説明

流体識別装置及び流体識別方法

【課題】管状部材の内部に存在する流体の種別を特段の制約なく簡易に識別することができる流体識別装置及び流体識別方法を提供する。
【解決手段】超音波を送信する送信用探触子12と、送信用探触子12から送信される超音波のうち管状部材Pを透過して管内を伝搬する透過伝搬波及び管状部材Pの本体部内を伝搬する本体内伝搬波を受信する受信用探触子14と、本体内伝搬波を打ち消すキャンセル波を送信するキャンセル用探触子18と、送信用探触子12で超音波が送信されてから受信用探触子14で透過伝搬波が受信されるまでの時間差に基づいて管状部材Pの内部での超音波の伝搬速度を算出する音速算出部24と、音速算出部24により算出された伝搬速度に基づいて管状部材Pの内部に存在する流体Gの種別を判定する流体判定部25と、を備える流体識別装置1。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、管状部材の内部に存在する流体の種別を識別するための流体識別装置及び流体識別方法に関する。
【背景技術】
【0002】
地中には、都市ガスを供給するためのガス管や、上水を供給するための上水道管、下水を回収するための下水道管等の管状部材が埋設されている。土壌の掘削工事を行う際には、それらの管状部材が露出する場合がある。このような場合には、露出した管状部材が有効に使用されているものであるか否か、また有効に使用されている場合にはその内部を流れる流体(例えば、水や都市ガス等)の種別を判定することが必要となる。管状部材が有効に使用されている場合には、その内部を流れる流体の種別に応じて適切な保安処置を取る必要があるからである。
【0003】
管状部材の内部に存在する流体の種別を判定する手法としては、従来、穿孔による方法、中性子水分計を用いる方法、クランプオン式の超音波流量計(例えば、下記の特許文献1を参照)を用いる方法等が利用されてきた。しかし、穿孔による方法では、穿孔作業により一旦管状部材が破壊される上に、判定後の復旧作業が必要となるので非効率である。また、中性子水分計を用いる方法では、非破壊で判定を行うことができるものの、管状部材の内部に水分が存在するか否かの判定ができるだけであって、水分以外の流体の種別の判定まではできない。気体用クランプオン式超音波流量計を用いる方法では、非破壊で判定を行うことができるものの、管状部材の材質、外形、内圧等に関する適用条件に制約がある。
【0004】
つまり、管状部材の内部に存在する流体の種別を特段の制約なく簡易に識別することができる有効な方法は未だ確立していないというのが現状である。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−270882号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上記の課題に鑑みてなされたものであり、管状部材の内部に存在する流体の種別を特段の制約なく簡易に識別することができる流体識別装置及び流体識別方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る流体識別装置の特徴構成は、
前記管状部材の外周面に配置され、前記送信用探触子から送信される超音波のうち前記管状部材を透過して管内を伝搬する透過伝搬波、及び前記送信用探触子から送信される超音波のうち前記管状部材の本体部内を伝搬する本体内伝搬波、を受信する受信用探触子と、
前記送信用探触子及び前記受信用探触子とは別に前記管状部材の外周面に配置され、前記本体内伝搬波を打ち消すキャンセル波を送信するキャンセル用探触子と、
前記送信用探触子で超音波が送信されてから前記受信用探触子で前記透過伝搬波が受信されるまでの時間差に基づいて前記管状部材の内部での超音波の伝搬速度を算出する音速算出部と、
前記音速算出部により算出された伝搬速度に基づいて前記管状部材の内部に存在する流体の種別を判定する流体判定部と、
を備える点にある。
【0008】
上記の特徴構成によれば、管状部材の外周面に配置される送信用探触子から送信される超音波のうちの管状部材を透過して管内を伝搬する透過伝搬波が、送信用探触子で送信されてから受信用探触子で受信されるまでの時間差に基づいて、音速算出部により管状部材の内部での超音波の伝搬速度が算出される。超音波の伝搬速度は媒質となる流体の種別に応じて異なることから、流体判定部は、上記のようにして算出された伝搬速度に基づいて管状部材の内部に存在する流体の種別を判定することができる。
このとき、穿孔する等して管状部材を破壊することなく、しかも管状部材の材質、外形、内圧等の制約なくその内部に存在する流体(液体及び気体を含む)の種別を判定することができる。つまり、管状部材の内部に存在する流体の種別を、特段の制約なく簡易に識別することができる流体識別装置を実現することができる。
【0009】
更に、上記の特徴構成によれば、送信用探触子及び受信用探触子とは別に管状部材の外周面に配置されるキャンセル用探触子から、管状部材の本体部内を伝搬する本体内伝搬波を打ち消すキャンセル波を送信することができる。そのため、送信用探触子から送信される超音波(透過伝搬波及び本体内伝搬波を含む)のうちの本体内伝搬波のみを有効に打ち消すことが可能となり、本体内伝搬波に対して透過伝搬波を明確に識別することが可能となる。つまり、そのようなキャンセル操作を実行しない場合と比較して、受信用探触子が透過伝搬波を受信する際のS/N比を向上させることができる。よって、透過伝搬波が受信用探触子で受信されるまでの時間差、及びこれに基づく管状部材の内部での超音波の伝搬速度を、精度良く算出することができる。従って、管状部材の内部に存在する流体の種別を精度良く判定することができる。
【0010】
ここで、
前記キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整する波形調整部を更に備える構成とすると好適である。
【0011】
送信用探触子から送信される超音波やキャンセル用探触子から送信されるキャンセル波はそれぞれ、その伝搬状態で、特定タイミング及び特定位置における状態(振幅、周波数、及び位相により定まる)を一意的に特定できるものではない。すなわち、これらの波の状態は、管状部材の材質や形状、或いは外部環境等の条件に応じて様々となる。但し、特定の条件に関しては、予め予備試験を行い、受信用探触子で逐次受信される受信波(ここでは、透過伝搬波と本体内伝搬波との合成波)を参照しながら、本体内伝搬波を減衰させるようにキャンセル波の調整(主に周波数、発振タイミング、及びその振幅の調整)を行うことは可能である。一般に、本体内伝搬波は、透過伝搬波に対して先行して受信用探触子に到達するため、本体内伝搬波が到達してから透過伝搬波が到達するまでの時間領域において適切なキャンセル波を特定することで、当該本体内伝搬波を有効に打ち消すキャンセル操作を実現できる。
この点に鑑み、上記の構成によれば、例えば受信用探触子で受信される超音波の受信波形に応じて、キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整することにより、本体内伝搬波とキャンセル波との合成波の振幅を全体として透過伝搬波よりも小さくすることができる。従って、受信用探触子が透過伝搬波を受信する際のS/N比を、測定時の実情に応じて十分に向上させることができ、管状部材の内部に存在する流体の種別を精度良く判定することができる。
【0012】
また、
前記送信用探触子からの前記本体内伝搬波が前記キャンセル用探触子に到達するまでの到達時間を表す到達時間データと、前記本体内伝搬波の波形を表す波形データとを、前記管状部材の材質、管径、及び管厚の少なくとも1つに応じて予め記録した記録装置を更に備え、
前記キャンセル用探触子は、前記到達時間データと前記波形データとに基づいて算出される、前記本体内伝搬波とは逆位相となる波形を有する逆位相波を、前記キャンセル波として送信する構成とすると好適である。
【0013】
本体内伝搬波がキャンセル用探触子に到達するまでの到達時間や本体内伝搬波の波形は、管状部材の材質や管径、管厚等に応じて異なり得る。そのため、上記のように管状部材の材質、管径、及び管厚の少なくとも1つ以上に応じた到達時間データと波形データとを記録装置に予め記録して備える構成とすることで、記録装置に記録されたデータに基づいて、本体内伝搬波とは逆位相となる波形を有する逆位相波を比較的簡易に算出することができる。従って、そのようにして算出される逆位相波に基づいて、本体内伝搬波を有効に打ち消し得るキャンセル波を比較的簡易に送信することができる。
また、上記のようにして算出される逆位相波をまず送信してみて、更に先に説明したようなキャンセル波の波形調整を行うことにより、本体内伝搬波を有効に打ち消し得るキャンセル波を短時間で特定でき、結果的にそのようなキャンセル波を簡易且つ適切に送信することができる。
【0014】
また、
前記管状部材の軸線と前記受信用探触子とが配置される仮想平面に対して面対称状に配置される、二つの前記キャンセル用探触子を備える構成とすると好適である。
【0015】
この構成によれば、送信用探触子から管状部材の周方向の一方側に向かって伝搬する本体内伝搬波と、周方向の他方側に向かって伝搬する本体内伝搬波とを、管状部材の軸線と受信用探触子とが配置される仮想平面に対して面対称状に配置される二つのキャンセル用探触子により同様の態様で打ち消すことができる。よって、比較的簡易に本体内伝搬波を打ち消して、受信用探触子が本体内伝搬波を受信する際のS/N比を向上させることができる。
【0016】
また、
個別に設けられる前記送信用探触子と前記受信用探触子とが、前記仮想平面上において前記管状部材を径方向に挟むように対向して配置されている構成とすると好適である。
【0017】
この構成によれば、管状部材の軸線と受信用探触子とが配置される仮想平面上において、管状部材を径方向に挟むように対向して個別の送信用探触子と受信用探触子とが配置されるので、送信用探触子からの透過伝搬波の減衰が比較的少ない状態でこれを受信用探触子により受信することができる。よって、例えば送信用探触子と受信用探触子とが共通化され、管状部材の内周面等での透過伝搬波の反射波が送信用探触子と同じ位置に配置された受信用探触子によって受信される場合と比較して、受信用探触子が透過伝搬波を受信する際の検出信号(シグナル)が大きくなる。よって、受信用探触子が透過伝搬波を受信する際のS/N比が大きい状態で、管状部材の内部に存在する流体の種別を精度良く判定することができる。
【0018】
本発明に係る流体識別方法の特徴構成は、
管状部材の外周面に配置された送信用探触子から超音波を送信する送信ステップと、
前記管状部材の外周面に配置された受信用探触子により、前記送信用探触子から送信される超音波のうち前記管状部材を透過して管内を伝搬する透過伝搬波、及び前記送信用探触子から送信される超音波のうち前記管状部材の本体部内を伝搬する本体内伝搬波、を受信する受信ステップと、
前記送信用探触子及び前記受信用探触子とは別に前記管状部材の外周面に配置されるキャンセル用探触子を用いて、前記本体内伝搬波を打ち消すキャンセル波を送信するキャンセル波送信ステップと、
前記送信用探触子で超音波が送信されてから前記受信用探触子で前記透過伝搬波が受信されるまでの時間差に基づいて前記管状部材の内部での超音波の伝搬速度を算出する音速算出ステップと、
前記音速算出ステップで算出された伝搬速度に基づいて前記管状部材の内部に存在する流体の種別を判定する流体判定ステップと、
を備える点にある。
【0019】
この特徴構成によれば、管状部材の外周面に配置される送信用探触子から送信される超音波のうちの管状部材を透過して管内を伝搬する透過伝搬波が、送信用探触子で送信されてから受信用探触子で受信されるまでの時間差に基づいて、音速算出ステップで管状部材の内部での超音波の伝搬速度が算出される。超音波の伝搬速度は媒質となる流体の種別に応じて異なることから、流体判定ステップにおいて、上記のようにして算出された伝搬速度に基づいて管状部材の内部に存在する流体の種別を判定することができる。
このとき、穿孔する等して管状部材を破壊することなく、しかも管状部材の材質、外形、内圧等の制約なくその内部に存在する流体(液体及び気体を含む)の種別を判定することができる。つまり、管状部材の内部に存在する流体の種別を、特段の制約なく簡易に識別することができる流体識別方法を実現することができる。
【0020】
