説明

混合器及び液体分析装置

【課題】
本発明は、2液を微小な量で接触させることで、2種の液を広範囲な流量で混合比を変
化させて混合させる混合装置、あるいは、短時間で混合が可能な混合装置を提供すること
である。
【解決手段】
本混合装置は、混合反応を行うための非常に薄い混合室とその上下面に高密度に設けら
れたマイクロノズルから構成される。本混合装置は、マイクロノズルを向かい合わせにし
、混合室内の壁に設け、ノズルから2液を噴射して、拡散の現象を利用して混合させる混
合装置である。2液がマイクロノズルから微小な量で向かい合わせに吐出されることで、2
液が微少な量で接触し合い、短時間で拡散混合が行える混合装置である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は微量の流体を効果的に混合する混合器及び混合器を備えた分析装置に関する。
【背景技術】
【0002】
従来の混合反応装置としては、特開平6−226071号公報に記載の混合反応装置およびそれを用いた化学分析装置がある。この混合反応装置では、混合反応を行うための非常に薄い混合室と、その底面に高密度に設けられた多数の微小ノズルとその微小ノズルに接続されたA液(試薬)供給手段と、混合室にB液(サンプル)を吸入あるいは洗浄液を供給するためのサンプル吸引ポンプから構成される。採取されたB液(サンプル)とA液(試薬)の反応は瞬時に達成されるため、均一に混ざりあい、高速で反応する化学反応の過程を、均一な濃度条件のもとで計測するようになっている。
【0003】
また、別の混合器としては、特開2001−120971号公報に記載の液体混合器がある。この混合器は、液体導入口から導入される混合対象のA液とB液をそれぞれ分割する各液分割用細溝と各液分割用細溝の分岐流路が交互に連結されている液体混合用細溝とが2枚のプレートの重ね合わせ面にそれぞれ別れて形成されている。液体混合用細溝では、A、B両液が溝の深さ方向に交互に積層されて薄層で隣接して、液同士の間で拡散が速やかに進行して、微小量の液体が混合されて液体導出口から流出する。
【0004】
さらに、別の混合器としては、特開平2002−346357号公報に記載のマイクロミキサがある。この混合器は、セル基板とカバーを重ね合わせて接合したセルに対し、セル基板の上面側にエッチング加工を施して液体A、Bに対応する導入流路、混合流路および混合液体Cの流出流路をから形成されている。
【0005】
【特許文献1】特開平6−226071号公報
【特許文献2】特開2001−120971号公報
【特許文献3】特開2002−346357号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし、本発明者らは、上記記載の先行技術文献に開示された形態では微量の流体を効果的に混合するには十分とは言えないことを見出した。混合反応装置は、主にマイクロLC(液体クロマトグラフィー)に備え付けられるグラジェントミキサ(なお、グラジェントミキサとは、2種の溶媒液の混合比を変化させながら混合するミキサである。)に適用されると、以下のことが問題点として挙げられる。微小な流量で2液を混合させるとき、A液とB液の流量比を変化させると、例えば、A液の流量がB液の流量の5倍以上ある場合、上記記載の混合反応装置の混合室内では、2液の流速の違いにより、B液が混ざらなかったり、混合室内によどみが生じるなどの問題点が生じる恐れがある。
【0007】
また、上記記載の混合器も、グラジェントミキサに適用されると、同様な問題点が生じる2液が十分に混ざらないまま、液体クロマトグラフィーの構成部分であるカラム内にその混合溶媒液が注入されると、液相中の化学成分を分離することが十分にできず、その後の過程で、化学成分を精度よく検出できないことが課題となっていた。
【0008】
そこで、本発明の目的は、微量の流体を効果的に混合することができる混合器および係る混合機構を備えた液体分析装置に関する。
【課題を解決するための手段】
【0009】
本発明は、前記課題の少なくとも一つを解決するものである。
【0010】
(1)本発明の混合器は、第一の液の供給部と、第二の液の供給部と、第一の基板に形成され、複数の前記第一の液の噴出部を備えた第一のノズルと、第二の基板に形成され、複数の前記第二の液の噴出部を備えた第二のノズルと、前記第一のノズルから噴出された第一の液と前記第二のノズルから噴出された第二の液とが混合される混合部とを有することを特徴とする。
【0011】
例えば、前記第一の基板は、前記混合部を間に介して前記第二の基板に対して対向して配置されることを特徴とする。
【0012】
このように形成することにより、第一の液を混合部に供給する複数噴出部を備えた第一のノズルと、第二の液を混合部に供給する複数噴出部を備えた第二のノズルを用いて、ノズルから2液を噴射して、拡散の現象を利用して短時間のうちに効果的に混合させる混合装置を提供できる。
【0013】
なお、具体的形態としては、前記混合部では、前記混合された混合液の排出路が前記第一の基板と前記第二の基板との間に形成されることが好ましい。
【0014】
または、第一の液の供給部と、第二の液の供給部と、第一の液の供給部に連絡し、複数の前記第一の液の噴出部を備えた第一のノズルと、第二の液の供給部に連絡し、前記第一の液の噴出部側に向かって形成された複数の前記第二の液の噴出部を備えた第二のノズルと、前記第一のノズルから噴出された第一の液と前記第二のノズルから噴出された第二の液とが混合される混合部とを前記第一のノズルと前記第二のノズルとの間の領域に配置することを特徴とする。
