説明

国際特許分類[C01B3/50]の内容

化学;冶金 (1,075,549) | 無機化学 (31,892) | 非金属元素;その化合物  (21,484) | 水素;水素を含有する混合ガス;水素を含有する混合物からのそれの分離;水素の精製 (5,500) | 混合ガスからの水素または水素含有ガスの分離,例.精製 (667)

国際特許分類[C01B3/50]の下位に属する分類

国際特許分類[C01B3/50]に分類される特許

1 - 10 / 38


【課題】水素生成器に有害な原料中のイオウ化合物を除去する脱硫方式として、吸着脱硫と水添脱硫が用いられている。前者は取り扱いが非常に簡便であるが、吸着容量が小さいため定期的な交換が必要である。一方、後者は吸着容量が大きいため交換は不要であるが、構成が複雑であり、しかも200℃から400℃に昇温する必要がある。
【解決手段】イオウ化合物等の除去手段として膜分離器を用い、分離されたイオウ化合物等をバーナーで燃焼除去する。 (もっと読む)


【課題】再生可能エネルギ量の変動を考慮しつつ高効率で再生可能エネルギを貯蔵供給可能とした再生可能エネルギ貯蔵システムを提供する。
【解決手段】再生可能エネルギを貯蔵する再生可能エネルギ貯蔵システムであって、再生可能エネルギを電気エネルギに変換する発電手段1と、電気エネルギによって水素ガスを製造する複数水素製造装置2から構成される水素製造手段2と、水素製造手段によって製造された水素ガスを高純度化するバッファタンク3と、水素ガスを不飽和炭化水素に対して付加させる水添手段4と、水素製造装置の接続構成を切替える切替手段7と、切替手段を制御する制御装置8と、を備え、複数の水素製造装置とバッファタンクを接続する配管に、製造された水素ガスが水素製造手段に逆流することを防止する逆流防止機構9を備えた再生可能エネルギ貯蔵システム。 (もっと読む)


【課題】水素製造プロセス等におけるCOの回収において、CO透過度およびCO分離選択性に優れたCO膜分離回収システムを提供する。
【解決手段】本発明のCOの膜分離回収システムは、CO膜分離モジュール(1)の前段に脱水処理モジュール(2)を具備し、かつ、CO膜分離モジュール(1)は、CO選択的透過性を示す多孔質基体上に製膜した親水性ゼオライト膜(3)を具備し、親水性ゼオライト膜(3)は、100〜800℃の加熱処理により脱水処理されたものであることを特徴とする。 (もっと読む)


【課題】あらゆる方向に傾いても、長期間高効率で気液分離が可能な気液分離装置並びにこれを用いた水素製造装置及び燃料電池システムを提供する。
【解決手段】本発明の気液分離装置は、重力差によって、気液混合流体を気体と液体502に分離する気液分離容器101を含む。この気液分離容器101は、導入管105と、排気管106と、排液管102とを備える。排気管106は、気液混合流体から分離された気体を吸い込むための吸気口108を先端部に有する吸気管107を備え、吸気管107の吸気口108は、気液分離容器101の中央部に配置されている。排液管102は、気液混合流体から分離された液体502を吸い込むための吸水口109を先端部に有する、可撓性を有する吸水管103を備え、吸水管103の吸水口109の近傍には、吸水管103の吸水口109を気液分離容器101内で重力方向に移動させる錘104が設けられている。 (もっと読む)


【課題】パラジウム−銅合金膜の特性を活かした、水蒸気改質反応と水素の分離精製を効率良く行うことが可能な膜分離型反応器を提供する。
【解決手段】パラジウムと銅を含み、平均銅含有率が38〜48質量%の水素分離膜2と、炭化水素を水蒸気改質する水蒸気改質触媒からなり、前記水素分離膜2の外周側に配設された水蒸気改質触媒層3とを具え、前記水素分離膜2は、炭化水素と水蒸気の入口部を上流として、上流側半分2Aと下流側半分2Bとの平均銅含有率の差が4〜10質量%であることを特徴とする、膜分離型反応器1である。 (もっと読む)


【課題】CO2の放出量を削減ないしは皆無にして化石燃料からH2を抽出し、隔膜を用いずにH2とCOを分離する。
【解決手段】水素抽出方法は、気体化石燃料と変換剤としての気体CO2をガス混合器に導入して混合することにより、原料ガスを生成する工程と、この原料ガスを700℃から1000℃の間の一定温度に保持された反応器に導いてH2、CO混合ガスに変換する工程と、このH2、CO混合ガスを-80℃以下の温度に保持されたセパレーターに導いて冷却し、固体のC、液体のCO2及び気体のH2に分解する工程と、前記セパレーター中の気体のH2を分離し、その一部を前記反応器の加熱燃料として使用し、残余を貯蔵する工程と、セパレーター中の固体のCと液体のCO2を気化器に導いて、液体のCO2を気化し、固体のCを回収する工程と、気化された気体のCO2を前記ガス混合器に戻し、変換剤として気体化石燃料と混合し循環使用する工程とを含む。 (もっと読む)