更に、上記の特徴構成によれば、キャンセル波送信ステップにおいて、送信用探触子及び受信用探触子とは別に管状部材の外周面に配置されるキャンセル用探触子から、管状部材の本体部内を伝搬する本体内伝搬波を打ち消すキャンセル波が送信される。そのため、送信用探触子から送信される超音波(透過伝搬波及び本体内伝搬波を含む)のうちの本体内伝搬波のみを有効に打ち消すことが可能となり、本体内伝搬波に対して透過伝搬波を明確に識別することが可能となる。つまり、そのようなキャンセル波送信ステップを実行しない場合と比較して、受信用探触子が透過伝搬波を受信する際のS/N比を向上させることができる。よって、透過伝搬波が受信用探触子で受信されるまでの時間差、及びこれに基づく管状部材の内部での超音波の伝搬速度を、精度良く算出することができる。従って、管状部材の内部に存在する流体の種別を精度良く判定することができる。
【0021】
ここで、
前記受信用探触子で受信される超音波の受信波形に応じて、前記本体内伝搬波と前記キャンセル波との合成波の振幅が全体として前記透過伝搬波よりも小さくなるように、前記キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整する波形調整ステップを更に備え、
前記波形調整ステップで調整されたキャンセル波を前記キャンセル用探触子から送信している状態で、前記流体判定ステップまでの各ステップを実行する構成とすると好適である。
【0022】
先にも説明したように、送信用探触子から送信される超音波やキャンセル用探触子から送信されるキャンセル波の状態は、管状部材の材質や形状、或いは外部環境等の条件に応じて様々となる。但し、特定の条件に関しては、予め予備試験を行い、受信用探触子で逐次受信される受信波(ここでは、透過伝搬波と本体内伝搬波との合成波)を参照しながら、本体内伝搬波を減衰させるようにキャンセル波の調整(主に周波数、発振タイミング、及びその振幅の調整)を行うことは可能である。
この点に鑑み、上記の構成によれば、波形調整ステップにおいて、受信用探触子で受信される超音波の受信波形に応じて、本体内伝搬波とキャンセル波との合成波の振幅が全体として透過伝搬波よりも小さくなるように、キャンセル波の位相、振幅、及び周波数の少なくとも1つが調整される。そして、波形調整ステップで調整されたキャンセル波を送信している状態で流体判定ステップまでの各ステップを実行する構成とすることで、受信用探触子が透過伝搬波を受信する際のS/N比を、測定時の実情に応じて十分に向上させることができ、管状部材の内部に存在する流体の種別を精度良く判定することができる。
【0023】
また、
少なくとも前記透過伝搬波が前記受信用探触子で受信される時点以前の所定期間を対象として、前記波形調整ステップを実行する構成とすると好適である。
【0024】
この構成によれば、受信用探触子による透過伝搬波の検出に大きな影響を与え得る、透過伝搬波が受信用探触子で受信される時点以前の所定期間におけるノイズを、効果的に小さくすることができる。よって、波形調整ステップの簡易性及び実効性の双方を確保することができる。
【図面の簡単な説明】
【0025】
【図1】実施形態に係る流体識別装置の全体構成を示す模式図である。
【図2】送信用探触子から送信される超音波の伝搬状態を示す模式図である。
【図3】キャンセル用探触子の非作動時における受信用探触子での受信波形の一例である。
【図4】キャンセル用探触子の作動時における受信用探触子での受信波形の一例である。
【図5】その他の実施形態に係る流体識別装置を示す模式図である。
【図6】その他の実施形態に係るキャンセル波送信ステップを概念的に示す模式図である。
【発明を実施するための形態】
【0026】
本発明の実施形態について、図面を参照して説明する。本実施形態に係る流体識別装置1は、ガス管等の管状部材Pの内部に存在するガスG(流体の一種)の種別を、非破壊的に(管状部材Pを破壊することなく)判定するためのガス種識別装置である。図1に示すように、流体識別装置1は、超音波を送信する送信用探触子12と、送信用探触子12から送信される超音波を受信する受信用探触子14とを備えている。また、流体識別装置1は、管状部材Pの内部を伝搬する透過伝搬波Wt(図2を参照)の管状部材Pの内部での音速(伝搬速度)Vを算出する音速算出部24と、算出された音速Vに基づいて管状部材Pの内部に存在するガスGの種別を判定する流体判定部25とを備えている。更に、本実施形態に係る流体識別装置1は、管状部材Pの本体部内を伝搬する本体内伝搬波Wb(図2を参照)を打ち消すキャンセル波Wcを送信するキャンセル用探触子18を備えている。これにより、管状部材Pの内部に存在するガスGの種別を特段の制約なく簡易に、しかも精度良く識別することができる。以下、本実施形態に係る流体識別装置1について、詳細に説明する。
【0027】
1.流体識別装置のハードウェア構成
図1に示すように、流体識別装置1は、送信用探触子12、受信用探触子14、キャンセル用探触子18、及び制御装置20を主要な構成として備えている。送信用探触子12、受信用探触子14、及びキャンセル用探触子18は、それぞれ管状部材Pの外周面に接して配置されている。また、送信用探触子12、受信用探触子14、及びキャンセル用探触子18は、それぞれ制御装置20との間で情報の受け渡しを行うことができるように構成されている。
【0028】
送信用探触子(送信用超音波プローブ)12は、電気と音響とを相互に変換する圧電素子を含むトランスデューサであり、超音波を送信する超音波送信機器である。このような圧電素子としては、例えばPZT(チタン酸ジルコン酸鉛)等の圧電セラミックやPVDF(ポリフッ化ビニリデン)等の高分子圧電素子が用いられる。送信用探触子12は、圧電素子の両端に電極が形成された振動子を備えており、制御装置20からの指令によりその振動子の電極間に電圧が印加されると、圧電素子が伸縮する。この伸縮により振動子から超音波が発生し、発生した超音波は管状部材Pに向けて送信される。なお「超音波」は、気体、液体、固体等の音の媒質が発音体(上記の振動子)の振動を受けて生ずる弾性波のうち、人間の可聴周波数よりも高い周波数(例えば、20kHz以上)の弾性波である。
【0029】
図2に示すように、送信用探触子12から送信された超音波は、透過伝搬波Wtと本体内伝搬波Wbとに分かれてそれぞれの媒質中を伝搬する。ここで、透過伝搬波Wtは、送信用探触子12から送信される超音波のうち、管状部材Pを透過して管状部材Pの内部に存在するガスGを媒質として管内(管状部材Pの内周面で区画される空間内)を伝搬する超音波である。
【0030】
一方、本体内伝搬波Wbは、送信用探触子12から送信される超音波のうち、管状部材Pの本体部を構成する材料(例えば、炭素鋼やステンレス等)を媒質として管状部材Pの本体部内を伝搬する超音波である。送信用探触子12から超音波が送信されたとき、その一部は管状部材Pを透過することなく本体内伝搬波Wbとして管状部材Pの本体部内を伝搬する。本実施形態では、本体内伝搬波Wbは、軸線方向から見た場合に管状部材Pの本体部内を周方向の両側に分かれて伝搬する。すなわち、本体内伝搬波Wbは、図2において管状部材Pを周方向の一方側に向かって時計回りに伝搬する波と、周方向の他方側に向かって反時計回りに伝搬する波とを含む。
【0031】
受信用探触子(受信用超音波プローブ)14は、送信用探触子12と同様の構成を有するトランスデューサであり、超音波を受信する超音波受信機器である。この受信用探触子14は、送信用探触子12から送信される超音波のうち、上述した透過伝搬波Wt及び本体内伝搬波Wbの双方を受信する。受信用探触子14が超音波を受信すると、受信用探触子14が有する圧電素子がその超音波の作用により物理的に伸縮する。この伸縮により振動子の電極間に電位差が発生する。発生した電位差に基づく電気信号は、受信信号として制御装置20に送られる。
【0032】
本実施形態では、図1及び図2に示すように、これらの送信用探触子12と受信用探触子14とは、それぞれ1つずつ個別に設けられている。また、送信用探触子12と受信用探触子14とは、管状部材Pの同じ軸線方向位置において、管状部材Pを径方向に挟むように対向して配置されている。すなわち、送信用探触子12と受信用探触子14とは、管状部材Pの軸線Lを通る仮想平面Z上において、軸線Lを挟んで互いに反対側に配置されている。
【0033】
本実施形態に係る流体識別装置1は、送信用探触子12及び受信用探触子14とは別に、キャンセル用探触子18を備えている。キャンセル用探触子(キャンセル用超音波プローブ)18は、送信用探触子12及び受信用探触子14と同様の構成を有するトランスデューサであり、送信用探触子12とは別に超音波を送信する第二の超音波送信機器である。本実施形態では、流体識別装置1は、このようなキャンセル用探触子18として二つのキャンセル用探触子18a,18bを備えている。これら二つのキャンセル用探触子18a,18bは、管状部材Pの軸線Lと受信用探触子14とが配置される仮想平面Zに対して面対称状に配置されている。なお、「面対称状」とは、多少の位置ずれを有していたとしても全体としては実質的に面対称であるとみなせることを意味する。
【0034】
本実施形態では更に、二つのキャンセル用探触子18a,18bは、送信用探触子12及び受信用探触子14と管状部材Pの同じ軸線方向位置において、管状部材Pを径方向に挟むように対向して配置されている。従って、本実施形態では、送信用探触子12、受信用探触子14、及び二つのキャンセル用探触子18a,18bの計4つの超音波探触子が管状部材Pの同じ軸線方向位置において周方向に均等に分散して配置されている。すなわち、管状部材Pの周方向に沿って一方側へ向かう送信用探触子12から受信用探触子14までの本体内伝搬波Wbの伝搬経路の中間地点に、第一のキャンセル用探触子18aが配置され、管状部材Pの周方向に沿って他方側へ向かう送信用探触子12から受信用探触子14までの本体内伝搬波Wbの伝搬経路の中間地点に、第二のキャンセル用探触子18bが配置されている。なお、各探触子12,14,18a,18bは、管状部材Pの周囲を取り囲むように設置される所定の取付用治具(図示せず)により位置決めされた状態で、管状部材Pの外周部に配置される。キャンセル用探触子18a,18bは、管状部材Pの本体部内を伝搬する本体内伝搬波Wbを打ち消すキャンセル波Wcを送信する。このキャンセル波Wcの詳細に関しては、後述する。
【0035】
2.流体識別装置のソフトウェア構成(制御装置の構成)
図1に示すように、流体識別装置1に備えられる制御装置20は、第一発信制御部21、第二発信制御部22、受信信号処理部23、音速算出部24、流体判定部25、及び波形調整部26を備えている。これらは、互いに情報の受け渡しを行うことができるように構成されている。なお、図1には、代表的な情報の伝達方向を矢印「→」で示している。また、上述した各探触子12,14,18と、以下に説明する制御装置20の各機能部とが有機的に連携して協働することにより、本発明に係る流体識別方法が実行される。
【0036】
第一発信制御部21は、送信用探触子12からの超音波の送信(超音波発信)を制御する機能部である。第一発信制御部21は、所定の振幅、及び、主に管状部材Pの厚さ(管厚)に応じて決まる管状部材Pの共振周波数のバースト波状の電気信号(電圧信号)を生成する。なお、管状部材Pの共振周波数は、管状部材Pの管厚に基づいて算出することができる。生成した電気信号は、送信用探触子12に送られる。送信用探触子12は、その受け取ったバースト波状の電気信号を超音波に変換して、管状部材Pに向けて超音波パルスを送信する。第一発信制御部21により、本発明における「送信ステップ」が実行される。
【0037】
受信信号処理部23は、本発明における「受信ステップ」において受信用探触子14で受信される超音波に基づく電気信号(受信信号)を受け取り、その受信信号を処理する機能部である。受信信号処理部23は、フィルタ等を介して特定の周波数成分の超音波に基づく電気信号を除去する。また、受信信号処理部23は、アナログデジタル変換回路(A/D変換回路)等を介してアナログ受信信号をデジタル受信信号に変換する。受信信号処理部23は、所定周波数域のデジタル受信信号を音速算出部24及び表示装置40(モニタ等)に出力する。表示装置40には、受け取った受信信号が受信波形として可視化されて表示される。また、受信信号処理部23は、受信信号を後述する波形調整部26にも出力する。
【0038】
音速算出部24は、管状部材Pの内部での超音波の音速(以下、単に「管内音速」という場合がある)Vを算出する機能部である。音速算出部24は、受信信号処理部23からの受信信号を受け取り、この受信信号を解析することによって管内音速Vを算出する。上記のとおり、送信用探触子12から送信される超音波には、透過伝搬波Wtと本体内伝搬波Wbとが含まれる。ここで、管状部材Pの内部に存在するガスGと管状部材Pの本体部を構成する材料との間での音響インピーダンスの差により、透過伝搬波Wtは、本体内伝搬波Wbよりもかなり送れて受信用探触子14に到達する。音速算出部24は、送信用探触子12で超音波が送信されてから、それらのうち透過伝搬波Wtが受信用探触子14で受信されるまでの時間差ΔTに基づいて、管内音速Vを算出する。音速算出部24により、本発明における「音速算出ステップ」が実行される。
【0039】
より具体的には、制御装置20内ではクロックパルス発生回路等によりクロックパルスが生成されており、音速算出部24は、送信用探触子12で超音波が送信されてから受信用探触子14で透過伝搬波Wtが受信されたことが検出されるまでのクロックパルス数をカウントすることにより、それらの間の時間差ΔTを計測する。音速算出部24は、計測された時間差ΔTの情報と、既知の管状部材Pの内径φ(図2を参照)の情報とに基づいて、管内音速Vを算出する。すなわち、音速算出部24は、管状部材Pの内径φを時間差ΔTで除算することにより管内音速Vを算出する(V=φ/ΔT)。音速算出部24は、算出された管内音速Vの情報を流体判定部25に出力する。
【0040】
流体判定部25は、算出された管内音速Vに基づいて管状部材Pの内部に存在するガスGの種別を判定する機能部である。超音波の音速は、媒質となる流体の種別に応じて異なる。本実施形態では、流体の種別(例えば、水、油、空気、メタンガス等)に応じた超音波の音速(理論上の音速)の情報が、音速データ31としてRAMやROM等の記録装置30に予め記録されている。なお、超音波の実際の音速は媒質の状態によっても変化し得るため、音速データ31として、媒質の温度、密度、及び圧力の1つ以上に応じて更に細分化された音速の情報が記録されている構成とすると好適である。流体判定部25は、算出された管内音速Vと音速データ31とを比較して、算出された管内音速Vに一致する(完全に一致するものがない場合には最も近い)音速に対応付けられた流体の情報を音速データ31から読み出す。流体判定部25により、本発明における「流体判定ステップ」が実行される。
【0041】
以上のようにして、流体識別装置1は、管状部材Pの内部に存在するガスGの種別を非破壊的に判定することができる。図3には、受信用探触子14での受信波形の一例を示している。この図3から理解できるように、透過伝搬波Wtによる受信信号(透過波シグナル)は、大きな振幅のノイズに重畳されている。このノイズは、主として、管状部材Pの本体部内を伝搬して複数周に亘って周回する本体内伝搬波Wbに起因するものである。このように、透過波シグナルが大きな振幅のノイズに重畳された状態では、S/N比(シグナル・ノイズ比)が小さくなり、受信用探触子14で透過伝搬波Wtが受信された時点の検出精度が低下する可能性がある。その結果、管内音速Vの算出が不正確となり、管状部材Pの内部に存在するガスGの種別の判定も不正確となる可能性がある。
【0042】
上記のような不都合を回避するべく、本実施形態に係る流体識別装置1は、上述したキャンセル用探触子18を備えていると共に、第二発信制御部22を制御装置20に備えている。第二発信制御部22は、キャンセル用探触子18からの超音波(キャンセル波Wc)の送信(キャンセル波発信)を制御する機能部である。ここで、キャンセル波Wcは、管状部材Pの本体部内を伝搬する本体内伝搬波Wbを打ち消す超音波である。本実施形態では、4つの探触子12,14,18a,18bが管状部材Pの外周面に周方向に均等に分散して配置されるという前提下での到達時間データ32と波形データ33とが、記録装置30に予め記録されている。
【0043】
ここで、到達時間データ32は、送信用探触子12で送信された本体内伝搬波Wbがキャンセル用探触子18の位置に到達するまでの到達時間(遅延時間)を表すデータである。波形データ33は、キャンセル用探触子18の位置に受信用探触子14を配置すると仮定した場合における本体内伝搬波Wbの受信波形を表すデータである。すなわち、キャンセル用探触子18の位置を伝搬する本体内伝搬波Wbの、振幅及び周波数に関する情報が波形データ33に含まれ、位相に関する情報が到達時間データ32に含まれている。本実施形態では、これらの到達時間データ32及び波形データ33は、キャンセル用探触子18の位置に受信用探触子14を配置して、その位置において受信用探触子14により実際に本体内伝搬波Wbが受信されるまでの時間、及びその際の受信波形を実測した実測データとして予め整備されている。また、送信用探触子12で送信された本体内伝搬波Wbがキャンセル用探触子18の位置に到達するまでの到達時間やその際の受信波形は、管状部材Pの材質や管径、管厚等に応じて異なり得る。そのため、本実施形態では、到達時間データ32及び波形データ33は、管状部材Pの材質や管径、管厚の少なくとも1つに応じて細分化されて予め記録されている。ここで、「管径」には、内径及び外形の一方又は双方が含まれる。
【0044】
第二発信制御部22は、到達時間データ32と波形データ33とに基づいて、キャンセル用探触子18の位置に到達する時点における本体内伝搬波Wbと、振幅及び周波数が等しく且つ逆位相となる(位相がπだけずれている)波形を有する逆位相波を算出する。第二発信制御部22は、この算出された逆位相波に対応する電気信号(電圧信号)を生成する。生成した電気信号は、キャンセル用探触子18に送られる。キャンセル用探触子18は、受け取った電気信号を超音波(キャンセル波Wc)に変換して、管状部材Pに向けてそのキャンセル波Wcを送信する。本実施形態では、上記のような到達時間データ32及び波形データ33が記録装置30に予め記録されているので、これらに基づいて本体内伝搬波Wbを有効に打ち消し得るキャンセル波Wcを簡易且つ適切に送信することができる。第二発信制御部22により、本発明における「キャンセル波送信ステップ」が実行される。
【0045】
このようにして、キャンセル用探触子18からは、本体内伝搬波Wbと振幅及び周波数が等しく且つ逆位相となる波形を有する逆位相波が、キャンセル波Wcとして送信される。このキャンセル波Wcは、透過伝搬波Wtによる受信信号(透過波シグナル)の検出の際にノイズとなる本体内伝搬波Wbと干渉して、当該ノイズとしての本体内伝搬波Wbを打ち消すように作用する。これにより、透過波シグナルの周辺でのノイズの振幅を小さくしてS/N比を向上させることができる。よって、受信用探触子14で透過伝搬波Wtが受信されるまでの時間差ΔT、及びその時間差ΔTに基づく管内音速Vを精度良く算出することができる。従って、本実施形態に係る流体識別装置1によれば、管状部材Pの内部に存在するガスGの種別を精度良く判定することができる。
【0046】
ところで、一般に超音波は、それぞれその伝搬状態で特定タイミング及び特定位置における状態を一意的に特定できるものではなく、管状部材Pの材質や形状、或いは外部環境等に応じて様々となる。また、送信用探触子12から送信される超音波やキャンセル用探触子18から送信されるキャンセル波Wcは、それぞれ必ずしも狙い通りの周波数及び位相を有するとは限らず、実際には多少のずれが生じる場合がある。更に、本体内伝搬波Wbは、管状部材Pの本体部内を伝搬する際にはある程度減衰する場合がある。そのため、例えば理論上は本体内伝搬波Wbを打ち消し得るキャンセル波Wcがキャンセル用探触子18から送信されたとしても、S/N比の向上効果が比較的小さく抑えられる可能性がある。そこで、本実施形態に係る流体識別装置1は、波形調整部26を制御装置20に更に備えている。
【0047】
波形調整部26は、キャンセル波Wcの位相、振幅、及び周波数を調整してキャンセル波Wcの波形を調整する機能部である。波形調整部26は、受信用探触子14で受信される超音波の受信波形に応じて、本体内伝搬波Wbとキャンセル波Wcとの合成波Wsの振幅が全体として透過伝搬波Wtよりも小さくなるように、キャンセル波Wcの位相、振幅、及び周波数を調整する。本例では、波形調整部26は、キャンセル波Wcの位相、振幅、及び周波数を調整するための調整指令を第二発信制御部22に出力する。第二発信制御部22は、受け取った調整指令に応じた電気信号をキャンセル用探触子18に出力する。これにより、キャンセル波Wcの波形が調整される。波形調整部26と第二発信制御部22とが協働することにより、本発明における「波形調整ステップ」が実行される。本実施形態では、このような波形調整ステップは、例えば表示装置40に表示された受信信号を確認しながら、オペレータの手を介して手動で実行される。
【0048】
例えば波形データ33に基づいて算出されるキャンセル波Wcがキャンセル用探触子18から送信されたとしても、そのキャンセル波Wcの周波数が本体内伝搬波Wbの周波数と完全に一致しているとは限らない。同様に、到達時間データ32に基づいて算出されるキャンセル波Wcがキャンセル用探触子18から送信されたとしても、キャンセル波Wcの位相が本体内伝搬波Wbの位相に対して完全に逆位相となっているとは限らない。そのため、キャンセル波Wcの周波数を調整して本体内伝搬波Wbの周波数に一致させ、更にキャンセル波Wcの位相を調整して本体内伝搬波Wbの位相に対して逆位相とすることで、キャンセル波Wcによる本体内伝搬波Wbの打ち消し効果を向上させることができる。
【0049】
また、本体内伝搬波Wbは、管状部材Pの本体部内を伝搬する際にはある程度減衰するので、キャンセル波Wcの周波数及び位相を上記のように調整したとしても、本体内伝搬波Wbの減衰の程度に応じて合成波Wsの振幅がある程度の大きさで残る可能性がある。そのため、更にキャンセル波Wcの振幅を調整することで、キャンセル波Wcにより本体内伝搬波Wbを極力打ち消すことができる。
【0050】
なお実際には、本体内伝搬波Wbには縦波や横波、更には表面波等の複数のモードの波が含まれており、その他にも様々な要因が複雑に絡み合って合成波Wsが生成する。そのため、送信用探触子12で超音波が送信されてから受信用探触子14で透過伝搬波Wtが受信されるまでの全期間(図4において、「本体内伝搬波受信時間域」と表示)に亘って合成波Wsの振幅を完全にゼロとすることは一般に困難である。それでも、上記のような波形調整ステップを実行することで、測定時の実情に応じて合成波Wsの振幅を大幅に低減させることができ、透過波シグナルを受信する際のS/N比を大きく向上させることができる。
【0051】
また、本実施形態では特に、透過伝搬波Wtが受信用探触子14で受信される時点を含む、その時点以前の所定期間(これを「対象期間B」と称する;図4を参照)を対象として、上記の波形調整ステップが実行される。この場合における「所定期間」は、送信用探触子12で超音波が送信されてから透過伝搬波Wtが受信用探触子14で受信されるまでの全期間を基準として、例えばその1/10〜1/2の長さの期間、或いは1/5〜1/3の長さの期間等とすることができる。図4には、送信用探触子12で超音波が送信されてから透過伝搬波Wtが受信用探触子14で受信されるまでの全期間の1/4の長さの期間が対象期間Bとされている場合の例が示されている。このように、透過伝搬波Wtが受信用探触子14で受信されるまでの全期間ではなく対象期間Bのみを波形調整の対象とすることで、波形調整ステップの簡易性及び実効性の双方を確保することができる。
【0052】
これまで説明してきたような第二発信制御部22及び波形調整部26を備えていることに関連して、本実施形態に係る流体識別装置1は、波形調整部26及び第二発信制御部22が有する機能により位相、振幅、及び周波数が調整されたキャンセル波Wcがキャンセル用探触子18から送信されている状態で、流体判定ステップまでの各ステップが実行される。すなわち、合成波Wsの振幅を大幅に低減させることができるように測定時の実情に応じて調整された波形のキャンセル波Wcがキャンセル用探触子18から送信されている状態で、受信用探触子14で透過伝搬波Wtが受信され、受信信号処理部23により受信信号が処理され、音速算出部24により管内音速Vが算出され、流体判定部25により管状部材Pの内部に存在するガスGの種別が判定される。
【0053】
この場合における受信用探触子14での受信波形の一例を、図4に示している。この図4と先に示した図3とを比較して良く理解できるように、キャンセル波送信ステップ及び波形調整ステップを伴うことで、本体内伝搬波Wbに起因するノイズのみが大幅に低減し、そのようなノイズに対して透過伝搬波Wtによる受信信号(透過波シグナル)が優位な状態となっている。これにより、本体内伝搬波Wbに対して透過伝搬波Wtを明確に識別することが可能となっている。すなわち、透過波シグナルを検出する際のS/N比を大幅に向上させることが可能となっている。従って、音速算出部24により、上記時間差ΔT及びこれに基づく管内音速Vを精度良く算出することができ、更には流体判定部25により、管状部材Pの内部に存在するガスGの種別を精度良く判定することが可能となっている。
【0054】
また、本実施形態では、個別に設けられる送信用探触子12と受信用探触子14とが、管状部材Pを径方向に挟むように対向して配置される。そのため、送信用探触子12から送信された透過伝搬波Wtの減衰が比較的少ない状態で、これを受信用探触子14により受信することができる。また、管状部材Pの軸線Lを通り送信用探触子12と受信用探触子14とが配置される仮想平面Zに対して、二つのキャンセル用探触子18a,18bが面対称状に配置される。そのため、送信用探触子12から管状部材Pの周方向の一方側に向かって伝搬する本体内伝搬波Wbと、周方向の他方側に向かって伝搬する本体内伝搬波Wbとを、二つのキャンセル用探触子18a,18bからのキャンセル波Wcにより同様の態様で打ち消すことができる。すなわち、1つの第二発信制御部22で二つのキャンセル用探触子18a,18bを同様の態様で制御することができるので、制御装置20の構成を簡素化することが可能となっている。
【0055】
以上説明したように、本実施形態に係る流体識別装置1によれば、管状部材Pの内部に存在するガスGの種別を特段の制約なく簡易に、しかも精度良く識別することが可能である。
【0056】
3.その他の実施形態
最後に、本発明に係る流体識別装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
【0057】
(1)上記の実施形態においては、送信用探触子12と受信用探触子14とがそれぞれ1つずつ、個別に設けられている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、上記の実施形態における送信用探触子12及び受信用探触子14の双方の機能を兼ね備えた送受信用探触子16が1つだけ設けられた構成(図5を参照)とすることも、本発明の好適な実施形態の一つである。管状部材Pの内部に存在するガスGと管状部材Pの本体部を構成する材料とでは音響インピーダンスが大きく異なるので、透過伝搬波Wtの一部は管状部材Pの内周面で反射して反射波Wrとなる。反射波Wrは、管状部材Pの内部を、反射前の透過伝搬波Wtとは反対方向に伝搬して送受信用探触子16で受信される。この場合、音速算出部24は、送受信用探触子16で超音波が送信されてから、最終的に反射波Wrが送受信用探触子16で受信されるまでの時間差ΔTに基づいて、管内音速Vを算出することができる。なお、キャンセル用探触子18として二つのキャンセル用探触子18a,18bを備えている点や、第一発信制御部21、第二発信制御部22、受信信号処理部23、流体判定部25、及び波形調整部26の機能等に関しては、上記の実施形態と同様である。
【0058】
この場合、図5に示すように、二つのキャンセル用探触子18a,18bは、管状部材Pの軸線Lと送受信用探触子16とが配置される仮想平面Zに対して面対称状に配置されていると好適である。図示の例では、二つのキャンセル用探触子18a,18bは、更に送受信用探触子16と管状部材Pの同じ軸線方向位置において、管状部材Pを径方向に挟むように対向して配置されている。
【0059】
このような構成では、超音波(透過伝搬波Wt、反射波Wr、及び本体内伝搬波Wbを含む)の送信と受信とを共通の送受信用探触子16を用いて行うので、それらを個別の超音波探触子を用いて行う場合と比較して低コスト化を図ることができる。また、例えば判定対象となる管状部材Pが地中に埋設されている場合等であっても、少なくとも送受信用探触子16及びキャンセル用探触子18a,18bを配置できる程度に地中から管状部材Pを露出させれば良いので、判定作業を簡易化することができる。なお、透過伝搬波Wtの一部が反射して反射波Wrとなる際には減衰して反射波Wrによる受信信号(反射波シグナル)の強度は小さくなるが、キャンセル用探触子18からキャンセル波Wcが送信さることにより、本体内伝搬波Wbに起因するノイズが大幅に低減するので、特に問題はない。
【0060】
(2)上記の実施形態においては、波形調整部26がキャンセル波Wcの位相、振幅、及び周波数の全てを調整する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、波形調整部26は、キャンセル波Wcの位相、振幅、及び周波数のうちの1つ又は2つを調整する構成とすることも、本発明の好適な実施形態の一つである。
【0061】
(3)上記の実施形態においては、波形調整ステップが、表示装置40に表示された受信信号を確認しながらオペレータにより手動で実行される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば所定のアルゴリズムに基づいて、波形調整部26により自動的に波形調整ステップが実行される構成とすることも、本発明の好適な実施形態の一つである。
【0062】
(4)上記の実施形態においては、透過伝搬波Wtが受信用探触子14で受信される時点以前の期間であって、送信用探触子12で超音波が送信されてから透過伝搬波Wtが受信用探触子14で受信されるまでの全期間のうちの一部の期間のみが対象期間Bとされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば送信用探触子12で超音波が送信されてから透過伝搬波Wtが受信用探触子14で受信されるまでの全期間が対象期間Bとされた構成とすることも、本発明の好適な実施形態の一つである。また、透過伝搬波Wtが受信用探触子14で受信される時点を含むその前後の所定期間が対象期間Bとされた構成とすることも、本発明の好適な実施形態の一つである。
【0063】
(5)上記の実施形態においては、記録装置30に予め記録された到達時間データ32及び波形データ33に基づいてキャンセル波Wcの波形が決定される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば受信用探触子14での本体内伝搬波Wbの受信をトリガーとして、その実際に受信される本体内伝搬波Wbに基づいてキャンセル波Wcの波形が決定される構成とすることも、本発明の好適な実施形態の一つである。この場合における基本概念を図6に模式的に示している。この図に示すように、受信用探触子14で本体内伝搬波Wbが実際に受信されるまでの時間(「受信時間」と表示)及びその際の受信波形に関する実測データから、本体内伝搬波Wbがキャンセル用探触子18の位置に到達するまでの時間(「遅延時間」と表示)及びその位置における波形が推定され、その推定遅延時間と推定波形とに基づいてキャンセル波Wcの波形が決定される構成とすることができる。
或いは、予め設定された一律の位相及び波形を有するキャンセル波Wcが送信される構成とすることも、本発明の好適な実施形態の一つである。この場合、波形調整ステップが高い重要性を有することになる。
【0064】
(6)上記の実施形態においては、流体識別装置1が波形調整部26を備えている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えばキャンセル用探触子18が本体内伝搬波Wbを完全に打ち消すことができるキャンセル波Wcを当初から送信することができる場合等には、波形調整部26を備えず、波形調整ステップが実行されない構成とすることも、本発明の好適な実施形態の一つである。
【0065】
(7)上記の実施形態においては、4つの探触子12,14,18a,18bが管状部材Pの同じ軸線方向位置において周方向に均等に分散して配置されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、少なくとも二つのキャンセル用探触子18a,18bが仮想平面Zに対して面対称状に配置されていると好適であり、二つのキャンセル用探触子18a,18bが送信用探触子12と受信用探触子14との中間地点ではなくいずれかに近接する位置に配置された構成とすることも、本発明の好適な実施形態の一つである。或いは、二つのキャンセル用探触子18a,18bが仮想平面Zに対して面対称状とはならない位置に配置された構成とすることも可能である。
【0066】
(8)上記の実施形態においては、流体識別装置1を管状部材Pの内部に存在するガスGの種別を判定するためのガス種識別装置に適用した場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば水、アルコール、油等の液体も、流体識別装置1による流体種別の判定対象とすることができる。
【0067】
(9)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
【産業上の利用可能性】
【0068】
本発明は、管状部材の内部に存在する流体の種別を識別するための流体識別装置及び流体識別方法に利用することができる。
【符号の説明】
【0069】
1 流体識別装置
12 送信用探触子
14 受信用探触子
16 送受信用探触子
18 キャンセル用探触子
24 音速算出部
25 流体判定部
26 波形調整部
30 記録装置
32 到達時間データ
33 波形データ
P 管状部材
L 軸線
G ガス(流体)
Wt 透過伝搬波
Wb 本体内伝搬波
Wc キャンセル波
Ws 合成波
ΔT 時間差
V 音速
Z 仮想平面

【特許請求の範囲】
【請求項1】
管状部材の外周面に配置され、超音波を送信する送信用探触子と、
前記管状部材の外周面に配置され、前記送信用探触子から送信される超音波のうち前記管状部材を透過して管内を伝搬する透過伝搬波、及び前記送信用探触子から送信される超音波のうち前記管状部材の本体部内を伝搬する本体内伝搬波、を受信する受信用探触子と、
前記送信用探触子及び前記受信用探触子とは別に前記管状部材の外周面に配置され、前記本体内伝搬波を打ち消すキャンセル波を送信するキャンセル用探触子と、
前記送信用探触子で超音波が送信されてから前記受信用探触子で前記透過伝搬波が受信されるまでの時間差に基づいて前記管状部材の内部での超音波の伝搬速度を算出する音速算出部と、
前記音速算出部により算出された伝搬速度に基づいて前記管状部材の内部に存在する流体の種別を判定する流体判定部と、
を備える流体識別装置。
【請求項2】
前記キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整する波形調整部を更に備える請求項1に記載の流体識別装置。
【請求項3】
前記送信用探触子からの前記本体内伝搬波が前記キャンセル用探触子に到達するまでの到達時間を表す到達時間データと、前記本体内伝搬波の波形を表す波形データとを、前記管状部材の材質、管径、及び管厚の少なくとも1つに応じて予め記録した記録装置を更に備え、
前記キャンセル用探触子は、前記到達時間データと前記波形データとに基づいて算出される、前記本体内伝搬波とは逆位相となる波形を有する逆位相波を、前記キャンセル波として送信する請求項1又は2に記載の流体識別装置。
【請求項4】
前記管状部材の軸線と前記受信用探触子とが配置される仮想平面に対して面対称状に配置される、二つの前記キャンセル用探触子を備える請求項1から3のいずれか一項に記載の流体識別装置。
【請求項5】
個別に設けられる前記送信用探触子と前記受信用探触子とが、前記仮想平面上において前記管状部材を径方向に挟むように対向して配置されている請求項4に記載の流体識別装置。
【請求項6】
管状部材の外周面に配置された送信用探触子から超音波を送信する送信ステップと、
前記管状部材の外周面に配置された受信用探触子により、前記送信用探触子から送信される超音波のうち前記管状部材を透過して管内を伝搬する透過伝搬波、及び前記送信用探触子から送信される超音波のうち前記管状部材の本体部内を伝搬する本体内伝搬波、を受信する受信ステップと、
前記送信用探触子及び前記受信用探触子とは別に前記管状部材の外周面に配置されるキャンセル用探触子を用いて、前記本体内伝搬波を打ち消すキャンセル波を送信するキャンセル波送信ステップと、
前記送信用探触子で超音波が送信されてから前記受信用探触子で前記透過伝搬波が受信されるまでの時間差に基づいて前記管状部材の内部での超音波の伝搬速度を算出する音速算出ステップと、
前記音速算出ステップで算出された伝搬速度に基づいて前記管状部材の内部に存在する流体の種別を判定する流体判定ステップと、
を備える流体識別方法。
【請求項7】
前記受信用探触子で受信される超音波の受信波形に応じて、前記本体内伝搬波と前記キャンセル波との合成波の振幅が全体として前記透過伝搬波よりも小さくなるように、前記キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整する波形調整ステップを更に備え、
前記波形調整ステップで調整されたキャンセル波を前記キャンセル用探触子から送信している状態で、前記流体判定ステップまでの各ステップを実行する請求項6に記載の流体識別方法。
【請求項8】
少なくとも前記透過伝搬波が前記受信用探触子で受信される時点以前の所定期間を対象として、前記波形調整ステップを実行する請求項7に記載の流体識別方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate