説明

生体サンプル分析用プレート

【課題】プレートの両面に同時にフィルムを熱圧着しても、フィルムがチャンバー内に入り込まず送液を確実に実施することのできる生体サンプル分析用プレートを提供する。
【解決手段】軸心を持ち複数の流路と複数のチャンバーとから形成された流路ユニットを一つ以上備えたプレートと前記プレートの両面を覆うように形成されたフィルムとからなる生体サンプル分析用プレートにおいて、一端が前記流路ユニットの任意のチャンバーと接続し他端が前記プレートの壁面で開口されている空気抜き流路を備えた生体サンプル分析用プレート。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はDNAを対象とする分析装置に関し、より詳細にはDNA増幅と分析を1つのプレートで行う技術に関するものである。
【背景技術】
【0002】
近年、分子生物学分野の発展に伴い、様々な疾患において遺伝子の関与がかなり正確に理解されるようになり、遺伝子診断や遺伝子治療など遺伝子をターゲットにした医療に注目が集まるようになってきている。また、医療の分野だけでなく、農畜産分野においても品種判別や品種改良に遺伝子を用いた手法が多く開発されてきており、遺伝子はより身近なものとして取り上げられるようになってきた。
【0003】
これらの技術進歩を大きく飛躍させた技術としてPCR(Polymerase Chaine Reaction)による核酸増幅技術があげられ、PCRは生体物質の情報解明において必要不可欠な技術となっている。先にあげた遺伝子診断や品種判別では、特定の部分(特徴のある部分) のDNA領域のみをPCRによって大量に増幅させて解析する。また、PCR増幅の有無を見ることによって判別することもできる。
【0004】
PCRは3つの温度工程からなる。二本鎖のDNAを一本鎖へと解離させる工程(熱変性)、一本鎖に解離したDNAに増幅したい部分の両端の配列と相補的な配列を有したプライマーを結合させる工程(アニーリング) 、プライマーが結合した配列からDNAポリメラーゼによってDNA鎖を伸長させる工程(伸長反応) である。熱変性では95℃で1分間温度をかけることによって、DNAを一本鎖の状態にする。アニーリングの工程では50〜60℃で30秒間反応させることにより、増幅したい領域の末端部分にプライマーと呼ばれる20塩基程度の短いDNAを結合させる。伸長反応は72℃の温度でポリメラーゼを鋳型に付加し、DNA鎖の伸長を行う。これらの温度サイクルを25〜40回行うことで、サイクル数に応じて理論的には2の25乗から2の40乗増幅できる。実質的には目的の領域を10の6乗倍に増幅している。
【0005】
PCRを行った後は、PCR増幅の有無を調べる。主に使用される手法は電気泳動である。電気泳動は内径が100ミクロン以下程度のガラス細管(キャピラリー)の両端に高電圧を印加すると、試料をキャピラリー内で移動する。電気泳動中の試料は、キャピラリーを移動する際に、その電荷や分子量の差などにより分離するので、この分離状態をUV吸収や蛍光などにより検出する方法がある。最近ではキャピラリー電気泳動を使い易くした「マイクロチップケミストリー」と呼ばれる手法が考案されており、これは、プラスチック基板上に微細溝をつくり、その上に透明なフィルムを接着した構造になっている。(例えば、特許文献1参照)
図7に、特許文献1のプレートを示す。プレート10には流路と貫通穴9が形成されており、プレート10は透明フィルム7を熱圧着で接着され、さらに電極8が形成されている。これらプレートにPCR機能を持たせた場合、流路パターンの形状が複雑になり、3次元の流路構造になる。複雑な形状ではプレートの成型も困難になるため、プレートの構造をフィルムとプレートの2層構造からフィルム、プレート、フィルムの3層構造に増やす必要がある。フィルムを片面ずつ接着しようとした場合、熱圧着ではフィルムの密着性を向上させるために、プレートを事前に130℃付近で予備加熱を行い、その後、接着温度が100℃付近で加圧をしながらフィルムを接着する。よって、もう片方のフィルムを接着する時は、もう一度、プレートを予備加熱する必要がある。しかし、予備加熱の温度が高いため、接着したフィルムが溶けてしまい、もう片方のフィルムは接着することができない。そのため、フィルムは両面同時に接着しなければならない。
【特許文献1】特開2000−310613号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、前記従来の構成では、プレートの両面に同時にフィルムを熱圧着すると流路やチャンバーが密閉された状態になるので、プレート冷却時にチャンバー内の空気が圧縮される。その結果、フィルムがチャンバー内に入り込み流路を塞ぐため、送液ができないという課題を有していた。
【0007】
本発明は、前記従来の課題を解決するもので、プレートの両面に同時にフィルムを熱圧着しても、フィルムがチャンバー内に入り込まず送液を確実に実施することのできる生体サンプル分析用プレートを提供することを目的とする。
【課題を解決するための手段】
【0008】
前記従来の課題を解決するために、生体サンプル分析用プレートは流路が形成されたプレートと前記流路の上に前記プレートを覆うように取り付けられたフィルムからなる生体サンプル分析用プレートにおいて、前記流路はサンプルを注入するサンプル注入口とサンプルを保持するためのチャンバーと前記チャンバーに接続し、もう一方が前記プレートの外周側面に接続している空気抜け流路が形成されたことを特徴としたものである。
【発明の効果】
【0009】
本発明の生体サンプル分析用プレートによれば、微細流路やチャンバーにフィルムが入り込むことがないため、送液が確実に行うことができ、PCRの増幅から電気泳動による測定までの一連の工程をおこなうことができる。
【発明を実施するための最良の形態】
【0010】
以下に、本発明の生体サンプル判別プレートの実施の形態を図面とともに詳細に説明する。
【0011】
(実施の形態1)
最初に、図1〜図6を用いて本発明の実施の形態1における生体サンプル判別プレートについて説明する。
【0012】
図1に、本実施の形態1における生体サンプル判別プレート1の全体図を示す。破線で囲んだ部分2は、試料の測定を行う流路ユニット2である。本実施の形態では8個設けられている。これら流路ユニット2は、放射線状に形成されており、同時に8検体のDNA判別が行うことができる。
【0013】
穴3を設けているが、これは外形を非対称にしておくことで、判別用の読取装置(図示しない)に取り付けた際に、各流路ユニット2の場所を特定できるようにしている。
【0014】
本実施例の生体サンプル判別プレート1は、フィルム5とベースプレート4とフィルム6の3層構造で構成されており、ベースプレート4の材料はポリプロピレンを使用し、厚みは2mmとした。また、ベースプレート4は、深さ80μm、幅100μmから300μmの流路パターンが形成された金型を使って射出成形で成型を行った。フィルム5、6はプレート材と同じポリプロピレン材を使用しており、厚みは50μmである。プレートとフィルムは熱圧着によって接着することにより、漏れのない密閉流路を形成する。軸心7は本生体サンプル判別プレートの軸心であり、軸心7を中心に本生体サンプル判別プレート1を読取装置の回転部に固定するための回転部固定用穴8を設けている。
【0015】
図2は図1に示すプレート1に形成された流路ユニット2の詳細形状を示す図である。流路ユニット2は、生体サンプルが注入されるサンプル注入口9と、注入された生体サンプルを一旦保持するためのサンプルチャンバー10と、サンプルチャンバー10とベースプレート4の外周部をつなぐ空気抜け流路11と、PCR反応を行うPCRチャンバー12とサンプルチャンバー10とPCRチャンバー12をつなぐ流路13と、緩衝液が注入される緩衝液注入口14と注入された緩衝液を一旦保持するための緩衝液チャンバー15と、PCR反応液の一部を定量する定量部16と余分なPCR反応液を廃棄する廃棄チャンバー17と、PCRチャンバー12と定量部16と廃棄チャンバー17をつなぐ流路18と、電気泳動時にプラス極19とマイナス極20に電圧を印加する電圧印加部21と、電気泳動を行う電気泳動流路22とを備える。
【0016】
図3は流路ユニット2のA−A’断面図を示す。空気抜け流路11と流路13はフィルム6側に配置されており、それ以外の流路は全てフィルム5側に配置されている。
【0017】
図4はプレート成型後のベースプレート4からフィルム5とフィルム6を接着するまでの製造工程を示す図である。成型後のベースプレート4には、その表面に油やゴミが付着しているため、中性洗剤液に浸し超音波洗浄を行う。次にプレート表面の水分をとばす効果とベースプレート4の寸法を安定させることを目的として、80℃で2時間ベーキングを行う。ベーキング後はラミネーター機で熱圧着処理を行うが、ベースプレート4をホットプレートで軟化点付近まで予備加熱することによって、熱圧着時のフィルム5の密着力が増す。予備加熱後はラミネーター機で熱圧着処理を行い、その後、ベースプレート4を冷却して余分なフィルムをカットして生体サンプル判別プレート1が完成する。
【0018】
図5にベースプレート4とフィルム5、フィルム6とを接着するラミネーター機を示す。23はベースプレート4を軟化点温度まで予備加熱するためのホットプレート、24はベースプレート4を搬送するためのベルトコンベア、25はフィルム5とフィルム6を巻きつけた加熱ヒーター26が内蔵されているシリコンゴム製のローラー、5と6は熱圧着するためのポリプロピレンフィルムである。
【0019】
ベースプレート4は、ホットプレート23でプレートの軟化点温度まで加熱され(予備加熱)、ベルトコンベア24により2つのローラー25まで搬送する。その後、2つのローラー25の間をベースプレート4が通過することで、ローラーから与えられる熱とローラーの圧着力により、フィルム5とフィルム6がベースプレート4と熱圧着される。この時、本発明のプレートには空気抜け流路11が具備されているため、両面フィルムが接着されていても、チャンバー内の空気を閉じ込めることなく、外気とつながっているため、プレート冷却時によるフィルムの変形は発生しない。熱圧着されたベースプレート4は冷却して、最後に余分なフィルムをカットすれば生体サンプル判別プレート1が完成する。なお、サンプル注入口9と緩衝液注入口13は液を注入する前に市販のピペットを使って穴を開ける。
【0020】
次に、図6を用いて、本発明の空気抜け流路11の有無と、チャンバーへの接続位置の差による送液状況の確認を行い、成形後の効果を確認した。図6(a)に空気抜け流路を有さない流路ユニットを持つサンプルを、図6(b)にサンプルチャンバーとの接続部をサンプルチャンバーのサンプル注入口よりもプレート外周側に設けた空気抜け流路を備えた流路ユニットを持つサンプルを、図6(c)にサンプルチャンバー10との接続部をサンプルチャンバー10のサンプル注入口よりも内周側に設けた空気抜け流路を備えた流路ユニット持つサンプルを示す。図中の矢印は、プレート1の軸心を示す方向を示す。
【0021】
これら図6(a)から(c)に示したサンプルを8個用意して、プレート内の8個の流路ユニットに生体サンプル2μlをピペットでサンプルチャンバーに注入した。その後、判別用の読取装置を使って、4000rpmで2分間、プレートを回転させて送液の状態を確認した。また、空気抜け流路のプレート外周部出口に、液漏れを確認するためのガーゼを取り付けた。サンプルチャンバー10から流路13を通ってPCRチャンバー12に生体サンプルが漏れなく入った場合を成功としたときの数を調べた。
【0022】
その結果、図6(a)のサンプルでは、成形時にフィルムが熱圧着による流路内への入り込みが起こり、生体サンプルが流路13に入ることができず、8個全て失敗した。次に、図6(b)のサンプルでは、成形時にフィルムが熱圧着による流路内への入り込みは起こらなかった。しかし、PCRチャンバー12に全て生体サンプルが入ったものは3個で、残りの5個はプレート回転中に生体サンプルの一部が空気抜け流路内に入ってしまい、PCRチャンバー12内には決められた量の生体サンプルが入らなかった。これはサンプル注入口よりも空気抜け流路の接続場所がプレート外周側にあるため、生体サンプルが空気抜け流路に入ってしまったためである。図6(c)のサンプルでは、空気抜け流路の接続場所がサンプル注入口よりもプレート回転中心側にあったため、図6(b)で生じた空気抜け流路内に生体サンプルが流れ込むことは無く、全ての生体サンプルがPCRチャンバーに入った。従って、空気抜け流路の配置は注入口よりも回転中心方向にしなければならない。
【0023】
以上のように、実施の形態1においてプレートの流路ユニット2に空気抜け流路を形成することにより、両面フィルム接着の際に、微細流路やチャンバーにフィルムが入り込むことがないため、送液が確実に行うことができ、PCRの増幅から電気泳動による測定までの一連の工程をおこなうことができる。
【産業上の利用可能性】
【0024】
本発明にかかる生体サンプル分析用プレートは、プレートが複雑な構造を有し、かつ両面をフィルムで熱圧着する構造において、フィルムがチャンバー内に入り込まないため、送液が確実におこなうことができるものとして有用である。
【図面の簡単な説明】
【0025】
【図1】本発明の実施の形態1にかかる生体サンプル判別プレートの平面図
【図2】本発明の実施の形態1にかかる生体サンプル判別プレートの要部拡大平面図
【図3】本発明の実施の形態1にかかる生体サンプル判別プレートの断面図
【図4】本発明の実施の形態1にかかる生体サンプル判別プレートの製造工程を示すフローチャート
【図5】本発明の実施の形態1にかかる生体サンプル判別プレートの熱圧着工程を示す図
【図6】本発明の実施の形態1にかかる生体サンプル判別プレートの空気抜け流路の配置場所の違いによる流路パターンを示す図
【図7】従来例の流体チップの平面図
【符号の説明】
【0026】
1 生体サンプル判別プレート
2 流路ユニット
3 位置決め穴
4 ベースプレート
5 フィルム
6 フィルム
7 軸心
8 回転部固定用穴
9 サンプル注入口
10 サンプルチャンバー
11 空気抜け流路
12 PCRチャンバー
13 流路
14 緩衝液注入口
15 緩衝液チャンバー
16 定量部
17 廃棄チャンバー
18 流路
19 プラス極
20 マイナス極
21 電圧印加部
22 電気泳動流路
23 ホットプレート
24 ベルトコンベア
25 ローラー
26 加熱ヒーター

【特許請求の範囲】
【請求項1】
軸心を持ち複数の流路と複数のチャンバーとから形成された流路ユニットを一つ以上備えたプレートと前記プレートの両面を覆うように形成されたフィルムとからなる生体サンプル分析用プレートにおいて、
一端が前記流路ユニットの任意のチャンバーと接続し他端が前記プレートの壁面で開口されている空気抜き流路を備えた生体サンプル分析用プレート。
【請求項2】
前記任意のチャンバーは、前記フィルムで覆われた開口部を有する請求項1に記載の生体サンプル分析用プレート。
【請求項3】
前記空気抜き流路と前記任意のチャンバーとの接続部は、前記開口部よりも前記軸心方向側の位置に形成された請求項2に記載の生体サンプル分析用プレート。
【請求項4】
前記プレートは両面に流路が形成されている請求項1記載の生体サンプル分析用プレート。
【請求項5】
前記任意のチャンバーは、生体サンプルを保持するために使用される請求項1に記載の生体サンプル分析用プレート。
【請求項6】
前記任意のチャンバーは、前記生体サンプルを注入するための注入口を持ち、前記注入口は前記生体サンプルを注入する前は前記フィルムによって覆われている請求項5に記載の生体サンプル分析用プレート。
【請求項7】
前記空気抜き流路と前記任意のチャンバーとの接続部は、前記注入口よりも前記軸心方向側の位置に形成された請求項5に記載の生体サンプル分析用プレート。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate