説明

温度測定装置

【課題】感温素子と皮膚との接触を良好にしつつ、平面方向の熱流束を抑えて深部体温の測定精度を向上させる温度測定装置を提供する。
【解決手段】第1の熱流路体21とこの第1の熱流路体21を囲むように配設される第2の熱流路体22〜25を有し、第1の熱流路体の入口21aと出口21bにそれぞれ第1の感温素子31a、31bを備え、第2の熱流路体の入口22a〜25aと出口22b〜25bにそれぞれ第2の感温素子32a〜32hを備えると共に、各入口に備えられた第1及び第2の感温素子は各々の皮膚接触板14a〜14eと熱的に結合し温度を測定する構成とした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は熱流路体と感温素子とを備え、体表面の温度情報から深部体温を推定する温度測定装置に関し、特に熱流路体の平面方向の熱流束、すなわち熱流路体からの熱流の漏れを抑えて、高精度に深部体温を測定する温度測定装置に関する。
【背景技術】
【0002】
従来より、深部温度プローブと通信表示装置によって構成する深部温度測定装置が開示されている(例えば特許文献1参照)。以下、この特許文献1に開示されている従来の深部温度測定装置の概略を図10を用いて説明する。
【0003】
図10において、深部温度プローブ200の金属材部201内には、温度センサ付きICタグ202及び203が配置されている。これにより、温度センサ付きICタグ202、203により検出される温度が金属材部201の温度(外気温度とほぼ一致)に対応したものとなる。また、金属材部201の下層には断熱材の硬質発泡材211が配置され、この硬質発泡材211内には、温度センサ付きICタグ212及び213が配置されている。硬質発泡材211は、高さがh1の領域R1と、高さがh2の領域R2とに区分される。
【0004】
金属材部201の周囲には、電磁波カップリング層204及び配線基板205が配置されている。この配線基板205には、各温度センサ付きICタグからの配線が接続され、外部の機器との通信が可能となっている。また、硬質発泡材211を挟んで上下方向に対向して配置される温度センサ付きICタグの間隔については以下のように定義される。温度センサ付きICタグ202と212との間隔をd1とし、温度センサ付きICタグ203と213との間隔をd2とすると、d1とd2の関係はd1>d2が成立する。
【0005】
この条件下で、深部温度プローブ200を皮膚に接し、各温度センサ付きICタグによって各測定ポイントの温度を測定して、2次元(断面)で有限要素法を用いた計算により深部体温を求めることが示されている。また、深部温度プローブ200は無線によって外部の通信装置に、測定結果を伝える機能を有している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−315917号公報(第6頁、第5c図)
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1の深部温度測定装置の深部温度プローブは、図10で示すように、断熱材の硬質発泡材211が一体であって均一な熱抵抗を有しているので、断熱材中に複数の熱流路が構成されてしまう。このため、断熱材中に平面方向の熱流路が存在し、互いの熱流に影響して深部温度算出に誤差が生じる問題がある。また、プローブを小型化すると、熱流路同士が近づくため、さらに影響が大きくなり、誤差が拡大する問題がある。
【0008】
本発明の目的は上記課題を解決し、熱流路体の平面方向の熱流束、すなわち熱流路体からの熱流の漏れを抑えて深部体温の測定精度を向上させる温度測定装置を提供することである。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明の温度測定装置は、下記記載の構成を採用する。
【0010】
本発明の温度測定装置は、熱流路体の入口又は出口の少なくとも一方に感温素子を備えた温度測定装置において、熱流路体を保持する筐体の熱伝導率を熱流路体の熱伝導率より小さくしたことを特徴とする。
【0011】
また、熱流路体は第1の熱流路体と該第1の熱流路体を囲むように配設する第2の熱流路体によって成り、第1の熱流路体の入口と出口に対向する一対の第1の感温素子を備え、第2の熱流路体の入口と出口に対向する一対の第2の感温素子を備えることを特徴とする。
【0012】
また、第2の熱流路体は複数あり、該複数の第2の熱流路体と第1の熱流路体のそれぞれは筐体によって熱的に分離していることを特徴とする。
【0013】
また、第2の熱流路体はリング形状で一体化しており、該第2の熱流路体と第1の熱流路体は筐体によって熱的に分離していることを特徴とする。
【0014】
また、筐体は空気層による空洞を有することを特徴とする。
【0015】
また、筐体は発泡スチロールで構成することを特徴とする。
【0016】
また、第1及び第2の熱流路体の入口は被測定物に接する面であり、該入口に備えられた第1及び第2の感温素子は金属材の皮膚接触板と熱的に結合していることを特徴とする。
【0017】
また、皮膚接触板は、第1及び第2の感温素子ごとに独立して配設することを特徴とする。
【0018】
また、第2の感温素子は複数対あり、該複数対の第2の感温素子のなかで、最も高い温度を測定した感温素子の測定値を、第2の感温素子の測定値として採用し、該第2の感温素子の測定値と、第1の感温素子の測定値と、第1及び第2の熱流路体の熱抵抗比から深部温度を算出することを特徴とする。
【発明の効果】
【0019】
上記の如く本発明によれば、感温素子に対応した熱流路体(断熱材)を独立に配設し、熱伝導率が小さい筐体で各熱流路体を熱的に分離するので、熱流路体における平面方向の熱流束が抑えられ、誤差の少ない温度測定を行うことが出来る。この結果、深部体温の算出精度が向上し、深部体温を高精度に測定する温度測定装置を提供することが出来る。
【図面の簡単な説明】
【0020】
【図1】本発明の第1の実施形態の温度測定装置の構成を説明する斜視図と断面図である。
【図2】本発明の第1の実施形態の温度測定装置の温度測定部の裏面を説明する斜視図である。
【図3】本発明の第1の実施形態の温度測定装置の温度測定部に直接接続する制御部を説明する斜視図である。
【図4】本発明の第1の実施形態の温度測定部にケーブルによって接続する制御部を説明する斜視図である。
【図5】本発明の第1の実施形態の温度測定装置の内部構成を説明するブロック図である。
【図6】本発明の第1の実施形態の温度測定装置の等価回路と深部温度の算出式を示す説明図である。
【図7】本発明の第1の実施形態の温度測定装置の動作を説明するフローチャートである。
【図8】本発明の第2の実施形態の温度測定装置の構成を説明する斜視図である。
【図9】本発明の第3の実施形態の温度測定装置の構成を説明する斜視図と断面図である。
【図10】従来の深部温度測定装置のプローブの構成を説明する断面図である。
【発明を実施するための形態】
【0021】
以下図面により本発明の実施の形態を詳述する。
[各実施形態の特徴]
第1の実施形態の特徴は、第1と第2の熱流路体を分離する筐体が断熱に優れた空気層を有する構成であることである。第2の実施形態の特徴は、各熱流路体を分離する筐体が高熱抵抗体の発泡スチロールで構成していることである。第3の実施形態の特徴は、第1の実施形態の簡易型であり、第2の熱流路体が一体型のリング形状で構成していることである。
【実施例1】
【0022】
[第1の実施形態の温度測定装置の構成説明:図1、図2]
第1の実施形態の温度測定装置の構成を図1を用いて説明する。図1(a)は第1の実施形態の温度測定装置の斜視図であり、図1(b)は図1(a)の温度測定部の中心を通る切断線A−A´での断面を示した断面図である。図1(a)及び図1(b)において、第1の実施形態の温度測定装置1は、被測定物(図示せず)に触れて温度を測定する温度測定部10と、後述する制御部(図3参照)とを有している。
【0023】
温度測定部10は、筐体11と、筐体11の略中心に位置する第1の熱流路体(断熱材)21と、第1の熱流路体21の周囲を囲むように配設される4つの第2の熱流路体22〜25と、第1の感温素子31a、31bと、第2の感温素子32a〜32hなどで構成される。なお、感温素子の一部は、ここでは図示していない。
【0024】
筐体11は図示するように、円形の枠状であり、筐体11の内部は空気層12による空洞で構成される。この筐体11の材質は第1の熱流路体21や第2の熱流路体22〜25の熱伝導率より小さい熱伝導率を有し、成型しやすい硬質ウレタンフォーム、塩ビフォームなどが好ましい。なお、筐体11の形状は任意であり、限定されない。
【0025】
第1の熱流路体21は円柱形の熱抵抗体であり、所定の熱伝導率を有しており、図面上の下側が熱流路の入口21aであり、図面上の上側が熱流路の出口21bである。第2の熱流路体22〜25も、それぞれ円柱形の熱抵抗体であり、所定の熱伝導率を有しており、図面上の下側が熱流路の入口22a〜25aであり、図面上の上側が熱流路の出口22b〜25bである。なお、第1の熱流路体21の入口21aと第2の熱流路体22〜25の入口22a〜25aは、被測定物である被検者の皮膚に接する面である。
【0026】
ここで、第1の熱流路体21は、図示するように、筐体11に保持されて筐体11の略中心に位置している。また、4個の第2の熱流路体22〜25は、第1の熱流路体21を囲むように等間隔で筐体11に保持されている。また、筐体11の略中心に位置する第1の熱流路体21の厚みD1は、第2の熱流路体22〜25の厚みD2の2倍に設定されている。これにより、温度測定部10は中心部が高い凸型形状である。
【0027】
この構成によって、第1の熱流路体21と第2の熱流路体22〜25は、筐体11で機械的に分離されており、空気層12が各熱流路体の間に形成される。ここで、空気層12は熱伝導率が非常に小さいので、第1の熱流路体21と第2の熱流路体22〜25は筐体11と空気層12によって、それぞれ熱的に分離される。なお、第1の熱流路体21と第2の熱流路体22〜25の熱的分離(断熱)をさらに高めるには、空気層12を真空にすることで実現できる。また、第1の実施形態において、第2の熱流路体22〜25は4個で構成されるが、第2の熱流路体は4個に限定されず、2個以上の任意の数の熱流路体を設けることができる。
【0028】
次に、第1の感温素子31aは、第1の熱流路体21の入口21aに接して配設され、第1の感温素子31bは、第1の熱流路体21の出口21bに接して配設される。これにより、第1の感温素子31a、31bは、第1の熱流路体21の入口21aと出口21bで対向する一対の感温素子として配設される。
【0029】
また、第2の感温素子32a〜32d(図1では32bと32dは図示せず)は、第2の熱流路体22〜25の入口22a〜25aにそれぞれ接して配設され、第2の感温素子32e〜32hは、第2の熱流路体22〜25の出口22b〜25bにそれぞれ接して配設される。これにより、第2の感温素子32a〜32hは、第2の熱流路体22〜25を介して対向して配設される。
【0030】
すなわち、第2の感温素子32aと32eが第2の熱流路体22の入口と出口で対向する一対の感温素子として配設し、第2の感温素子32bと32fが第2の熱流路体23の入口と出口で対向する一対の感温素子として配設し、第2の感温素子32cと32gが第2の熱流路体24の入口と出口で対向する一対の感温素子として配設し、第2の感温素子32dと32hが第2の熱流路体25の入口と出口で対向する一対の感温素子として配設する。
【0031】
これにより、第1及び第2の感温素子は5つの対で構成され、感温素子の数は合計で10個である。なお、10個の感温素子のすべては、FPCに実装してそれぞれの位置に配設されるが、FPCの図示は図面が複雑になり分かり難くなるので省略する。なお、第1及び第2の感温素子は、チッブ型のサーミスターが好ましいが、他の方式の温度センサでもよい。
【0032】
また、図1(b)の13は熱伝導率が小さい板状の断熱材であり、筐体11の裏面を支持している。また、14は熱伝導率が高い金属材料で成る複数の皮膚接触板であり、第1の感温素子31aと第2の感温素子32a〜32dに接して熱的に結合している。なお、断熱材13と皮膚接触板14の詳細は、図2の説明で後述する。
【0033】
次に図2は第1の実施形態の温度測定装置の温度測定部10を裏側から見た斜視図である。図2において、温度測定部10の裏面は、図示するように、大部分が熱抵抗が大きい断熱材13によって覆われている。この断熱材13は、前述の第1の熱流路体21の入口21aの位置と、第2の熱流路体22〜25の入口22a〜25aの位置が、各入口の大きさに合わせてくり抜かれており、その位置に皮膚接触板14a〜14eが接して配設されている。
【0034】
すなわち、皮膚接触板14a〜14eは、第1の熱流路体21と第2の熱流路体22〜25に対応した位置に独立して配設され、第1の感温素子31aと第2の感温素子32a〜32d(破線で示す)に、それぞれが内側で個別に接して熱的に結合している。そして、皮膚接触板14a〜14eの間は、熱抵抗の大きい断熱材13によって仕切られているので、皮膚接触板14a〜14eは、それぞれが熱的に分離している。なお、以降の説明において皮膚接触板をまとめて表現するときは、皮膚接触板14として記述する。
【0035】
この構成によって、温度測定部10の裏面が、被検者の皮膚(図示せず)に密着して体温測定をする際、それぞれの皮膚接触板14が被検者の皮膚に接触し、被検者の皮膚の体温が皮膚接触板14を介して、効率よく第1の感温素子31aと第2の感温素子32a〜32dに伝達される。
【0036】
また、同様に皮膚接触板14は、それぞれが第1の熱流路体21の入口21aと第2の熱流路体22〜25の入口22a〜25aにも接しているので、被検者の皮膚の体温が皮膚接触板14を介して、効率よく第1の熱流路体21と第2の熱流路体22〜25に伝達される。また、各皮膚接触板14は、断熱材13によって熱的に分離しているので、皮膚接触板14の平面方向への熱の伝達を遮断することができる。
【0037】
このように、皮膚接触板14は、独立して設けられ、且つ、それぞれが熱的に分離しているので、皮膚接触板14のなかで、皮膚との接触が不十分であるために対応する感温素子に体温を十分に伝達できない皮膚接触板があっても、その皮膚接触板が他の皮膚接触板に影響することが無く、それぞれの皮膚接触板14は、皮膚からの熱流を対応する感温素子と熱流路体とに個別に伝達することが出来る。これによって、皮膚との接触状態が最良の皮膚接触板と感温素子を選択することが可能となり、皮膚との接触状態や周囲の環境に影響されにくい、安定した深部体温測定を実現できる。
[第1の実施形態の温度測定装置の制御部の説明:図3]
次に、第1の実施形態の温度測定装置の制御部について図3を用いて説明する。図3は温度測定部と制御部を一体的に構成する一例を示しているが、説明を分かりやすくするために、温度測定装置の温度測定部と制御部を分離して図示している。
【0038】
図3において、100は第1の実施形態の温度測定装置の制御部である。制御部100は温度測定部10の上側から矢印Bの方向に填め込むようにして温度測定部10に接続して一体化される。制御部100は、温度測定部10の中心にある背の高い第1の熱流路体21を避けるように、中心部がくり抜かれたリング形状である。この形状によって、温度測定部10と制御部100が接続されて一体化した場合、装置の厚みを低く抑えることができる。
【0039】
制御部100の構成は、リング形状のプリント基板110に、後述する電子回路や電源を配設し、また、測定した温度(体温)を表示する表示部120を有している。また、制御部100の下面と内径の上面には、断熱材102が配設される。すなわち、断熱材102は、前述の第1の熱流路体21の出口21bと第2の熱流路体22〜25の出口22b〜25bに接しており、各熱流路体を通過した熱が出口から拡散しない構造となっている。ここで、第1の熱流路体21の厚みが厚いために、温度測定部10は中心部分が高い凸形状であるが、断熱材102は、この凸形状に填め込むように、凹形状を上下逆にした形状となる。
【0040】
また、温度測定部10と制御部100の電気的な接続は、各感温素子が実装されるFPCを延長して制御部100のプリント基板110に接続されるが、このFPCの図示は省略する。なお、制御部100の内部構成と動作は後述する。
【0041】
このように、温度測定部10と制御部100を一体化することで、取り扱いが容易で、簡単に深部体温を測定できる温度測定装置を実現することができる。
[第1の実施形態の温度測定装置の分離型の制御部の説明:図4]
次に、第1の実施形態の温度測定装置の制御部が分離型であり、温度測定部とケーブルで接続する一例を図4を用いて説明する。図4において、温度測定部10は、感温素子などを組み込んだ筐体11の上面に、断熱材102を介して筐体11の上面全体を覆うカバー103が配設されている。なお、カバー103は図示しないが、筐体11の側面及び裏面の一部まで覆っても良い。
【0042】
150は分離型の温度測定装置1の制御部であり、制御部150は内部に電源、電子回路等を有し、測定した温度を表示する表示部151や、必要に応じて、外部の機器(図示せず)と無線によって通信するアンテナ152等を備えている。温度測定部10と制御部150は、ケーブル153によって電気的に接続され、ケーブル153を介して、温度測定部10の第1の感温素子31a、31bと第2の感温素子32a〜32hの各温度情報が制御部150に伝達される。
【0043】
このように、被検者の体温を測定する温度測定部10と、電源や表示部を備えた制御部150を分離することで、温度測定部10が小型で軽量になるので、温度測定部10を被検者に身体に常時装着して、深部体温の常時測定を可能にすることができる。
[第1の実施形態の温度測定装置の内部構成の説明:図5]
次に、第1の実施形態の温度測定装置の内部構成について図5のブロック図を用いて説明する。なお、説明の前提として第1の実施形態の制御部は、図3で示した温度測定部と制御部が一体化する形態を前提に説明するが、図4の分離型であっても、内部構成は基本的に同じである。
【0044】
図5において、第1の感温素子31a、31b及び第2の感温素子32a〜32hの10個の感温素子は、温度測定部10のFPC15に実装されている。このFPC15は、制御部100(図3参照)のプリント基板110に接続されており、第1の感温素子31a、31bと第2の感温素子32a〜32hから出力される10本の温度信号P1〜P10は、FPC15の配線パターンによってプリント基板110に伝達される。
【0045】
一方、プリント基板110には、小型の二次電池である電源111、AD変換部112、マイクロコンピュータ(以下、マイコンと略す)113、アンテナを有する送受信部116、表示部120などが配設されている。なお、AD変換部112は、マイコン113に内蔵しても良いし、または、温度測定部10のFPC15に実装してもよい。
【0046】
電源111からは、AD変換部112やマイコン113を駆動する電源電圧V1が出力される。なお、図示しないが、電源電圧V1は、送受信部116や表示部120にも供給される。AD変換部112は、温度信号P1〜P10を入力して、アナログ情報をデジタル情報に変換し、デジタルデータである温度データP11を出力してマイコン113に入力する。
【0047】
マイコン113は、演算部114やメモリ115を内蔵し、温度データP11を入力して後述する演算式に基づいて深部体温を算出し、深部体温を表示するために表示信号P13を出力する。また、マイコン113は、算出した深部体温の情報を外部機器に伝達するために通信信号P12を出力する。
【0048】
表示部120は、小型の液晶表示装置によって構成され、表示信号P13を入力して温度情報を表示する。また、送受信部116は、通信信号P12を入力し、深部体温の情報
を無線によって外部の機器(図示せず)に伝達する。また、送受信部116は、外部の機器からの制御信号を受信して、マイコン113に伝達し、温度測定の開始や停止、深部体温の算出などのリモート制御を行うことも出来る。また、送受信部116と表示部120は、必ずしも両方が必要ではなく、たとえば、外部機器と通信しなければ、送受信部116は不要であり、また、測定した温度情報を外部機器に送信し、外部機器で温度情報を常に確認するのであれば、表示部120は不要である。
[第1の実施形態の温度測定装置の深部体温の算出方法の説明:図6]
次に、第1の実施形態の温度測定装置の深部体温の算出方法を、図6の等価回路と深部温度の算出式を用いて説明する。ここで、図6の等価回路は、第1の実施形態の温度測定部10(図1参照)の構成に基づいている。また、説明を分かりやすくするために、複数ある第2の熱流路体と第2の感温素子については、第2の熱流路体24と、この入口24aに接する第2の感温素子32cと、出口24bに接する第2の感温素子32gのみについて説明する。
【0049】
図6において、深部体温の測定のために、温度測定部10を被検者の皮膚2に密着させると、皮膚2の熱流Qは、皮膚接触板14を介して第1の感温素子31aと第2の感温素子32cに伝達する。また同様に、皮膚2の熱流Qは、皮膚接触板14を介して第1の熱流路体21の入口21aと第2の熱流路体24の入口24aに伝達する。ここで、皮膚接触板14は熱伝導率が高いので、熱抵抗は無視できる。
