説明

濃度測定装置

【課題】安価で、気体中の検知対象となる成分に対して高速で応答可能な濃度測定装置を提供する。
【解決手段】気体中の検知対象となる成分を検知するセンサを備え、センサが出力する出力値に基づいて成分の濃度を測定する濃度測定装置であって、成分の濃度測定値Cmを、下記(I)式に基づいて、成分の実際の濃度を推定した推定値Ceに変換する濃度補正手段を設けた。
【数1】

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、気体中の検知対象となる成分を検知するセンサを備え、当該センサが出力する出力値に基づいて前記成分の濃度を測定する濃度測定装置に関する。
【背景技術】
【0002】
従来、気体中の検知対象となる成分の濃度を測定する濃度測定装置として、ガスセンサや煙センサを備えたものが知られている。ガスセンサには、接触燃焼式、気体熱伝導式、半導体式、定電位電解式、隔膜ガルバニ電池式等が使用されており、煙センサには、光学式、イオン化式、光電式等が使用されている。
【0003】
このようなセンサでは、検知対象となる成分が接触または接近した際に起こる化学変化や物理変化を検知し、その変化に応じて出力する。このため、従来のセンサを備えた濃度測定装置では、検知対象となる成分を検知してから、前記の変化が平衡に達して実際の濃度を表示する(あるいは、指示する)ようになるまでには時間の遅れが発生する。したがって、一般的な濃度測定装置では、図5に示すように、濃度測定装置の濃度測定値Cmが、実際の濃度Ctに相当する最終濃度測定値の所定割合(図5においては90%、以下90%を例として説明する。)の値となるまでの時間の遅れを90%応答時間TSとし、通常は、この90%応答時間が、濃度測定装置の応答速度として表されることが多い。
【0004】
なお、本発明における従来技術となる濃度測定装置は、一般的な技術であるため、特許文献等の従来技術文献は示さない。
【発明の開示】
【発明が解決しようとする課題】
【0005】
前記従来の濃度測定装置は、図5に示すように、検知対象となる成分の実際の濃度Ctが90%応答時間TSよりも長い時間変動しない場合には、十分な時間が経過した後に、実際の濃度Ctを正しく測定することができる。
【0006】
しかし、例えば、図6及び7に示すように、検知対象となる成分の実際の濃度Ctが90%応答時間TSよりも短い時間で変動する場合には、90%応答時間TS経過後の濃度測定値Cmに基づいて実際の濃度Ctを推定することができなくなる。このため、実際の濃度Ctを正しく測定することができないという問題があった。そして、図7のように、実際の濃度Ctの変動間隔が短くなるほど、測定誤差は大きくなる傾向があった。
【0007】
一方、検知対象の成分を検知してから実際の濃度Ctを示すまでの時間の遅れがほとんどない高速応答センサを備えた濃度測定装置も知られているが、このような濃度測定装置は小型化が困難で、しかも非常に高価であり、汎用性に乏しかった。
【0008】
また、従来のセンサの検知感度を高くする試みもなされているが、この場合では、初期の立ち上がりまでの時間は早くなるものの、その後のセンサの出力値は測定可能範囲を超えてしまうため、実際の濃度Ctを測定することはできなかった。
【0009】
本発明は上記課題に鑑みてなされたものであり、安価で、気体中の検知対象となる成分に対して高速で応答可能な濃度測定装置を提供することを目的とするものである。
【課題を解決するための手段】
【0010】
上記目的を達成するための本発明に係る濃度測定装置の第1特徴構成は、気体中の検知対象となる成分を検知するセンサを備え、当該センサが出力する出力値に基づいて前記成分の濃度を測定する濃度測定装置であって、前記成分の濃度測定値を、下記(I)式に基づいて、前記成分の実際の濃度を推定した推定値に変換する濃度補正手段を設けた点にある。
【0011】
【数1】

【0012】
つまり、この構成によれば、気体中の検知対象となる成分の濃度測定値を、実際の濃度を推定した推定値に変換するため、高速で応答可能となる。よって、この構成により測定誤差を小さくすることができる。また、従来の気体中の検知対象となる成分を検知するセンサを使用することができるため、安価な濃度測定装置とすることができる。
ここで、「x%応答時間」とは、検知対象となる成分の濃度が一定である場合において、検知対象となる成分を検知した時刻から、濃度測定値が、実際の濃度に相当する濃度測定値のx%の値となる時刻までの時間をいう。なお、xは100以下の正の数である。
【0013】
本発明に係る濃度測定装置の第2特徴構成は、前記x%応答時間は、前記x%応答時間と前記x%応答時間における前記センサの出力値との関係を示す検量線を作成し、当該検量線に、前記成分を検知した時点の前記センサの出力値を適用して特定する点にある。
【0014】
従来の濃度測定装置では、使用するセンサの種類により、気体中の検知対象となる成分の濃度が異なるとx%応答時間が変化する場合がある。
そこで、本構成のように、濃度測定時のセンサの出力値に応じたx%応答時間を特定できるようにすることで、測定誤差をより小さくでき、指示精度を確保できる。
【発明を実施するための最良の形態】
【0015】
本発明に係る濃度測定装置は、気体中の検知対象となる成分を検知するセンサを備え、当該センサが出力する出力値に基づいて前記成分の濃度を測定する濃度測定装置であって、前記成分の濃度測定値を、下記(I)式に基づいて、前記成分の実際の濃度を推定した推定値に変換する濃度補正手段を設けたものである。
【0016】
【数2】

【0017】
本発明者らは、濃度測定装置の応答時間の遅れを一次遅れ系でモデル化できることを見出し、検知対象となる成分の濃度測定値Cmと、その時間微分値dCm/dtと、濃度測定装置のx%応答時間TSとにより、前記成分の実際の濃度を推定した推定値Ceを得ることができる上記(I)式を導き出した。
これにより、安価で、気体中の検知対象となる成分に対し、高速で応答可能な濃度測定装置を提供することができる。
【0018】
本発明において使用するセンサは、特に限定されず、接触燃焼式、気体熱伝導式、半導体式、定電位電解式、隔膜ガルバニ電池式等のガスセンサや、光学式、イオン化式、光電式等の煙センサ等を適用することができる。そして、このようなセンサを備えた濃度測定装置によって測定することができる成分は、気体中の成分であれば検知可能であり、特に限定されないが、例えば、可燃性ガス、毒性ガス、酸素、不活性ガス等の気体や、蒸気、煙、浮遊固体等が例示される。
【0019】
また、本発明に係る濃度測定装置は、例えば、成分の濃度を測定する濃度測定器や、成分の濃度が一定以上となった場合に警報を発する警報器、一定濃度以上の成分を検知する検知器等、様々な装置に適用することができる。
【0020】
本発明に係る濃度測定装置の濃度補正手段について、以下に一例を示す。なお、x%応答時間TSは、一般的には使用するセンサの特性として予め決まる値である。
まず、濃度測定装置によって検知対象となる成分の濃度を測定し、その濃度測定値Cmを得る。濃度測定値Cmがノイズを含む場合には、移動平均等の手法や、ハイパス、ローパス、バンドパス等のフィルタリングによりノイズを除去することができる。この際、移動平均、またはフィルタリングの幅は、x%応答時間TSより勘案して最適化すればよい。
【0021】
次に、得られた濃度測定値Cmから、一次あるいは高次の差分法により時間微分値dCm/dtを算出する。微分値dCm/dtがノイズを含む場合には、濃度測定値Cmの場合と同様に、移動平均等の手法や、ハイパス、ローパス、バンドパス等のフィルタリングによりノイズを除去することができ、この際、移動平均、またはフィルタリングの幅は、x%応答時間TSより勘案して最適化する。
【0022】
そして、このようにして得られた濃度測定値Cm及び時間微分値dCm/dtと、x%応答時間TSとを上記(I)式に適用することにより、濃度測定値Cmを、実際の濃度を推定した推定値Ceに変換することができる。
【0023】
本発明に係る濃度測定装置を用いて、水素ガスの濃度を測定した実施例を図1に示した。ここでは、x%応答時間として、90%応答時間が12秒の水素ガスセンサを使用した。また、比較例として、図1には、90%応答時間が12秒の水素ガスセンサを備えた従来の濃度測定装置によって測定した濃度測定値Cmと、高速応答センサを備えた濃度測定装置によって測定した濃度測定値Cf(実際の濃度に近い値)とについても示した。その結果、CmはCfと大きな差異があったのに対し、本発明に係る濃度測定装置により求めた推定値Ceは、Cfと非常に近い値となっており、Ceは実際の濃度を推定していることが確認できた。
このように気体中の検知対象となる成分の濃度が絶えず変動する場合には、従来の濃度測定装置に比べて、本発明に係る濃度測定装置が特に有効であることが分かった。
【0024】
また、本発明に係る濃度測定装置におけるx%応答時間は、検知対象となる成分の初期濃度や、温度、湿度、圧力等の環境等により予め蓄積したデータに基づいて、補正してもよい。
【0025】
例えば、接触燃焼式センサを使用すると、図2に示すように、検知対象となる成分の濃度によってx%(図2においては90%)応答時間TSが異なる場合がある。このような場合には、表1に示すように、予めx%応答時間とx%応答時間におけるセンサの出力値とを蓄積し、図3に示すように、x%応答時間とx%応答時間におけるセンサの出力値の関係を示す検量線を作成する。そして、この検量線に、成分の濃度を測定する際にセンサが出力する出力値を適用することにより、x%応答時間を特定することができる。
【0026】
【表1】

【0027】
また、x%応答時間は短い方が好ましい。すなわち、x%応答時間が短いガスセンサを、本発明に係る濃度測定装置に適用すれば、x%応答時間が極端に短い濃度測定装置を安価に作製することができる。例えば、90%応答時間が2.2秒である接触燃焼式センサを本発明に係る濃度測定値に適用すると90%応答時間が0.6秒となり、このような濃度測定装置によれば、水素ガスの濃度は、図4に示すように、微分項の影響によるノイズ増幅率を最小限に抑えた形で高速で応答可能となる。このように、濃度測定装置の応答速度が速くなれば、爆発等の事故を未然に防止することができる。
【産業上の利用可能性】
【0028】
本発明に係る濃度測定装置は、気体中の成分の濃度測定器、検知器、警報器等の濃度測定機能を有する機器等に適用することができる。
【図面の簡単な説明】
【0029】
【図1】本発明に係る濃度測定装置による水素ガスの濃度測定結果を示すグラフ
【図2】接触燃焼式センサを使用した場合の各濃度におけるx%応答時間を示すグラフ
【図3】センサ出力値とx%応答時間との関係を示すグラフ
【図4】本発明に係る濃度測定装置による水素ガスの濃度測定結果を示すグラフ
【図5】従来の濃度測定装置による測定例を示すグラフ
【図6】従来の濃度測定装置による測定例を示すグラフ
【図7】従来の濃度測定装置による測定例を示すグラフ
【符号の説明】
【0030】
Ce 推定値
Cm 濃度測定値
TS x%応答時間

【特許請求の範囲】
【請求項1】
気体中の検知対象となる成分を検知するセンサを備え、当該センサが出力する出力値に基づいて前記成分の濃度を測定する濃度測定装置であって、
前記成分の濃度測定値を、下記(I)式に基づいて、前記成分の実際の濃度を推定した推定値に変換する濃度補正手段を設けた濃度測定装置。
【数1】

【請求項2】
前記x%応答時間は、前記x%応答時間と前記x%応答時間における前記センサの出力値との関係を示す検量線を作成し、当該検量線に、前記成分を検知した時点の前記センサの出力値を適用して特定する請求項1に記載の濃度測定装置。

【図2】
image rotate

【図3】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図1】
image rotate

【図4】
image rotate