説明

汚染土壌浄化工法

【課題】透水係数の低い地層が存在しても、複数の異なる深度の地層に対して、1本の注入用井戸によって汚染物質を分解、除去する流体(気体や液体)を注入出来る汚染土壌浄化工法の提供。
【解決手段】複数の流体(気体や液体)の注入部(11、12)を有する井戸材(1)を用いて1本の注入用井戸(10)を造成する工程と、流体注入管(8、9)を介して複数の流体注入部(11、12)の各々に流体を供給して、複数の流体注入部(11、12)の各々から土壌G中へ流体(B:気体や液体)を注入する工程とを有することを特徴としている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば揮発性有機化合物(VOC)、重金属、農薬等で汚染された土壌中に気体や液体を供給して、汚染物質を分解或いは除去し、以って、汚染された土壌を浄化する技術に関する。
【背景技術】
【0002】
その様な土壌浄化の技術としては、例えば図16で示すように、地盤中に気体や液体を注入して、汚染物質(揮発性有機化合物、重金属や農薬等)により汚染された土壌や地下水を浄化している。
土壌中に注入される気体としては、空気、酸素、水素等があり、土壌中に注入される液体としては、例えば、窒素、リン等を溶解した栄養塩溶液、汚染物質を分解する微生物を包含する液体、酸素を発生させる徐放性酸素供給剤や水素を発生させる徐放性水素供給剤、重金属や農薬の不溶化剤等がある。
【0003】
図16で示す従来技術では、先ず、図示しないボーリングマシンによって地上側Gfから地下水位Lw以下で汚染土壌Gpを含む地中、すなわち土壌Gにボーリング孔2を掘り、そのボーリング孔2に井戸材1を配置する。
井戸材1の先端には、注入部(スクリーン)11が形成されている。
そして、地上側Gfに設置された栄養塩溶液タンク3に貯留された栄養塩溶液を、ポンプ4により、流体注入管6を介して、井戸材1の内部に供給する。また、地上側Gfに設置されたエアコンプレッサー5により、流体注入管7を介して、圧縮空気を井戸材1の内部に供給する。
【0004】
井戸材1に供給された栄養塩溶液及び圧縮空気の混合流体は、井戸材1の下端の注入部11から、微細な泡Bとなって、地盤Gに放散される。そして、下記(a)〜(e)の様な生物学的な作用効果を発揮して、汚染された土壌Gpを浄化する。
(a) 酸素を注入することにより地下水中の溶存酸素濃度が上昇し、汚染物質を分解する微生物が活性化することにより浄化が行われる。
(b) 栄養塩を注入することにより、汚染物質を分解する微生物が活性化し浄化が行われる。
(c) 汚染物質を分解する微生物を注入することにより、汚染物質を分解し浄化が行われる。
(d) 酸素が発生する薬剤(徐放性酸素供給剤)を注入することにより、地下水中の溶存酸素濃度が上昇し、汚染物質を分解する微生物(菌等)が活性化することにより浄化が行われる。
(e) 水素が発生する薬剤(徐放性水素供給剤)を注入することにより、微生物が薬剤と地下水との反応物を分解し、水素を発生させ、還元的脱塩素反応により浄化が行われる。
【0005】
そして、地中の微生物による生物学的な作用効果(a)〜(e)に加えて、注入した空気により、土壌や地下水中の揮発性有機化合物が揮発して、土壌の浄化が進行する。
或いは、水素を注入することにより還元的脱塩素反応を起し、塩素系揮発性有機化合物が分解されることにより、浄化が促進される。
【0006】
しかし、係る従来技術において、注入される気体や液体は、砂質土などの透水係数の高い地質(例えば、約1.0×10−6m/sec以上)には浸透し、拡散するが、透水係数の低い地質(例えば、約1.0×10−6m/sec未満)には浸透、拡散しない。
そのため、図17で示すように、透水係数の高い地層Gs1、Gs2が、サンドイッチ状に透水係数の低い地層Gcを挟む様になっている土壌Gでは、透水係数の低い地層Gcよりも上方(地上側)の層Gs1には、気体や液体(の混合流体B)が十分に供給されない。
従って、透水係数の低い地層Gcよりも上方(地上側)に存在する汚染領域Gp1には、当該汚染領域Gpに気体や液体(B)が到達せず、汚染が浄化されないという問題を有している。
【0007】
また、気体や液体を土中に注入する部分が1箇所だけ設けられているのでは、浄化対象となる汚染された領域の深度が深い場合には、全ての汚染領域に気体や液体は十分に供給されない恐れがある。
気体や液体は十分に供給されない場合には、汚染された領域に存在する汚染物質を浄化する速度が遅くなり、場合によっては汚染物質が分解されない恐れが生じる。
【0008】
或いは、地層全体が同一の土質であっても、必ずしも一定の透水係数ではない場合があり、注入した気体や液体は、地層全体に均一に拡散しないことがある。そのため、各深度において汚染物質の浄化速度が異なり、地層全体として浄化に必要な期間が長くなってしまう場合が存在する。
