説明

水蒸気電解セルユニット

【課題】600℃程度の中温域において良好なシール特性が得られ、かつ、電解質の「割れ」や「剥離」等の問題を生じさせることなく、水素と酸素とを完全に分離することができる電解セルユニットを提供する。
【解決手段】板状の固体電解質2aの両面に電極(カソード2b及びアノード2c)を形成してなる電解セル2と、金属製薄板材(電解質接着板5、電解質押さえ板6、水蒸気導入板9、及び、エンドプレート10,11)と、絶縁材(第1の絶縁板7、及び、第2の絶縁板8)とを積層することによって構成した電解セルユニット1において、電解セル2と、電解質接着板5及び/又は電解質押さえ板6との間に銀ペーストを介在させて積層したことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水蒸気電解法による水素の製造に用いることができる水蒸気電解セルユニットに関し、特に、600〜800℃程度の中温域において良好なシール特性が得られ、水素と酸素とを完全に分離することができる水蒸気電解セルユニットに関する。
【背景技術】
【0002】
水素を製造するための方法の一つとして、水蒸気電解法と呼ばれる方法が従来より知られている。水蒸気電解法は、電解質の一方側に水素極(カソード)を設け、反対側に酸素極(アノード)を設けてなる電解セルを用意し、水蒸気をカソード側へ連続的に供給しながら、両電極間に電圧を印加して電気分解を行うことにより、水(水蒸気)を分解して、水素と酸素とに分離させるというものである。
【0003】
水蒸気電解法においては、電解セル中に配置される電解質として、固体酸化物が用いられている。固体酸化物からなる電解質(固体電解質)は、高温になるほどイオン導電性が高くなる性質を持っており、例えば、一般的なYSZ系の固体酸化物の電解質を用いる場合、電解セルを1000℃程度の高温度条件下に置いた場合に、最も高い電解効率が得られる(高温水蒸気電解法)。但し、電解セルを1000℃という高温度条件下に置くためには、膨大な熱エネルギーが必要になってしまうという問題があり、また、電解セルやその周辺機器を、高温に耐え得る構造としなければならないため、製造コストが嵩んでしまうという問題がある。
【0004】
そこで、より低い温度条件で高い電解効率が得られる電解質の開発が強く求められ、各種の試験・研究が行われた結果、電解質としてLaGaO系の固体酸化物を用いる水蒸気電解法が開発された。LaGaO系の固体酸化物の電解質を用いる場合、600℃程度の中温域でも充分に高い電解効率を得ることができるということが分かっている(中温水蒸気電解法)。
【特許文献1】特開平07−45292号公報
【特許文献2】特開平10−114520号公報
【特許文献3】特開2002−203579号公報
【特許文献4】特開2002−203588号公報
【特許文献5】特開2002−237312号公報
【特許文献6】特開2002−260707号公報
【特許文献7】特開2002−280008号公報
【特許文献8】特開2002−280009号公報
【特許文献9】特開2002−280021号公報
【特許文献10】特開2002−280023号公報
【特許文献11】特開2003−328156号公報
【特許文献12】特開2003−331871号公報
【特許文献13】特開2004−253320号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
水蒸気電解法によって水素を製造しようとする場合、安全性を確保するために、また、ガスの純度を高めるためにも、水素と酸素とを完全に分離する必要があり、これを実現するためには、各電解セルユニット内において、電解質と、これを支持させる材料とを密に接着させるためのシール技術を確立させなければならない。
【0006】
ここで問題となるのは「温度」と「電解質のサイズ」である。つまり、常温下であれば、様々なシール技術を適用することができるが、水蒸気電解法においては、高い温度条件下(高温水蒸気電解法においては1000℃程度、中温水蒸気電解法においては600℃程度)で安定したシール特性を示すシール剤が必要となる。
【0007】
また、接着しようとする電解質のサイズが、直径20mm程度の小さいものであれば、一般的なシール剤を用いても特に問題はないが、水素の製造効率を実用化レベルに到達させるには、より大きなサイズの電解質を使用することが望まれるところ、各種の実験の結果、直径50mm以上の電解質を接着しようとすると、相当の頻度で「割れ」や「剥離」が生じることが明らかになった。これは、電解質のサイズが大きくなるほど機械的強度が低下し、熱膨張による影響が大きくなることが原因であると考えられる。このため、電解質のサイズを大きくするためには、電解質にかなり近い熱膨張係数を持つシール剤、若しくは、応力を緩和する変形能を持つシール剤を使用することが必要であると考えられる。
【0008】
本発明は、かかる従来技術の問題を解決すべくなされたものであって、水蒸気電解法(特に、中温水蒸気電解法)による水素の製造に用いることができる水蒸気電解セルユニットであって、600℃程度の中温域において良好なシール特性が得られ、かつ、電解質の「割れ」や「剥離」等の問題を生じさせることなく、水素と酸素とを完全に分離することができる電解セルユニットを提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の電解セルユニットは、板状の固体電解質の両面に電極(カソード及びアノード)を形成してなる電解セルと、複数枚の金属製薄板材(電解質接着板、電解質押さえ板、水蒸気導入板、及び、エンドプレート)と、絶縁材(第1の絶縁板、及び、第2の絶縁板)とを積層することによって構成されており、電解セルと、これに隣接する金属製薄板材(電解質接着板、及び/又は、電解質押さえ板)との間に、銀ペースト、或いは、金ペーストを介在させて積層したことを特徴としている。
【0010】
尚、金属製薄板材は、基材の表面に銀めっき、或いは、金めっき処理を施したものであることが好ましい。また、電解セルに隣接する金属製薄板材(電解質接着板、及び/又は、電解質押さえ板)の内周縁部には、スリットが形成されていることが好ましい。
【0011】
尚、ここに言う「銀ペースト」とは、銀粉末と有機バインダーと溶剤の混合物、或いは、銀粉末とガラス粉末と有機バインダーと溶剤の混合物であって、所定の位置に塗工後、熱処理を施すことによって溶剤及び有機バインダーが除去されるとともに、被接着材に固着するペースト状の組成物を意味し、「金ペースト」とは、金粉末と有機バインダーと溶剤の混合物、或いは、金粉末とガラス粉末と有機バインダーと溶剤の混合物であって、所定の位置に塗工後、熱処理を施すことによって溶剤及び有機バインダーが除去されるとともに、被接着材に固着するペースト状の組成物を意味している。
【発明の効果】
【0012】
本発明の水蒸気電解セルユニットにおいては、電解セルとこれに隣接する金属製薄板材(電解質接着板或いは電解質押さえ板)とが銀ペースト又は金ペーストを介して接着されているため、中温水蒸気電解法による水素の製造に使用した場合(つまり、600℃程度の温域で使用した場合)でも、電解セルと電解質接着板(或いは電解質押さえ板)とを密に接着させることができ、その結果、酸素と水素とを完全に分離させることができる。
【0013】
また、電解セルに隣接する金属製薄板材(電解質接着板或いは電解質押さえ板)の各内周縁部には、スリットが形成されており、熱膨張によって作用する応力をそれらのスリットによって緩和することができ、その結果、固体電解質の「割れ」を防止するという効果を期待できる。
【0014】
更に、本発明においては、金属製薄板材(電解質接着板、電解質押さえ板、水蒸気導入板、エンドプレート等)の表面に銀めっき処理が施してあり、それらの金属製薄板材を重ねた状態で固定し、700℃程度に加熱することにより、金属製薄板材同士を好適に接着することができ、各薄板材間におけるシール性を向上させることができる。特に、銀めっき処理部分に対し、シール剤として銀ペーストを適用した場合、熱膨張係数が一致していること、加熱することにより容易に融合すること等の理由で、より良好な接着状態が得られる。また、銀めっき処理を施すことにより、金属製薄板材の表面におけるCrの濃縮を防止でき、カソードの電極特性の低下という問題を好適に回避することができる。
