および融解後の異なる濃度のサーモリシンを有する溶液の安定性
1mg/ml〜5mg/mlの範囲のサーモリシン溶液を有するストック溶液を、実施例2に記載されるのと同様に調製した。ストック溶液のアリコートを-20℃で凍結して、その温度で7日間保存した。融解後、アリコートを8℃でインキュベートした。溶液が濁る前の、該温度にさらした時間を記録した。結果を表12にまとめる。
【0087】
【表12】

【0088】
実施例6
種々の塩の存在下でのサーモリシンを含む溶液の安定性
THERMOASE凍結乾燥物を、100、50および25mg/mlの濃度で、20mM HEPES、5mM CaCl2、pH7.5中に溶解した。直後に、Na2SO4、NaCH3COO、NaCl、NaBr、NaNO3およびNaIからなる群より選択される塩を添加して溶解した。対照として、塩を添加しなかった。表13は、凍結乾燥物中に存在する量を考慮した、溶液中のそれぞれのイオンの濃度を示す。HEPESバッファ中に存在するイオンは表では計上していないことに注意。
【0089】
【表13】

【0090】
表13に示される混合物に関して、表14には、安定で均一(すなわち透明)な溶液が得られたかどうかおよびどのくらい長く得られたかを示す。視覚的観察および実施例9に記載される測定により濁度を評価した。表中に示される記号は以下のものを示す:

【0091】
【表14】

【0092】
実施例7
種々の塩の存在下のサーモリシンを含む溶液の安定性
THERMOASE凍結乾燥物を100、50および25mg/mlの濃度で、20mM HEPES、5mM CaCl2、pH7.5中に溶解した。直後に、KCl、NaCl、LiCl、MgCl2およびCaCl2からなる群より選択された塩を添加して溶解した。対照として、塩を添加しなかった。表15は、凍結乾燥物中に存在する量を考慮に入れた、溶液中のそれぞれのイオンの濃度を示す。HEPESバッファ中に存在するイオンは表に計上していないことに注意。
【0093】
【表15】

【0094】
表15に示される混合物に関して、表16には、安定で均一(すなわち透明、曇っていない)なサーモリシンの溶液が得られたかどうかおよびどのくらい長く得られたかを示す。視覚的観察および実施例9に記載される測定により濁度を評価した。表中に示す記号は以下のものを示す:

【0095】
【表16】

【0096】
実施例8
濁度の測定
本発明について、CARY ECLIPSE装置(Varian, Inc. Palo Alto, CA, USA)を使用して濁度の装置ベースの観察を行った。
【0097】
第1の試料は溶解した成分として5mM CaCl2、170mM NaCl、20mM HEPES、pH7.5を有する均一な水性バッファであり、第2の試料は同一のバッファおよびさらに約5mg/mlのサーモリシンからなるコロイド(実施例2および3も参照)である、2種類の液体試料が提供された。測定を行う前に、10℃で一晩かけてコロイドを形成した。
【0098】
装置のパラメーター設定は以下の通りである:

【0099】
標準的な石英キュベット中で液体試料を分析した。両方の試料は波長スキャンによって特徴付けられ、入射光の波長を200nmから1000nmに増加した。検出波長は800nmで一定に保った。蛍光および乳光のいずれも検出されなかった。散乱した光は入射光の波長で検出した。結果を図1(A)および(B)に示す。透明なバッファ試料について、散乱した光の測定された強度は、約100任意単位(a.u.)であった。第2の試料のコロイドについて、散乱した光は検出器でオーバーフローを生じた。
【0100】
実施例9
視覚的観察および濁度の測定
本発明の効果の証明のために、CARY ECLIPSE装置(Varian, Inc. Palo Alto, CA, USA)を使用して濁度の装置ベースの観察を行った。入射光の波長は800nmであり、同じ波長(すなわち800nm)で90°側方散乱を測定した。装置のパラメーター設定は以下の通りである:

【0101】
標準的な石英キュベットで液体試料を分析した。
【0102】
試料を(i)「透明」、(ii)「わずかに曇っている」(iii)「曇っている」、(iv)「不透明」の4種類のカテゴリーに分類して、試験管内のサーモリシン含有液体試料の視覚的観察を行った。従って、カテゴリー(ii)〜(iv)は漸増する程度の濁度を反映した。表17に示されるように、カテゴリーは任意単位(a.u.)の読み出しに相関した。
【0103】
【表17】

【0104】
本発明の目的で、「透明」なサーモリシン含有溶液は、サーモリシンは含まないが他には同じ組成およびそれぞれの成分について同じ濃度を有する溶液の濁度とほぼ同等な(すなわち、ほぼ等しい)(上述のように測定された)濁度を特徴とする。本発明に従って、上述されるように、これは、上述の条件下で800nmの波長の光を使用して、90°側方散乱で測定された場合0a.u.〜130a.u.の範囲、より好ましくは50a.u.〜130a.u.の範囲に相当する。
【0105】
実施例10
THERMOASE調製物由来のタンパク質の分光光度計検出
光度測定以前の全ての手順は氷冷温度で実施した。凍結乾燥非晶質粉末としてTHERMOASEが提供された(Daiwa Kasei K.K.)。ある量のTHERMOASE凍結乾燥物を10mM CaCl2、40mM TrisHCl、pH7.5を含む水性Trisバッファに溶解して、1mg/mlの濃度のTHERMOASE凍結乾燥物の溶液を得た。
【0106】
透明な溶液が得られたところですぐに(視覚的観察によって評価した)、277nmおよび25℃で光度計の読み取りを得た。
【0107】
3種類の異なるロットのTHERMOASEを繰り返し分析した。光度計の読み取りは0.57〜0.61の範囲であった。277nmおよび280nmで測定されたA(1mg/ml)の値の間の差の潜在的な影響は、微々たるものでありかつ他のエラーの潜在的供給源よりも小さいと推定された。
【0108】
【表18】




【特許請求の範囲】
【請求項1】
溶解したサーモリシンが安定化形態であるサーモリシン(EC 3.4.24.27)の溶液の調製方法であって、該方法は、サーモリシンを含む固形調製物と水性溶媒を混合して第1の溶液を作製する第1の工程(P)を含み、ここで第1の溶液は
(i) pH4.5〜pH9の範囲にpHを維持し得るバッファ塩、
(ii) 1つ以上の塩、および
(iii) サーモリシンを含み、
第1の溶液中の(1つまたは複数の)バッファ塩を含む1つ以上の塩の集合体濃度が約0.1mM〜500mMの範囲であり、
該方法は、第1の溶液に、測定された量のNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択されるさらなる塩を添加して、さらなる塩を溶解し、
それにより溶解したサーモリシンが安定化形態で存在する第2の溶液を調製する次の工程(Q)をさらに含む、方法。
【請求項2】
工程(P)において、サーモリシンを含む固形調製物がさらに1つ以上の塩を含む、請求項1記載の方法。
【請求項3】
工程(P)において、固形調製物が約20%[w/w]〜100%[w/w]の範囲の濃度でサーモリシンを含む、請求項1または2記載の方法。
【請求項4】
工程(P)において、水性溶媒中のサーモリシンを含む調製物の濃度が約1mg/ml〜約100mg/mlの範囲である、請求項1〜3いずれか記載の方法。
【請求項5】
工程(P)において得られた第1の溶液中の硫酸イオンの濃度が約1mM〜約10mMの範囲である、請求項1〜4いずれか記載の方法。
【請求項6】
工程(Q)の後に得られる第2の溶液中のさらなる塩の総濃度が約2M〜約3.5Mの範囲である、請求項5記載の方法。
【請求項7】
工程(Q)の後に得られる第2の溶液中のサーモリシンの濃度が約5mg/ml以上、約35mg/ml未満である、請求項1〜6いずれか記載の方法。
【請求項8】
工程(Q)の後に得られる第2の溶液中のサーモリシンの濃度が約10mg/ml以上、約35mg/ml未満であり、工程(Q)においてさらなる塩がNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される、請求項7記載の方法。
【請求項9】
水、溶解した形態のサーモリシン、pH4.5〜pH9の範囲にpHを維持し得る溶解したバッファ塩、ならびにNaCl、NaBr、NaNO3、NaI、KCl、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される溶解した塩を含む液体組成物であって、5時間以上均一な溶液であり、約1mg/ml〜約10mg/mlの範囲の濃度でサーモリシンを含み、請求項1〜8いずれか記載の方法により得られ得る、液体組成物。
【請求項10】
水、溶解した形態のサーモリシン、pH4.5〜pH9の範囲にpHを維持し得る溶解したバッファ塩、ならびにNaCl、NaBr、NaNO3、NaI、LiCl、MgCl2、CaCl2およびそれらの混合物からなる群より選択される溶解した塩を含む液体組成物であって、5時間以上均一な溶液であり、約10mg/ml〜約23mg/mlの範囲の濃度でサーモリシンを含み、請求項1〜8いずれか記載の方法により得られ得る、液体組成物。
【請求項11】
水、溶解した形態のサーモリシン、pH4.5〜pH9の範囲にpHを維持し得る溶解したバッファ塩、および500mM未満の濃度の溶解したNaClを含む液体組成物であって、約1mg/ml〜約10mg/mlの範囲の濃度でサーモリシンを含む、液体組成物。
【請求項12】
組成物の導電率が約20mS/cmである、請求項9〜11いずれか記載の液体組成物。
【請求項13】
組成物中の溶解したナトリウムイオンの濃度が100mM〜250mMの範囲である、請求項11または12記載の液体組成物。
【請求項14】
組成物の形成後、約2℃〜約8℃の範囲の温度で少なくとも5時間、組成物の濁度が参照溶液の濁度とほぼ同等であり、該参照溶液が請求項9または10記載の組成物とそれぞれ同じ濃度で同一の溶解した成分からなり、かつ該参照溶液がサーモリシンまたはその断片を欠く、請求項9または10記載の液体組成物。
【請求項15】
サーモリシンの保存、輸送または分配のための請求項9〜14いずれか記載の液体組成物の使用であって、サーモリシンが溶解した形態である、使用。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2010−51314(P2010−51314A)
【公開日】平成22年3月11日(2010.3.11)
【国際特許分類】
【外国語出願】
【出願番号】特願2009−193788(P2009−193788)
【出願日】平成21年8月25日(2009.8.25)
【出願人】(591003013)エフ.ホフマン−ラ ロシュ アーゲー (1,754)
【氏名又は名称原語表記】F. HOFFMANN−LA ROCHE AKTIENGESELLSCHAFT
【Fターム(参考)】