【0009】
また、図18で示す様に、汚染領域Gpの一部に透水係数の低い地層Gcが存在する場合が存在する。
図18で示す様な場合には、透水係数の低い地層Gcよりも上方(地上側)の領域(図18において破線で囲った領域)Gppには、十分に気体や液体が供給されない。そのため、当該領域Eでは汚染物質が浄化されずに、残留してしまう可能性がある。
【0010】
さらに、例えば図19で示すように、汚染領域Gp中に特に濃度の濃い汚染領域(高濃度汚染領域)Gpxが存在する場合には、当該濃度の濃い汚染領域Gpxについては、浄化のためには濃度の低い部分に比べ、より多くの気体(酸素や水素)や液体(栄養塩、微生物)が必要となる。
しかし、図19で示されている様に、気体や液体を地中に注入する注入部11は、土壌Gの汚染領域最深部Gpyや地下水汚染の最深部よりも、下方(深度が深い側)に設置される場合が多い。
【0011】
そのため、気体や液体の注入位置と高濃度汚染領域Gpxとの距離が長くなってしまう場合が存在する。その様な場合には、土壌G中に注入した気体や液体が高濃度汚染領域には十分に供給されない。
その結果、高濃度汚染領域Gpxを浄化するのに十分な量の酸素や水素が供給されず、低濃度の汚染部分Gpに比較して高濃度汚染領域Gpxにおける浄化速度が遅くなり、汚染領域全体としての浄化期間が長くなってしまうという問題が生じる。
【0012】
図17〜図19を参照して説明した問題に対処するために、気体や液体を注入する深度が異なる注入井戸を複数本掘削して、ケース・バイ・ケースで浄化を行うことが考えられる。
しかし、井戸を掘削するのには、多大な時間、各種労力、コスト(材料費、人件費、その他)が必要であり、複数本の井戸を掘削することにより、土壌浄化のためのコストが増加してしまう。
【0013】
その他の従来技術として、例えば、透水係数の低い地層よりも上方(地上側)に存在する汚染区域の直上に微生物の栄養富化剤を添加する技術が提案されている(特許文献1参照)。
しかし、係る従来技術(特許文献1)では、透水係数の低い地層よりも下方に存在する汚染区域に微生物の栄養富化剤を添加することが出来ないので、図17、図18で説明したのとは逆に、透水係数の低い地層よりも下方に存在する汚染領域を浄化することが出来ない。
【0014】
また、図19で説明したように汚染領域Gp中に高濃度汚染領域Gpxが存在する場合に、微生物の栄養富化剤を添加した個所から高濃度汚染領域Gpxまでの距離が長い場合には、高濃度汚染領域Gpxが十分に浄化されないという問題を有している。
【先行技術文献】
【特許文献】
【0015】
【特許文献1】特開2008−272553号公報
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明は上述した従来技術の問題点に鑑みて提案されたものであり、透水係数の低い地層が存在しても、複数の異なる深度の地層に対して、1本の注入用井戸によって汚染物質を分解、除去する流体(気体や液体)を注入出来る汚染土壌浄化工法の提供を目的としている。
【課題を解決するための手段】
【0017】
本発明の汚染土壌浄化工法は、複数の流体(気体や液体)の注入部(スクリーン11、12)を有する井戸材(1)を用いて1本の注入用井戸(10)を造成する工程と、流体注入管(8、9)を介して複数の流体注入部(スクリーン11、12)の各々に流体を供給して、複数の流体注入部(11、12)の各々から土壌G中へ流体(B:気体や液体)を注入する工程とを有することを特徴としている。
ここで、前記流体(B)としては、気体(空気、酸素、水素等)や液体(窒素やリン等を溶解した栄養塩溶液、汚染物質を分解する微生物が含まれるもの、酸素を発生させる徐放性酸素供給剤や水素を発生させる徐放性水素供給剤、重金属や農薬の不溶化剤等)であるのが好ましい。
【0018】
本発明の実施に際して、井戸材(1)の長手方向に隣接して設けられた複数の液体注入部(スクリーン11、12)の間には仕切り材(20)が設けられているのが好ましい(請求項2)。
【0019】
そして、前記流体注入管(9)は井戸材(1)の内部に配置されており、前記仕切り材(20)を通過(或いは貫通)して配置されているのが好ましい(請求項3)。
【0020】
或いは、前記流体注入管(90)は井戸材(1)の外部に配置されているのが好ましい(請求項4)。
【0021】
これに加えて、本発明において、前記流体注入管(8、9)と流体供給源(例えば空気の供給源であるエアコンプレッサー5、例えば液体の供給源である栄養塩水溶液用ポンプ4)とを連通するライン(Lm1、Lm2、Lm3:La1、La2、La3)の各々には流量調整装置(40、50:例えば、流量調節装置、レギュレータ、流量計)が介装されており、前記土壌(G)中へ流体を注入する工程では、各々の流体注入管(8、9)における流体の流量が個別に制御されているのが好ましい(請求項5)。
【0022】
本発明の汚染土壌浄化工法(請求項1〜5の汚染土壌浄化工法)で用いられる井戸材(1)は、複数の流体(気体や液体)注入部(スクリーン11、12)を有し、井戸材(1)の長手方向に隣接して設けられた液体注入部(スクリーン11、12)の間には仕切り材(20)が設けられ、該仕切り材(20)で区画された井戸材(1)内の領域の各々に1箇所ずつ設けられた液体注入部(スクリーン11、12)は1本の流体注入管(8、9)を経由して流体供給源(例えば空気の供給源であるコンプレッサー5、例えば液体の供給源である栄養塩水溶液用ポンプ4)と連通していることを特徴としている(請求項6)。
【発明の効果】
【0023】
上述する構成を具備する本発明によれば、1本の注入用井戸(10)に、複数の気体や液体を注入する部分(注入部:スクリーン11、12)を設けているので、複数の流体注入管(8、9)を経由して、複数の異なる深度の地層に対して、気体(空気、酸素、水素等)や液体(窒素、リン等を溶解した栄養塩溶液、汚染物質を分解する微生物が含まれるもの、酸素を発生させる徐放性酸素供給剤や水素を発生させる徐放性水素供給剤、重金属や農薬の不溶化剤)を注入することが出来る。
そして、気体や液体を注入することにより、(a)〜(e)で上述した生物学的な作用効果により、汚染土壌を浄化(微生物による浄化)することが出来る。
それと共に、空気を注入することにより、VOCを揮発させて浄化することも可能である。
さらに、水素を注入して、還元的脱塩素反応により、塩素系揮発性有機化合物を分解して、浄化することが出来る。
【0024】
本発明によれば、1本の注入用井戸(10)により、複数の地層や深度が異なる領域に気体や液体を注入することが出来るので、複数の井戸を掘削することなく、汚染物質で汚染された土壌(汚染領域)全体や地下水を、均一に、短期間で浄化することができる。
そのため、井戸掘削に関するコストを大幅に節減することが可能である。
【0025】
本発明によれば、図17で示すように、透水係数の高い地層(Gs1、Gs2)が、サンドイッチ状に透水係数の低い地層(Gc)を挟む様になっている土壌であっても、透水係数の低い地層(Gc)よりも上方(地上側)に注入部(スクリーン11)を設ければ、そこから土壌(G)に注入される気体や液体が、透水係数の低い地層(Gc)よりも上方(地上側)に存在する汚染領域(Gp1)に十分に供給されるので、(a)〜(e)で上述した作用効果(生物学的な作用効果)や、注入された空気による揮発作用や、注入された水素による還元的脱塩素反応により、VOCが分解して、浄化される。
一方、透水係数の低い地層(Gc)よりも下方に存在する汚染領域(Gp2)については、当該汚染領域よりも下方に注入部(12)を設け、そこから気体や液体を注入すれば、当該気体及び液体が透水係数の低い地層(Gc)よりも下方に存在する汚染領域(Gc)に十分に供給され、汚染物質が分解、浄化される。
【0026】
また、複数の注入部(スクリーン11、12)から気体や液体が供給されるので、浄化対象深度が深くても、複数箇所から注入された気体や液体が全ての汚染領域(Gp)に十分に行き渡り、汚染物質を浄化する。
さらに、地層全体が一定の透水係数ではなくても、複数の注入部(スクリーン11、12)から供給された気体や液体は地層全体に拡散するので、一部の領域における汚染物質の浄化速度のみが遅くなることが防止され、地層全体として浄化に必要な期間が長くなってしまうことが防止される。
【0027】
さらに本発明によれば、図18で示す様に、汚染領域(Gp)の一部に透水係数の低い地層(Gc)が存在していても、水係数の低い地層(Gc)よりも上方(地上側)に注入部(スクリーン11)を設ければ、そこから土壌に注入される気体や液体が、透水係数の低い地層よりも上方(地上側)に存在する汚染領域(Gpp)に十分に供給され、生物学的な作用効果や、注入された空気による揮発作用や、注入された水素による還元的脱塩素反応により、透水係数の低い地層よりも上方に存在する汚染領域におけるVOCが分解して、浄化される。
【0028】
そして本発明によれば、図19で示すように、汚染領域(Gp)中に特に濃度の濃い汚染領域(高濃度汚染領域Gpx)が存在する場合においても、高濃度汚染領域(Gpx)近傍に注入部(スクリーン11)を設けることにより、そこから注入される気体(酸素や水素)や液体(栄養塩、微生物)も高濃度汚染領域(Gpx)に到達するので、当該濃度の濃い汚染領域(Gpx)には多量の気体や液体が供給されることになる。
そのため、高濃度汚染領域(Gpx)においては、汚染物質濃度が低い範囲以上に生物学的な作用効果や、注入された空気による揮発作用や、注入された水素による還元的脱塩素反応が行なわれる。従って、低濃度の汚染部分に比較して高濃度汚染領域(Gpx)における浄化速度が遅くなってしまうことや、汚染領域(Gp)全体としての浄化期間が長くなってしまうことが防止されるのである。
【図面の簡単な説明】
【0029】
【図1】本発明の実施形態に概要及び作用効果を示す断面図。
【図2】実施形態で用いられる注入井戸における井戸材を示す正面図。
【図3】実施形態を実施する以前の土壌を模式的に示す断面図。
【図4】ボーリング孔削孔工程を示す断面図。
【図5】図2の注入井戸を埋設した状態を示す断面図。
【図6】注入井戸に栄養塩溶液タンクとコンプレッサーを接続した状態を示す断面図。
【図7】実施形態の作用効果を示す図1とは異なる断面図。
【図8】実施形態の作用効果を示す図1及び図7とは異なる断面図。
【図9】注入部を示す部分断面図。
【図10】仕切り部を示す部分断面図。
【図11】仕切り部の第1変形例を示す部分断面図。
【図12】仕切り部の第2変形例を示す部分断面図。
【図13】仕切り部の第3変形例を示す部分断面図。
【図14】仕切り部の第4変形例を示す部分断面図。
【図15】流体注入管の配置に係る変形例を示す部分断面図。
【図16】従来技術の概要を示す断面図。
【図17】従来技術の問題点の概要を示す断面図。
【図18】図17とは異なる問題点の概要を示す断面図。
【図19】図17、図18とは異なる問題点の概要を示す断面図。
【発明を実施するための形態】
【0030】
以下、添付図面の図1〜図15を参照して、本発明の実施形態について説明する。
先ず図1を参照して、本発明の実施形態の概要を説明する。
図1では、図17で示すのと同様に、地中の地下水位Lwよりも下方では、透水係数の高い地層(透水層)Gs1、Gs2が、透水係数の低い地層(難透水層)Gcを、サンドイッチ状に挟む様に積層されている。
なお、本明細書において、上下の透水層Gs1、Gs2と難透水層Gcとが「土壌G」と総称される場合がある。また、透水係数の高い地層(透水層)Gs1、Gs2を、符号Gsで包括的に表示する場合がある。
【0031】
図1において、透水係数の高い地層(透水層)Gs1、Gs2中には、例えばVOC等で汚染された領域(汚染領域)Gp1、Gp2が存在する。
汚染領域Gp1は、難透水層Gcよりも上方に存在する。また、汚染領域Gp2は、難透水層Gcよりも下方に存在している。
なお、本明細書においては、汚染領域を符号Gpで総称する場合がある。
【0032】
図1では、土壌Gに、予め難透水層Gcを挟んだ汚染領域Gpを貫通するように掘削したボーリング孔2に井戸材1が設置され、注入井戸10が構成されている。
注入井戸10において、難透水層Gcの直上部分には、流体の注入部11(上方のスクリーン)が設けられている。
また、注入井戸10の先端部で、下方の汚染領域Gp2の底部よりも深度が深い位置には、流体の注入部12(下方のスクリーン)が設けられている。
注入井戸10内には2本の流体注入管8、9が挿入されている。注入管8の先端はスクリーン11よりも上方に開口し、注入管9の先端はスクリーン11とスクリーン12との間の領域に開口している。流体注入管8、9は、例えば、ビニールホース、塩化ビニル管、金属管等で構成されている。
【0033】
地上側Gfにおける注入井戸10の近傍には、供給ポンプ4を装備した栄養塩溶液タンク3と、エアコンプレッサー5が設置されている。
供給ポンプ4は、図2で詳述するラインによって、流体注入管8に接続されている。そして、エアコンプレッサー5は、図2で詳述するラインによって、流体注入管9に接続されている。
【0034】
図2に示されており、図1では図示されていないが、供給ポンプ4と流体注入管8、9との間には、注入量調節装置40が介装されている。そして、エアコンプレッサー5と流体注入管8、9との間には、注入量調節装置50が介装されている。
なお、図示の例では、流体注入管は2本(流体注入管8、9)だけ設けられているが、流体注入管を3本以上設け且つスクリーンを3箇所以上設けることも可能である。
【0035】
図2において、供給ポンプ4と流量調節装置40とはラインLm1で接続され、流量調節装置40と流体注入管8とはラインLm2で接続され、流量調節装置40と流体注入管9とはラインLm3で接続されている。
また、エアコンプレッサー5と流量調節装置50とはラインLa1で接続され、流量調節装置50と流体注入管8とはラインLa2で接続され、流量調節装置50と流体注入管9とはラインLa3で接続されている。
【0036】
図1、図2の実施形態では、注入井戸10に向かう2本の流体注入管8、9には、気体(例えば空気)を供給するラインLa2、La3と、液体(例えば、栄養塩溶液)を供給するラインLm2、Lm3が、それぞれ対となって連通している。
2箇所の注入部(スクリーン11、12)の各々に供給される空気等の気体と、栄養塩溶液等の液体は、流量調節装置40、50(図示しないレギュレータ、流量計、弁)によって、ライン毎に、その供給量が個別に制御されている。
【0037】
注入用井戸10において、上方のスクリーン11と下方のスクリーン12との間の領域には、仕切り材20が設けられている。
流体注入管9は、上方のスクリーン11と仕切り材20の双方を貫通して、仕切り材20の下方に開口している。
仕切り材20は、注入井戸10内を複数の領域(図2では2つの領域)に分割しており、各領域に供給された空気等の気体及び栄養塩溶液等の液体が、他の領域に漏洩するのを防止している。
スクリーン11、12については図9で後述する。また、仕切り材20の構成については、図10〜図14で詳述する。
【0038】
上述したように、図1で示す実施形態では、1本の注入用井戸10に複数(例えば2個)のスクリーン11、12が設けてあり、土中における複数深度の領域(例えば2箇所)に、気体や液体を注入している。
すなわち、難透水層Gcより下方の汚染領域Gp2には、下方のスクリーン12から、例えば栄養塩溶液及び空気が供給される。そして、難透水層Gcより上方の汚染領域Gp1には、上方のスクリーン11から、例えば栄養塩溶液及び空気が供給される。そして、空気及び栄養塩溶液が供給されることにより、地下水中の溶存酸素濃度が上昇し、汚染物質を分解する微生物が活性化し、浄化が行われる。
【0039】
その結果、図17の従来技術では浄化が出来なかった汚染領域(難透水層Gcよりも上方に存在する汚染領域Gp1)であっても、空気や栄養塩溶液等が供給されて、VOC等の汚染物質を分解する微生物が活性化されて、当該汚染領域が浄化される。
それと共に、注入された空気によりVOCを揮発させて浄化を促進することが出来る。
さらに、水素を注入することにより還元的脱塩素反応を起し、塩素系揮発性有機化合物が分解して、浄化が行われる。
【0040】
一方、難透水層Gcよりも下方の汚染領域Gp2については、下方のスクリーン12から供給される空気や栄養塩溶液等により、VOC等の汚染物質を分解する微生物が活性化されて、当該汚染領域が浄化される。
それと共に、注入された空気によりVOCが揮発され、また、水素を注入することにより還元的脱塩素反応が生じて塩素系揮発性有機化合物が分解されるので、浄化が行われる。
【0041】
次に、図3〜図6を参照して、図示の実施形態の施工手順について説明する。
施工に当たっては、予め調査ボーリングや調査井掘削等の手法により、粘土層などの透水係数の小さい地層(例えば、透水係数が約1.0×10−6m/sec未満の層:難透水層)Gcや汚染度濃度の高い領域が存在する位置や深度を把握しておく。
【0042】
図3〜図6において、施工すべき土壌における難透水層Gcや汚染領域Gp1、Gp2の分布は、図3で示す様な状態となっている。
すなわち、難透水層Gcによって、透水層は上方の透水層Gs1と下方の透水層Gs2とに2分されており、透水層中の汚染領域も、難透水層Gc上方の汚染領域Gp1と、難透水層Gc下方の汚染領域Gp2に2分されている。
【0043】
図4で示すように、ボーリングマシン(図示は省略)により、汚染領域Gp1、難透水層Gc、汚染領域Gp2を貫通するように、ボーリング孔2を掘削する。
そして、図5で示すように、掘削したボーリング孔2に、図2で説明したような井戸材1を配置する。ここで、図2を参照して説明した通り、井戸材1は、最下端にスクリーン12を設置するとともに、難透水層Gcの上端に相当する位置にスクリーン11を設置している。
【0044】
図示は省略するが、図8で後述するように、土壌G中の汚染濃度の高い部分Gpxが存在する場合には、高濃度汚染領域Gpxの直下に相当する深度にスクリーン11を設置しても良い。
また、図示はされていないが、汚染領域が垂直方向について広範囲に広がっている場合には、井戸材1の長手方向について、数m毎にスクリーンを設置することも可能である。
【0045】
図5で示すように井戸材1を設置したならば、図6で示すように、栄養塩溶液タンク3に装備された供給ポンプ4と、エアコンプレッサー5とを、井戸材1内部の流体注入管8、9に連通する。
ここで、図6で示す配管要領は、図2を参照して前述したのと同様である。
すなわち、栄養塩溶液の供給ポンプ4と井戸材1内部の流体注入管8、9とを連通する栄養塩溶液ラインLm1、Lm2、Lm3には、栄養塩溶液注入量調整装置である流量調節装置40が介装されており、井戸材1内部の流体注入管8、9に供給する栄養塩溶液注入量を制御する。同様に、エアコンプレッサー4と井戸材1内部の流体注入管8、9とを連通する空気供給ラインLa1、La2、La3にも圧縮エアの流量調節装置50が介装されており、井戸材1内部の流体注入管8、9に供給する空気量を制御する。
【0046】
図6の状態で、栄養塩溶液の供給ポンプ4及びエアコンプレッサー5を稼動して、流量調節装置40、50により、栄養塩溶液と空気を地中へ供給する量を制御すれば、図1で示すように、難透水層Gcの上方に存在する汚染領域Gp1と難透水層Gcの下方に存在する汚染領域Gp2の双方に、適量の空気及び適量の栄養塩溶液を供給して、VOCを分解する微生物を活性化して、汚染された土壌を生物学的反応により浄化することが出来る。
それと共に、注入された空気によりVOCを揮発して浄化が促進され、水素を注入して還元的脱塩素反応を生じれば、塩素系揮発性有機化合物が分解して、汚染土壌Gpが浄化される。
【0047】
図7で示すように、汚染領域Gpのある深度の一部に難透水層Gcが存在する場合であっても、難透水層Gcの上方の領域Gpp(図7において、点線で示す領域)には、上方のスクリーン11を介して、十分に空気等の気体や栄養塩溶液等の液体が供給される。
そのため、汚染領域Gppに存在する汚染物質も、空気や栄養塩溶液等で活性化された微生物により分解され、浄化される。
それと共に、注入された空気によりVOCが揮発する。さらに、水素が注入されて還元的脱塩素反応を生じれば、塩素系揮発性有機化合物が分解して浄化される。
【0048】
さらに図8で示すように、濃度の濃い汚染領域Gpxが下方のスクリーン12よりも垂直方向上方へ離隔した位置に存在する場合であっても(従来技術の図19参照)、当該濃度の濃い汚染領域Gpxには、上方のスクリーン11を介して、十分に空気等の気体や栄養塩溶液等の液体が供給される。
そのため、当該領域Gpxに存在する微生物を、高濃度領域Gpxに存在する大量の汚染物質を十分に分解できる程度まで活性化することが可能となり、高濃度汚染領域Gpxが当該微生物による生物学的作用によって短期間で浄化される。
それと共に、注入された空気によりVOCを揮発して浄化が促進される。そして、水素が注入されることにより還元的脱塩素反応を起し、塩素系揮発性有機化合物が分解して、汚染土壌Gpが浄化される。
【0049】
次に図9を参照して、流体注入部(スクリーン)11について説明する。
図9において、井戸材1のスクリーン11に相当する個所の外周面には、多数の円周方向のスリット11sが形成されており、スリット11sが形成されている部分には、円筒状でステンレス製の網状部材11mが、井戸材1を包囲するように設けられている。そして、井戸材1とステンレス製の網状部材11mの間には、例えば硅砂11kが充填されている。
流体注入管8を介して供給された空気及び栄養塩溶液は、スリット11sを通過し、硅砂11kが充填されている空間を通過する際に、細かい泡となり、土中に供給される。
スクリーン12については、井戸材1の下端部が閉塞していることを除けば、スクリーン11と同様の構造となっている。
ただし、スクリーン11、12の構造は、図9で示すものに限定される訳ではないことを付記する。
【0050】
次に、図10〜図14を参照して、仕切り部20について説明する。
図1、図2で示すように、仕切り部20はスクリーン11とスクリーン12との間の領域に設けられている。仕切り材の材質は、例えばゴム、樹脂、金属等である。
前述したように、仕切り材20を設けることにより、注入井戸1内を複数の領域に分割し、スクリーン11、12(或いは、注入井戸内の分割された領域)に注入した空気等の気体及び栄養塩溶液等の液体が、他の領域に漏れるのを防いでいる。スクリーン11、12の各々から地中Gに空気や栄養塩溶液等を適正な量だけ供給し、従来技術では供給が困難であった汚染領域Gpにも、浄化に必要な空気や栄養塩溶液等の適正量を供給するためである。
【0051】
図1、図2及び図10で示す例では、仕切り材20は、例えばゴムパッキンの様な弾性体で構成されており、流体注入管9の外径寸法よりも小さい内径寸法の貫通孔20hが形成されており、流体注入管9がその貫通孔20hに挿入されている。なお、図10の例では、流体注入管9は金属製である。
貫通孔20hの内径は注入管9の外径寸法よりも小さいので、弾性反発力により、仕切り材20の弾性体は注入管9を押圧して、完全にシールする。したがって、仕切り材20の上方の気体や液体が、仕切り材20の下方へ漏出することが防止できる。
【0052】
ここで、図11で示す変形例のように、仕切り材20Aの材料として、剛性を有する材料、例えば塩化ビニル等の樹脂を選択しても良い。その場合、仕切り材20Aの外周部(図11の符号Oで示す部分)に、雄ねじ(図11では図示を省略)を形成し、流体注入管9の内周面に形成した雌ねじ(図11では図示を省略)と螺合させて、仕切り材20Aの位置決め及び固定を行うことも出来る。
図11において符号20Ahは、仕切り材20Aに形成された流体注入管貫通用の孔を示している。
【0053】
図11で示す変形例のその他の構成及び作用効果については、図10の仕切り材と同様である。
【0054】
仕切り材を弾性変形しない材質で構成した変形例が、図12で示されている。換言すれば、図10で示す仕切り材20と図12で示す仕切り材20Bとは、材質が異なる点を除き、同様に構成されている。
ここで、図12の変形例では、仕切り材20Bの貫通孔20Bhに流体注入管9を挿入した際に、仕切り材20Bよりも上方の領域に存在する気体や液体が、流体注入管9に沿って仕切り材20Bの下方の領域に漏出しないようにするため、仕切り材20Bに形成された貫通孔20Bhと流体注入管9とを、いわゆる「しまり嵌め」となる様に構成している。
図12で示す変形例のその他の構成及び作用効果については、図10の仕切り材20と同様である。
【0055】
図13で示すように、仕切り材20Cにホーススリーブ30を設置して、このホーススリーブ30に流体注入管9を接続するように構成しても良い。
図13の変形例では、流体注入管9は、例えば樹脂製のホースが用いられている。
ホーススリーブ30における雄ねじ部30tが、仕切り材20Cに形成された雌ねじ(図示を省略)と螺合することにより、ホーススリーブ30を介して、流体注入管9は仕切り材20Cに固定される。ここで、ホーススリーブ30には、長手方向(図13では上下方向)の全長に亘って、中心部に流通経路(中空部:図示せず)が設けられているため、流体注入管9Aは仕切り材20Cよりも下方の領域に連通し、流体注入管9Aを流れる流体が仕切り材20Cよりも下方の領域に供給される。
【0056】
図13で示す変形例のその他の構成及び作用効果については、図10〜図12の仕切り材と同様である。
【0057】
図14で示す変形例では、井戸材1の内部にシーリング材25を注入して、円盤状の仕切り材20Dを形成している。ここで、シーリング材25は、例えば、注入装置27を用いて、井戸材1の内部に注入されている。
シーリング材25で構成された仕切り材20Dにより、仕切り材20Dの上方の領域と下流の領域との間で、気体や液体が漏洩してしまうことが防止される。
ここで、シーリング材25として、例えば、シリコン系、変性シリコン系、ウレタン系、アクリル系、部チルゴム系、ポリサルファイド系、プリウレタン系、次世代イソブチレン系等がある。
【0058】
図14で示す変形例のその他の構成及び作用効果については、図10〜図13の変形例と同様である。
【0059】
図15は、流体注入管90の配置に関する変形例を示している。
図1〜図14において、気体や液体の注入の流体注入管9は、すべて井戸材1の内部空間に配置されているのに対して、図15で示す変形例では、流体注入管90は井戸材1の外部に配置されている。
そして、図15では、井戸材1の外部に配置されている流体注入管90は、仕切り材20Eの下方で、井戸材1の内部に連通している。
流体注入管90が井戸材1の外部に配置されているので、図15の変形例では、流体流入管90が仕切り材20Eを貫通する必要がない。そのため、仕切り材20Eは、図1〜図14の仕切り材とは異なり、流体流入管90を貫通させる貫通孔が形成されていない。
【0060】
図15で示す変形例のその他の構成及び作用効果については、図1〜図14で示す変形例と同様である。
【0061】
図示の実施形態によれば、深度の異なる汚染領域Gp(Gp1、Gp2)に対して、スクリーン11、12の各々から、汚染物質浄化に貢献する気体や液体を注入することが出来る。
そのような気体や液体を注入することにより、上述した項目(a)〜(e)で述べた生物学的な作用効果が発揮され、汚染土壌を浄化(微生物による浄化)することが出来る。
それと共に、空気を注入することにより、VOCを揮発させて浄化を促進することも可能である。
さらに、水素を注入すれば還元的脱塩素反応が生じて、塩素系揮発性有機化合物を分解して、浄化することが出来る。
【0062】
また図示の実施形態によれば、1本の注入用井戸10により、汚染物質で汚染された土壌(汚染領域)Gpの全体や、地下水を、短期間で均一に浄化することができる。
すなわち、複数の注入井を掘削する必要が無く、井戸掘削に関するコストを大幅に節減することが可能である。
【0063】
図示の実施形態によれば、透水係数の低い地層(難透水層)Gcを挟む様に汚染領域Gp1、Gp2が存在する場合に、スクリーン11から注入される気体や液体が、難透水層Gcよりも上方の汚染領域Gp1に十分に供給されるので、生物学的な作用効果や、注入された空気による揮発作用や、注入された水素による還元的脱塩素反応により、上方の汚染領域Gp1に存在するVOC等の汚染物質が分解して、浄化される。
一方、透水係数の低い地層Gcよりも下方に存在する汚染領域Gp2については、下方のスクリーン12から注入された気体や液体が(難透水層Gcよりも下方の汚染領域Gp2に)十分に供給されるので、汚染物質が分解、浄化される。
【0064】
また、浄化するべき汚染領域Gpが上下方向へ広い範囲に分布している場合であっても、スクリーン11、12から注入された気体や液体が、汚染領域Gp全体に供給されるので、汚染領域全体が十分に浄化される。
さらに、地層全体が一定の透水係数ではなくても、スクリーン11、12から供給された気体や液体が地層全体に供給されるので、一部の領域における汚染物質の浄化速度のみが遅くなることはない。そのため、地層全体として浄化に必要な期間が短縮され、工期の短縮、コストの削減が達成できる。
【0065】
さらに図示の実施形態によれば、汚染領域Gpの一部に難透水層Gcが存在していても、上方のスクリーン11から土壌に注入される気体や液体が、難透水層Gcよりも上方の汚染領域Gppに十分に供給される。そのため、生物学的な作用効果や、注入された空気による揮発作用や、注入された水素による還元的脱塩素反応により、難透水層Gcよりも上方の汚染領域GppにおけるVOC等の汚染物質が分解して、浄化される。
【0066】
そして図示の実施形態によれば、汚染領域Gp中に高濃度汚染領域Gpxが存在する場合においても、高濃度汚染領域Gpx近傍に上方のスクリーン11を設けることにより、高濃度汚染領域Gpxの浄化に必要な多量の気体や液体が供給される。
そのため、高濃度汚染領域Gpxにおける浄化速度が遅くなってしまうことや、汚染領域Gp全体としての浄化期間が長くなってしまうことが防止される。
【0067】
図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない。
例えば、図示の実施形態では、注入井戸には、流体注入管は2本設けられており、仕切り部は1箇所のみであるが、3本以上の流体注入管を設置して、仕切り部を2箇所以上に設けても良い。
【符号の説明】
【0068】
1・・・井戸材
2・・・ボーリング孔/ボーリング孔
3・・・栄養塩溶液タンク
4・・・排出ポンプ
5・・・エアコンプレッサー
8、9・・・流体注入管
10・・・注入用井戸
11、12・・・スクリーン(流体注入部/注入部)
20・・・仕切り材
40、50・・・流量調節装置
G・・・土壌/地盤
Gc・・・透水係数の小さい地層/難透水層
Gf・・・地上側
Gs、Gs1、Gs2・・・透水係数の大きな地層/透水層
Gp、Gp1、Gp2、Gpp、Gpx・・・汚染領域

【特許請求の範囲】
【請求項1】
複数の流体注入部を有する井戸材を用いて1本の注入用井戸を造成する工程と、流体注入管を介して複数の流体注入部の各々に流体を供給して、流体注入部の各々から土壌中へ流体を注入する工程とを有することを特徴とする汚染土壌浄化工法。
【請求項2】
井戸材の長手方向に隣接して設けられた液体注入部の間の領域には仕切り材が設けられている請求項1の汚染土壌浄化工法。
【請求項3】
そして、前記流体注入管は井戸材の内部に配置されており、前記仕切り材を通過(或いは貫通)して配置されている請求項2の汚染土壌浄化工法。
【請求項4】
前記前記流体注入管は井戸材の外部に配置されている請求項2の汚染土壌浄化工法。
【請求項5】
前記流体注入管と流体供給源とを連通するラインの各々には流量調整装置が介装されており、前記土壌中へ流体を注入する工程では、各々の流体注入管における流体の流量が個別に制御されている請求項1〜4の何れか1項の汚染土壌浄化工法。
【請求項6】
請求項1〜5の汚染土壌浄化工法で用いられる井戸材において、複数の流体注入部を有し、井戸材の長手方向に隣接して設けられた液体注入部の間には仕切り材が設けられ、該仕切り材で区画された井戸材内の領域の各々に1箇所ずつ設けられた液体注入部は1本の流体注入管を経由して流体供給源と連通していることを特徴とする井戸材。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2010−188220(P2010−188220A)
【公開日】平成22年9月2日(2010.9.2)
【国際特許分類】
【出願番号】特願2009−32148(P2009−32148)
【出願日】平成21年2月16日(2009.2.16)
【出願人】(000181354)鹿島道路株式会社 (46)
【Fターム(参考)】