【発明を実施するための最良の形態】
【0015】
以下、添付図面に沿って、本発明を実施するための最良の形態について説明する。図1は、本発明に係る水蒸気電解セルユニット1の断面図であり、図2は、図1の電解セルユニット1の構成部品の分解斜視図である。尚、図1においては、説明の便宜上、各構成部品を厚さ方向(図中左右方向)に拡大して表示してある。
【0016】
図2からも明かなように、この電解セルユニット1の構成部品は、いずれも薄板状(厚さ0.2〜1.0mm)に成形されており、基本形状は円盤状或いはリング状となっている。本実施形態においては、これらの構成部品を貼り合わせて積層することにより、図1に示すような断面形状を呈する電解セルユニット1が形成されるようになっている。
【0017】
ここで各構成部品の詳細について説明する。図1及び図2において、2は電解セルである。この電解セル2は、LaGaO系酸化物粉を所定の形状に成形し、焼結することによって得られた薄板円盤状の固体電解質2aと、その一方の面に形成されたカソード2b、及び、反対側の面に形成されたアノード2cとによって構成されている。尚、カソード2bは、固体電解質2aの一方の面に、スクリーン印刷法によって塗布した電極材料粉末(Ni−Fe)を焼き付けることによって形成され、アノード2cは、カソード2bが形成された面とは反対側の面に、スクリーン印刷法によって塗布した電極材料粉末(BLC)を焼き付けることによって形成されている。
【0018】
図1及び図2において、3はカソード集電体、4はアノード集電体、5は電解質接着板、6は電解質押さえ板、7は第1の絶縁板、8は第2の絶縁板、9は水蒸気導入板、10,11はエンドプレートである。これらのうち、電解質接着板5、電解質押さえ板6、水蒸気導入板9、エンドプレート10,11は、フェライト系のステンレス(SUS430)によって形成されており、いずれも表面に銀めっき処理が施してある。第1の絶縁板7及び第2の絶縁板8は、マイカ(雲母)製である。尚、説明の便宜上、図1においては、カソード集電体3及びアノード集電体4の表示を一部省略してある。
【0019】
図2に示されているように、エンドプレート10、水蒸気導入板9、電解質接着板5、第1の絶縁板7、電解質押さえ板6、第2の絶縁板8、エンドプレート11においては、周縁に近い位置に小孔12がそれぞれ2つずつ形成されている。尚、各プレートにおける小孔12(12a,12b)の開設位置はいずれも一致しており、一方の小孔12aに対し、他方の小孔12bは、プレートの中心を挟んで反対側の位置(180°の位置)に形成されている。
【0020】
電解質接着板5、電解質押さえ板6、第2の絶縁板8、及び、水蒸気導入板9には、小孔12a,12bのほかに、中央に孔部13が形成されている。一方、第1の絶縁板7の中央には、それらの孔部13よりもわずかに直径が大きい大孔14が形成されている。
【0021】
第2の絶縁板8には、孔部13の内縁から外縁まで達する切欠15が形成されており、孔部13はこの切欠15を介して外側と連通した状態となっている。また、水蒸気導入板9においては、孔部13の内縁から小孔12a,12bまで達する切欠16a,16bが形成されており、孔部13はこれらの切欠16a,16bを介して小孔12a,12bとそれぞれ連通した状態となっている。
【0022】
電解質接着板5及び電解質押さえ板6の各内周縁部には、図3に示すように、半径方向に延在するスリット17、及び、内周縁に沿って円周方向に延在するスリット18が形成されている。尚、これらのスリット17,18は、図1及び図2においては表示を省略してある。
【0023】
電解セル2の主たる構成要素である固体電解質2aは、直径が、電解質接着板5(或いは電解質押さえ板6)に形成されている孔部13の直径よりも大きく設定されているため、電解質押さえ板6(或いは電解質押さえ板6)と電解セル2とを同心的に重ね合わせると、図3に示すように、電解セル2の外周縁部と、電解質接着板5(或いは電解質押さえ板6)の内周縁部とが一定の幅Wで重なり合うことになる。上述したスリット17,18はいずれも、電解質接着板5(或いは電解質押さえ板6)における、電解セル2と重なり合う領域(図3に示す幅Wの領域)内に形成されている。
