説明

水素精製システムおよび低温排熱利用システムならびに水素精製方法

【課題】水素吸蔵合金を利用して水素ガスを分離精製するシステムにおける、CO、COによる水素吸蔵合金の被毒を小さくして性能劣化を抑える。
【解決手段】COおよびCOの一方または両方と、水素とを含む被処理ガス中から水素を分離精製する水素精製システムであって、前記被処理ガスを導入する導入路1aと、該導入路が接続されたチャンバ(水素分離精製部1)と、該チャンバ内に収容され、前記被処理ガス中の水素を吸蔵・放出する水素吸蔵合金と、前記チャンバに接続され、前記水素吸蔵に伴って水素以外の前記被処理ガスを前記チャンバ外に排出するガス排出路(1c)と、前記水素放出に伴って水素を前記チャンバ外に移送する水素移送路(1b)と、前記水素吸蔵合金を120〜200℃の操作温度に加熱して該水素吸蔵合金で水素の吸蔵・放出を行わせる加熱手段(低温排熱熱源2)とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水素とともに一酸化炭素や二酸化炭素を含む改質ガスなどから水素吸蔵合金を用いて水素を分離精製する水素精製システムおよび水素精製方法ならびに前記水素精製が行われる低温排熱利用システムに関するものである。
【背景技術】
【0002】
従来から、簡便な水素精製装置として水素吸蔵合金を利用するシステムが知られている。しかし、水素吸蔵合金を利用するシステムは、水素吸蔵合金がCOやCO等により性能劣化する為、改質ガスのようにCO等のガスを多く含む状況下では通常は使用出来ないと考えられている。
【0003】
図15に示すものは、特許文献1において提案されているものであり、改質・変成器100、CO除去器101、水素分離回収装置102、熱交換器103が直列して接続されている。次に動作について説明する。まず、炭化水素含有燃料Aを改質・変成器100にて水蒸気で改質し変成して水素リッチな変成ガスBを生成し、この変成ガスBを熱交換器103で熱交換した後、CO除去器101に充填した、ハロゲン化銅を担持させたCO吸着剤と接触させて一酸化炭素(CO)を吸着除去する。その後、水素分離回収装置102の水素吸蔵材料にて水素を吸蔵させ、この吸蔵された水素を吸蔵材料から放出させて、高純度水素Dを得ている。
上記システムは、水素吸蔵材料を水素分離精製に用いたシステムの中でも、簡便なシステムであるが、CO除去器101で除去しきれなかったCOによって水素吸蔵合金が被毒し、性能が劣化するという問題がある。このため、この方法では水素吸蔵材料に対しフッ素等によるコーティングを実施せざるを得ない。
【0004】
一方、水素ガスを含有する燃料改質ガスから一酸化炭素(CO)を除去する方法として、一般的には、図16に示すように、改質器111の後段に設けるCO選択酸化器112により一酸化炭素(CO)を除去する方法がとられる(非特許文献1参照)。この装置では、メタノール又はエタノールもしくはジメチルエーテルの原燃料を燃焼器113の排熱などを利用して気化器110で気化させ、これに水蒸気(HO)を混合して前記改質器111で改質して水素を含む改質ガスを生成する。該改質では、一酸化炭素が生成されて改質ガスに含まれているため、これをCO選択酸化器112において選択酸化させてCOとする。改質ガスは、燃料電池本体燃料極に用いることができる。
【0005】
又、COをCO選択酸化触媒にて除去した後に、水素PSAを用いてCOやCH及びHOを除去する方法も検討されている(非特許文献2参照)。本方法は、水素PSA法における吸着塔が大型化する主原因であるCOをあらかじめ除去する為、吸着塔の小型化につながる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−342014号公報
【非特許文献】
【0007】
【非特許文献1】NEDOサイトマップデータ(資料・データベース−新エネデータ−fy16図「水蒸気改質システムの構成(メタノール)」)
【非特許文献2】NEDO平成13年度報告書、新PSA方式による水素製造技術開発、2002年
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、非特許文献に示される前者の方法では、CO吸着剤を用いたCO除去器を利用しており、二酸化炭素(CO)やメタン(CH)及び水分(HO)が除去されず、家庭用燃料電池や、自動車に代表される移動体用の燃料電池等には利用不可能である。
また、非特許文献に示される後者の方法では、PSAに先立ってCOを酸化させる為に空気を導入する際、COを確実に除去できるようにCO酸化の等量以上に酸素を供給する必要がある為、COと反応しない酸素はHと反応してHを消費してHの回収効率を低下するとともに、副次反応としてメタネーションが起こり、PSAで除去しにくいCHが生成することや、同じくPSAで除去しにくい窒素(N)が系内に混入するという問題がある。
【0009】
上記のように、従来の、水素吸蔵合金を利用して水素ガスを分離精製するシステムでは、CO、CO等が残留することが避けられず、このガスによって水素吸蔵合金が被毒して性能劣化すること、CO吸着除去装置に過大な大きさが必要になること等の問題がある。
【0010】
本発明は、上述した従来提案が持つ諸課題を解決することを目的とするものである。
【課題を解決するための手段】
【0011】
すなわち、本発明の水素精製システムは、一酸化炭素および二酸化炭素の一方または両方と、水素とを含む被処理ガス中から水素を分離精製する水素精製システムであって、前記被処理ガスを導入する導入路と、該導入路が接続されたチャンバと、該チャンバ内に収容され、前記被処理ガス中の水素を吸蔵・放出する水素吸蔵合金と、前記チャンバに接続され、前記水素吸蔵に伴って水素以外の前記被処理ガスを前記チャンバ外に排出するガス排出路と、前記水素放出に伴って水素を前記チャンバ外に移送する水素移送路と、前記水素吸蔵合金を120〜200℃の操作温度に加熱して該水素吸蔵合金で水素の吸蔵・放出を行わせる加熱手段と、を備えることを特徴とする。
【0012】
本発明の低温排熱利用システムは、本発明の水素精製システムと、炭化水素を原料とし、低温排熱を加熱源として燃焼改質ガスを生成する改質部とを備え、前記燃焼改質ガスが被処理ガスとして前記水素生成システムに供されるものであることを特徴とする。
【0013】
本発明の水素精製方法は、一酸化炭素および二酸化炭素の一方または両方と、水素とを含む被処理ガスを、水素の吸蔵/放出における操作温度を120〜200℃とした水素吸蔵合金に接触させて、前記被処理ガス中の水素を吸蔵、放出により分離、精製することを特徴とする。
【0014】
本発明では、水素吸蔵合金の操作温度を120〜200℃にすることで、被処理ガス中に含まれるCOによる被毒を極力小さくして性能劣化を抑えることができる。又、COによる被毒に対しても効果がある。
例えば炭化水素を改質した改質ガスでは、CO濃度が300ppm程度、CO濃度が1000ppm〜数十%に至る濃度で含有している。このような改質ガスにおいても本発明では、水素吸蔵合金における上記被毒を効果的に防止することができる。
【0015】
なお、上記操作温度が120℃を下回ると、COによる被毒が生じやすくなり、COを含む被処理ガスの処理を継続して安定して行うことが難しくなる。また、200℃を超えると、水素吸蔵合金の水素吸蔵時の平衡圧力が上昇し、水素の回収・精製性能が低下する。又、回収後のH放出のために必要となる加熱温度が高温となり、容器の耐熱性・強度に課題が出てくる。よって操作温度は120℃〜200℃とする。
【0016】
また、本発明としては当該水素吸蔵合金の種別が限定されるものではない。図10に本発明において利用可能な水素吸蔵合金のP−T特性としての温度及び水素圧力の範囲を示す。この範囲において、種々の水素吸蔵合金が利用可能であり、例えば、AB型合金(MmNi、平衡圧を調整するためにNiにAl、Mn、Coを置換可能){Al、Mnは平衡圧を下げる、Coは平衡圧を上げる}、AB型合金、BCC合金、MgNi合金などを利用することが可能である、
該合金中で、AB系で、一般式MmNiAl(但し、x+y=5、4.5≦x<5.0、0<y≦0.5、特にMmNi4.95Al0.05が好ましい)合金で表され、操作温度120℃以上で30MPa以上、200℃で0.3MPa以上のP−T特性を有するものが好適に使用される。120℃以上で30MPa以上の水素平衡圧を有することにより、操作範囲内で良好な水素吸蔵特性が得られ、200℃で0.3MPa以上の水素平衡圧を有することにより、操作範囲内で良好な水素放出特性が得られる。
また、このMmNiAl合金はCO被毒に非常に強く、CO濃度下でも性能を失わないという特性を有している。
【0017】
本発明では、上記のようにCOやCOを含む被処理ガスを処理する際にも水素吸蔵合金の被毒を極力回避することができるが、さらに、水素吸蔵合金による処理の前段側でCOを除去するためにCO選択酸化を行うようにしてもよい。水素吸蔵合金による処理の前段でCO濃度を下げることで水素吸蔵合金における被毒防止をより確実にする。ただし、本発明としては、CO選択酸化に対する要求度は格別に高いものではなく、大型のCO選択酸化装置などを用いることなくCO選択酸化の処理を行うことができる。
CO選択酸化装置は例えば100℃〜200℃の温度下で動作させることができ、装置内に充填したCO選択酸化触媒によりCOをCOに変換(CO+l/2O→CO)して、ガス中に残存するCOを減少させることができる。
【0018】
また、本発明では、水素吸蔵合金による処理の前段側でPSA装置を設けることも可能である。PSA装置を用いた処理によって、CO、COやCH、HOなどの除去が可能になり、水素吸蔵合金を用いた精製をより高度に行うことができる。PSA装置によって、被処理ガス中に残存するCO、COを十分に減らして後段の水素吸蔵合金の被毒防止を確実にする。
【0019】
また、本発明では、水素吸蔵合金による処理の前段側でCO及びCOの膜分離を行うようにしてもよい。膜分離装置を用いた処理によって、COやCOなどの除去がPSA装置よりも低コストで実現可能となる。膜分離装置によって、被処理ガス中に残存するCO、COを十分に減らして後段の水素吸蔵合金の被毒防止を確実にする。
また、本発明では、CO選択酸化装置やPSA装置又は膜分離装置に対する要求度は格別に高くはなく、したがって、CO選択酸化装置やPSA装置又は膜分離装置を設ける場合、従来の高純度水素精製に必要とされるCO除去性能を持たせたCO選択酸化装置やPSA装置又は膜分離装置よりも、装置の大きさ・規模を縮小出来る。また、PSA装置の前段にCO選択酸化装置を設ける必要もない。
【0020】
前記水素吸蔵合金を操作温度で加熱する際には、適宜の加熱手段によって加熱することができ、加熱炉などから排出される比較的低温の排熱(250〜400℃)を利用することができる。該低温排熱は、さらに温・冷排水を用いて温度調整することで、上記操作温度120〜200℃の温度を得ることができる。
排熱ガスを熱源として利用することにより、大幅な省エネルギー化を図ることもできる。
【発明の効果】
【0021】
以上のように、本発明によれば、一酸化炭素および二酸化炭素の一方または両方と、水素とを含む被処理ガスを、水素の吸蔵/放出における操作温度を120〜200℃とした水素吸蔵合金に接触させて、前記被処理ガス中の水素を吸蔵、放出により分離、精製するので、省エネでコンパクト且つ低コストで安全面も向上した構成となり、高純度の水素を安定的に供給することを可能とする効果がある。
また、前記水素吸蔵合金として、AB系で、一般式MmNiAl(但し、x+y=5、4.5≦x<5.0、0<y≦0.5、特にMmNi4.95Al0.05が好ましい)合金で表され、操作温度120℃以上で30MPa以上、200℃で0.3MPa以上のP−T特性を有するものを使用すれば、COおよびCOに対する被毒をより確実に防止することができる。
さらに、水素分離精製の前段にCO選択酸化装置またはPSA装置を導入することにより、CO、COによる水素吸蔵合金への負荷が低減されることから、高純度水素供給の更なる安定化を可能とする効果がある。
【図面の簡単な説明】
【0022】
【図1】本発明における高純度水素製造システムの基本的な一実施形態を示す概略図である。
【図2】同じく、CO選択酸化を導入した場合の基本的な一実施形態を示す概略図である。
【図3】同じく、PSAを導入した場合の基本的な一実施形態を示す概略図である。
【図4】同じく、膜分離を導入した場合の基本的な一実施形態を示す概略図である。
【図5】同じく、メタノールやエタノール又はジメチルエーテルを原燃料とした水蒸気改質システムの構成を示す概略図である。
【図6】同じく、メタノールやエタノール又はジメチルエーテルを原燃料とし、CO選択酸化を採用した水蒸気改質システムの構成を示す概略図である。
【図7】同じく、CO選択酸化装置と水素分離精製部との間の経路を示す概略図である。
【図8】同じく、メタノールやエタノール又はジメチルエーテルを原燃料とし、PSAを採用した水蒸気改質システムの構成を示す概略図である。
【図9】同じく、メタノールやエタノール又はジメチルエーテルを原燃料とし、膜分離を採用した水蒸気改質システムの構成を示す概略図である。
【図10】本発明で適用対象とする水素吸蔵合金のP−T特性を表したグラフである。
【図11】本発明の実施例における水素吸蔵合金(AB系合金)のCO被毒による影響を示すグラフである。
【図12】同じく、MmNiAl合金で1000ppmのCOを含む水素ガスによる繰り返し耐久性試験の結果を示すグラフである。
【図13】同じく、MmNiMnAl合金の25%CO含有混合ガス中での繰り返し試験を継続した結果を示すグラフである。
【図14】同じく、MmNiAl合金が80℃真空脱ガスを回復処理として実施することによりほぼ当初のレベルまで水素吸蔵量を回復することを示したグラフ
【図15】従来の水素精製システムの一例を示す概略図である。
【図16】従来の他例の水素精製システムを示す概略図である。
【発明を実施するための形態】
【0023】
以下に、本発明の一実施形態を図1に基づいて説明する。
(実施形態1)
本発明の一実施形態を図1に基づいて説明する。
図1は、本発明の高純度水素製造システムの一実施形態を示す概略図である。
図1に示した水素精製システムは、水素吸蔵合金を収容した水素分離精製部1を備えている。該水素分離精製部1は、水素吸蔵合金を収容したチャンバ(図示しない)を有しており、改質燃料ガスを導入する導入路1aと、精製した水素を移送する水素移送路1bとが接続されている。
また、水素分離精製部1には、低温排熱熱源2からの低温排熱ガス(例えば250〜400℃)を導入する排熱ガス導入路2aが接続されており、前記水素吸蔵合金の加熱が可能になっている。
【0024】
上記システムの動作について説明する。
本発明の被処理ガスに相当する改質燃料ガスは、一酸化炭素および二酸化炭素の一方または両方と水素とを含むものである。
該改質燃料ガスは、導入路1aを介して水素分離精製部1に導入される。改質燃料ガスは、炭化水素の改質などによって得ることができるが、本発明としてはその生成過程は特に限定されるものではなく、上記のように一酸化炭素および二酸化炭素の一方または両方と水素とを含むものであればよく、その他に、CHなどの他のガスを含むものであってもよい。
また、水素分離精製部1では、低温排熱熱源2から排熱ガス導入路2aを介して低温排熱ガスが導入される。この際に、低温排熱ガスは温/冷排水などによって温度調整されて水素吸蔵合金の加熱・冷却を行う。
【0025】
水素分離精製部1で水素吸蔵を行う際には、水素吸蔵合金を120℃以上(但し200℃以下)の吸蔵温度にして導入される改質燃料ガス中の水素を吸蔵させる。これにより改質燃料ガス中の水素とその他のガスとが分離される。水素吸蔵合金に十分に水素を吸蔵させると、改質燃料ガスの導入を中断し、水素分離精製部1に貯留しているその他のガスを水素分離精製部1外に排出する。該排出は図示しないガス排出路などを介して行うことができる。
【0026】