【課題】多結晶シリコン製造装置の反応排ガスの分離を行うために使用する補給水素の量を極力低減すること。
【解決手段】塩化水素吸収装置(30)でクロロシラン類及び塩化水素が除去された反応排ガスは吸着装置(50)に導入され、精製された水素の回収が行なわれる(S105)。吸着装置(50)には活性炭が充填されており、水素主体のガスが該活性炭充填層を通過する間に、ガス中に含まれる未分離のクロロシラン類、塩化水素、および窒素、一酸化炭素、メタン、モノシランが活性炭に吸着されてガス中から除去され、精製された水素が得られる。窒素、一酸化炭素、メタン、モノシランは吸着状態が圧縮気体であるが、塩化水素およびクロロシラン類は吸着状態が液体であり脱着時には気化熱を与える必要がある。この特性を利用して、脱着ガスの経路を分離するだけで、塩化水素およびクロロシラン類とその他の不純物成分の分離を可能としている。 (もっと読む)


システム、デバイス、および方法は、反応物質と水溶液とを組み合わせて水素を生成する。反応物質は、ナトリウムシリサイドまたはナトリウムシリカゲルであることができる。水素生成デバイスは、燃料電池、および他の工業用用途において使用される。1つのシステムは、冷却、ポンプ、貯水、および他のデバイスを組み合わせて、反応物質と水溶液との間の反応を感知および制御して、水素を生成する。異なった定置配列の複数の入口が、水溶液を反応物に送達する。反応物質および水溶液を攪拌して、反応状態を制御する。水溶液を再生し、反応物に戻すことができる。1つのシステムは、一連の温度および圧力にわたって動作し、水素分離器、熱除去機構、および反応状態制御デバイスを含む。水素を生成するシステム、デバイス、および方法は、熱的に安定な固体、水溶液とのほぼ瞬間的な反応、および非毒性液体副生成物を提供する。 (もっと読む)


極低温分離プラントにて合成ガス供給流から二酸化炭素を取り除く製造方法について述べられている。例で述べられる合成ガス供給流は、40乃至65モル%の水素を含み、46乃至90絶対バールの範囲の圧力で、単一ステージ又は連続する分離ステージの第一ステージに供給される。単一ステージ又は連続のステージは、−53乃至−48℃の範囲の温度及び44から90絶対バールの範囲の圧力で操作される。いくつかの例では、単一のステージ又は連続する複合ステージが合成ガス供給流の二酸化炭素の総モル数の70乃至80%を取り除く。極低温分離プラントのステージから排出された液化COプロダクト流は、分離され及び/又は化学プロセスで使用される。また、合成ガス流を水素リッチ蒸気流及び二酸化炭素リッチ流に分離する製造方法について述べられている。例では、製造方法は、二相混合物が形成される温度に合成ガス流を冷却するステップと、ステップ(a)で形成された冷却された流を直接又は間接的に気液セパレータ容器に通過するステップであって、150バール未満の圧力を有する気液セパレータ容器への供給、セパレータ容器からの水素リッチ蒸気流及びセパレータ容器からの液体COを引き抜くステップと、直列に配置された複数の膨張機を含む膨張システムに水素リッチ流を供給ステップと、から成り、水素リッチ蒸気流を連続の各膨張機において膨張させ、膨張された水素リッチ蒸気流は、各膨張機から、低下した温度に続き低下した圧力で、少なくとも一つの膨張水素リッチ蒸気流を冷却材として使用して、引き抜かれる (もっと読む)


CO液化プラントにおいて合成ガス流を富水素(H)蒸気流及び液体二酸化炭素(CO)流に分離するプロセスであって、(A)10〜120bargの範囲の圧力を有する合成ガス流を、CO液化プラントの圧縮システムに供給し、それによりその圧力を150〜400bargに増加させ、その結果生じる高圧(HP)合成ガス流を外部冷却材で冷却して圧縮熱の少なくとも一部分を除去するステップ;(B)HP合成ガス流を、後に本プロセスで生成される複数の冷媒流と熱交換させながら熱交換器システムに通すことにより、HP合成ガス流を−15〜−55℃の範囲の温度に冷却するステップ;(C)ステップ(B)で形成された冷却されたHP合成ガス流を、熱交換器システムと実質的に同じ圧力で稼動される気液分離器容器に直接的又は間接的のいずれかで送り、高圧(HP)富水素蒸気流を分離器容器の最上部から取り出し、液体CO流を分離器容器の底部から取り出すステップ;及び(D)ステップ(C)からのHP富水素蒸気流をターボ膨張システムに供給し、そこで富水素蒸気流が直列ターボ膨張器の各々において等エントロピー膨張にかけられ、そのため富水素蒸気流が、直列ターボ膨張器から低減された温度及び連続的に低減された圧力で取り出され、直列ターボ膨張器の各々における富水素蒸気の等エントロピー膨張が動力を発生させ、それによりCO液化プラントの構成部分である機械を駆動し、及び/又は発電機のオルタネータを駆動するステップを含むプロセス。 (もっと読む)


1 - 10 / 38