【0050】
しかし、第1の熱流路体21と第2の熱流路体24は熱抵抗体であるので、第1の熱流路体21の入口21aと出口21bの間には、熱抵抗R1が存在し、熱流Qは熱抵抗R1を流れる熱流束Q1となって、第1の熱流路体21の出口21bに接する第1の感温素子31bに伝達する。また同様に、第2の熱流路体24の入口24aと出口24bの間には、熱抵抗R2が存在し、熱流Qは熱抵抗R2を流れる熱流束Q2となって、第2の熱流路体24の出口24bに接する第2の感温素子32gに伝達する。
【0051】
ここで、第1の感温素子31aが測定した温度をT1、第2の感温素子32cが測定した温度をT2とする。また、第1の感温素子31aに対向する第1の感温素子31bが測定した温度をT3、第2の感温素子32cに対向する第2の感温素子32gが測定した温度をT4とする。
【0052】
ここで、第1の熱流路体21の厚みが第2の熱流路体24の厚みより厚く、熱伝導率が同じであるとすれば、第1の熱流路体21の熱抵抗R1と、第2の熱流路体24の熱抵抗R2は、R1>R2の関係となる。すなわち、温度T1―T3の間には第1の熱流路体21の熱抵抗R1が存在し、温度T2−T4の間には第2の熱流路体24の熱抵抗R2が存在する。そして、被検者の皮膚2の体深部から一定量の熱流Qが流れでているとすると、温度T1−T3と温度T2−T4の温度差には違いが生じる。
【0053】
ここで、温度T1−T3の熱抵抗R1と温度T2−T4の熱抵抗R2の比K=R1/R2とすると、深部体温TBは、公知の熱伝導方程式を解くことによって得られる図6の式1によって算出することが出来る。ここで、第1の熱流路体21と第2の熱流路体24の熱伝導率が等しく、厚みの差が前述したように2倍であるならば、熱抵抗比Kは、K=R1/R2=2となるので、温度T1、T2、T3、T4を測定することによって、深部体温TBを算出することが出来る。本発明の温度測定装置は、このようにして深部体温を算出する。
【0054】
また、第1の熱流路体21と第2の熱流路体22〜25は独立に配設され、前述したように、空気層12を有する筐体11によって熱的に分離しているので、熱流路体間の平面方向の熱流束Q3(破線矢印で示す)が抑えられ、熱流Qが平面方向に拡散したり、また
、熱流路体が影響し合うことを防ぐことが出来る。この結果、誤差を最小限に抑えて深部体温を算出することが可能となる。なお、熱抵抗比Kは、“2”に限定されない。また、第1の熱流路体21と第2の熱流路体24の熱抵抗比Kが既知であれば、第1の熱流路体21と第2の熱流路体24の高さを同じにすることが可能になり、装置の小型化が可能である。
[第1の実施形態の温度測定装置の動作説明:図5、図6、図7]
次に、第1の実施形態の温度測定装置の動作の概略を図7のフローチャートを用いて説明する。なお、温度測定装置の内部構成は図5を参照し、深部体温の算出法は図6を参照する。また、動作説明の前提として、温度測定部10が被検者の皮膚に密着し、制御部100が動作中であり、所定の時間間隔で測定動作を実行しているとする。
【0055】
図7において、温度測定装置1の制御部100のマイコン113は、内部の時間カウンタ(図示せず)によって、被検者の体温の測定開始時間が来たかどうかを判定する(ステップST1)。ここで、測定時間でない場合はステップST1を繰り返し、測定時間が来たのであれば、次のステップST2へ進む。なお、測定時間の間隔は任意に決めて良く、たとえば、10分毎、1時間毎などに設定することができる。
【0056】
次に、ステップST1で肯定判定(測定開始)がなされたならば、マイコン113は、AD変換部112によって、第1の感温素子31aが測定した温度信号P1と第1の感温素子31bが測定した温度信号P2とをAD変換し、デジタル情報である温度データP11を入力する。ここで得られる温度情報が図6で示す温度T1とT3である(ステップST2)。
【0057】
次に、マイコン113は、AD変換部112によって、第2の感温素子32a〜32dが測定した温度信号P3〜P6をAD変換し、デジタル情報である温度データP11を入力する。ここで得られる温度情報を温度T2a〜T2dとする(ステップST3)。
【0058】
次に、マイコン113は、温度T2a〜T2dの中で、最も高い温度がどれであるかを、演算部114によって比較し、最も高い温度を温度T2として選択する(ステップST4)。ここで、T2として最も高い温度を選択する理由は、最も高い温度を測定した感温素子が、被検者の皮膚に一番良好に接触して被検者の体温を最も正確に測定したはずだからである。ここで、最も高い温度がT2c(すなわち、第2の感温素子32cが測定した温度)であると仮定する。
【0059】
すなわち、本発明の温度測定装置は、温度測定部10の皮膚接触板14と被検者の皮膚との密着状態を判断することができ、温度測定部10の皮膚接触板14が、仮に被検者の皮膚に均一に接触していなくても、良好に接触している箇所を見つけ出して、温度測定を行い、皮膚との不均一な接触の不具合を解消する機能を備えている。
【0060】
次に、マイコン113は、最も高い温度T2cを測定した第2の感温素子32cに対向する第2の感温素子32gが測定した温度信号P9をAD変換部112によってAD変換し、デジタル情報である温度データP11を入力する。ここで得られる温度情報が温度T4となる(ステップST5)。すなわち、温度T4は、第2の感温素子32a〜32dの中で、最も高い温度を測定した感温素子に第2の熱流路体を介して対向する第2の感温素子が測定した温度である。
【0061】
次に、マイコン113の演算部114は、測定によって取得した温度T1、T2、T3、T4、及び、熱抵抗比Kの値を前述の式1に代入して深部体温TBを算出し、メモリ115に記憶する(ステップST6)。
【0062】
次にマイコン113は、記憶された深部体温TBを表示信号P13として表示部120に伝達し、表示部120は算出された深部体温を表示する(ステップST7)。また、温度測定装置1が、外部の機器(図示せず)に温度情報を送信する仕様であれば、算出された深部体温を通信信号P12として送受信部116に伝達し、送受信部116は無線によって外部の機器と送受信を行い、測定した温度情報を順次送信する。
【0063】
ここで、制御部100からの温度情報を受信する外部の機器に、大容量のメモリやグラフ表示のモニタを備えれば、被検者の体温を長期間記録出来ると共に、リアルタイムで体温の変化等を確認できる。これにより、本発明の温度測定装置によって深部体温の24時間の常時測定を行い、被検者から離れた場所に設置した外部の機器で、被検者(患者)の病状の常時観察や病状の急変などに即対応することが可能となる。
【0064】
以上のように、第1の実施形態の温度測定装置によれば、感温素子に対応した熱流路体を独立に配設し、各々の熱流路体を熱伝導率が非常に小さい空気層を有する筐体によって熱的に分離しているので、熱流路体における平面方向の熱流束が抑えられ、高精度に深部体温の測定を行うことが出来る。また、感温素子に対応した熱流路体ごとに熱伝導率が高い皮膚接触板を設けているので、測定時に皮膚と最も良好に接触している皮膚接触板を選択して温度測定を行うことができ、皮膚との接触状態に影響されにくい、安定した深部体温測定を実現できる。さらに、感温素子間に形成される熱流路体(断熱材)が小型化されるため熱容量が小さくなるので、応答性が良くなり装着してから体温に上昇するまでの測定時間の短縮が可能となる。
【実施例2】
【0065】
次に、第2の実施形態の温度測定装置の構成について図8を用いて説明する。図8(a)は第2の実施形態の温度測定装置の温度測定部を斜め上面から見た斜視図であり、図8(b)は斜め下面(裏面)から見た斜視図である。なお、第2の実施形態の基本構成は、第1の実施形態と同様であるので、同一要素には同一番号を付して、重複する説明は一部省略する。
【0066】
図8(a)と図8(b)において、第2の実施形態の温度測定装置の温度測定部10は、各熱流路体を分離する筐体が高熱抵抗体の発泡スチロール50によって構成されている。ここで、温度測定部10の略中心に位置する厚みが厚い円柱形の第1の熱流路体21と、この第1の熱流路体21の周囲に配設される厚みが1/2の円柱形の第2の熱流路体22〜25は、第1の実施形態と同様である。
【0067】
また、温度測定部10の裏面の第1の熱流路体21の熱流路の入口21aには、第1の感温素子31aが配設され、温度測定部10の上面の第1の熱流路体21の熱流路の出口21bには、第1の感温素子31bが配設される。また、第2の熱流路体22〜25の熱流路の入口22a〜25aには、第2の感温素子32a〜32dがそれぞれ配設され、第2の熱流路体22〜25の熱流路の出口22b〜25bには、第2の感温素子32e〜32hがそれぞれ配設される。なお、第1の感温素子31a、31bと、第2の感温素子32a〜32hは、FPCに実装して配設されるが、FPCの図示は図面が複雑になり分かり難くなるので省略する。
【0068】
発泡スチロール50は各熱流路体を保持しており、各熱流路体は側面を発泡スチロール50に覆われて独立している。また、発泡スチロール50は、中心部の第1の熱流路体21の厚みが厚いので、この厚さに合わせて中心部に凸部51を有している。この構成によって、発泡スチロール50は高熱抵抗体であるので、第1の熱流路体21と第2の熱流路体22〜25は、熱的に分離している。
【0069】
また、図示を省略しているが、第2の実施形態の温度測定部10の裏面は、第1の実施形態と同様に、大部分が断熱材13によって覆われており、第1の熱流路体21と第2の熱流路体22〜25に対応した位置に皮膚接触板14a〜14eが独立して配設されている(図2参照)。
【0070】
また、第1の実施形態と同様に、第2の実施形態の温度測定部10の上面から填め込むようにして制御部100が接続されて一体化される(図3参照)。この制御部100は、温度測定部10の中心にある背の高い第1の熱流路体21と発泡スチロール50の凸部51を避けるように、中心部がくり抜かれたリング形状である。なお、制御部は第1の実施形態のように、分離型(図4参照)でもよい。
【0071】
以上のように、第2の実施形態の温度測定装置は、第1の実施形態に対して、筐体が発泡スチロール50に変わっただけであり、他の構成は同一である。従って、第2の実施形態の温度測定装置は、第1の実施形態と同様の特徴と優れた効果を有している。また、第2の実施形態の筐体である発泡スチロール50は、第1の実施形態の筐体11が有する空気層と比較すると熱伝導率が高いので、平面方向の熱流束Q3(図6参照)の抑制がやや弱いが、発泡スチロール50の筐体は、第1の実施形態の筐体11と比較して、構造が単純で加工しやすく、コストが安く、軽くて扱いやすいという優れた特徴を有している。
【0072】
なお、第2の実施形態の筐体は、発泡スチロールに限定されず、高熱抵抗体であって、加工性が良好であれば、他の材質でもよい。また、第2の実施形態の内部構成と動作フローは、第1の実施形態と同様であるので説明は省略する。
【実施例3】
【0073】
次に、第3の実施形態の温度測定装置の構成について図9を用いて説明する。図9(a)は第3の実施形態の温度測定装置の温度測定部を斜め上面から見た斜視図であり、図9(b)は図9(a)の温度測定部の中心を通る切断線C−C´での断面を示した断面図である。なお、第3の実施形態の基本構成は、第1の実施形態と同様であるので、同一要素には同一番号を付して、重複する説明は一部省略する。
【0074】
図9(a)と図9(b)において、温度測定部10は、筐体60と、筐体60の略中心に位置する第1の熱流路体21と、第1の熱流路体21の周囲を囲むように配設される第2の熱流路体26と、第1の感温素子31a、31bと、第2の感温素子32a、32bで構成される。
【0075】
筐体60は、第1の熱流路体21の側面を囲って保持し、また、第2の熱流路体26の内面に接して保持している。筐体60の材質は熱伝導率が低く、成型しやすい硬質ウレタンフォーム、塩ビフォームなどが好ましい。筐体60は円形の枠状であり、筐体60の内部は空気層61による空洞で構成される。なお、筐体60の形状は任意であり、限定されない。
【0076】
第1の熱流路体21は、第1の実施形態と同様に円柱形の熱抵抗体であり、所定の熱伝導率を有しており、図面上の下側が熱流路の入口21aであり、図面上の上側が熱流路の出口21bである。第2の熱流路体26はリング形状に一体化された熱抵抗体であり、第1の熱流路体21を囲むように筐体60によって保持されている。この第2の熱流路体26は、所定の熱伝導率を有しており、図面上の下側が熱流路の入口26aであり、図面上の上側が熱流路の出口26bである。ここで、第1の熱流路体21の厚みD1は、第2の熱流路体26の厚みD2の2倍に設定されている。
【0077】
この構成によって、第1の熱流路体21と第2の熱流路体26は、筐体60で機械的に
分離されており、筐体60による空気層61が2つの熱流路体の間に形成される。この空気層61は熱伝導率が非常に小さいので、第1の熱流路体21と第2の熱流路体26は、空気層61によって熱的に分離される。
【0078】
また、第1の感温素子31aは、第1の熱流路体21の入口21aに接して配設され、第1の感温素子31bは、第1の熱流路体21の出口21bに接して配設される。これにより、第1の感温素子31a、31bは、第1の熱流路体21の入口21aと出口21bで対向する一対の感温素子として配設される。
【0079】
また、第2の感温素子32aは、第2の熱流路体26の入口26aのリング形状の幅方向の略中心に配設され、第2の感温素子32bは、第2の熱流路体26の出口26bに第2の感温素子32aに対向する位置に対となって配設される。これにより、第3の実施形態の第2の感温素子32a、32bは一対しか設けられない。なお、第1の感温素子31a、31bと、第2の感温素子32a、32bは、FPCに実装して配設されるが、FPCの図示は省略している。また、第1の熱流路体21の出口21bの上面には、図示しないが断熱材が配設され、第1の熱流路体21を通過した熱流が外部に拡散しない構造を有している。
【0080】
また、図9(b)の62は、薄いリング形状のアルミなどで成る金属板であり、第2の熱流路体26の出口26bの全体に接して配設している。これにより、金属板62は、第2の熱流路体26及び第2の感温素子32bと熱的に結合し、第2の感温素子32bへ十分に伝熱する機能を有している。なお、図9(a)では金属板62の図示を省略している。
【0081】
また、図9(b)の断熱材13は、第1の実施形態と同様に、筐体60の裏面を支持している。また、筐体60の裏面の略中心に位置する円形状の皮膚接触板14aは、第1の実施形態と同様であり、第1の熱流路体21の入口21a及び第1の感温素子31aに接して熱的に結合している。また、皮膚接触板14fは、第2の熱流路体26の形状に合わせてリング形状であり、第2の熱流路体26の入口26a及び第1の感温素子32aに接して熱的に結合している。なお、図示しないが第3の実施形態においても、温度測定部10の上面と側面等をカバーで覆うことが好ましい。
【0082】
このように、第3の実施形態の温度測定部10の第2の熱流路体26は、リング形状であり、第2の熱流路体26の入口26aに接する皮膚接触板14fもリング形状であって、第2の感温素子32a、32bは一対のみである。従って、第2の熱流路体26の入口26aに配設される第2の感温素子32aが測定する温度がT2となり、第2の熱流路体26の出口26bに配設される第2の感温素子32bが測定する温度がT4となる。なお、温度T1とT3は、第1の実施形態と同様である。
【0083】
この構成によって、第3の実施形態の温度測定装置が深部体温を算出する動作は、第1の実施形態の動作フロー(図7参照)において、ステップST3で第2の感温素子32aによる温度測定のみを行って温度T2を取得し、次のステップST4は不要となる。なお、その他の動作フローは、第1の実施形態と同様である。
【0084】
以上のように、第3の実施形態においては、第2の感温素子を32a、32bの一対に減らしても、皮膚接触板14fをリング状にしたので、温度センサと皮膚との密着状態に関係なく(32aの位置が皮膚から離れても)良好な温度測定ができる。そして、温度測定部10の構造が簡単であると共に、測定の動作フローも簡単であり、簡易型の温度測定装置として提供することが出来る。また、感温素子に対応した熱流路体を独立に配設し、第1の熱流路体と第2熱流路体とを熱伝導率が非常に小さい空気層を有する筐体によって
熱的に分離しているので、熱流路体における平面方向の熱流束が抑えられ、精度良く深部体温の測定を行うことが出来る。
【0085】
また、第2の熱流路体26と皮膚接触板14fは、リング形状であって、温度測定部10の外形に近い大きさであるので、第1及び第2の実施形態と比較して、皮膚接触板14fが被検者の皮膚に良好に接触するには、温度測定部10の裏面を皮膚に均一に接触させる必要がある。しかし、この点を注意すれば、十分な精度で深部体温を測定することが可能である。なお、空気層61を有する筐体60を第2の実施形態と同様な発泡スチロールに置き換えるならば、さらに構造が簡単な温度測定装置を実現することが可能である。
【0086】
本発明に係るその他の実施例として、特許第4310962号公報に開示されているように熱流路体は1つであってもよい。この場合においても、熱流路体とそれを囲む筐体との間は、空気層や真空層や発泡スチロール層が形成されている。また、深部体温の算出には、特許第4310962号公報に開示された算出方法と同様にして行う。
【0087】
なお、本発明の実施形態で示したブロック図やフローチャート等は、これに限定されるものではなく、本発明の要旨を満たすものであれば、任意に変更してよい。
【産業上の利用可能性】
【0088】
本発明の温度測定装置は、手術時における体温管理や血流状態の監視などで重要な深部体温を高精度に測定できるので、被検者に対して常に適切な医療を提供する高精度深部体温計として、さまざまな医療機関で幅広く利用することが出来る。
【符号の説明】
【0089】
1 温度測定装置
2 皮膚
10 温度測定部
11、60 筐体
12、61 空気層
13、102 断熱材
14、14a〜14f 皮膚接触板
15 FPC
21 第1の熱流路体
22〜26 第2の熱流路体
31a、31b 第1の感温素子
32a〜32h 第2の感温素子
50 発泡スチロール
51 凸部
100、150 制御部
110 プリント基板
111 電源
112 AD変換部
113 マイコン
114 演算部
115 メモリ
116 送受信部
120、151 表示部
152 アンテナ
153 ケーブル
P1〜P10 温度信号
P11 温度データ
P12 通信信号
P13 表示信号
Q 熱流
Q1、Q2、Q3 熱流束
V1 電源電圧

【特許請求の範囲】
【請求項1】
熱流路体の入口又は出口の少なくとも一方に感温素子を備えた温度測定装置において、
前記熱流路体を保持する筐体の熱伝導率を前記熱流路体の熱伝導率より小さくしたことを特徴とする温度測定装置。
【請求項2】
前記熱流路体は第1の熱流路体と該第1の熱流路体を囲むように配設する第2の熱流路体によって成り、
前記第1の熱流路体の入口と出口に対向する一対の第1の感温素子を備え、前記第2の熱流路体の入口と出口に対向する一対の第2の感温素子を備えることを特徴とする請求項1に記載の温度測定装置。
【請求項3】
前記第2の熱流路体は複数あり、該複数の第2の熱流路体と前記第1の熱流路体のそれぞれは前記筐体によって熱的に分離していることを特徴とする請求項2に記載の温度測定装置。
【請求項4】
前記第2の熱流路体はリング形状で一体化しており、該第2の熱流路体と前記第1の熱流路体は前記筐体によって熱的に分離していることを特徴とする請求項2に記載の温度測定装置。
【請求項5】
前記筐体は空気層による空洞を有することを特徴とする請求項1から4のいずれか1項に記載の温度測定装置。
【請求項6】
前記筐体は発泡スチロールで構成することを特徴とする請求項1から4のいずれか1項に記載の温度測定装置。
【請求項7】
前記第1及び第2の熱流路体の前記入口は被測定物に接する面であり、該入口に備えられた前記第1及び第2の感温素子は金属材の皮膚接触板と熱的に結合していることを特徴とする請求項1から6のいずれか1項に記載の温度測定装置。
【請求項8】
前記皮膚接触板は、前記第1及び第2の感温素子ごとに独立して配設することを特徴とする請求項7に記載の温度測定装置。
【請求項9】
前記第2の感温素子は複数対あり、該複数対の第2の感温素子のなかで、最も高い温度を測定した感温素子の測定値を、前記第2の感温素子の測定値として採用し、該第2の感温素子の測定値と、前記第1の感温素子の測定値と、前記第1及び第2の熱流路体の熱抵抗比から深部温度を算出することを特徴とする請求項1から8のいずれか1項に記載の温度測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−112767(P2012−112767A)
【公開日】平成24年6月14日(2012.6.14)
【国際特許分類】
【出願番号】特願2010−261265(P2010−261265)
【出願日】平成22年11月24日(2010.11.24)
【出願人】(000001960)シチズンホールディングス株式会社 (1,939)
【Fターム(参考)】