【0015】
(2)これらの混合器において、第一の前記第一の液の噴出部の噴出方向を前記第二の基板方向に延長した位置は、第一の前記第二の液の噴出部と第二の前記第二に液の噴出部との間に形成されたことを特徴とする。
【0016】
このように、前記第一のノズルと前記第二のノズルとは前記混合部を介して互い違いに対向に配置されることが効率的な混合の観点で好ましい。
【0017】
なお、混合器の形態上の都合等によっては、前記第一のノズルと前記第二のノズルとは前記混合部を介して互い違いに同方向に配置されるようにすることもできる。
【0018】
また他の形態としては、前記いずれかの形態の混合器において、前記第一の液の供給は、前記第一の液が供給される第一の供給路と前記第一の供給路に連絡し、前記複数の第一の液の噴出部に連絡する第一の供給ヘッダ部とを備え、前記混合部の容積より前記第一の供給ヘッダ部の容積が小さく形成されたことを特徴とする。このようにすることにより、応答性が高めて混合性能を高めることができる。
【0019】
または、前記のいずれかの形態の混合器において、前記第一の液の供給は、前記第一の液が供給される第一の供給路と前記第一の供給路に連絡し、前記複数の第一の液の噴出部に連絡する第一の供給ヘッダ部とを備え、前記第一の供給ヘッダ部は、前記第一の供給路に連絡する第一の領域と、前記第一の領域に複数の第一の液供給部を介して連絡され、前記第一の液の噴出部に連絡する第二の領域とを備えたことを特徴とする。これにより、各噴出部における噴出特性の差を小さくして混合特性を向上させることができる。または、前記第一の供給路から前記第一の領域への連絡部の領域より、前記第一の領域から前記第二の領域への連絡部の領域が広く形成されているように形成する。
【0020】
(3)複数の混合部が効果的に運転される形態を備える混合器を有する。
【0021】
第一の第一の液供給部と第二の第一の液供給部と、前記第一の第一の液供給部と第二の第一の液供給部との間に形成された第二の液供給部と、
前記第一の第一の液供給部と前記第二の液供給部との間に形成された第一の混合部と、前記第二の第一の液供給部と前記第二の液供給部との間に形成された第二の混合部と、を有する。
【0022】
また、更に、前記第一の混合部或は第二の混合部は、前記第一の液を噴出する噴出口が複数形成された第一の基板と、前記第二の液を噴出する噴出口が複数形成された第二の基板と、前記第一の基板と前記第二の基板との間に形成される第一の液と第二の液の混合部とを有することが好ましい。
【0023】
このように、混合器を効果的に複数積層させて、混合容積を増加させ、混合液の流量範囲を広げることが可能である。又、混合器を多数積層させることで、高い耐圧が可能である。
【0024】
(4)本発明の液体分析装置は、サンプルを溶媒に注入するインジェクタと、前記インジェクタから前記サンプルと前記溶媒が導入され、前記サンプルの成分が分離されるカラムと、前記カラムから排出された前記分離されたサンプルを検出する検出器とを有する液体分析装置であって、第一の溶媒液の供給部と、第二の溶媒液の供給部と、第一の基板に形成され、複数の前記第一の溶媒液の噴出部を備えた第一のノズルと、第二の基板に形成され、複数の前記第二の溶媒液の噴出部を備えた第二のノズルと、前記第一のノズルから噴出された第一の溶媒液と前記第二のノズルから噴出された第二の溶媒液とが混合される混合部と、とを有し、前記溶媒は、前記混合部から排出された混合溶媒である。
【0025】
なお、液体分析装置は例えば液体クロマトグラフィーのような形態であることができる。しかし、前述の混合器のような混合液を用いる分析装置であればこれに限られるものではない。
【0026】
あるいは、サンプルを溶媒に注入するインジェクタと、前記インジェクタから前記サンプルと前記溶媒が導入され、前記サンプルの成分が分離されるカラムと、前記カラムから排出された前記分離されたサンプルを検出する検出器とを有する液体分析装置であって、第一の第一の溶媒液供給部と第二の第一の溶媒液供給部と、前記第一の第一の溶媒液供給部と第二の第一の溶媒液供給部との間に形成された第二の溶媒液供給部と、前記第一の第一の溶媒液供給部と前記第二の溶媒液供給部との間に形成された第一の混合部と、前記第二の第一の溶媒液供給部と前記第二の溶媒液供給部との間に形成された第二の混合部と、を有する。
【0027】
このような形態によって、本発明は、微量の流体を効果的に混合することができる混合器および係る混合機構を備えた液体分析装置を提供することができる。
【0028】
また、2種の液の混合比を変化させ、2液の流量範囲を広くしても、2液がマイクロノズルから微小な量で向かい合わせ(または、同方向)に吐出されることで、2液が微少な量で接触し合い、短時間で拡散混合が行える混合装置を提供できる。
【0029】
また、本発明の形態では、排出される混合液は流量範囲を広くすることができ、混合比を変えても、良好な混合を可能とする。
【0030】
又、流量範囲の切り替えは、バルブにより、混合容積を目標流量に対応できるように、選択できるようにすることができる。
【0031】
このように、本発明により、特に微量の試料液や溶媒液などの液体を短時間に効果的に混合せしめる混合器、或は、化学反応させる反応装置および異なる種類の液を混合反応させその性質を分析する化学分析装置に好適である。
【発明の効果】
【0032】
このような形態によって、本発明は、微量の流体を効果的に混合することができる混合器および係る混合機構を備えた液体分析装置を提供することができる。
【発明を実施するための最良の形態】
【0033】
本発明の実施の形態を以下に説明する。なお、本発明は実施例に記載した形態に限定するものではなく、公知技術に基づいて同じ目的作用効果を奏する変更を許容するものである。以下に一例として本発明の混合器を備えた液体クロマトグラフィーについて説明する。
【0034】
本発明の実施例1を図1ないし図4を参照して説明する。図1は、液体分析装置の一例としてのマイクロ液体クロマトグラフィーの概略図であり、図4は本実施例の混合器であるマイクロミキサの構成を示す図である。
【0035】
ここで用いた混合器は、一例としては図4のように、第一の液である溶媒Aの供給部6と、第二の液である溶媒Bの供給部6と、これらの液が供給される混合部である混合室5とを備え,第一の液を混合部に供給する複数噴出部3を備えた第一のノズルと、第二の液を混合部に供給する複数噴出部4を備えた第二のノズルとを備える。第一のノズルと第二のノズルとは混合部を介して対向に配置されている。そして、第一のノズルと第二のノズルとは前記混合部を介して互い違いに対向に配置されている。(なお、他の形態としては、第一のノズルと第二のノズルとは前記混合部を介して互い違いに同方向に配置される形態にすることもできる。)
【0036】
前記排出される混合液は流量範囲を広くすることができ、混合比を変えても、混合を可能とすることができ、微小流量であっても効果的に混合を行うことができる。
【0037】
LC(液体クロマトグラフィー)は、液相中の化学成分を色で識別できるようにカラムで分離する装置である。特に、微小な口径のカラムを用いたクロマトグラフィーをマイクロクロマトグラフィーという。マイクロクロマトグラフィーの目的は、通常のカラムで分離できない化合物類を分離し、微量な化合物を分離分析に適用することである。
【0038】
この図1に構成の概要を示す。溶媒液Aと溶媒液Bのそれぞれに対応するポンプ11で、ミキサ12に2種の液を供給する。ミキサ内で、2種の液が混合し、ここでは、300気圧程度に加圧する。次いで、加圧された2種の混合液は、インジェクタ13(試料注入器)を経てカラム14に至る。カラム14は充填部材を有する(一例としてシリカゲルの非常に微細な粉(粒径約10μm)を充填した)。ここで化合物を分離し、カラムから排出された液は検出器15で目標とする化学成分を検出する。本実施例はマイクロ液体クロマトグラフィーである。本液体クロマトグラフィーはグラジェントミキサを備えている。グラジェントミキサとは、液相中の化学成分を分離するカラム内に注入する2種の溶媒液の混合比を変化させて混合するミキサである。混合比を変化させることで、多種の化学成分を分離することができ化学成分の検出精度を上げることができる。
【0039】
近年、ポストゲノムシーケンス時代の研究開発(創薬・遺伝子診断向け)として、プロテオーム解析があり、この解析のニーズは増大している。しかし、細胞を採取して、タンパク質を抽出すると、タンパク質は抽出量が極微量で、DNAと異なり、増幅も不可能である。そこで、極微量サンプルに対応するプロテオーム解析マイクロLCの開発には、極微量流体のハンドリング技術が必要である。これに伴い、極微量流体に対応した混合器および、それを備えた分析装置が必要である。
【0040】
ミキサは、ノズルから2液を噴射して、拡散の現象を利用する。混合容積は、目標流量からノズル1個あたりの単位拡散領域を用いて、算出し、ノズル数を規定した。
【0041】
なお、ここでは、2種類の液として、水とメタノールを混合することを目的とし、拡散現象を利用したミキサの設計指標として、拡散時間からミキサの仕様を求めた。
【0042】
ノズルから2液を噴射して、拡散の現象を利用した混合器について、混合容積は、目標流量からノズル1個あたりの単位拡散領域を用いて、算出し、ノズル数を規定した。
【0043】
設計方法を簡単に説明すると、液(メタノール)がノズルから混合室へ吐出される時間と拡散時間が同じとみなし、混合に要するノズル数を求めることができる。図2で示すように、液(メタノール)がノズルから混合室(水で満たされている。)に拡散する距離を混合室の高さとした。ノズル数は、単位拡散領域で目標流量(容積)を割って算出した。
単位拡散領域とは、図2、3で示すように、ノズルを中心とし、拡散距離を半径とする半球モデルから得られる領域のなかで、ノズルを隣接したときのノズル1個あたりの拡散領域である。
【0044】
以下にミキサの設計仕様の算出手順を示す。
(1)拡散距離の算出
ノズルから拡散する距離をd(mm)とし、水に対するメタノールの拡散係数をD(mm2/sec)=8.4×10-4とし、拡散到達時間をt(s)=0.1,1,3,10,100とし、Fickの法則により、一
般に拡散距離は次の式で見積もることができる。拡散距離d=√(2Dt)
(2)ノズルピッチの算出
単位拡散領域(ノズルを隣接したときのノズル1個あたりの拡散領域:斜線部)の容積はθ=45°で最大となり、そのときの各拡散時間における隣接するノズルピッチP(mm)を次式で求める。ノズルピッチP(mm)=2dcosθ=√2d(θ=45°のとき)
