説明

無線周波数撮像を用いる心臓内の特徴の位置特定

診断装置(20)は、無線周波数(RF)電磁波を生体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるように構成されている、アンテナ32を含む。処理回路(36)は、身体内の血管中の特徴の位置を特定するために、信号を処理するように構成されている。一実施形態において、診断装置は、無線周波数(RF)電磁波を身体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるように、生体の外側表面に接触させられるように構成されている正面表面を有するアンテナと、身体の外側表面とアンテナの正面表面との間に拡散されるように適合されている誘電ゲルと、身体内の特徴の位置を特定するために、信号を処理するように構成されている処理回路とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の引用)
本願は、米国特許出願第12/127,544号(2008年5月27日出願)の一部継続出願であり、該出願は、本願の譲受人に譲渡されており、その開示は、参照により引用される。
【0002】
(発明の分野)
本発明は、概して、医療診断撮像の方法およびシステムに関し、具体的には、無線周波数(RF)ベースの撮像に関する。
【背景技術】
【0003】
アテローム性動脈硬化症による冠動脈の狭窄は、一般に、動脈の開存を保持するために、カテーテルを使用して、ステントの埋込によって、治療される。しかしながら、大部分の場合において、治療された動脈は、ステント内再狭窄のため、再び閉鎖し、さらなる治療を必要とする。そのような再狭窄の正確な査定は、概して、再カテーテル挿入を要求する。電磁波送信機を使用して、ステントを励起し、音響センサが、ステント音響振動を検出する、特許文献1におけるように、いくつかの非侵襲的技法が提案されている。
【0004】
RF撮像は、レーダシステムの関連において、最も良く知られているが、RF診断撮像システムも、医療用途のためにも開発されている。例えば、特許文献2(その開示は、参照することによって本明細書に組み込まれる)は、生体組織の画像を生成するために使用され得る、レーダを使用したコンピューター断層撮影法について説明している。別の実施例として、特許文献3(その開示は、参照することによって本明細書に組み込まれる)は、乳房腫瘍検出のための組織感知適応レーダ撮像について説明している。
【0005】
種々のアンテナ設計が、身体組織のRF撮像のために提案されている。例えば、特許文献4(その開示は、参照することによって本明細書に組み込まれる)は、相対的誘電特性における差異に従って、ヒトの乳房のもの等、生体組織内の初期腫瘍を検出するためのシステム内で使用するためのマイクロ波アンテナについて説明している。複合マルタ十字架またはボウタイ型アンテナ構造は、生体組織に照射し、後方散乱または他の散乱戻りを収集するために採用される。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第6,729,336号明細書
【特許文献2】米国特許出願公開第2008/0169961号明細書
【特許文献3】米国特許第7,454,242号明細書
【特許文献4】米国特許第6,061,589号明細書
【発明の概要】
【課題を解決するための手段】
【0007】
本明細書に後述される本発明の実施形態は、RF撮像技法を使用して、生体内側の特徴を検出するための改良されたデバイスおよび方法を提供する。これらの実施形態のうちのいくつかは、具体的には、心臓内、具体的には、冠動脈内の特徴の検出を対象とするが、これらの実施形態の原理は、同様に、身体内のいずれかの場所における特徴の撮像、検出、および追跡に適用され得る。
【0008】
したがって、本発明の実施形態よると、無線周波数(RF)電磁波を生体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるように構成されている、アンテナを含む、診断装置が提供される。処理回路は、身体内の血管中の特徴の位置を特定するために、信号を処理するように構成されている。
【0009】
開示される実施形態では、装置は、超音波変換器を含み、処理回路は、超音波変換器を誘導し、超音波ビームを特徴に方向づけるように構成されている。一実施形態では、処理回路によって位置を特定される特徴は、ステントを含み、超音波変換器は、ステントを通る血流に応答して、ドップラ信号を発生させるように構成されている。
【0010】
加えて、または代替として、装置は、アンテナおよび超音波変換器のそれぞれの座標を追跡するように構成されている、追跡ユニットを含み、処理回路は、それぞれの座標に応答して、超音波変換器を誘導するように構成されている。装置は、典型的には、それぞれ、超音波変換器およびアンテナに固定された位置変換器を含み、追跡ユニットは、位置変換器と追跡システムとの間で交換される位置信号に応答して、それぞれの座標を追跡するように構成されている。
【0011】
さらに加えて、または代替として、装置は、ディスプレイを含み、処理回路は、ディスプレイを駆動し、超音波変換器のオペレータに、超音波変換器が照準されるべき方向の指標を提示することによって、超音波変換器を誘導するように構成されている。
【0012】
開示される実施形態では、血管は、冠動脈である。処理回路は、心臓の複数のサイクルにわたって、特徴の循環運動を追跡するように構成され得る。
【0013】
典型的には、処理回路は、周囲組織に対する特徴の誘電率における差異に応答して、特徴の位置を特定するように構成されている。
【0014】
また、本発明の実施形態よると、無線周波数(RF)電磁波を身体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるように、生体の外側表面に接触させられるように構成されている正面表面を有する、アンテナを含む、診断装置が提供される。誘電ゲルは、身体の外側表面とアンテナの正面表面との間に拡散されるように適合される。処理回路は、身体内の特徴の位置を特定するために、信号を処理するように構成されている。
【0015】
典型的には、身体は、第1の誘電率を有し、ゲルは、第1の誘電率と整合するように選択された第2の誘電率を有する。開示される実施形態では、ゲルは、30から75である、誘電率を有する。ゲルは、接着性であり得る。
【0016】
一実施形態では、ゲルは、水系であり、アルコール、塩、砂糖、およびグリセリンから成る添加剤の群から選択される、添加剤を含む。代替として、ゲルは、シリコーンと、70超の誘電率を有する添加剤とを含む。
【0017】
加えて、本発明の実施形態よると、正面表面を有し、正面表面から、生体中に、無線周波数(RF)電磁波を方向づけ、身体内から散乱される波に応答して、信号を発生させるように構成されたアンテナであって、アンテナは、アンテナ要素のアレイを含み、各アンテナ要素は、アンテナの正面表面における平面要素と、平面要素の背後における空洞とを含む、アンテナを含む、診断装置が提供される。処理回路は、身体内の特徴の位置を特定するために、信号を処理するように構成されている。
【0018】
開示される実施形態では、アンテナの正面表面は、印刷回路基板を含み、各アンテナ要素の平面要素は、印刷回路基板上に印刷された伝導性放射体を含む。印刷回路基板は、アンテナ要素を互から絶縁するために、放射体を囲む複数の伝導性ビアを含み得る。
【0019】
さらに、本発明の実施形態よると、無線周波数(RF)電磁波を生体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるように構成されている、アンテナ要素のアレイを含むアンテナを含む、診断装置が提供される。励起回路は、所定の時間的パターンに従って、アレイから選択された異なる送信アンテナ要素に、複数の異なる周波数におけるRF励起波形を印加するように結合される。処理回路は、アレイから選択された異なる受信アンテナ要素から、信号を受信し、異なる送信および受信アンテナ要素に起因する異なる周波数における信号を処理し、身体内の特徴の位置を特定するように結合される。
【0020】
いくつかの実施形態では、励起回路は、可変周波数を有するRF励起波形を発生させるように構成されているドライバ回路と、各セットが、少なくとも1つの送信アンテナ要素と、1つの受信アンテナ要素とを含む、アンテナ要素のセットを交替に選択し、各選択されたセットに対して、ドライバ回路を結合し、選択された周波数において、少なくとも1つの送信アンテナ要素を励起させる一方、処理回路を結合し、少なくとも1つの受信アンテナ要素から、信号を受信するように構成されている、切替マトリクスとを含む。開示される実施形態では、ドライバ回路および切替マトリクスは、所定の時間的パターンに従って、対の1つの送信アンテナ要素および1つの受信アンテナ要素を選択し、複数の周波数のそれぞれにおいて、各対における送信アンテナを励起させるように結合される。
【0021】
いくつかの実施形態では、装置は、処理回路が、信号を受信する前に、送信アンテナ要素と受信アンテナ要素との間の直接結合から生じる、信号の背景成分を相殺するように構成されている、信号調整ユニットを含む。信号調整ユニットは、ドライバ回路から、RF励起波形を受信し、受信した波形の位相および振幅を修正し、背景成分を相殺するために、背景成分と整合する逆位相信号を発生させ、逆位相信号を少なくとも1つの受信アンテナ要素から受信した信号に追加するように結合されている、振幅および位相変調器を含み得る。
【0022】
開示される実施形態では、処理回路は、異なる送信および受信アンテナ要素に起因する異なる周波数において受信した信号を3次元(3D)画像に変換し、特徴の場所を見つけるために、3D画像を処理するように構成されている。一実施形態では、処理回路は、3D画像内の複数のボクセルに対して提供されるそれぞれの重みを使用して、異なる送信および受信アンテナ要素による異なる周波数において受信した信号の加重和を算出し、3D画像内のボクセルの値を決定するように構成されている。
【0023】
さらに、本発明の実施形態よると、無線周波数(RF)電磁波を生体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるステップを含む、診断の方法が提供される。信号は、身体内の血管中の特徴の位置を特定するように処理される。
【0024】
さらに、本発明の実施形態よると、生体の外側表面とアンテナの正面表面との間に誘電ゲルを拡散させるステップを含む、診断の方法が提供される。アンテナの正面表面は、無線周波数(RF)電磁波を身体中に方向づけ、身体内から散乱される波に応答して、アンテナにおいて信号を発生するように、誘電ゲルを介して、生体の外側表面と接触させられる。信号は、身体内の特徴の位置を特定するように処理される。
【0025】
また、本発明の実施形態よると、正面表面を有し、アンテナ要素のアレイを含み、各アンテナ要素は、アンテナの正面表面における平面要素と、平面要素の背後における空洞とを含む、アンテナを提供するステップを含む、診断の方法が提供される。無線周波数(RF)電磁波は、アンテナ要素から、アンテナの正面表面を介して、生体中に方向づけられ、アンテナ要素を使用して、身体内から散乱される波に応答して、信号を発生させる。信号は、身体内の特徴の位置を特定するように処理される。
【0026】
加えて、本発明の実施形態よると、アンテナ要素のアレイに関連付けられた複数の異なる周波数および空間チャネルのシーケンスを指定する時間的パターンを規定するステップを含む、診断の方法が提供される。無線周波数(RF)電磁波は、時間的パターンに従って、アレイから選択された複数の異なる送信アンテナ要素から、複数の異なる周波数において、生体中に方向づけられる。信号は、身体内から散乱される波に応答して、発生され、時間的パターンに従って、アレイから選択された複数の異なる受信アンテナ要素において受信される。異なる周波数における異なる受信アンテナ要素からの信号は、身体内の特徴の位置を特定するために処理される。
【0027】
本発明は、図面と併せて、その実施形態の以下の発明を実施するための形態からより完全に理解されるであろう。
【図面の簡単な説明】
【0028】
【図1】図1は、本発明の実施形態よる、人体内の特徴の追跡および査定のためのシステムの概略図解例証である。
【図2】図2は、本発明の実施形態よる、人体内の特徴の追跡および査定のためのシステムの要素を図式的に示す、ブロック図である。
【図3】図3は、本発明の実施形態よる、アンテナアレイの概略図解例証である。
【図4】図4は、本発明の実施形態よる、アンテナ要素の概略分解図である。
【図5】図5は、本発明の実施形態よる、特徴検出サブシステムを図式的に例証する、ブロック図である。
【図6】図6は、本発明の実施形態よる、アンテナアレイに印加される励起パターンを図式的に例証する、タイミング図である。
【図7】図7は、本発明の実施形態よる、ステントを通る血流を測定するための方法を図式的に例証する、流れ図である。
【発明を実施するための形態】
【0029】
(概要)
本明細書に後述される本発明の実施形態は、レーダ撮像技法を使用して、身体内の特徴を識別し、場所を特定する。したがって、特徴は、周囲組織の誘電率に対する、その複合誘電率における差異に基づいて(透過性および伝導性の両方を参照して)、識別される。これらの技法は、特に、身体内の金属物体を検出および追跡する際に有用であるが、また、プラスチック物体等の導入された物体、および石灰化等の自然発生特徴、さらに空気または他の気体のポケット等、他の種類の特徴の場所を特定するために使用され得る。したがって、用語「特徴」は、本特許用途の関連および請求項において使用される場合、別個の誘電率を有する任意の単位体または身体内の場所を指すものと理解されたい。
【0030】
本発明のいくつかの実施形態は、心臓、特に、冠状血管内の特徴の場所を特定することを対象とする。これらの実施形態では、アンテナは、RF電磁波を心臓に向かって方向づけ、身体内から散乱される波を受信する。処理回路は、着目特徴または複数の特徴の位置を特定し、かつ可能性として、心臓サイクルの過程にわたって、そのような特徴の運動を追跡するために、受信した波に起因するアンテナによって発生された信号を処理する。
【0031】
特徴のレーダベースの場所は、超音波変換器のビームを特徴に向かって誘導する際に使用され得る。1つのそのような実施形態では、アンテナおよび処理回路は、動脈内のステントの場所を見つけ、超音波変換器を誘導し、そのビームをステントに向かって方向づける。超音波変換器は、ステントを通る血流を測定し、したがって、非侵襲的に、ステント内の可能性のある再狭窄を査定するために、ドップラモードで動作し得る。
【0032】
本明細書に後述される実施形態では、アンテナは、患者の身体の外側表面(すなわち、皮膚)と接触される、正面表面を有するアンテナ要素のアレイを備えている。誘電ゲルは、誘電率を整合させ、したがって、身体中へのRF波の透過を改善するために、身体表面とアンテナの正面表面との間に拡散され得る。加えて、または代替として、アンテナ要素は、空洞と、可能性として、アンテナ要素から身体中への電磁エネルギーの結合の効率を向上させつつ、要素間の損失およびクロストークを低減させるための他の特徴とを備え得る。
【0033】
開示される実施形態では、励起回路は、複数の異なる周波数におけるRF励起波形をアレイ内の異なる送信アンテナ要素に印加する。一方、処理回路は、異なる受信アンテナ要素から信号を受信する。送信および受信アンテナの選択ならびに励起周波数の選択は、アンテナ要素に接続される切替マトリクスによって実装され得る、所定の時間的パターンに従う。
【0034】
本励起および受信方式の結果、処理回路は、各チャネルに対して、複数の異なる周波数において、複数の空間チャネル(異なる対のアンテナに対応する)から、信号を受信し、処理する。時間領域内で統合されると、これらの多重周波数信号は、RFエネルギーの短パルスに匹敵する。身体の内部の3次元(3D)画像を再構築し、特徴または複数の特徴の場所を見つけるために、処理回路は、受信した信号のセットに空間変換を適用する。変換は、例えば、逆球面ラドン変換またはそのような変換の代数近似を備え得る。
【0035】
アレイ内のアンテナ要素間の結合を低減させるために講じられる措置にも関わらず、本種類の直接結合は、依然として、身体から散乱された波による信号をマスクする傾向にある、強力な背景成分を発生させる(用語「直接結合」は、本特許出願の関連および請求項において使用される場合、アレイ内で生じる結合および近接場反射等、患者の身体内の着目領域を通して以外の経路による、アンテナ要素間のRF波の短距離通過を指す)。本マスキングを低減させ、信号動的範囲を向上させるために、いくつかの実施形態では、信号調整ユニットを使用して、処理回路にパスされる信号から背景成分を適応的に相殺する。心臓内の特徴等の可動特徴の可視性を改善するために、信号調整ユニットまたは処理回路の別の要素はさらに、経時的に変動しない信号のすべての部分を相殺するように構成され得る。
【0036】
(システム説明)
図1は、本発明の実施形態よる、患者26の身体内の特徴の追跡および査定のためのシステム20の概略図解例証である。本実施形態では、医師等のオペレータ22が、超音波変換器24から、患者26の胸部に超音波ビームを方向づける。変換器24を含むプローブは、当技術分野において知られているように、患者の冠動脈を通る、具体的には、患者の冠動脈のうちの1つ内に埋め込まれるステント(図示せず)を通る、血流の速度を測定するために、ドップラモードで動作する。コンソール28は、変換器24を駆動し、ドップラ情報を抽出し、モニタ30上に結果を表示するために、変換器によって出力される信号を処理する。オペレータは、以下に詳細に説明されるように、システム20からのガイダンスの下、ステントの場所に向かって、プロープを操向する。
【0037】
これらの状況下、超音波プローブを正確に照準することは、困難である。すなわち、ステントは、小さく、典型的には、他の解剖学的特徴のため、超音波画像内では、散乱して埋め込まれ、心臓のステントおよび周囲特徴は、連続運動にある。したがって、システム20は、ステントの場所を見つけ、オペレータ22を誘導するために、レーダ撮像を使用する。本目的のために、アンテナ32は、RF波を患者の胸部に方向づける。良好な誘電整合のため、身体中へのRF波の透過を向上させるための誘電ゲル33の層が、アンテナの正面表面と患者の皮膚との間に拡散される。ゲルはまた、手技の際、アンテナを定位置に保持するのを補助するために、接着性を有し得る。
【0038】
典型的には、ゲル33は、30から75の誘電率を有する。本値は、その近接場において、アンテナの効果的誘電率を規定する。それは、身体内の標的領域への経路内の組織層の有効誘電率に近似するように選択される。所望の誘電率は、ゲル内のある添加剤の濃度を増加または減少させることによって、達成され得る。例えば、水系ゲルが使用される場合、添加剤は、アルコール(エタノール等)、塩、砂糖、またはグリセリンであり得る。代替として、シリコーンゲルは、概して、70超の誘電率を有する、バリウム等の添加剤と共に使用され得る。
【0039】
アンテナ32は、ケーブルまたは無線リンクによって、レーダ制御ユニット34に結合される。制御ユニットは、アンテナを駆動し、RF波を身体中に放出し、身体から散乱された波の受信のため、アンテナによって発生された信号を処理する、処理回路36を備えている。受信した信号に基づいて、回路36は、身体の内部の3Dレーダ画像を形成し、具体的には、本実施形態では、ステントの場所を見つける。回路36のこれらの機能は、以下に詳細に説明される。
【0040】
超音波変換器24の方向を誘導するために、変換器およびアンテナ32の位置座標(場所および配向)は、共通座標フレームにおいて登録される。本目的のために、システム20は、それぞれ、アンテナ上および超音波変換器上のセンサ40およびセンサ42によって検出される、場を発生させる、追跡送信機38を備えている、追跡サブシステムを含む。送信機38は、例えば、磁場を発生させ、センサ40および42は、Ascension Technology Corporation(Milton、Vermont)製trakSTARTMシステムにおけるような磁気センサであり得る。代替として、センサ40および42は、固定センサによって検出される場を発生させる送信要素と置換され得る。
【0041】
さらに代替として、当技術分野において知られるように、光学、超音波、または機械的位置感知デバイス等、他の種類の追跡デバイスが使用され得る。一般化のため、用語「位置変換器」は、本明細書では、位置感知技術の具体的選択に関わらず、その座標を見つける目的のために、センサ40および42等の超音波変換器24およびアンテナ32に取り付けられる要素を指す。加えて、または代替として、超音波変換器24およびアンテナ32は、共通基準フレーム内に機械的に固定され得る。種々の代替構成が、前述の米国特許出願第12/127,544号に説明されており、同様に、システム20の要素と使用され得る。
【0042】
図1に示されるシステム構成では、センサ40および42は、処理回路36に信号を出力する。処理回路は、信号を処理し、センサ、ひいては、共通座標フレームにおけるアンテナ32および変換器42の場所および配向座標を見つける。これらの座標に基づいて、処理回路36は、変換器24によって形成される超音波画像を、アンテナ32によって形成されるレーダ画像と位置合わせする。処理回路は、レーダ画像内でステントの場所を見つけ、また、その配向を予想し得る。これに基づいて、回路は、超音波信号内のドップラ成分を最大限にするために、オペレータ22を誘導し、ステント軸に沿って、すなわち、血流の方向に沿って、変換器24をステントに向かって照準させる。本目的のために、処理回路は、オペレータに、どのように超音波変換器を標的に向かって照準させるかを示す、ガイダンスディスプレイ44を駆動させる。
【0043】
代替実施形態(図示せず)では、超音波変換器24は、処理回路によって、自動的に誘導され、変換器を所望の方向に照準させる、ロボットアームによって保持および操作され得る。
【0044】
図1は、特定の種類のアンテナおよびアンテナを患者の身体に結合するモードを示すが、他のアンテナの種類および構成もまた、本明細書に説明される目的のために使用され得る。例えば、アンテナは、患者の背中の下方のクッション、患者の身体に適合する装着式要素、または任意の他の好適な搭載部内に搭載され得る。本種類のいくつかの代替構成は、前述の米国特許出願第12/127,544号に示される。
【0045】
図2は、本発明の実施形態よる、システム20、特に、処理回路36の重要要素を図式的に示す、ブロック図である。これらの要素のうちのいくつかは、以下にさらに詳細に説明される。アンテナ32は、特徴検出サブシステム50によって駆動され、そこに信号を出力する。アンテナは、典型的には、サブシステム50のフロントエンド52内の切替マトリクス54に接続される、アンテナ要素48のアレイを備えている。切替マトリクスは、所定の時間的パターンで、異なるそれぞれの時間および周波数において信号を送信および受信するために、アンテナの異なるセットを選択する。典型的には、セットは、対のアンテナ(1つは、送信、1つは、受信)を備えているが、他の群もまた、使用され得る。アンテナ制御のパターンは、以下に詳細に説明される。
【0046】
ドライバ回路58は、送信アンテナを励起するために、複数の異なる周波数において、信号を発生させ、かつ、受信アンテナによって受信した信号を復調する。典型的には、信号は、約400MHzから約4GHzの範囲内であるが、本範囲外のより高いおよびより低い周波数もまた、使用され得る。ドライバ回路と切替マトリクス54との間の信号調整ユニット56は、発信および着信信号を増幅させ、また、受信した信号内の背景成分を相殺する。本機能性もまた、後述される。
【0047】
フロントエンド52は、復調された受信信号(中間周波数またはベースバンド信号として)を、信号をサンプリングし、デジタル化する、デジタルデータ取得ユニット60に出力する。ユニット60は、典型的には、当技術分野において知られるように、好適なサンプリング回路を伴う、14ビットコンバータ等の高分解能アナログ/デジタルコンバータを備えている。
【0048】
標的検出、測定、および追跡ユニット62は、デジタルサンプルを受信および処理する。ユニット62は、以下に詳細に説明されるように、患者26の胸部の内部の3Dレーダ画像を生成するために、サンプリングされた信号を処理する。本画像内では、冠動脈内の金属ステント等、周囲組織のものと異なる誘電率を有する要素は、目立って表される。これに基づいて、ユニット62は、アンテナ32に対して、ステントの場所の座標を識別および測定する。
【0049】
心臓は、一定運動にあるため、ユニット62はまた、超音波変換器24をより精密に誘導するために、ステントの運動を追跡およびモデル化し得る。心臓サイクル中のステントの運動の方向も、ステント軸の方向の指標(それに沿って、超音波変換器が照準されるべき)を与える。すなわち、ステントの軸は、ステントが埋め込まれた冠動脈に沿って配向され、冠動脈は、心臓壁に沿って走るため、ステント軸は、典型的には、心臓壁の運動の方向、ひいては、レーダ画像内のステントの運動の軸に垂直となるであろう。前述のように、オペレータ22は、ステント軸に沿った、または少なくとも近接した方向に、超音波変換器24をステントに向かって照準するように誘導される。
【0050】
本実施形態は、具体的には、ステントの識別および追跡に関するが、本明細書に説明される技法および回路は、石灰化等の冠状血管内の他の特徴、ならびに身体内のいずれかの場所における特徴の位置を特定および追跡する際、同様に、使用され得る。
【0051】
追跡ユニット64は、追跡送信機38と通信し、位置センサ40および42から、位置信号を受信する。追跡ユニットは、送信機38の基準フレームにおける超音波変換器24およびアンテナ32の座標を算出するために、これらの信号を処理する。追跡ユニットは、前述のFASTRAKシステム等の市販のデバイスであり得る。
【0052】
ガイダンスプロセッサ66は、追跡ユニット64から、位置(場所および配向)座標と、特徴検出サブシステム50から、ステントの位置座標とを受信する。ガイダンスプロセッサ66は、ステント座標が見つけられた、追跡ユニットの座標フレームにおけるステントの座標を登録し、または同等に、アンテナ32の座標フレームにおける超音波変換器24の座標を登録する。次いで、ガイダンスプロセッサは、超音波変換器の本視認軸と、ステント軸に沿って(または、近接して)ステントを切り取る所望の視認軸との間の幾何学スキューおよびオフセットを算出可能である。算出されたスキューおよびオフセットに基づいて、ガイダンスプロセッサは、ガイダンスディスプレイ44を駆動し、オペレータ22に要求される補正を示し得る。本目的のために、ガイダンスディスプレイは、例えば、標的照準線および方向矢印、または任意の他の好適な種類の方向指標を示し得る。代替として、コンソール28は、ドップラ速度示度値を調節する際、算出されたスキューを使用して、流動に対して、測定の角度を考慮し得る。
【0053】
処理回路36は、典型的には、専用ハードウェア回路(フロントエンド52およびデジタルデータ取得ユニット60等における)およびプログラム可能構成要素の組み合わせを備えている。フロントエンド回路は、以下に詳細に説明される。標的検出、測定、および追跡ユニット62ならびにガイダンスプロセッサ66は、典型的には、本明細書に説明される機能を実行するために、ソフトウェアにおいてプログラムされる、汎用マイクロプロセッサまたはデジタル信号プロセッサ等、プログラム可能プロセッサを備えている。代替として、または加えて、回路36のこれらの要素は、特定用途向け集積回路回路(ASIC)またはフィールドプログラマブルゲートアレイ(FPGA)等、専用またはプログラム可能デジタル論理ユニットを備え得る。ユニット62および64ならびにプロセッサ66は、概念上の明確性のために、別個の機能ブロックとして、示されるが、実際は、これらの異なるブロックの機能のうちの少なくともいくつかは、単一プロセッサによって、実行され得る。代替として、所与のブロックの機能は、2つ以上の別個のプロセッサ間で分割され得る。
【0054】
(アンテナ設計および動作)
図3は、本発明の実施形態よる、アンテナ32の概略図解例証である。アンテナ32は、アンテナ要素48のアレイを備えている、平面超広帯域単方向性アンテナである。アンテナは、高誘電率環境のために設計され、最小損失を伴って、人体へおよびそこから、超広帯域信号の伝送および受信を可能にする。図示される実施形態では、アンテナは、長方形平面内に拡散され、画像のデカルト取得を可能にする、12のアンテナ要素48を備えている。代替として、アンテナは、長方形または非長方形アレイ内に、より多いまたはより少ない数のアンテナ要素を備え得る。
【0055】
各アンテナ要素48は、回路基板72上に印刷される、伝導性放射体70を備えている平面要素を備えている。本回路基板は、患者の身体と接触させられるアンテナの正面表面としての役割を果たす。回路基板72は、アンテナ要素48を互から絶縁するために、各放射体70を囲む、複数の伝導性ビア74を備えている。アンテナ要素は、ケース76によって、背後から封入される。
【0056】
図4は、本発明の実施形態よる、アンテナ要素48のうちの1つの概略分解図である。各アンテナ要素は、その中心給電点において、電気的に励起される、楕円形状のスロット付きアンテナとして、構築される。回路基板72は、放射体70と接地板80とを含む構成要素(正面)側を伴う、FR4ラミネート等の誘電基板を備えている。放射体形状は、楕円テンプレートによって、ボアサイトにおいて、高アンテナ利得および平坦性を伴う、電圧定在波比(VSWR)を維持するように最適化される。本平坦性は、一定アンテナ利得によって、患者の身体内の着目領域(ROI)全体を良好に覆うことを保証する。
【0057】
基板72の印刷(裏面)側は、伝導性ビアを通して、放射体70の中心点に給電する、励起伝送線82を含む。伝送線82は、フロントエンド50に接続するための極細同軸(MMCX)コネクタ(図示せず)を伴う、50オームマイクロストリップを備えている。代替として、他の種類の放射体形状および給電線が使用され得る。
【0058】
伝導性空洞84は、バックローブ散乱からのアンテナ残響を低減させ、全体的利得を増加させるために、各放射体70の背後の基板72の構成要素側に取り付けられる(図4に示されるアンテナ要素48は、ボアサイトにおいて、7dBiの名目利得を有する)。空洞84は、導波路内の最低伝搬モード(TE10)のカットオフ周波数が、アンテナ32の上限帯域周波数より高く、すなわち、
【0059】
【化1】

であるように設計された寸法を伴う、中空導波路86を備え、式中、Cは、光の速度であり、εは、導波路の内部の絶対誘電率であり、aは、導波路の最大横方向寸法である。本実施例では、周波数限界4GHzでは、導波路86の深度は、15mmである。導波路は、虚数特性インピーダンスを生成し、放射体70からのバックローブ放射を、バックローブ波と同相で、空洞から反射させる。本反射は、アンテナの外部バッファリングを向上し、非TEおよびTMモードを減衰させ、したがって、干渉および雑音を低減させる。
【0060】
アンテナ要素48間の交差結合は、動的範囲を低減させる干渉を生じさせ、かつ受信機回路を飽和させ得る。本交差結合は、アレイ内のアンテナ要素間の距離を適切に設定し、前述のように、伝導性ビア74によって、放射体70を囲むことによって、アンテナ32内で低減される。ビアは、内部波が要素間を進行するのを防止する、電気壁としての役割を果たす。それは、また、基板72の構成要素側の接地板80と、印刷側に位置する導波路86の上部伝導性横方向平面との間の伝導性の連続性を生成する。
【0061】
アンテナ32は、液体およびゲルに対して密閉され、したがって、望ましくない材料が、アンテナ要素の印刷側および空洞に到達するのを防止する。空洞84を含む、ケース76は、好適な伝導性コーティングを伴う、成形プラスチックから構築することができる。加えて、または代替として、アンテナ要素は、コーティング後、成形プラスチック上に印刷され得る。切替マトリクス54が、処理回路36の一部として、本明細書に図示および説明されるが、代替として、アンテナ32内に組み込まれるか、またはアンテナに隣接して搭載され、それによって、患者のそばで切替を行い、アンテナから制御ユニット34へのケーブルの重量および剛性を低減させ得る。
【0062】
アンテナ32は、本明細書では、アンテナ要素48を含む、一体型アセンブリとして示されるが、アンテナ要素(図4に示されるものと類似設計)は、代替として、単独として、あるいは異なる身体場所に取り付けることができる、2つまたは複数の要素パネルとして、使用され得る。複数の位置センサは、アンテナ要素のそれぞれの位置を算出および登録するために使用されることができる。そのような実施形態では、システム20は、身体の着目領域から反射された波と、領域を透過し、標的によって散乱された波との両方を測定および分析するように構成され得る。
【0063】
(信号切替および処理)
図5は、本発明の実施形態よる、特徴検出サブシステム50の詳細を図式的に示す、ブロック図である。前述のように、切替マトリクス54は、アンテナ要素48をフロントエンド52の他の回路に接続する。各アンテナ要素は、スイッチが、任意の所与の時間において、波を送信すべきか受信すべきかを決定する、それぞれの単極/双投(SPDT)スイッチ90に接続する。送信アンテナ要素は、送信スイッチ92によって、複数のアンテナ要素から選択される一方、受信アンテナ要素は、受信スイッチ94によって、選択される。したがって、切替マトリクスは、任意の対のアンテナ要素が、任意の所与の時間において、送信機および受信機として選択されることを可能にする。
【0064】
切替マトリクス54は、チャネル間の高絶縁、典型的には、アンテナ32の周波数範囲全体にわって、40dB超のために設計される。スイッチ90、92、および94は、デジタル出力制御モジュール104によって、デジタル的に制御され、高速(非機械的)切替を可能にする。本高速切替は、本明細書に後述されるように、異なるアンテナ対および周波数の波形シーケンス全体が、短フレーム時間内で完了されるために必要とされる。本目的のために、マトリクス54は、典型的には、1μs未満の切替時間を達成するように構成されている。
【0065】
ドライバ回路58は、RF励起波形を発生させ、送信アンテナ要素を駆動させる、広帯域信号発生器98と、受信アンテナ要素によって発生された信号を受信および復調する、受信機114とを備えている。信号発生器98および受信機114は両方とも、同期され、共有局部発振器96に基づいて、図6に示される、所定の周波数計画に従って、その周波数を掃引する。周波数計画は、外部トリガと同期して、信号発生器によって発生される、周波数および電力レベルを指定する。信号発生器98から、信号調整ユニット56に入射する駆動波形は、広帯域結合器100によって、サンプリングされ、要求される送信電力レベルに従って、電力増幅器102によって、増幅され、切替マトリクス54に転送される。
【0066】
受信機114は、受信した信号に従って、その帯域幅および利得を調節可能である、同調されたスーパーヘテロダイン受信機である。受信機は、信号の振幅および位相の両方を抽出するために、局部発振器96と同期して、受信した信号をコヒーレントに復調する。各選択された周波数において、各アンテナ対に対して、検出、測定、および追跡ユニット62によって測定される、送信信号と受信信号との間の複素数比は、着目領域を通る対応する経路に沿った周波数応答を示す。本領域は、胸部、胸腔、心臓の鼓動、およびステント自体を含む。
【0067】
アンテナ32内の異なるアンテナ要素48間の結合を低減させるための前述の手段に関わらず、信号調整ユニット56によって、アンテナ32から受信した信号は、依然として、送信と受信アンテナ要素との間の直接結合により、強力な背景成分を含み得る。本背景成分は、送信機非線形性および送信された信号内の不純物によって、雑音レベルを上昇させ、さらに、受信機114を飽和させ得る。したがって、レーダ画像の動的範囲を向上させるために、受信機に到達する背景成分のレベルを低減させることが望ましい。
【0068】
本目的のために、信号調整ユニット56は、結合器100から、サンプリングされたRF励起波形を受信する、本明細書では、IQ変調器108と称される、振幅および位相変調器を備えている。IQ変調器は、相殺されるべき、背景成分と整合する逆位相信号を発生させるように、アナログ出力制御モジュール110の制御下、サンプリングされた信号の位相および振幅を修正する。次いで、IQ変調器108の振幅および位相値は、定期的に更新され、結合値が、大幅に変化し、更新する必要があるまで、周波数およびチャネルあたりの定数が維持される。言い換えると、IQ変調器108は、背景成分と振幅が等しいが、180°位相がずれた信号を出力する。結合器106は、本逆位相信号を切替マトリクス54から受信した信号に追加し、したがって、身体からの実際のレーダ信号を劣化させることなく、背景成分を相殺する。増幅器112は、受信機114への入力のために、背景相殺後、信号を増幅する。
【0069】
図6は、本発明の実施形態よる、フロントエンド52が、アンテナ32に印加する、時間的励起パターンを図式的に例証する、タイミング図である。フロントエンドは、フレーム120のシーケンスを発生させる。レーダ測定がトリガされるたび(例えば、1秒あたり10回)、フレームは、周波数において、および空間チャネル(アンテナ対)にわたって、その両方で励起信号の掃引を規定する。各フレーム120は、画像再構築において使用される周波数の数に従って、複数の周波数サブフレーム122を備えている。図6に示される実施例では、128個のそのようなサブフレームが存在し、それぞれ、750μs続く。周波数は、本実施例では、前述のように、400MHzから4GHzの範囲に及ぶ。
【0070】
各サブフレーム122は、信号発生器98の振幅および位相をロックするための整定時間126(典型的には、数百ミリ秒)を伴って開始する。本初期遅延後、切替マトリクス54は、シーケンス内の異なるチャネル124を選択する。各チャネルは、最大nチャネルの合計まで、1つの送信アンテナ要素と、1つの受信アンテナ要素とを使用する(例えば、図6に示される実施例では、100のそのようなチャネルがあって、各々は、5μs間開く)。各チャネル期間中、検出、測定、および追跡ユニット62は、多重周波数/多重チャネルレーダ画像再構築におけるその後の使用のために、受信機114から受信した信号のサンプルを収集する。
【0071】
代替実施形態(図示せず)では、他の種類のチャネル構成が使用され得る。例えば、モノスタティック構成では、選択されたアンテナ要素は、各アンテナが、送信または受信のいずれかを行う、バイスタティックまたはマルチスタティック構成とは対照的に、送信機および受信機の両方としての役割を果たし得る。別の選択肢として、アンテナ要素は、前述の実施形態におけるように、複数の狭帯域パルスではなく、単純に、広帯域RFパルスを送信および受信し得る。
【0072】
(動作の方法)
受信した信号の収集されたサンプルに基づいて、検出、測定、および追跡ユニット62は、患者の身体内の着目領域(ROI)内の小反射体積を検出する。前述のように、対応する反射は、異なる誘電特性を有する媒体の境界に生じる。各フレームにおいてカバーされる周波数の広範囲にわたって、信号のコヒーレント検出によって提供される情報は、単一短パルスの反射によって提供されるであろう、時間的情報に機械的に匹敵する。反射体の場所は、例えば、逆球面ラドン変換を使用して、反射された波の伝搬経路にわたって、積分することによって、見つけられ得る。
【0073】
本発明の実施形態では、検出、測定、および追跡ユニット62は、逆球面ラドン変換の一次近似を実装する。すなわち、ROI内の各ボクセル(x,y,z)に対して、ならびに各周波数fおよび対のアンテナ要素に対して、複合重みW(x,y,z,f,pair)が、経験的較正手順または数学的モデル化のいずれかを使用して、事前に計算される。重みは、実際は、周波数fの波を用いて送信アンテナによって照射された場合に、場所(x,y,z)における点物体から、対の受信アンテナで受信されるであろう、反射の正規化された複素振幅(共役位相を伴う)である。それを通して波が伝搬する、身体組織は、不均質であるので、それを通して波が通過する具体的組織層(皮膚、脂肪、筋肉、肺等)を考慮するために、重みは、経験的に、またはモデル計算によってのいずれかにおいて、調節され得る。
【0074】
そのように導出された重みのセットは、ある種の整合されたフィルタを規定する。検出、測定、および追跡ユニット62は、受信した信号にわたる加重和として、各ボクセルに対する反射強度Vを計算するために、任意の所与のフレームで受信する複合信号Sig(f,pair)のマトリスクに本フィルタを適用する:
【0075】
【化2】

発明者らは、逆球面ラドン変換の本簡略化された近似値が、ロバストかつ計算的に効率的であることを見出した。
【0076】
図7は、本発明の実施形態よる、ステントを通る血流を測定するための方法を図式的に例証する、流れ図である。以下に記載される方法は、明確にする目的のために、前述されたシステム20の要素を参照するが、同一技法が、同様に、他のシステム構成内に実装され得る。さらに、患者26の身体内のステントを特定するステップに関する本方法の要素は、同様に、変更すべきところは変更して、天然および人工的の両方の、冠状血管内、ならびに身体内のいずれかの場所の他の特徴の位置を特定するために、適用され得る。
【0077】
フロントエンド52は、前述のように、走査ステップ130において、アンテナ32を駆動し、複数の周波数および空間チャネル(アンテナ対)にわたって、RF波を放出および受信する。検出、測定、および追跡ユニット62は、画像再構築ステップ132において、受信した信号のサンプルを収集し、式(1)に定義された重みを適用し、信号値をボクセル強度に変換する。画像の明瞭度を改善するために、処理回路は、画像内のすべてのボクセルから、平均ボクセル値を減算する等、追加の画像処理動作を適用し得る。平均値は、再帰フィルタを使用して、複数の連続画像にわたって、平滑化され得る。次いで、ユニット62は、標的識別ステップ134において、3D画像内の標的特徴、すなわち、ステントまたは別の強力な反射体の座標を識別する。
【0078】
ステント等の冠動脈(または、心臓内のいずれかの場所)内の特徴は、心拍ならびに呼吸による胸部の運動に伴って、規則的に動く。超音波変換器を誘導するために、検出、測定、および追跡ユニット62は、標的追跡ステップ136において、連続画像内の標的の運動を追跡する。例えば、ユニット62は、当技術分野において知られるように、カルマンフィルタを適用し、標的の運動軌跡を計算し得る。
【0079】
ガイダンスプロセッサ66は、座標登録ステップ138において、超音波変換器24の座標をアンテナ32に登録する。プロセッサは、前述のように、本ステップにおいて、位置センサ40および42によって提供される位置座標を使用する。これらの座標に基づいて、プロセッサは、ステップ132において再構築された3D画像の座標フレームにおいて超音波ビームを登録する。
【0080】
ガイダンスプロセッサ66は、照準ステップ140において、ガイダンスディスプレイ44を駆動し、超音波ビームを標的に向かって照準させる際、オペレータ22を誘導する。ヒトオペレータが、心臓の運動と同期して、超音波変換器24を前後に継続的に動かすのは可能であるが、可能性として、実践的ではないであろう(そのような追跡は、処理回路によって駆動されるロボットに実行可能となるであろう)。本困難を緩和するために、ガイダンスプロセッサは、ステップ136において見出された運動の軌跡内の単一場所を選択し、オペレータを誘導し、選択された場所に照準させる。コンソール28は、流量測定ステップ142において、本場所におけるステントを通る流量を測定し、したがって、任意の再狭窄の程度の指標を提供する。
【0081】
ステップ140において、標的場所を選択するために、ガイダンスプロセッサ66は、例えば、ステップ136において見出された軌跡の質量中心を見つけ、次いで、中心から、拡張終期である、より長い滞留時間を有する、軌跡の端部に向かって変位される、点を選択し得る。冠動脈を通る流動は、主に、軌跡の拡張終期が、最強ドップラ信号を与えるように、心臓拡張期中、生じる。さらに、より長い滞留時間を有する、軌跡の端部に向かって、超音波変換器を照準することは、超音波ビームに、各心臓サイクルのより長い部分の間、ステントを捕捉させ、したがって、信号/雑音比を改善する。
【0082】
前述の実施形態は、一例として引用され、本発明は、特に、本明細書に図示および前述されたものに限定されないことを理解されるであろう。むしろ、本発明の範囲は、本明細書に前述される種々の特徴、ならびに前述の説明を熟読することによって、当業者に想起されるであろう、かつ先行技術に開示されていない、その変形例および修正の組み合わせと部分的組み合わせの両方を含む。

【特許請求の範囲】
【請求項1】
診断装置であって、
無線周波数(RF)電磁波を生体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるように構成されている、アンテナと、
前記身体内の血管中の特徴の位置を特定するために、前記信号を処理するように構成されている処理回路と
を備えている、装置。
【請求項2】
前記アンテナは、前記身体の外側表面に接触させられるアンテナ要素のアレイを備えている、請求項1に記載の装置。
【請求項3】
超音波変換器を備え、前記処理回路は、前記超音波変換器を誘導し、超音波ビームを前記特徴に方向づけるように構成されている、請求項1に記載の装置。
【請求項4】
前記処理回路によって位置を特定される特徴は、ステントを備え、前記超音波変換器は、前記ステントを通る血流に応答して、ドップラ信号を発生させるように構成されている、請求項3に記載の装置。
【請求項5】
追跡ユニットを備え、前記アンテナおよび前記超音波変換器のそれぞれの座標を追跡するように構成され、前記処理回路は、前記それぞれの座標に応答して、前記超音波変換器を誘導するように構成されている、請求項3に記載の装置。
【請求項6】
それぞれ、前記超音波変換器および前記アンテナに固定された位置変換器を備え、前記追跡ユニットは、前記位置変換器と前記追跡システムとの間で交換される位置信号に応答して、前記それぞれの座標を追跡するように構成されている、請求項5に記載の装置。
【請求項7】
ディスプレイを備え、前記処理回路は、前記ディスプレイを駆動し、前記超音波変換器のオペレータに、前記超音波変換器が照準されるべき方向の指標を提示することによって、前記超音波変換器を誘導するように構成されている、請求項3に記載の装置。
【請求項8】
前記血管は、冠動脈である、請求項1−7のいずれかに記載の装置。
【請求項9】
前記処理回路は、前記生体内の心臓の複数のサイクルにわたって、前記特徴の循環運動を追跡するように構成されている、請求項8に記載の装置。
【請求項10】
前記処理回路は、周囲組織に対する前記特徴の誘電率における差異に応答して、前記特徴の位置を特定するように構成されている、請求項1−7のいずれかに記載の装置。
【請求項11】
診断装置であって、
無線周波数(RF)電磁波を身体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるように、生体の外側表面に接触させられるように構成されている正面表面を有するアンテナと、
前記身体の外側表面と前記アンテナの正面表面との間に拡散されるように適合されている誘電ゲルと、
前記身体内の特徴の位置を特定するために、前記信号を処理するように構成されている処理回路と
を備えている、装置。
【請求項12】
前記身体は、第1の誘電率を有し、前記ゲルは、前記第1の誘電率と整合するように選択された第2の誘電率を有している、請求項11に記載の装置。
【請求項13】
前記ゲルは、30から75である誘電率を有している、請求項11に記載の装置。
【請求項14】
前記ゲルは、接着性である、請求項11に記載の装置。
【請求項15】
前記ゲルは、水系であり、アルコール、塩、砂糖、およびグリセリンから成る添加剤の群から選択される添加剤を含む、請求項11に記載の装置。
【請求項16】
前記ゲルは、シリコーンと、70超の誘電率を有する添加剤とを含む、請求項11に記載の装置。
【請求項17】
前記アンテナは、アンテナ要素のアレイを備え、各アンテナ要素は、前記アンテナの正面表面における平面要素と、前記平面要素の背後における空洞とを備えている、請求項11−16のいずれかに記載の装置。
【請求項18】
診断装置であって、
正面表面を有するアンテナであって、前記アンテナは、前記正面表面から生体中に無線周波数(RF)電磁波を方向づけ、身体内から散乱される波に応答して、信号を発生させるように構成され、前記アンテナは、アンテナ要素のアレイを備え、各アンテナ要素は、前記アンテナの正面表面における平面要素と、前記平面要素の背後における空洞とを備えている、アンテナと、
前記身体内の特徴の位置を特定するために、前記信号を処理するように構成されている処理回路と
を備えている、装置。
【請求項19】
前記アンテナの正面表面は、前記身体中への前記RF電磁波の伝送のために、前記身体の外側表面と接触されるように構成されている、請求項18に記載の装置。
【請求項20】
前記アンテナの正面表面は、印刷回路基板を備え、各アンテナ要素の前記平面要素は、前記印刷回路基板上に印刷された伝導性放射体を備えている、請求項18に記載の装置。
【請求項21】
前記印刷回路基板は、前記アンテナ要素を互から絶縁するために、前記放射体を囲む複数の伝導性ビアを備えている、請求項20に記載の装置。
【請求項22】
前記アンテナと前記処理回路との間に介在されているフロントエンドを備え、
前記フロントエンドは、
RF励起波形を発生させるように構成されているドライバ回路と、
切替マトリクスとを備え、
前記切替マトリクスは、
前記アンテナ要素のセットを交替に選択することであって、各セットは、少なくとも1つの送信アンテナ要素と1つの受信アンテナ要素とを備えている、ことと、
各選択されたセットに対して、前記ドライバ回路を結合し、前記少なくとも1つの送信アンテナ要素を励起させる一方、前記処理回路を結合し、前記少なくとも1つの受信アンテナ要素から前記信号を受信することと
を行うように構成されている、請求項18−21のいずれかに記載の装置。
【請求項23】
診断装置であって、
アンテナ要素のアレイを備えているアンテナであって、前記アンテナは、無線周波数(RF)電磁波を生体中に方向づけ、身体内から散乱される波に応答して、信号を発生させるように構成されている、アンテナと、
所定の時間的パターンに従って、前記アレイから選択された異なる送信アンテナ要素に、複数の異なる周波数におけるRF励起波形を印加するように結合されている励起回路と、
処理回路と
を備え、
前記処理回路は、前記アレイから選択された異なる受信アンテナ要素から前記信号を受信し、前記身体内の特徴の位置を特定するために、前記異なる送信および受信アンテナ要素による前記異なる周波数における前記信号を処理するように結合されている、
装置。
【請求項24】
前記励起回路は、
可変周波数を有する前記RF励起波形を発生させるように構成されているドライバ回路と、
切替マトリクスとを備え、
前記切替マトリクスは、
前記アンテナ要素のセットを交替に選択することであって、各セットは、少なくとも1つの送信アンテナ要素と1つの受信アンテナ要素とを備えている、ことと、
各選択されたセットに対して、前記ドライバ回路を結合し、前記少なくとも1つの送信アンテナ要素を選択された周波数で励起させる一方、前記処理回路を結合し、前記少なくとも1つの受信アンテナ要素から前記信号を受信することと
を行うように構成されている、請求項23に記載の装置。
【請求項25】
前記ドライバ回路および前記切替マトリクスは、前記所定の時間的パターンに従って、複数の対の1つの送信アンテナ要素および1つの受信アンテナ要素を選択し、複数の周波数の各々において、各対における前記送信アンテナを励起させるように結合されている、請求項24に記載の装置。
【請求項26】
信号調整ユニットを備え、前記信号調整ユニットは、前記処理回路が前記信号を受信する前に、前記送信と受信アンテナ要素との間の直接結合から生じる前記信号の背景成分を相殺するように構成されている、請求項23に記載の装置。
【請求項27】
前記信号調整ユニットは、振幅および位相変調器を備え、前記振幅および位相変調器は、前記ドライバ回路から、前記RF励起波形を受信し、前記受信した波形の位相および振幅を修正し、前記背景成分と整合する逆位相信号を発生させ、前記逆位相信号を前記少なくとも1つの受信アンテナ要素から受信した信号に追加することにより、背景成分を相殺するように結合されている、請求項26に記載の装置。
【請求項28】
前記処理回路は、前記異なる送信および受信アンテナ要素に起因する異なる周波数において受信した信号を3次元(3D)画像に変換し、前記特徴の場所を見つけるために、前記3D画像を処理するように構成されている、請求項23−27のいずれかに記載の装置。
【請求項29】
前記処理回路は、前記3D画像内の複数のボクセルに対して提供されるそれぞれの重みを使用して、前記異なる送信および受信アンテナ要素による異なる周波数において受信した信号の加重和を算出し、前記3D画像内の前記ボクセルの値を決定するように構成されている、請求項28に記載の装置。
【請求項30】
診断の方法であって、
無線周波数(RF)電磁波を生体中に方向づけ、身体内から散乱される波に応答して、信号を発生させることと、
前記身体内の血管中の特徴の位置を特定するために、前記信号を処理することと
を含む、方法。
【請求項31】
前記波を方向づけることおよび前記信号を発生させることは、アンテナ要素のアレイを前記身体の外側表面に接触させることと、前記アレイを使用して、前記波を送信および受信することとを含む、請求項30に記載の方法。
【請求項32】
超音波ビームを位置を特定された特徴に向かって方向づけることを含む、請求項30に記載の方法。
【請求項33】
前記位置を特定された特徴は、ステントを備え、前記方法は、前記ステントを通る血流に応答して、前記超音波ビームを使用して、ドップラ信号を発生させることを含む、請求項32に記載の方法。
【請求項34】
前記超音波ビームを方向づけることは、前記RF電磁波を前記身体中に方向づけるアンテナと、前記超音波ビームを方向づける超音波変換器とのそれぞれの座標を追跡することと、前記それぞれの座標に応答して、前記超音波変換器を誘導することとを含む、請求項32に記載の方法。
【請求項35】
前記それぞれの座標を追跡することは、それぞれ、前記超音波変換器および前記アンテナに固定された位置変換器に関連付けられた位置信号を受信および処理することを含む、請求項34に記載の方法。
【請求項36】
前記超音波ビームを方向づけることは、超音波変換器のオペレータに、前記超音波ビームが照準されるべき方向の指標を提示することを含む、請求項32に記載の方法。
【請求項37】
前記血管は、冠動脈である、請求項30−36のいずれかに記載の方法。
【請求項38】
前記信号を処理することは、前記生体内の心臓の複数のサイクルにわたって、前記特徴の循環運動を追跡することを含む、請求項37に記載の方法。
【請求項39】
前記信号を処理することは、周囲組織に対する前記特徴の誘電率における差異に応答して、前記特徴の位置を特定することを含む、請求項30−36のいずれかに記載の方法。
【請求項40】
診断の方法であって、
生体の外側表面とアンテナの正面表面との間に誘電ゲルを拡散させることと、
無線周波数(RF)電磁波を前記身体中に方向づけ、身体内から散乱される波に応答して、前記アンテナ内に信号を発生させるように、前記アンテナの正面表面を、前記誘電ゲルを介して、前記生体の外側表面と接触させることと、
前記身体内の特徴の位置を特定するために、前記信号を処理することと
を含む、方法。
【請求項41】
前記身体は、第1の誘電率を有し、前記ゲルは、前記第1の誘電率と整合するように選択された第2の誘電率を有している、請求項40に記載の方法。
【請求項42】
前記ゲルは、30から75である、誘電率を有している、請求項40に記載の方法。
【請求項43】
前記ゲルは、接着性である、請求項40に記載の方法。
【請求項44】
前記ゲルは、水系であり、アルコール、塩、砂糖、およびグリセリンから成る添加剤の群から選択される添加剤を含む、請求項40に記載の方法。
【請求項45】
前記ゲルは、シリコーンと、70超の誘電率を有する添加剤とを含む、請求項40に記載の方法。
【請求項46】
前記アンテナは、アンテナ要素のアレイを備え、各アンテナ要素は、前記アンテナの正面表面における平面要素と、前記平面要素の背後における空洞とを備えている、請求項40−45のいずれかに記載の方法。
【請求項47】
診断の方法であって、
正面表面を有するアンテナを提供することであって、前記アンテナは、アンテナ要素のアレイを備え、各アンテナ要素は、前記アンテナの正面表面における平面要素と、前記平面要素の背後における空洞とを備えている、ことと、
前記アンテナ要素から、前記アンテナの正面表面を介して、生体中に無線周波数(RF)電磁波を方向づけ、前記アンテナ要素を使用して、身体内から散乱される波に応答して、信号を発生させることと、
前記身体内の特徴の位置を特定するために、前記信号を処理することと
を含む、方法。
【請求項48】
前記RF電磁波を方向づけることは、前記身体中への前記RF電磁波の伝送のために、前記アンテナの正面表面を前記身体の外側表面に接触させることを含む、請求項47に記載の方法。
【請求項49】
前記アンテナの正面表面は、印刷回路基板を備え、各アンテナ要素の前記平面要素は、前記印刷回路基板上に印刷された伝導性放射体を備えている、請求項47に記載の方法。
【請求項50】
前記印刷回路基板は、前記アンテナ要素を互から絶縁するために、前記放射体を囲む複数の伝導性ビアを備えている、請求項49に記載の方法。
【請求項51】
前記RF電磁波を方向づけ、前記信号を発生させることは、
RF励起波形を発生させることと、
前記アンテナ要素のセットを交替に選択することであって、各セットは、少なくとも1つの送信アンテナ要素と1つの受信アンテナ要素とを備えている、ことと、
各選択されたセットに対して、前記RF励起波形を結合し、前記少なくとも1つの送信アンテナ要素を励起させる一方、前記少なくとも1つの受信アンテナ要素から前記信号を受信することと
を含む、請求項47−50のいずれかに記載の方法。
【請求項52】
診断の方法であって、
アンテナ要素のアレイに関連付けられた複数の異なる周波数および空間チャネルのシーケンスを指定する時間的パターンを規定することと、
前記時間的パターンに従って、前記アレイから選択された複数の異なる送信アンテナ要素から、前記複数の異なる周波数における無線周波数(RF)電磁波を生体中に方向づけることと、
身体内から散乱され、複数の異なる受信アンテナ要素において受信される波に応答して、信号を発生させることとであって、前記複数の異なる受信アンテナ要素は、前記時間的パターンに従って、前記アレイから選択される、ことと、
前記身体内の特徴の位置を特定するために、前記異なる受信アンテナ要素からの前記信号を、前記異なる周波数において処理することと
を含む、方法。
【請求項53】
前記RF電磁波を方向づけ、前記信号を発生させることは、
可変周波数を有するRF励起波形を発生させることと、
前記アンテナ要素のセットを交替に選択することであって、各セットは、少なくとも1つの送信アンテナ要素と1つの受信アンテナ要素とを備えている、ことと、
各選択されたセットに対して、前記RF励起波形を結合し、選択された周波数において前記少なくとも1つの送信アンテナ要素を励起させる一方、前記少なくとも1つの受信アンテナ要素から、前記信号を受信することと
を含む、請求項52に記載の方法。
【請求項54】
前記セットを選択することは、複数の対の1つの送信アンテナ要素および1つの受信アンテナ要素を選択することを含み、前記RF励起波形を結合することは、前記時間的パターンに従って、複数の周波数のそれぞれにおいて、各対における前記送信アンテナを励起させることを含む、請求項53に記載の方法。
【請求項55】
前記信号を発生させることは、前記信号を処理し、前記特徴の位置を特定する前に、前記送信アンテナ要素と受信アンテナ要素との間の直接結合から生じる前記信号の背景成分を相殺することを含む、請求項52に記載の方法。
【請求項56】
前記背景成分を相殺することは、
前記送信アンテナ要素に印加されるRF励起波形を受信することと、
前記背景成分と整合する逆位相信号を発生させるために、前記受信した波形の位相および振幅を修正することと、
前記背景成分を相殺するために、前記逆位相信号を前記少なくとも1つの受信アンテナ要素から受信した信号に追加することと
を含む、請求項55に記載の方法。
【請求項57】
前記信号を処理することは、前記異なる送信および受信アンテナ要素に起因する異なる周波数で受信された信号を3次元(3D)画像に変換することと、前記特徴の場所を見つけるために、前記3D画像を処理することとを含む、請求項52−56のいずれかに記載の方法。
【請求項58】
前記信号を変換することは、前記3D画像内の複数のボクセルに対して提供されるそれぞれの重みを使用して、前記異なる送信および受信アンテナ要素に起因する異なる周波数において受信された信号の加重和を算出し、前記3D画像内のボクセルの値を決定することを含む、請求項57に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2013−512064(P2013−512064A)
【公表日】平成25年4月11日(2013.4.11)
【国際特許分類】
【出願番号】特願2012−541588(P2012−541588)
【出願日】平成21年12月1日(2009.12.1)
【国際出願番号】PCT/IB2009/055438
【国際公開番号】WO2011/067623
【国際公開日】平成23年6月9日(2011.6.9)
【出願人】(512143394)キマ メディカル テクノロジーズ リミテッド (2)
【Fターム(参考)】