【0024】
次に、本発明に係る電解セルユニット1の製造方法について説明する。まず、電解セル2を、電解質接着板5、及び、電解質押さえ板6に対して接着する。接着の際には、銀ペーストをシール剤として用いる。この点について具体的に説明すると、電解質接着板5及び電解質押さえ板6と、電解セル2とを同心的に貼り合わせた場合に相互に重なり合う部分(接合面)に、予め銀ペーストを塗布しておいてから、電解質押さえ板6と電解質接着板5とによって、その中間の電解セル2を挟み込むように貼り合わせて接着する。
【0025】
尚、電解質接着板5と電解質押さえ板6の間には、電解セル2だけではなく、第1の絶縁板7をも挟み込んで接着を行う。このとき、第1の絶縁板7に形成されている大孔14は、直径が、電解セル2の直径よりも大きいため、電解セル2と第1の絶縁板7を同心的に重ね合わせると、電解セル2は、第1の絶縁板7の大孔14内に収まることになる。
【0026】
また、電解セル2を構成する固体電解質2aと、第1の絶縁板7は、厚さ寸法が同一となるように設定されている。従って、電解質接着板5と電解質押さえ板6の間に、電解セル2と第1の絶縁板7を挟み込んで貼り合わせた場合、電解質接着板5の接合面と、電解セル2及び第1の絶縁板7の各接合面とが密着するとともに、電解セル2及び第1の絶縁板7の反対側の各接合面と電解質押さえ板6とがいずれも密着した状態となる。
【0027】
このようにして接着を行うと、電解セル2は、図1に示されているように、周縁部の一方の面が電解質接着板5に接着され、他方の面が電解質押さえ板6に接着され、更に、外側が第1の絶縁板7によって閉塞された状態となる。
【0028】
そして、電解セル2と接着された電解質接着板5の外側の面(電解セル2が接着されている面とは反対側の面)には、水蒸気導入板9が接着され、更にその外側には、エンドプレート10が接着される。また、電解質押さえ板6の外側の面(電解セル2が接着されている面とは反対側の面)には、第2の絶縁板8が接着され、更にその外側には、エンドプレート11が接着される。
【0029】
電解質接着板5と、水蒸気導入板9と、エンドプレート10とが貼り合わせられ、接着されると、図1の上半部に示すように、電解質接着板5の孔部13と、水蒸気導入板9の孔部13とが連なって、カソード2bからエンドプレート10まで、所定の大きさの小室Bが形成されることになる。この小室Bには、図1の下半部に示すように、カソード集電体3が配置される。
【0030】
一方、電解質押さえ板6と、第2の絶縁板8と、エンドプレート11とが貼り合わせられ、接着されると、図1の上半部に示すように、電解質押さえ板6の孔部13と、第2の絶縁板8の孔部13とが連なって、アノード2cからエンドプレート11まで、所定の大きさの小室Cが形成されることになり、この小室Cには、図1の下半部に示すように、アノード集電体4が配置される。
【0031】
以上に説明した本発明の電解セルユニット1は、水素の製造に用いられるものであり、水素製造装置の主要な構成要素として使用されるものである。この電解セルユニット1を用いて水素製造装置を構築する場合、まず、多数の電解セルユニット1を用意し、それらを積層し、固定することによって電解セルスタックを形成する。例えば、25個の電解セルユニット1を積層し、固定して一つの電解セルスタックとする。更に、そのような電解セルスタックを複数連結して電解セルスタックモジュールを構成し、これを水素製造装置に組み込む。
【0032】
電解セルスタックを製造する場合、複数の電解セルユニット1を、向きを揃えたうえで、厚さ方向(図1においては左右方向)に重ねていき、任意の固定手段(例えば、ボルト−ナット等の締結具)によって固定する。このとき、隣接する電解セルユニット1間で、小孔12a,12b(図1参照)の位置をそれぞれ合わせるようにする。そうすると、電解セルスタックの一端側の電解セルユニット1の小孔12aと、他端側の電解セルユニット1の小孔12aとが連通した状態となる。また、もう一つの小孔12bも、同様に一端側から他端側まで連通した状態となる。
【0033】
このようにして、一つの電解セルスタックにおいて各プレートの小孔12aが連なって形成された通路D(図1参照)に水蒸気を供給すると、その中を流下する水蒸気の一部が、水蒸気導入板9に形成されている切欠16a(図2参照)を通って、各電解セルユニット1におけるカソード2b側の小室B(図1参照)内へ流入することになる。
【0034】
このとき、カソード2b、アノード2c(図1参照)間において電圧を印加すると、カソード2b上で水蒸気が分解され、酸素イオンが固体電解質2aを通過してアノード2c側の小室C(図1参照)内へ移動する。そして、小室Cに移動した酸素イオンは、再結合して酸素ガスとなり、第2の絶縁板8の切欠15(図2参照)から、電解セルユニット1の外部へ排出される。
【0035】
一方、カソード2b側の小室B内において、水蒸気が分解されて生成された水素イオンは、小室B内で再結合して水素ガスとなり、分解されなかった一部の水蒸気とともに、水蒸気導入板9の切欠16b(図2参照)を通って通路E(一つの電解セルスタックにおいて各プレートの小孔12bが連なって形成された通路)(図1参照)へ流出する。それらの水素ガス及び水蒸気は、他の電解セルユニット1の小室Bから流出した水素ガス及び水蒸気とともに通路E内を流下し、熱交換器へ送られて熱交換される。更に気液分離器にて水蒸気が除かれ、純度の高い水素ガスを得ることができる。或いは、水素分離膜などの水素を分離する装置を用いて純度の高い水素ガスを得てもよい。
【0036】
本発明に係る電解セルユニット1においては、上述したように、LaGaO系の固体酸化物からなる電解質が使用されているため、600℃程度の中温域において高い電解効率を得ることができる。従って、本発明に係る電解セルユニット1を用いて水素を製造しようとする場合、電解セルユニット1、電解セルスタック、或いは、電解セルスタックモジュールを600℃程度の温度条件下に置いて作動させることにより、効率よく水素を製造することができる。
【0037】
尚、本発明においては、上述の通り、電解セル2と電解質接着板5(或いは電解質押さえ板6)とが銀ペーストを介して接着されているが、銀ペーストは800℃程度の高い温度条件下においても安定的に高いシール性能を発揮できるという特質を有しているため、電解セルユニット1を上記のような作動温域(600℃程度)で使用した場合でも、電解セル2と電解質接着板5(或いは電解質押さえ板6)とを密に接着させることができ、その結果、酸素と水素とを完全に分離させることができる。また、電解質接着板5(或いは電解質押さえ板6)は、表面に銀めっき処理が施されており、この銀めっき処理部分に対して銀ペーストが適用されることにより、熱膨張係数の一致、加熱融合等の理由で、より良好な接着状態を得ることができる。
【0038】
また、電解質接着板5及び電解質押さえ板6の各内周縁部には、図3に示すように、半径方向に延在するスリット17、及び、内周縁に沿って円周方向に延在するスリット18が形成されており、熱膨張によって半径方向に作用する応力、及び、円周方向に作用する応力を、それらのスリット17,18によって緩和することができる。その結果、これらのスリット17,18によって、固体電解質2aの「割れ」を防止するという効果を期待できる。
【0039】
更に、本発明においては、電解質接着板5、及び、電解質押さえ板6だけでなく、水蒸気導入板9、エンドプレート10,11についても、表面に銀めっき処理が施してあり、それらを重ねた状態で700℃程度に加熱することにより、隣接する部材同士を良好に接着させることができ、それらの接着部分に銀ペーストを介在させた場合には、より好適な接着状態が得られる。
【0040】
また、銀めっき処理により、基材となるステンレス表面におけるCrの濃縮、カソード2bの電極特性の低下という問題を好適に回避することができる。より具体的に説明すると、ステンレスは、高温域まで加熱すると、中に含まれているCrが表面において濃縮するという現象が生じることが知られており、Crは、カソード電極の材料として使用されているNiなどを被毒し、電極特性を低下させてしまう可能性がある。本発明においては、ステンレス表面に銀めっき処理を施すことにより、表面におけるCrの濃縮という問題、及び、カソード2bの電極特性の低下という問題を好適に回避している。また、導電性を維持できるという利点もある。
【0041】
尚ここでは、固体電解質2aの接着に銀ペーストを用いているが、銀ペーストの代わりに金ペーストを用いることもできる。また、電解質接着板5等は、表面に銀めっき処理がなされているが、金めっき処理とすることもできる。特に、固体電解質2a等の接着に金ペーストを用いる場合には、これに合わせて金めっき処理を行うことが好ましい。
【0042】
また、図2及び図3に示したように、この電解セルユニット1の構成部品はいずれも基本形状が円盤状或いはリング状となっているが、必ずしも図示されている形状に限定されるものではなく、半径方向外側に向かって小片が突出するような形状としてもよいし、輪郭形状を四角形とすることもできる。更に、各構成部品には、小孔12a,12b以外の孔(例えば、各構成部品同士を固定するための、或いは、複数の電解セルユニットを連結するためのボルト挿通孔等)が形成されていてもよい。
【図面の簡単な説明】
【0043】
【図1】本発明に係る固体電解質水蒸気電解セルユニット1の断面図。
【図2】図1の電解セルユニット1の構成部品の分解斜視図。
【図3】図1の電解セルユニット1に使用される電解質接着板5(及び電解質押さえ板6)の平面図。
【符号の説明】
【0044】
1:水蒸気電解セルユニット、
2:電解セル、
2a:固体電解質、
2b:カソード、
2c:アノード、
3:カソード集電体、
4:アノード集電体、
5:電解質接着板、
6:電解質押さえ板、
7:第1の絶縁板、
8:第2の絶縁板、
9:水蒸気導入板、
10,11:エンドプレート、
12,12a,12b:小孔、
13:孔部、
14:大孔、
15,16a,16b:切欠、
17,18:スリット、
B,C:小室、
D,E:通路

【特許請求の範囲】
【請求項1】
板状の固体電解質の両面に電極を形成してなる電解セルと、複数枚の金属製薄板材と、絶縁材とを積層することによって構成した電解セルユニットであって、
前記電解セルと、これに隣接する前記金属製薄板材との間に、銀ペースト、或いは、金ペーストを介在させて積層したことを特徴とする電解セルユニット。
【請求項2】
板状の固体電解質の両面に電極を形成してなる電解セルと、複数枚の金属製薄板材と、絶縁材とを積層することによって構成した電解セルユニットであって、
前記金属製薄板材が、基材の表面に銀めっき、或いは、金めっき処理を施したものであることを特徴とする電解セルユニット。
【請求項3】
板状の固体電解質の両面に電極を形成してなる電解セルと、複数枚の金属製薄板材と、絶縁材とを積層することによって構成した電解セルユニットであって、
前記電解セルに隣接する金属製薄板材の内周縁部に、スリットが形成されていることを特徴とする電解セルユニット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2009−19236(P2009−19236A)
【公開日】平成21年1月29日(2009.1.29)
【国際特許分類】
【出願番号】特願2007−182728(P2007−182728)
【出願日】平成19年7月12日(2007.7.12)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成17、18年度地域新生コンソーシアム研究開発事業、九州経済産業局、エネルギーカスケード利用型固体電解質水蒸気電解装置の開発に係る委託研究、産業活力再生特別措置法第30条の適用を受ける特許出願
【出願人】(591107230)株式会社デンケン (3)
【出願人】(503353911)マイクロパワー・エナジー株式会社 (1)
【出願人】(000164438)九州電力株式会社 (245)
【出願人】(000164391)株式会社キューキ (15)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【出願人】(504145342)国立大学法人九州大学 (960)
【Fターム(参考)】