(3)単位拡散領域の容積の算出
単位拡散領域の容積V(nl)を次式で求める。
単位拡散領域:V=4d3 sin2cosθ=√2d3(θ=45°のとき)
(4)ノズル数の算出
混合室に流入する流量をQとすると、ノズル総数N(個)をミキサの流量:Q=0.1〜200μl/min)、拡散到達時間t(s)=0.1,1, 3,10,100として次式で求める。
ノズル総数N(個)=Q・t÷V
(5)ミキサの一辺の長さの算出
ノズルをマトリックス状に配置したとして、ミキサの一辺の長さLは、次式で求める。
ミキサの一辺L(mm)=P(mm)×√N(個)
(6)ミキサの平均流速
ミキサの流量Q(μl/s)((200μl/min)のとき)のときの平均流速v(mm/s)を次式より求める。
混ざりきる拡散領域断面S(mm2)=ノズルピッチP(mm)×ミキサの一辺L(mm)平均流速v=Q/(S/2)
(7)拡散領域の移動距離
拡散領域の移動距離:L'(mm) を次式より求める。
移動距離:L'(mm)=v・t
(8)チップ長さ(mm):L''(mm) を次式より求める。チップ長さとは、2液が混合室から排出されるまでに混合に要する距離である。
チップ長さL''((mm)=正方形の一辺L(mm)+移動距離L'(mm)
【0045】
以上の手順を踏まえて、拡散時間(拡散到達時間とした)を0.1,1,3,10,100(s)として計算し、混合室に流入する流量を最大目標流量200μl/minとした場合、拡散時間とミキサの仕様の関係を図9に示す。
【0046】
なお、拡散時間が短い方が迅速な混合の観点で好ましい。しかし、拡散時間0.1の場合は、ピッチをかなり小さくする必要がある。このため製造容易性の観点では0.1より大きい方が好ましい。また、拡散時間100の場合は、容積が大きく、混合時間も長くかかる。
このため、製造容易性や迅速な混合を図る観点では100より小さい方が好ましい。もちろん製造性等の前述した観点でなく他の観点を重視するのであればこれに限らない。
【0047】
一例の混合器を図4に示す。図4(1)は、全体形態の概要を示し、図4(2)は具体的断面構造を示す。図4(1)に示すように上面基板1と下面基板2にはその面内に多数形成されたノズルから液をその間に形成される混合室に噴出する。図4(2)のように、混合室の内壁の上下面にノズルを対向して配置する形態の具体的形態を以下に記載する。
シリコンの上面基板1に形成された上面(第一)の複数のノズル3から第一の液を供給し、シリコンの下面基板2の下面(第二)の複数のノズル4から第二の液を供給する。上面基板1の上面ノズルにはポンプ11から溶媒Aが供給され、下面基板2の下面ノズルにはポンプ11から溶媒Bが供給される。混合室5で混合された溶媒は導出流路8から導出される。ここでは、混合室5がインジェクタ13やカラム14へ連絡する流路が上面基板1と下面基板2の間から連絡されるように形成されている。
【0048】
ポンプ11から供給される液は、供給部6からノズル3或は4を経て混合室5に導入される。ここで、供給部6は液を供給路61に連絡し、前記複数のノズル3或は4に液を分配導入するようにノズル3或は4に連絡された供給ヘッダ部62とを有する。
【0049】
一方の供給ヘッダ62は上面基板1とミキサホルダ上板7とで挟まれた空間に形成されている。また、同様に、他方の供給ヘッダ62は下面基板2とミキサホルダ下板9とで挟まれた空間に形成されている。
【0050】
上下面のノズルから2液を噴射して、拡散の現象を利用したミキサを製作することが可能になる。ここでは、この内壁を構成する対向する基板を備え、一方側の基板に第一の液のノズルを形成し、他方側の基板に第二の液のノズルを形成している。両基板の間に液の混合部が形成される。
【0051】
また、この混合部で混合された液の排出路がこの両基板の間から連絡するよう構成されている。これにより、良好な混合状態の混合液を供給することができる。
【0052】
このミキサの混合容積は、最大目標流量からノズル1個あたりの単位拡散領域を用いて算出し、ノズル数を求めているので、このミキサは、2液がマイクロノズルから微小な量で向かい合わせに吐出されることで、2液が微小な量で接触し合い、短時間で拡散混合が行えることを可能とする。また、下側のノズル位置と上側のノズル位置を互い違いに配置することで、混合室内での対流の効果を高め、混合時間の短縮に有効である。また、下側のノズル位置と上側のノズル位置を互い違いに或は同方向に配置してもよい。
【0053】
また、このミキサは、流量範囲を広くすることができ、混合比を変えても、ミキサの混合容積は、最大目標流量から求めているので、目標流量以下であれば、混合を可能とする。
【0054】
図4に示すように、混合器は、薄い混合室5を有しており、その壁面部には多数の微小ノズルが設けられている。この微小ノズルは試薬供給路6へ繋がっている。試薬は、このノズルから混合室5に噴出される。混合室5は、厚さが薄いのでこの噴流は厚さ方向に隈なく広がり、さらに横方向には分子拡散が速やかに起こり、混合室5では混合がすばやく達成される。例えば、このノズル3,4は、半導体製造で用いられるエッチング加工などの微細加工技術で加工することができる。この技術を利用すると、図9より拡散時間3秒の設計値を用いた場合、一辺30μm程度の正方形のノズルを100μm間隔で並べ、混合室のサイズ50μm×15mm×15mm程度を作ることが可能で、その底面に2万個のノズルを配置することが可能である。拡散時間3秒の設計値を用い、目標流量20μl/minとした場合で試作したミキサの断面図を図5に示す。高圧で流体を流す場合等では、図5のようにノズル噴出口側の幅を、噴出口から離れた側の幅よりも小さくすることが好ましい。このようにすることにより、耐圧性を確保するために板厚を厚くした場合に、アスペクト比の非常に高い経路を高精度に形成することができる。なお、高圧で流体を流す場合でなくとも、強度等の他の観点で板厚を厚く形成する場合に適応することができる。
【0055】
ミキサは、混合室の高さは50μm、直径約15mmの円を底面とする、円盤状の形状を有し、正方ノズル30×30×50μmが100μm間隔で混合室の上下壁面に約2000個ずつマトリクス状に配置される。なお、上側のノズルと下側のノズルは50μmずらして配置される。
【0056】
このミキサは、静的な流れで設計しているが、2液が混合するかどうかを確かめるため、試作したミキサを用いて、実験を行った。その実験結果を図7に示し、10秒程経過した時点でのメタノール濃度を表す。実験の条件は、メタノールは上側のノズルから、水は下側ノズルから同時に混合室に流入することとする。図5で示すように混合室の右側に排出口を設けた。流量は、同じ比率とする。図7のグラフより、流量を変化させても、メタノール濃度が50%程であるので、混合している様子がわかる。以上より、本発明が有用であることを確かめることができた。
【0057】
なお、図6に本発明の一実施例の混合器の製造工程を示す。図6のウェハ断面の上側は混合室内側を表し,下側は混合室外側を表す。(a)SiO2エッチングマスクを作成するため,シリコン(Si)基板21に酸化膜22を生成する。混合室内側の混合部を現像してパターニング除去し、所定の領域のシリコン基板を露出させたSiO2エッチングマスクを作成する。ウェハの混合室内側面にAl膜23を形成する。ここではAlスパッタを行った。そして、パターニングにより多数の孔が形成されたAlエッチングマスクを作成する。これ以降の手順は図に示したとおりで、(b)混合室内側のノズルを形成すべく、ウェハの厚さの半分程度の深さまでドライエッチングを行う。次に(c)のように同様に混合室を現像するための SiO2エッチングマスクを作成する。具体的には、Alエッチングマスクを除去し、孔24が形成された領域の周囲に位置するSiO2のエッチングマスクを露出させる。次に(d)のよに、2回目のSiエッチングを行い、前記のように形成された孔の深さの途中(例えば深さ約25μm)までシリコン基板21をエッチングする。次に(e)のように、エッチングマスクの酸化膜22を除去する。次に(f)のように、両面にSiO2膜25を滴下して形成する。前記孔24に対応する位置に混合室外側のSiO2膜にパターニングして孔26を形成してシリコン基板21を露出する。次にシリコン基板21の前記混合室外側面から孔26をエッチングして形成し、前記孔24に連通させる。これにより、ノズル部を形成することができる。孔24の径は、孔26の径より狭くなるように形成される。
【0058】
なお、各ノズルへの流量範囲の切り替えは、図4に示したポンプ11の駆動をコントロールすることによって混合容積を目標流量に対応できるように、選択できる。また、これは図示していない各経路に配置されたバルブによって行うこともできる。
【0059】
このような、混合器おより混合器を備えた液体分析装置によれば、2液を微小な量で接触させることで、2種の液を広範囲な流量で混合比を変化させて混合することができ、しかも、外部から余計な混合機構を設けず、短時間に混合が可能である。したがって、カラムにおいて測定対象の移動などを良好に行うことができるので、分析時間及び分析性能を高めることができる。
【0060】
次に実施例2の形態について図8を用いて以下説明する。実施例2は基本的には実施例1で記載した形態などを用いることができるが、実施例2では複数の混合室を備えた混合器を用いるものである。
【0061】
混合器は、第一の溶媒A供給部31と第二の溶媒A供給部32と、第一の溶媒A供給部31と第二の溶媒A供給部32との間に形成された溶媒B供給部33とを備え、第一の溶媒A供給部21と前記溶媒B供給部33との間に形成された第一の混合部34と、前記第二の溶媒A供給部32と前記溶媒B供給部33との間に形成された第二の混合部35と、を有する。
【0062】
各々の混合部の具体的構造は前述の実施例1の形態と同様の形態を用いることができる。
【0063】
混合器を複数積層させて、混合容積を増加させ、混合液の流量範囲を広げることが可能である。また、混合器を多数積層させることで、高い耐圧を得ることができる。
【0064】
液体クロマトグラフィーは、カラムに試料を注入する際、300〜500気圧程の高圧下で加圧されるため、混合室の壁であるシリコンウェハの壁面にも300〜500気圧程の内圧が加わる。図5の上下方向では、混合室の内圧は、液を混合室に供給する供給部にシール材をあてることで、差圧を抑えることができる。一方、水平方向では、シリコンウェハの壁面にも300〜500気圧程の内圧が加わり、ここでは、構造上シール材をあてることができないので壁の肉厚を厚くすることで耐圧に対応できる。しかし、エッチング加工で使用する際、加工上でシリコンウェハの大きさに制限があるため、混合室の大きさにも制限があり、流量範囲を拡大することが難しいという問題点が考えられる。実施例であげた図5の混合室の構造は耐圧を考慮して設計したが、目標流量は20μl/minであり、流量範囲が狭い。そこで、1〜20μl/min対応の混合室を例えば、図8に示したように前述した混合構造を10段に積層することで、混合室全体の容積を拡大することができ、流量範囲を1〜200μl/minに拡大することができる。流量範囲の切り替えは、図示していないバルブなどを用いて行うことができる。流量に応じて10段階まで切り替えを選択することができる。また、積層することで、1〜20μl/min対応の混合室の壁の肉厚を変えることなく、差圧を抑えることができる。なお、積層の際には、シリコンの間にガラスを挟んで、陽極接合を行うのが有効である。
【0065】
ミキサを組み立てるには、ノズルを加工した二つのSiウェハを接合させ、Siの間にSiO2(ガラス)を挟んで陽極接合を行う。SiとSiO2の陽極接合について簡単に説明すると、Siを陽極に、SiO2を陰極に接合し、SiとSiO2を積層させて、接合界面に高電圧をかけると、SiO2の表面にNa+が析出し、陰極に移動する。このとき、SiO2の接合界面に−のホールができ、そこにSi層からの+を帯びたSiが移動して、ホールに埋まろうとする。これにより、SiとSiO2の接合が可能となる。なお、Siには導通性があり、Siの間にSiO2を挟んで接合することは可能である。この場合、電流を切り替えて2段階の陽極接合を行うことができる。
【0066】
なお、前記形態では、加工材料にシリコンを用いたが、耐アルカリ性を考慮すると、ガラス・ステンレスでもよい。ステンレスでも30μm程度の正方形のノズルなどの微細な加工も可能であり、シリコンと比べて耐薬品性の効果がさらに期待できる。
【0067】
実施例3について図10を用いて以下説明する。
【0068】
本形態を用いることによって、応答性と、混合性能を改善させる形態である。
【0069】
基本的には実施例1で説明した形態を備えることができる。本実施例3は、図10に示すように、混合室5の容積より供給部61の容積が少なくとも小さくなるよう形成されている。具体的には、混合室5の容積より供給部61の容積を1/10以下にすることが、微量の液量(数百μl/min以下)対応の混合器を形成する上で好ましい。これにより、応答性を向上させて、混合性能を向上することができる。供給部61の容積を基板1,2とミキサホルダ上板7及び下板9との各々の間のOリング10を用いて調整した形態を示した。また、混合室5の導出流路8に近い領域を、それより離れた領域に比べてノズル3、4の数を減らすよう形成されている。或はノズルを非設置にした領域を導出流路8に近い領域に設ける。これにより、ノズルから吐出しされた2液が時間とともに移動する領域を設けることで、2液の拡散混合が促進され、混合性能を向上させることができる。
【0070】
本形態を、液体クロマトグラフィー用グラジェントミキサとして使用する場合に、微小流量で2液を混合させることができ、応答性と、混合性能を改善させることができる。
【0071】
本形態によって、デッドボリュームを小さくし、応答性を改善させることができる。
【0072】
応答性に関し、混合室への液を供給する供給部(流路)の容積を何段階に変更し、混合室の容積と混合室への液を供給する供給部(流路)の容積との関係を調べた。
【0073】
実験方法および条件を簡単に説明すると、液体クロマトグラフィーを用いて、溶媒液A(水)をAポンプで、溶媒液B(アセトン(0.1%(CH3)2CO in H2O))をBポンプで、ミキサに2液を供給し、混合する。ミキサ内で混合された液は排出されて、ミキサに連通したUV検出器15にてグラジェント評価を行う。はじめはA液を100%で混合室に満たし、B液の濃度を0,5,10,50,100,0%と5分置きに変更するようBポンプでB液を送液し、UV検出器にてB液の吸光度を検出した。設定総流量200μl/minとし、図10のミキサをLCに搭載して評価した。
【0074】
混合室への液を供給する供給ヘッダ部62の容積を変更するには、図10の導入流路61に連絡する供給ヘッダ部62を形成するために、上面基板1に形成したミキサホルダ上板7からの溝深さHを変更した。そのときのグラジェントカーブを示した実験結果が図11である。縦軸にUV検出器にて検出されたB液の吸光度の出力値(mAu)、横軸に測定時間(分)を示す。図中のグラジェントカーブは、それぞれ、ホルダの溝の深さが6mmときのグラジェントカーブ42、ホルダの溝の深さが3.8mmときのグラジェントカーブ43、ホルダの溝の深さが1mmときのグラジェントカーブ44、従来のミキサを用いたときのグラジェントカーブ45を表す。図に示すように、ホルダの溝の深さが1mm、3.8mm、6mmと深くなるほど、グラジェントカーブの傾きがなだらかになり、立ち上がり時間の遅れが生じている。特に、B液の濃度が50〜100%に急激にあげたとき、溝の深さが深いほど100%でのB液の吸光度の出力値は安定している時間帯は短い。濃度50〜100%における供給溝容積(μl)のUV検出値の傾き(mAu/min)を求めるには、例えば、濃度50%の検出値が上昇開始したときの時間をX1、そのときの出力値をY1とし、濃度100%の検出値が到達したときの時間をX2、そのときの出力値をY2とすると、UV検出値の傾き(mAu/min)はY2−Y1/ X2−X1で算出できる。図12に濃度50〜100%における供給溝容積(μl)とUV検出値の傾き(mAu/min)との関係を示す。これより、混合室5の容積と混合室への液を供給する供給部(流路)である供給ヘッダ62の容積でのデッドボリュームを小さくすることで、応答性が向上していることがわかる。供給部(流路)である供給ヘッダ62の容積は、混合室5の容積(例えば200μl)の1/10にする。あるいは設定流量(1分間あたり)の1/10にする。これにより、ノズルから混合室に吐出された液が一方のノズルから漏れ出てしまっても、最小限に抑えられ、立ち上がり時間を従来のミキサと比べて半分以下まで短縮できる。グラジェントカーブの結果と対応させて目標立ち上がり時間をできるだけ短く設定するには、加工な可能範囲であれば供給部である供給ヘッダ62の容積は混合室5の容積の1/20〜1/30倍以下に小型化することが望ましい。
【0075】
次に実施例4の形態を図13を用いて説明する。基本的には実施例1や実施例3で説明した形態を用いることができる。実施例4では、供給ヘッダ部62は、液の供給路61に連絡する第一の領域62aと、第一の領域に複数の第一の液供給部を介して連絡され、ノズル3或は4に連絡する第二の領域62bとを備える。
【0076】
具体的には、供給ヘッダ部62は、供給路61に連絡する第一の領域62aには多孔質体を備えている。本図面ではフィルタを配置した。
【0077】
具体的には、供給路61から第一の領域62aへの連絡部の領域より、第一の領域62aから第二の領域62bへの連絡部の領域が広く形成されている。第一の領域62a供給路61からの連絡部の幅より、第一の領域62aと第二の領域62bとの境界部の幅の方が大きくなっている。
【0078】
このように構成することによって、混合性能を向上させることができる。
【0079】
混合室へ液を供給するときに供給部から混合室に隣接して配置されるノズル全域に液が行渡るように、配置することで、デッドボリュームを小さくすることが可能である。これより、応答性と、混合性能を改善させる効果が期待される。
【0080】
ここに、整流の役割を果たすフィルタを混合室に配置することが効果的である。
【0081】
フィルタを配置したときの断フィルタの面形状は混合室に配置されるノズル全域を覆うように四角形でも円形でもよい。なお、フィルタの厚さを設定する場合、フィルタの厚さ=設定流量(1分間あたり)/ノズル全域面積(混合室ノズル配置面)以下であることが望ましい。混合設定時間3sとした場合、混合室の深さは50μmであり、混合室に液が1分程度以内に進入し、短時間で拡散混合するためにはフィルタの厚さは1〜2mm以下であることが望ましい。(フィルタ内での拡散領域が移動する時間が、混合設定時間の20倍程度以内に収めるには、フィルタの厚さを混合室深さの20倍程度以下であることが望ましい。)
【0082】
実施例5について図14を用いて説明する。本実施例は基本的には実施例1他の実施例で説明した形態を用いることができる。なお、供給路61は図14の混合室平面図の中央に位置する。本実施例5では、上面ノズル3、或は仮面ノズル4の孔の大きさを供給路61の供給ヘッダ62への連絡部から近い領域と離れた領域とで、その大きさ又は間隔を変えた点が特徴である。
【0083】
例えば、供給路61に近い第一の領域のノズル3、或は4の噴出孔径は、前記第一の領域より供給路61から離れた第二の領域のノズル3,或は4の噴出孔径より小さく形成されている。
【0084】
または、供給路61に近い第一の領域のノズル3、或は4の噴出孔の隣接する噴出孔との間隔は、前記第一の領域より供給路61から離れた第二の領域のノズル3或は4の噴出部の噴出孔の同間隔より広く形成されている。
【0085】
図14では、先の実施例のA−B断面のノズルが形成された領域概要を示している。個々では中央部に供給路61が相対配置されているものとする。
【0086】
ノズルの大きさをそれぞれ混合部の中央部と外側で大きさを変更する。すなわち、混合室の供給部(流路)断面積が混合室ノズル配置面に比べて小さくても、前記第一のノズルと前記第二のノズルの大きさをそれぞれ混合部の中央部と外側で大きさを変更して配置されることで、液が混合室に進入する際、液が混合部の中央部と外側部の各々の部分に進入する時間の差を少なくし、流量比を変更しても、濃度変更に追従することができる。その結果、応答性を良くし、混合性能を改善することができる。例えば、図14(1)のような中央部に供給路61が相対的に配置される円形状のノズル3或は4の形成領域に複数のノズル(噴出孔)が配置された場合、円の半径をRとすると、XA+ XB= R, XA:A液が流れるノズル径φAが配置される領域の円の半径、XB: B液が流れるノズル径φBが配置される領域の円の半径、XA>2/3 RのときφB>2φAとすることで混合部の中央部に比べて外側部の方のノズル径が大きいため、液が混合部の中央部と外側部の各々の部分に進入する時間の差を減らすことが可能である。この場合のノズル形状の様子を図14(2)に示す。
【0087】
同様に、前記第一のノズルと前記第二のノズルのそれぞれにおいて、ノズルピッチ(ノズル間隔)もしくはノズル密度を混合部の中央部と外側で変更して配置されることで、液が混合部の中央部と外側部の各々の部分に進入する時間の差を減らすことができ、濃度変更に追従することができる効果が期待される。例えば、図14のような円形状のミキサに複数のノズルが配置された場合、円の半径をRとすると、YA+ YB= R, YA: A液が流れるノズルピッチLAが配置される領域の円の半径、YB:B液が流れるノズルピッチLBが配置される領域の円の半径、YA>2/3 RのときLB<1/2LAとすることで混合部の中央部に比べて外側部の方のノズルピッチが大きいため混合部の中央部と外側で液が混合室に進入する時間の差を減らすことが可能である。
【0088】
実施例6について図15を用いて説明する。
【0089】
本実施例では、基本的には実施例1及び他の実施例で説明した形態を用いることができる。本実施例では、上面基板1に設けた上面ノズル3からの供給液と下面基板2に設けた下面ノズル4からの供給液のほかに側方に設けた第三のノズルによって第三の液を混合室5に供給する。第三のノズルは上面基板と下面基板2との間の空間で形成される液供給部から下面基板2に形成された多数の溝とそれに対向して上面基板1が配置されることにより形成された多数のノズルから混合室5に液が導入される。
【0090】
このときの概念図を図15に示す。溶媒液を3種類で混合することで、2種類と比べて、溶媒液の種類、濃度、成分をさまざまに変更することができ、多種の化合物類を分離することができる。第三の液を供給するノズルの配置は混合室の上下壁面に配置されたノズルピッチと同じであるのがよい。ただし、混合室の高さが低く、第三のノズルを混合部の側面に複数配置するのが困難であるときは、ピッチを狭くするのが望ましい。また、ノズル径についても同様である。
【0091】
本形態の混合器を、図1の液体クロマトグラフィーに用いることで、多種の化合物類を分離するために、多種の溶媒液を利用することで、分離項目を増やし、微量な化合物を分離分析することが期待される。
【図面の簡単な説明】
【0092】
【図1】マイクロ液体クロマトグラフィーの概略図である。
【図2】ミキサを設計する際での単位拡散領域断面図である。
【図3】ミキサを設計する際での単位拡散領域平面図である。
【図4】本発明の一実施例を示す概略図である。
【図5】本発明の一実施例を示す概略図である。
【図6】本発明の一実施例の製造工程を示す概要図である。
【図7】試作したミキサの実験結果図である。
【図8】積層ミキサの概念図である。
【図9】ミキサの仕様例である。
【図10】本発明の一実施例を示す概要図である。
【図11】試作したミキサの実験結果図である。
【図12】試作したミキサの実験結果図である。
【図13】本発明の一実施例を示す概要図である。
【図14】本発明の一実施例を示す概要図である。
【図15】本発明の一実施例を示す概要図である。
【符号の説明】
【0093】
1…上面基板、2…下面基板、3…上面ノズル、4…下面ノズル、5…混合室、6…供給部、7…ミキサホルダ上板、8…導出流路、9…ミキサホルダ下板、10…Oリング、11…ポンプ、12…ミキサ、13…インジェクタ、14…カラム、15…検出器、61…供給路、62…供給ヘッダ部、21…シリコン(Si)基板、22…酸化膜、23…Al膜、24…孔、25…SiO2膜、26…孔、31…第一の溶媒A供給部、32…第二の溶媒A供給部、33…溶媒B供給部、34…第一の混合部、35…第二の混合部、42…ホルダの溝の深さが6mmときのグラジェントカーブ、43…ホルダの溝の深さが3.8mmときのグラジェントカーブ、44…ホルダの溝の深さが1mmときのグラジェントカーブ、45…従来のミキサを用いたときのグラジェントカーブ

【特許請求の範囲】
【請求項1】
第一の液の供給部と、第二の液の供給部と、第一の基板に形成され、前記第一の液の供給部に連絡し、複数の前記第一の液の噴出部を備えた第一のノズルと、第二の基板に形成され、前記第二の液の供給部に連絡し、複数の前記第二の液の噴出部を備えた第二のノズルと、前記第一のノズルから噴出された第一の液と前記第二のノズルから噴出された第二の液とが混合される混合部と、を有する混合器を混合室として複数重ねた混合器であって、
各混合室中の第一の液の供給部と第二の液の供給部との間には、第一の混合部が形成されており、
互いに隣接する混合室のうち、一方の混合室の第一の液の供給部と他方の混合室の第二の液の供給部との間には、第二の混合部が形成されていることを特徴とする混合器。
【請求項2】
請求項1において、前記第一の混合部或は第二の混合部は、前記第一の液を噴出する噴出口が複数形成された第一の基板と、前記第二の液を噴出する噴出口が複数形成された第二の基板と、前記第一の基板と前記第二の基板との間に形成される第一の液と第二の液の混合部とを有することを特徴とする混合器。
【請求項3】
請求項1または2に記載の混合器を備えた液体分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2008−261880(P2008−261880A)
【公開日】平成20年10月30日(2008.10.30)
【国際特許分類】
【出願番号】特願2008−176432(P2008−176432)
【出願日】平成20年7月7日(2008.7.7)
【分割の表示】特願2004−200001(P2004−200001)の分割
【原出願日】平成16年7月7日(2004.7.7)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】