水素分離精製部1からガスを十分に放出した後は、水素吸蔵合金を上記低温排熱ガスによって前記吸蔵温度よりも高い放出温度(200℃以下、但し120℃以上)にまで加熱する。加熱温度は、上記したように低温排熱ガスと温/冷排水とを用いた温度調整などによって得ることができ、水素吸蔵合金を120〜200℃の操作温度で操作して水素の吸蔵、放出を行わせる。したがって、上記低温排熱ガスと温/冷排水は本発明の加熱手段に相当する。
水素吸蔵合金から放出された高純度水素9は、水素移送路1bを通して適宜の利用系などに移送される。上記システムでは、上記のように改質燃料ガス中にCO、COなどのガスが含まれているが、水素吸蔵合金に対し120〜200℃の操作温度の範囲内で水素吸蔵、水素放出を行わせることで、上記ガスによる被毒を防止して長期に亘って安定した性能を得ることができる。
【0027】
次に他の実施形態について図2に基づいて説明する。この形態で前記実施形態と同様の構成については同一の符号を付してその説明を簡略化する。
この実施形態でも、前記実施形態と同様に水素分離精製部1を備え、該水素分離精製部1に低温排熱熱源2から排熱ガス導入路2aを介して低温排熱ガスが導入されて加熱され、該低温排熱ガスによる加熱温度が温/冷排水で調整されるという点では前記実施形態と同様の構成を有する。
さらに、この実施形態では、水素分離精製部1の前段にCO選択酸化装置3が備えられている。CO選択酸化装置3内には、CO選択酸化触媒が収容されており、導入されるガス中のCOを選択的に酸化させる。CO選択酸化触媒の種別は本発明としては特に限定されるものではなく、既知のものなどを使用することができる。
該CO選択酸化装置3のガス導入側に、燃料改質ガスを導入する導入路3aが接続され、CO選択酸化装置3のガス排出側に、水素分離精製部1に接続された前記導入路1aが接続されている。
【0028】
上記システムの動作について説明すると、本発明の被処理ガスに相当する改質燃料ガスが導入路3aを介してCO選択酸化装置3に導入される。該CO選択酸化装置3では、改質燃料ガス中のCOが触媒の作用によって選択酸化されてCOとなり、100〜200℃の温度下で改質燃料ガス中のCOを選択酸化させることができる。COを選択酸化させた改質燃料ガスは、導入路1aを通して前記水素分離精製部1に移送されて水素の分離、精製がなされる。水素分離精製部1における動作は前記実施形態と同様であり、高純度水素9が得られる。この際に、改質燃料ガスは、予め上記CO選択酸化装置3によって、相当程度濃度が低下しており、水素分離精製部1における水素吸蔵合金のCO被毒を一層効果的に防止することができる。
【0029】
次に、さらに他の実施形態について図3に基づいて説明する。この形態で前記各実施形態と同様の構成については同一の符号を付してその説明を簡略化する。
この実施形態でも、前記実施形態と同様に水素分離精製部1を備え、該水素分離精製部1に低温排熱熱源2から排熱ガス導入路2aを介して低温排熱ガスが導入されて加熱され、該低温排熱ガスによる加熱温度が温/冷排水で調整されるという点では前記各実施形態と同様の構成を有する。
【0030】
さらにこの実施形態では、水素分離精製部1の前段にPSA装置5が備えられており、該PSA装置の前段に圧縮機4が備えられている。圧縮機4のガス導入側に、燃料改質ガスを導入する導入路4aが接続されており、圧縮されたガスの排出側に、前記PSA装置5に接続されて導入路5aが接続されている。PSA装置5のガス排出側に水素分離精製部1に接続された前記導入路1aが接続されている。
PSA装置5には、水素以外のガスを吸着する吸着剤が収納されている。例えばCO、CO、CHなどを吸着する吸着剤が例示される。吸着剤は、複数種からなるものであってもよく、また、異なる吸着剤で異なるガスを吸着するものであってもよい。本発明としては、吸着剤の種類が特に限定されるものではなく、吸着するガスに応じて適宜選択した吸着剤を用いることができる。
【0031】
上記システムの動作について説明すると、本発明の被処理ガスに相当する改質燃料ガスが導入路4aを介して圧縮機4に導入され、該圧縮機4で圧縮されて圧力を高めた状態で導入路5aを介してPSA装置5に導入される。PSA装置5では、圧力を高めた改質燃料ガス中の所望のガス成分(水素以外)が吸着剤に吸着される。不必要なガスを吸着によって除去した改質燃料ガスは水素成分の比率が高められており、導入路1aを介して前記水素分離精製部1に移送されて水素の分離、精製がなされる。水素分離精製部1における動作は前記各実施形態と同様であり、高純度水素9が得られる。この際に、改質燃料ガスは、予め上記PSA装置5によって、水素以外のガス成分は相当程度濃度が低下しており、水素分離精製部1における水素吸蔵合金の被毒を一層効果的に防止することができる。
【0032】
次に、さらに他の実施形態について図4に基づいて説明する。この形態で前記各実施形態と同様の構成については同一の符号を付してその説明を簡略化する。
この実施形態でも、前記実施形態と同様に水素分離精製部1を備え、該水素分離精製部1に低温排熱熱源から排熱導入路2aを介して低温排熱ガスが導入されて加熱され、該低温排熱ガスによる加熱温度が温/冷排水で調整されるという点では前記実施形態と同様の構成を有する。
さらに、この実施形態では、水素分離精製部1の前段に膜分離装置8が備えられている。膜分離装置8内には、CO・CO分離膜が収容されており、導入されるガス中のCOとCOをガスから分離する。CO・CO分離膜の種別は本発明としては特に限定されるものではなく、既知のものなどを使用することができる。該膜分離装置8のガス導入側に、燃料改質ガスを導入する導入路8aが接続され、膜分離装置8のガス排出側に、水素分離精製部1が接続された前記導入路1aが接続されている。
【0033】
次に、本発明における水素精製システムを備える低温排熱利用システムについて説明する。
図5は、該低温排熱利用システムを示す図である。
当該低温排熱利用システムにおける水素精製システムの基本的な構成は、図1のシステムと同様であり、上記形態で説明した構成と同様の構成については同一の符号を付して説明する。
この実施形態でも水素分離精製部1を備えている。この実施形態では、水素分離精製部1内にAB系の水素吸蔵合金であるMmNiAl(但し、x+y=5、4.5≦x<5.0、0<y≦0.5、特にMmNi4.95Al0.05が好ましい)が収容されている。該水素分離精製部1の上流側に改質装置10が備えられている。
すなわち、水素分離精製部1に接続された導入路1aの上流端は冷却器12に接続されており、該冷却器12のガス導入側に導入路10bが接続されている。導入路10bは、改質装置10のガス排出側に接続されたものである。改質装置10は、メタノールやエタノールまたはジメチルエーテルを水蒸気改質燃料とする燃料タンク11から燃料供給路10aを介して燃料の導入が可能になっている。また、改質装置10では、前記低温排熱熱源2から排熱ガス移送路2bを介して送られる低温排熱ガスによって熱交換が可能になっている。
【0034】
上記水素分離精製部1は、低温排熱熱源2から排熱ガス導入路2aを介して送られる低温排熱ガスによる熱交換が可能になっており、さらに、排水管6で移送される温/冷排水による熱交換が可能になっている。低温排熱ガスおよび温/冷排水の調整によって水素分離精製部1内における水素吸蔵合金の加熱温度の調整が可能になる。
水素分離精製部1では、精製された水素をチャンバ外に移送する水素移送路1bが接続されているとともに、水素を分離した残余のCOガスなどをチャンバ外に排出するガス排気路1cが接続されている。また、水素分離精製部1には、水素分離精製部1内の水素吸蔵合金の回復処理を行う活性化装置7が接続されている。
【0035】
次に、上記システムの動作について説明する。
本システムでは、水蒸気改質燃料(メタノールやエタノール又はDME)が、燃料タンク11に収容されており、燃料供給路10aを介して前記水蒸気改質燃料が改質装置10に導入される。改質装置10には低温排熱熱源2が排出する低温排熱が排熱ガス移送管2bを通して熱源として導入され、水蒸気改質燃料は低温(250℃〜400℃)で水蒸気改質される。これにより、改質工程の大幅な省エネ化ができ、改質ガス中に含まれるCO濃度も1%程度に抑え込まれている。また、本改質ガスは水蒸気改質される過程で、水素(H)の他に、水素吸蔵合金を被毒により性能劣化させる一酸化炭素(CO)及び二酸化炭素(CO)等を含有しているが、CO濃度については上記の通り発生量が1%程度にまで抑え込まれている。
【0036】
続いて改質ガスは、導入路10bを介して冷却器12に導入されて冷却され、ガス中の水分が除去される。なお、該冷却器12の構成は特に限定されるものではなく、上記改質ガスを冷却できるものであればよい。これによって得られた水素リッチな改質ガスは、導入路1aを介して水素分離精製部1に導入される。
水素分離精製部1では、低温排熱熱源2から排熱ガス導入路2aを介して低温排熱ガスが導入されるとともに、排水管6によって温/冷排水が導入されており、これらを熱媒として、水素分離精製部1内の水素吸蔵合金を120〜200℃の操作温度に加熱する。
【0037】
水素分離精製部1で水素吸蔵を行う際には、MmNiAl合金からなる水素吸蔵合金を120℃以上の吸蔵温度にして導入される改質燃料ガス中の水素を吸蔵させて水素とその他のガスとを分離する。水素吸蔵合金に十分に水素を吸蔵させると、改質燃料ガスの導入を中断し、水素分離精製部1に貯留しているその他のガスをガス排気路1cを通して水素分離精製部1外に排出する。
水素分離精製部1から上記ガスを十分に放出した後は、水素吸蔵合金を上記低温排熱ガスによって、吸蔵温度よりも高い200℃以下の放出温度に加熱し、水素吸蔵合金に吸蔵されていた水素を放出させる。水素吸蔵合金から放出された水素は、水素移送路1bを通して高純度水素9として回収し、適宜の利用系などに移送される。
また、高純度水素9を回収後、水素分離精製部1内部に充填したMmNiAl合金に対して、活性化装置7で80℃での真空脱ガス処理による水素吸蔵性能の回復処理を実施することにより、継続した高純度水素分離精製を可能とする。加えて、AB系のMmNiAl合金を採用することで、COによる水素吸蔵合金への被毒の影響は排除される。
従って、従来よりも省エネルギー且つローコストで安全面においても向上したシステムを構築できる。
【0038】
次に、他の形態の低温排熱利用システムについて説明する。
図6は、該低温排熱利用システムを示す図である。
当該低温排熱利用システムにおける水素精製システムの基本的な構成は、図2のシステムと同様であり、上記形態で説明した構成と同様の構成については同一の符号を付して説明する。
この実施形態でも水素分離精製部1を備えており、水素分離精製部1内に前記と同様の水素吸蔵合金であるMmNiAl合金が収容されている。該水素分離精製部1の上流側にCO選択酸化装置3が備えられている。
すなわち、水素分離精製部1に接続された導入路1aの上流端はCO選択酸化装置3が接続されている。CO選択酸化装置3内にはCO選択酸化触媒が収容されており、CO選択酸化に利用される。また、CO選択酸化装置3には、排水管6が接続されて温/冷排水が送られて熱交換可能になっており、CO選択酸化装置3で熱交換された温/冷排水は、排水管6によって前記水素分離精製部1に送られて熱交換されるように構成されている。
【0039】
CO選択酸化装置3のガス導入側に導入路3aが接続されている。導入路3aは前記冷却器12に接続され、冷却器12のガス導入側には導入路10bが接続されている。導入路10bは、前記改質装置10に接続されている。改質装置10は、前記実施形態と同様に、メタノールやエタノールまたはジメチルエーテルを水蒸気改質燃料とする燃料タンク11から燃料供給路10aを介して燃料が導入される。また、改質装置10では、前記低温排熱熱源2から排熱ガス移送路2bを介して送られる低温排熱ガスによって熱交換がされる。
【0040】
次に、上記システムの動作について説明する。
燃料タンク11に収容された水蒸気改質燃料(メタノールやエタノール又はDME)は、前記実施形態と同様に燃料供給路10aを介して改質装置10に導入され、低温排熱熱源2から排熱ガス移送管2bを介して移送される低温排熱によって改質装置10で水蒸気改質される。改質ガスは、導入路10bを介して冷却器12に導入され水分が除去され、CO選択酸化装置3に導入される。
CO選択酸化装置3では、内部にCO選択酸化触媒を充填しており、導入されたCOが選択的に酸化される。なお、この際には、排水管6によって温/冷排水で熱交換されて酸化反応が100℃〜200℃の温度下でなされるように調整する。これによりガス中に残存するCOは数十〜数百ppmに減少する。
CO選択酸化装置3を出た改質ガスは水素分離精製部1に導入され、水素分離精製工程に入る。水素分離精製工程は、前記実施形態の説明と同様である。
すなわち、水素分離精製部1では、低温排熱熱源2から排熱ガス導入路2aを介して送られる低温排熱ガスと排水管6によって送られる温/冷排水とによって水素分離精製部1内の水素吸蔵合金を120℃以上の吸蔵温度に加熱して改質ガス中の水素を吸蔵する。その後は、前記実施形態と同様に水素とその他のガスに分離して水素移送路1bを通して高純度水素9を得る。
温/冷排水は、前記CO酸化選択装置3で使用された後、水素分離精製部1に送られて温度調整に用いられる。
上記により高純度水素9を安定して得ることができる。
【0041】
次に、さらに他の形態の低温排熱システムについて説明する。
図7は、該低温排熱利用システムを示す図である。
当該低温排熱利用システムにおける水素精製システムの基本的な構成は、図3のシステムと同様であり、上記形態で説明した構成と同様の構成については同一の符号を付して説明する。
この形態でも水素分離精製部1を備えており、水素分離精製部1内に前記と同様の水素吸蔵合金であるMmNiAl合金が収容されている。該水素分離精製部1の上流側にCO選択酸化装置3又はPSA装置5が備えられている。
すなわち、水素分離精製部1に接続された導入路1aの上流端はCO選択酸化装置3又はPSA装置5が接続されている。
水素分離精製部1に接続された導入路1aには、制御信号が出力可能なCO濃度計20が接続されている。また、水素分離精製部1に接続された排熱ガス導入路2aと排水管6が接続されている。
【0042】
次に、上記システムの動作について説明する。
改質装置10により改質しCO選択酸化装置3又はPSA装置5によりCO、COが減少されたガスが、水素分離精製部1に供給される。このとき、前記CO濃度計20ではCO濃度が既定値(例えば、1ppm以下)となった場合、信号が出るように設定されている。CO濃度が既定値(例えば、1ppm以下)となった場合、水素分離精製部1に接続された排熱ガス導入路2aに設置されている弁が閉となり、排水管6に設置されている弁が開となり、低温排熱(〜80℃)が水素分離精製部1に供給されるようになっている。弁の開閉は、手動で行うことも可能であり、前記CO濃度計20の信号によって上記弁が自動的に開閉されるものでもよい。この操作により、CO濃度が小さい場合は低温の排熱が供給される。AB系の水素吸蔵合金などでは、被毒以外に高温操作を繰返すことにより合金の性能が劣化する場合があることが知られている。そのため、本システムにより、被毒の影響がない場合は低温操作が可能となるため、合金性能の劣化を低減出来、長期安定した性能を得ることができる。
【0043】
次に、さらに他の形態の低温排熱利用システムについて説明する。
図8は、該低温排熱利用システムを示す図である。
当該低温排熱利用システムにおける水素精製システムの基本的な構成は、図3のシステムと同様であり、上記形態で説明した構成と同様の構成については同一の符号を付して説明する。
この実施形態でも水素分離精製部1を備えており、水素分離精製部1内に前記と同様の水素吸蔵合金であるMmNiAl合金(但し、x+y=5、4.5≦x<5.0、0<y≦0.5)が収容されている。該水素分離精製部1の上流側にPSA装置5が備えられている。
すなわち、水素分離精製部1に接続された導入路1aの上流端はPSA装置5が接続されている。PSA装置5には、吸着剤が充填された吸着塔を有し、CO、CO、CH、HOを吸着除去する吸着剤が用いられている。尚、この内でCO吸着除去設備については、数百ppm程度までの粗除去が可能な程度に大きさ・規模を抑える。従来の高純度水素精製に必要とされるCO除去性能を持たせたPSA装置よりも、装置の大きさ・規模を縮小できる。
PSA装置5のガス導入側に導入路5aが接続され、該導入路5aの上流側は改質ガスを圧縮する圧縮機4に接続されている。圧縮機4のガス導入側は、導入路4aによって前記冷却器12に接続され、冷却器12のガス導入側には導入路10bが接続されている。導入路10bは、前記改質装置10に接続されている。改質装置10は、前記実施形態と同様に、改質装置10は、メタノールやエタノールまたはジメチルエーテルを水蒸気改質燃料とする燃料タンク11から燃料供給路10aを介して燃料が導入される。また、改質装置10では、前記低温排熱熱源2から排熱ガス移送路2bを介して送られる低温排熱ガスによって熱交換がされる。
【0044】
次に、上記システムの動作について説明する。
前記実施形態と同様に燃料タンク11から燃料供給路10aを介して水蒸気改質燃料(メタノールやエタノール又はDME)が改質装置10に導入され、低温排熱熱源2から排熱ガス移送管2bを介して移送される低温排熱によって水蒸気改質される。改質ガスは、導入路10bを介して冷却器12に導入され水分が除去された後、導入路4aを介して圧縮機4に導入されて圧縮される。圧縮された改質ガスは、導入路5aを介してPSA装置5に導入されてCO、CO、CH、HOを吸着除去する。これにより、ガス中に残存するCO、COは数十〜数百ppm程度に減少する。
【0045】
PSA装置5で分離された改質ガスは、導入路1aを介して水素分離精製部1aに導入され、水素分離精製工程に入る。水素分離精製工程は、前記実施形態の説明と同様である。
すなわち、水素分離精製部1では、低温排熱熱源2から排熱ガス導入路2aを介して送られる低温排熱ガスと排水管6によって送られる温/冷排水とによって水素分離精製部1内の水素吸蔵合金を120℃以上の吸蔵温度に加熱して改質ガス中の水素を吸蔵する。その後は、吸蔵温度より高い温度(200℃以下)で水素吸蔵合金を加熱して水素を放出させて水素移送路1bを通して高純度水素9を得る。
水素分離精製部1内の水素吸蔵合金は、活性化装置7で80℃での真空脱ガス処理による水素吸蔵性能の回復処理を実施する。加えて、AB系のMmNiAl合金を採用することで、COによる水素吸蔵合金への被毒の影響は排除される。
【0046】
次に、さらに他の形態の低温排熱利用システムについて説明する。
図9は、該低温排熱利用システムを示す図である。
当該低温排熱利用システムにおける水素精製システムの基本的な構成は、図4のシステムと同様であり、上記形態で説明した構成と同様の構成については同一の符号を付して説明する。
この実施形態でも水素分離精製部1を備えており、該水素分離精製部1内に前記と同様の水素吸蔵合金であるMmNiAl合金が収容されている。該水素分離精製部1の上流側に膜分離装置8が備えられている。
すなわち、水素分離精製部1に接続された導入路1aの上流端は膜分離装置8が接続されている。膜分離装置8内にはCO・CO分離膜が収容されており、ガスからのCOとCOの分離に利用される。
膜分離装置8のガス導入側に導入路8aが接続されている。導入路8aは前記冷却部12に接続され、冷却部12のガス導入側には導入路10bが接続されている。導入路10bは、前記改質装置10に接続されている。改質装置10は、前記実施形態と同様に、メタノールやエタノールまたはジメチルエーテルを水蒸気改質燃料とする燃料タンク11から燃料供給路10aを介して燃料が導入される。また、改質装置10では、前記低温排熱熱源2から排熱ガス移送路2bを介して送られる低温排熱ガスによって熱交換がされる。
【0047】
次に上記システムの動作について説明する。
燃料タンク11に収容された水蒸気改質燃料(メタノールやエタノール又はDME)は、前記実施形態と同様に燃料供給路10aを介して改質装置10に導入され、低温排熱熱源2から排熱ガス移送管2bを介して移送される低温排熱によって改質装置10で水蒸気改質される。改質ガスは、導入路10bを介して冷却器12に導入され水分が除去され、膜分離装置8に導入される。
膜分離装置8では、内部にCO・CO分離膜が収容されており、導入されたCOとCOが改質ガスから分離される。これによりガス中に残存するCOとCOは1%程度に減少する。
膜分離装置8を出た改質ガスは水素分離精製部1に導入され、水素分離精製工程に入る。水素分離精製工程は、前記実施形態の説明と同様である。
すなわち、水素分離精製部1では、低温排熱熱源2から排熱ガス導入路2aを介して送られる低温排熱ガスと排水管6によって送られる温/冷排水とによって水素分離精製部1内の水素吸蔵合金を120℃以上の吸蔵温度に加熱して改質ガス中の水素を吸蔵する。その後は、前記実施形態と同様に水素とその他のガスに分離して水素移送管1bを通して、高純度水素9を得る。
温/冷排水は、水素分離精製部1に送られて温度調整に用いられる。
上記により高純度水素9を安定して得ることができる。
【実施例1】
【0048】
以下に、本発明の一実施例を説明する。
図11は、AB系の水素吸蔵合金であるMmNiAl(但し、x+y=5、4.5≦x<5.0、0<y≦0.5、特にMmNi4.95Al0.05が好ましい)に、操作温度を変えて300ppmまたは2ppmのCO及び水素を含むガスを用いて水素を選択吸蔵/放出させた際の水素の吸蔵放出特性を示すグラフである。120℃を下限にする操作温度では、繰り返しの水素吸放出によっても水素吸蔵合金の性能低下は小さく、COに対する被毒の影響が小さいことを示している。一方、操作温度を35℃にするとCO濃度2ppmでも上記120℃の場合よりも水素の吸放出特性は劣っている。さらに、同じく操作温度を35℃まで低下させた例では、CO濃度が300ppmであると早期に水素吸蔵合金が被毒して使用困難になった。また、CO濃度を300ppmにして、操作温度を80℃にした場合にも水素吸蔵合金は早期に被毒して使用困難になった。したがって、水素吸蔵合金の操作温度は、COの濃度に拘わらず、120℃以上とすることが必要である。
【0049】
ここで、MmNiAl合金における参考データとして図12〜図14を示す。図12はMmNiAl合金で1000ppmのCOを含む水素ガスによる繰り返し耐久性試験の結果であり、同じAB系合金の中でもよりCOによる表面被毒を受けないものであることを示している。図13は同合金の25%CO含有混合ガス中での繰り返し試験を継続した結果であり、繰り返し回数の増大とともに水素移動量の自己回復挙動が見られることがわかる。尚、ここでは平衡圧調整の為にAlを一部Mnに置換し、MmNiMnAl合金としている。
【0050】
以上のようにMmNiAl合金はCOに対し被毒しにくい性質を有しており、120〜200℃の範囲内の操作温度で水素吸蔵、放出を行うことで、CO、COに対し、被毒しにくく良好な水素吸放出特性を安定して得ることができる。
図14は同合金が80℃真空脱ガスを回復処理として実施することにより、ほぼ当初のレベルまで水素吸蔵量を回復することを示している。
図14の吸放出特性では、1の工程で、80℃での真空脱ガス、35℃での図に示す圧力の純水素吸蔵を行う活性化(水素化)を3回繰り返した後、図に示す標準ガスと接触させ、2の工程で80℃で真空脱ガスの回復処理を行って純水素と接触させた。次いで、そのままで標準ガスと接触させて吸放出を繰り返し、その後、純水素で吸放出を繰り返した。その結果、長期に亘り、安定した水素吸放出特性が維持されていることが分かる。
【0051】
以上、本発明について上記実施形態および実施例に基づいて説明を行ったが、本発明はこれら説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更は可能である。
【符号の説明】
【0052】
1 水素分離精製部
2 低温排熱熱源
3 CO選択酸化装置
4 圧縮機
5 PSA装置
6 排水管
7 活性化装置
8 膜分離装置
9 高純度水素
10 改質装置
11 燃料タンク
12 冷却器

【特許請求の範囲】
【請求項1】
一酸化炭素および二酸化炭素の一方または両方と、水素とを含む被処理ガス中から水素を分離精製する水素精製システムであって、
前記被処理ガスを導入する導入路と、該導入路が接続されたチャンバと、該チャンバ内に収容され、前記被処理ガス中の水素を吸蔵・放出する水素吸蔵合金と、前記チャンバに接続され、前記水素吸蔵に伴って水素以外の前記被処理ガスを前記チャンバ外に排出するガス排出路と、前記水素放出に伴って水素を前記チャンバ外に移送する水素移送路と、前記水素吸蔵合金を120〜200℃の操作温度に加熱して該水素吸蔵合金で水素の吸蔵・放出を行わせる加熱手段とを備えることを特徴とする水素精製システム。
【請求項2】
前記水素吸蔵合金チャンバの被処理ガス流上流側に、前記被処理ガスを処理対象とするCO選択酸化装置を備えることを特徴とする請求項1に記載の水素精製システム。
【請求項3】
前記水素吸蔵合金チャンバの被処理ガス流上流側に、前記被処理ガスを処理対象とするPSA装置と、前記被処理ガスを圧縮して前記PSA装置に供給する圧縮機とを備えることを特徴とする請求項1または2のいずれかに記載の水素精製システム。
【請求項4】
前記水素吸蔵合金チャンバの被処理ガス流上流側に、前記被処理ガスを処理対象とする膜分離装置を備えることを特徴とする請求項1〜3のいずれかに記載の水素精製システム。
【請求項5】
前記加熱部は、加熱源として低温排熱を用いることを特徴とする請求項1〜4のいずれかに記載の水素精製システム。
【請求項6】
前記請求項1〜5に記載の水素精製システムと、炭化水素を原料とし、低温排熱を加熱源として燃焼改質ガスを生成する改質部とを備え、前記燃焼改質ガスが被処理ガスとして前記水素生成システムに供されるものであることを特徴とする低温排熱利用システム。
【請求項7】
一酸化炭素および二酸化炭素の一方または両方と、水素とを含む被処理ガスを、水素の吸蔵/放出における操作温度を120〜200℃とした水素吸蔵合金に接触させて、前記被処理ガス中の水素を吸蔵、放出により分離、精製することを特徴とする水素精製方法。
【請求項8】
前記被処理ガスは、前記水素吸蔵合金との接触に先立って、一酸化炭素減量処理および二酸化炭素減量処理の一方または両方を行うことを特徴とする請求項7に記載の水素精製方法。
【請求項9】
前記水素吸蔵合金を操作温度に加熱する熱源として低温排熱を用いることを特徴とする請求項7または8に記載の水素精製方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate