説明

生体分子の固定用材料、生体分子が固定化された固相体及びその製造方法

【課題】安定化した固定化能を備える生体分子の固定用材料を提供する。
【解決手段】炭素質膜にケイ素を含有させることで、生体分子に対する固定化能を発現させる。すなわち、固定用材料の固定化能を化学修飾によらず炭素質膜自体の構造に由来させるようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生体分子を固定化するための固定用材料、生体分子が固定化された固相体及びその製造方法に関する。
【背景技術】
【0002】
従来より、固相担体に生体分子を固定化して、固相上で生体分子の分析や診断を行ったり、固相上で生体分子の機能を解析したりすることが行われている。固相上での生体分子の分析や機能研究を実現するにあたり、生体分子を固定化するための固定用材料として種々のものが提案されている。
【0003】
例えば、特許文献1には、ダイヤモンドやダイヤモンドライクカーボン(以下、DLC(Diamond Like Carbon)と称す)等といった炭素系物質の表面に活性エステル基を導入することにより、遺伝子あるいはタンパク質などの生体分子を該表面処理層に固定化することが開示されている。
【0004】
また、炭素質膜の表面に水酸基などの官能基を付加して化学修飾し、付加した官能基を利用してDNAを固定化することも試みられている(例えば、特許文献2参照)。さらに、炭素質膜の表面にキレート配位子を導入し、この金属キレートを利用してタンパク質を固定化することも試みられている(例えば、特許文献3参照)。
【0005】
【特許文献1】国際公開第01/75447号パンフレット
【特許文献2】特許第3607199号公報
【特許文献3】特開2004−20328号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、上記特許文献1〜3のように、生体分子を固定化しやすくするために炭素質膜の表面に化学修飾を施した場合、その化学修飾処理の安定性や性能が固相上における生体分子の固定状態や固定化量などの固定化能に影響を及ぼしていた。例えば、化学修飾処理が安定性に欠ける場合には、生体分子を固相上に一旦保持させた後であっても、経時変化に伴い生体分子が固相上から脱離してしまうおそれがあった。また、処理条件の変動で化学修飾の程度等にばらつきが生じる場合には、固定化量が変動するおそれもあった。
【0007】
加えて、このような化学修飾を施すことにより繁雑な操作が必要な場合もあるほか、化学修飾のために、炭素質膜の特性、すなわち耐熱性や安定性も十分に発揮することもできず、生体分子の安定性に悪影響を及ぼすおそれもあった。
【0008】
そこで、本発明は、安定した固定化能を備える生体分子の固定用材料を提供することを目的の一つとする。また、一旦固相上に保持した生体分子を安定して固定化し続けることのできる固相体、その製造方法及びその使用方法を提供することを他の目的の一つとする。
【課題を解決するための手段】
【0009】
本発明によれば、ケイ素を含有する炭素質膜を備える、生体分子の固定用材料が提供される。
【0010】
本固定用材料は、前記炭素質膜は、表面にシラノール基を備えていてもよい。この態様において、前記シラノール基は、トリデカフルオロ−1,1,2,2−テトラヒドロオクリルジメチルクロロシラン(FOCS)によって誘導体化後にXPS分析する誘導体化XPS法によってフッ素として検出されるものとすることもできる。
【0011】
さらに、前記シラノール基は、前記誘導体化XPS法によって測定するとき、フッ素量として2at%以上であるとすることもできる。
【0012】
本固定用材料は、前記炭素質膜は、非晶質炭素質膜であるとしてもよい。また、前記炭素質膜は、ケイ素を1.5at%以上30.0at%以下含有するとしてもよい。さらに、前記炭素質膜は、全炭素中sp2混成軌道炭素を40%at以上70at%以下含有するとしてもよい。
【0013】
また、本固定用材料は、タンパク質の固定化用であるとすることもできる。
【0014】
本発明によれば、生体分子が固定化された固相体であって、前記生体分子は、上述するいずれかの固定用材料の前記炭素質膜表面に保持されている、固相体が提供される。
【0015】
本発明によれば、生体分子が固定化された固相体の製造方法であって、上述するいずれかの固定用材料の前記炭素質膜表面に前記生体分子を接触させることにより前記生体分子を前記炭素質膜に保持させる工程、を備える、製造方法が提供される。
【0016】
さらに、本発明によれば、生体分子が固定化された固相体の使用方法であって、上記固相体に固定化された前記生体分子に被験試料を供給して前記生体分子と前記被験試料中の成分との相互作用を生じさせる工程と、前記相互作用を検出する工程と、を備える、使用方法が提供される。
【発明を実施するための最良の形態】
【0017】
本発明の固定用材料は、ケイ素を含有する炭素質膜を備える。
【0018】
本発明の固定用材料によれば、炭素質膜にケイ素が含有されることで、生体分子に対する固定化能が発現され、生体分子の固定用材料として使用できる。炭素質膜が通常の使用状況、例えば、大気中や水溶液中などの酸化雰囲気に触れることにより、膜表面にシラノール基(Si−OH)が形成され、このシラノール基を介して生体分子を膜表面に固定化すると考えられる。すなわち、本固定用材料の固定化能は、化学修飾によらず炭素質膜自体の構造に由来するため、安定した固定化能を付与しやすく、また、付与した固定化能が安定して維持される。また、化学修飾を必要とすることなく固定用材料の表面に生体分子を固定化することができるため、生体分子に対する悪影響も回避又は抑制される。さらに、本固定用材料は無機的な構造により構成されるため、分解等が起こりにくく化学的に安定である。
【0019】
本発明の固相体は、生体分子が本発明の固定用材料に固定化されたものである。上述したように、本固定用材料は安定した固定化能を備えているほか、化学的な安定性に優れ分解等しにくい。したがって、本固相体によれば、一旦固相上に保持した生体分子を安定して固定化し続けることができる。また、本発明の固相体の製造方法によれば、一旦固相上に保持した生体分子を安定して固定化し続けることができる固相体を得ることができる。
【0020】
本発明は、以上のとおり、生体分子の固定用材料、固相体及びその製造方法、その使用方法に関する。以下、本発明の実施の形態について適宜図面を参照しながら詳細に説明する。図1には、本発明の固定用材料及び固相体の一例を示す。
【0021】
(生体分子の固定用材料)
本発明の固定用材料は、生体分子を固定化するものである。図1(a)に、固定用材料の一例として、生体分子を固定化するための固定用材料10を示すが、これに限定するものではない。図1(a)における固定用材料10は、基材2と、基材2の表面に形成されケイ素を含有する炭素質膜4とを備える。以下、本固定用材料について順次説明する。
【0022】
(生体分子)
本発明の対象とする生体分子は、一分子のみを意味するものではなく、二分子以上からなる同種分子の集合体であってもよいし、異種分子との複合体であってもよい。さらに、多数の同種又は異種の分子から構成される、例えば自己組織体などの組織体であってもよい。
【0023】
生体分子としては、特に限定しないで、動物、植物、微生物、ウイルス等生物体に存在する、生物体が生産する又は生物体が代謝する天然由来の分子、これらを人工的に改変した分子であってもよいし、天然分子に依存しないで人工的に設計した分子であってもよい。また、生物から採取した分子のみならず、人工的に本来的にその分子が存在する生物体以外の生物において生産させた分子であってもよいし、生物体外で人工的に化学合成又は酵素等によって合成した分子であってもよい。
【0024】
生体分子としては、典型的には、タンパク質、核酸、糖類、脂質、骨形成材料などの生体材料、各種の生物細胞及びその一部、組織及び生物体自体などの生物材料が挙げられる。また、生体分子は、固相に固定化されるのに際して、他の有機材料及び/又は無機材料等と複合化されていてもよい。これらのうち、本固定用材料に固定化する生体分子はタンパク質であるのが好ましい。
【0025】
なお、タンパク質とは、任意のサイズ、構造又は機能の、タンパク質、ポリペプチド及びオリゴペプチドを含んでいる。タンパク質としては、例えば、各種タンパク質、酵素、抗原、抗体、レクチン又は細胞膜レセプターが挙げられる。また、抗体は、天然の又は全体的若しくは部分的に合成的に産生された免疫グロブリンを意味する。特異的結合能を保持するその全ての誘導体も包含される。核酸は、1本鎖であっても、2本鎖であってもよい。人工及び天然を問わず、DNA、RNA、DNA/RNAハイブリッド、DNA−RNAキメラ及び塩基やその他の修飾体を含んでいてもよい。さらにその鎖長も特に限定しない。
【0026】
(炭素質膜)
本固定用材料は炭素質膜4を備える。この炭素質膜4の結晶構造は特に限定せず、結晶質でもよいし非晶質でもよい。好ましくは、sp3混成軌道を持つ炭素(sp3混成軌道炭素)を有する結晶質膜(例えば、ダイヤモンド膜)又は非晶質炭素膜であり、より好ましくは、非晶質炭素膜である。非晶質炭素質膜は、好ましくは、sp3混成軌道を持つ炭素(sp3混成軌道炭素)とsp2混成軌道を持つ炭素(sp2混成軌道炭素)とが混在するアモルファス構造をとる炭素系材料からなる膜である。非晶質炭素は、化学的安定性に優れている点や、UV吸収がない点、赤外線透過性を有する点、タンパク質等の非特異的吸着を防ぐ点などにおいて、生体分子の固定用材料として用いるのに適している。また、非晶質炭素は、粒界がなく、どの部分にも均一に固定化できることから、均一材料としての固定化用に適している。このような非晶質炭素は、一般に、ダイヤモンドライクカーボンとして入手することができる。
【0027】
本発明における炭素質膜4が非晶質炭素からなる場合、全炭素量中sp2混成軌道炭素を40%以上70%以下含有するのが好ましい。また、sp3混成軌道炭素は、30%以上60%以下であるのが好ましい。
【0028】
なお、本明細書において、全炭素中のsp2混成軌道炭素又はsp3混成軌道炭素の含有率は、核磁気共鳴法(NMR)により測定した値を示す。具体的には、固体NMRとしてマジックアングルスピニングを行う高出力デカップリング法(HD−MAS)を用いた。この手法によれば、13C NMRスペクトルにおいて、sp2混成軌道炭素に起因するピークが130ppm付近に見られ、sp3混成軌道炭素に起因するピークが30ppm付近に見られる。したがって、それぞれのピークとベースラインとにより囲まれる部分の面積比を求め、その面積比から全炭素量におけるsp2混成軌道炭素及びsp3混成軌道炭素の含有率を算出することができる。
【0029】
(ケイ素)
本発明における炭素質膜4はケイ素を含有する。ケイ素は、炭素質膜表面だけでなく、その膜厚方向全体にわたり炭素質膜4に存在することができる。本固定用材料のケイ素の少なくとも一部は、炭素質膜4のsp3混成軌道を構成する炭素原子を置換した状態で含まれていると考えられるからである。
【0030】
本固定用材料においては、ケイ素は炭素質膜4の内部にも表層と同程度に含まれていることが好ましい。膜内にもケイ素が含まれていると、新たな炭素質膜表面を露出させることにより、その露出面に新たなシラノール基を形成することができる。このため、一旦生体分子を固定化させた後に炭素質膜の表層を研磨等することによって除去することで、固定化能を新たに発現させて本固定用材料10を再利用することができる。
【0031】
炭素質膜4は、付与したい固定化能の大きさや固定化すべき生体分子の種類に応じてケイ素量を含むことができる。炭素質膜中のケイ素量はシラノール基に対応する傾向にあり、シラノール基量は固定化能に対応する傾向にある。したがって、大きな固定化能を付与したり高密度に固定したい場合のほか、固定化しにくい生体分子の場合には、ケイ素含有量を増加させることで適度な固定化能を付与することができる。
【0032】
本固定用材料は、炭素質膜中のケイ素由来のシラノール基により生体分子を炭素質膜表面に固定化することができる。一般に、ガラス系材料のようにマトリックス自体がSi系である場合、その表面には多数のシラノール基が存在し、その一部は縮合反応によりシロキサン(Si−O−Si)結合が形成されていると考えられる。これに対し、本固定用材料は、マトリックスが炭素質膜であるため、シラノール基もガラス系材料ほど多くなく、また、縮合も抑制されるため、生体分子に対して適度な固定化能を発揮することができると考えられる。
【0033】
ケイ素の含有量は特に限定しないが、1.5at%以上30at%以下であるのが好ましい。1.5at%以上であれば、生体分子6を検出するのに十分な量の生体分子6を炭素質膜表面に固定化することができる。また、30at%以下であれば、生体分子6を炭素質膜表面に過剰に固定化しないため良好な検出感度を維持することができる。より好ましくは、10at%以上30at%以下である。10at%以上であれば、生体分子6を検出するのにより十分な量の生体分子6を炭素質膜表面に固定化することができ、より検出感度の高い固定化材料を得ることができる。
【0034】
なお、炭素質膜4中におけるケイ素の定量は、公知の電子プローブ微小部分析法(EPMA),X線光電子分光法(XPS),オージェ電子分光法(AES)及びラザフォード後方散乱法(RBS)などを用いて行うことができる。
【0035】
(水素)
炭素質膜4は水素を含有していてもよい。水素の含有量は特に限定しないが、10at%を超えて50at%未満であるのが好ましい。より好ましくは、20at%を超えて30at%未満である。水素を含むことで膜の内部応力を低減することができ、厚膜を形成することが容易となる。
【0036】
なお、炭素質膜4中における水素量は、例えば、弾性反跳粒子検出法(ERDA)を用いて算出することができる。具体的には、2Mevのヘリウムイオンビームを炭素質膜4の表面に照射し、これによりはじき出された水素を半導体検出器によって検出することにより固定化層中の水素量(at%)を測定することができる。
【0037】
(シラノール基)
本固定用材料は、炭素質膜4の表面にシラノール基を備えることができる。本固定用材料の炭素質膜4への生体分子の固定化メカニズムは必ずしも明らかでなく本発明を拘束するものではないが、炭素質膜表面に存在するシラノール基と生体分子との相互作用により生体分子を炭素質膜4上に保持することができると考えられる。なお、シラノール基と生体分子との相互作用は特に限定せず、水素結合性相互作用など各種相互作用を採ることができると考えられる。
【0038】
炭素質膜4表面のシラノール基を検出するには、例えば、末端基にハロゲンを持つシランカップリング剤を用いてシラノール基に化学修飾を行ったのちXPS分析する方法や、着目する官能基(シラノール基)と指標となる元素を含んだ試薬との置換反応の後にXPS分析して指標元素を検出することによりシラノール基を検出する誘導体化XPS法等により行うことができる。好ましくは、誘導体化XPS法である。この手法によれば、微量のシラノール基であっても高感度に検出することができる。
【0039】
誘導体化XPS法は、具体的には以下の手順で行うことができる。すなわち、まず、指標となる元素(フッ素など)を含む誘導体化試薬をクロロホルム等の溶媒で例えば1%希釈した溶液中に試料を誘導化するのに十分な時間(例えば、1時間)浸漬し、その後、適当な溶媒、例えば、試薬を溶解した前記溶媒で洗浄する。洗浄にあたっては、超音波洗浄等により残存する誘導体化試薬をできるだけ除去することが好ましい。次いで、洗浄後の試料をXPS装置内に入れ、指標元素の定量を行う。これにより、炭素質膜4の表面に存在するSi−OH基の生成量を間接的に求めることができる。なお、ケイ素を含まない以外は試料と同一組成の対照試料を準備して、試料と同等の条件で指標元素を定量し、対照試料について得られた指標元素量を試料について得られた指標元素量から差分した数値を指標元素量とすることで、測定値の精度及び再現性を確保することが好ましい。
【0040】
誘導体化XPS法によりシラノール基を検出する場合、誘導体化試薬としては、例えば、トリデカフルオロ−1,1,2,2−テトラヒドロオクチル−1,1,1-トリクロロシランやトリデカフルオロ−1,1,2,2−テトラヒドロオクチルジメチルクロロシラン(FOCS)を用いることができる。好ましくは、FOCSである。FOCSは、反応部位が1ヶ所であるために重合反応がおきにくく、且つフッ素を複数含むことで微量のシラノール基をより高感度に検出することができる。
【0041】
本固定用材料が備える炭素質膜4表面のシラノール基量は特に限定しない。誘導体化試薬としてFOCSを用いて誘導体化XPS分析を行った場合、好ましくはフッ素量として1at%以上であり、より好ましくは2at%以上であり、さらに好ましくは4at%以上である。4at%以上であれば、生体分子を膜表面に確実に保持することができる。
【0042】
炭素質膜4は、単独で固定用材料を構成してもよいが、好ましくは、図1(a)に示すように、適当な基材2の表面の一部又は全部に膜化されたものである。
【0043】
なお、炭素質膜4は、図1(a)のように基材2の表面に直接形成されるものに限らず、例えば、基材2と炭素質膜4との間に1又は2以上の他の層を介して間接的に接合していてもよい。このような他の層としては、例えば、基材2と炭素質膜4との接合状態を向上させるために用いる層などが挙げられる。
【0044】
炭素質膜4が基材2の上に備えられる場合、基材2の三次元形態は特に限定されない。フィルム状体、シート状体、板状体の他、球状、不定形状、針状、棒状、薄片状等の各種の粒子形態を採ることもできる。また、基材2の材質も特に限定されない。基材2の材質としては、例えば、炭素鋼、合金鋼、鋳鉄、アルミニウム合金、チタン合金等の金属系;超鋼、アルミナ、窒化珪素等のセラミックス系;ソーダ石灰ガラス、ホウケイ酸ガラス、鉛ガラス等のガラス系;ポリイミド、ポリアミド等の樹脂系などを用いることができる。
【0045】
炭素質膜4の厚み及び固定用材料10の厚みは特に限定しない。炭素質膜4の厚みは、少なくとも0.01μm以上であって10μm以下であるのが好ましい。0.01μm以上であれば、所望の部分に欠陥なく炭素質膜を作製することが容易になる。また、10μm以下であれば、膜中の応力によって生じる剥離を防ぐことができる。また、炭素質膜4の表層除去による再利用を考慮した場合には、膜厚は1μm以上であることが好ましい。
【0046】
炭素質膜4は、その表面粗さ(十点平均粗さ(Rz))は特に限定しない。好ましくは、Rzjis3μm以下であり、より好ましくはRzjis1μm以下である。なお、十点平均粗さRzの算出方法は、JIS B 0601(1994)に規定された方法に従ったものであり、触針式の表面粗さ計により測定した値を示す。
【0047】
このような炭素質膜を製造する方法は特に限定しない。例えば、プラズマCVD法、イオンプレーティング法、スパッタリング法など既に公知のCVD法(化学気相成長法)又はPVD法(物理気相成長法)により形成することができる。このうち、プラズマCVD法により形成するのが好ましい。プラズマCVD法は、反応ガスにより成膜するため、複雑な形状の基材に対しても容易に成膜することができる。また、成膜装置の構造も単純で安価である。このプラズマCVD法としては、高周波放電を利用する高周波プラズマCVD法や、直流放電を利用する直流プラズマCVD法、マイクロ波放電を利用するマイクロ波プラズマCVD法などが挙げられるが、最も安価な装置である直流プラズマCVD法が好ましい。
【0048】
プラズマCVD法によりケイ素を含有する非晶質炭素を成膜する場合、反応ガスは、炭素原料としてメタン、アセチレン、ベンゼンなどの炭化水素ガス等を用いることができる。また、ケイ素原料としては、Si(CH34[TMS],SiH4,SiCl4,SiH24などのケイ素化合物ガスを用いることができる。また、キャリアガスとしては、アルゴンガス、水素ガスなどを用いることができ、好ましくはアルゴンガスと水素ガスとを用いる。アルゴンガスに水素ガスを混入することにより、成膜中の膜表面へのイオン衝撃が低減されるため、水素を高い割合で含有し且つ適切な割合のsp2混成軌道炭素及びsp3混成軌道炭素を持つ非晶質炭素質膜を容易に形成することができる。
【0049】
なお、成膜する際のガス濃度、基材の温度、圧力、成膜時間などの各種条件は、作製したい非晶質炭素質膜の膜組成、表面粗さ、膜厚等に応じて適宜設定すればよい。例えば、所望の割合の炭素の結合形態を有する非晶質炭素質膜を作製するには、反応ガス中の炭化水素ガスやケイ素化合物ガスの濃度を適宜設定するとしてもよい。
【0050】
また、炭素質膜4を基板2上に形成するにあたり、品質等を良好にするための前処理を基板2に対して適宜行うとしてもよい。このような前処理としては、例えば、基板2と炭素質膜4との密着性を向上させることを目的として基材2の表面に微細な凹凸を形成する処理(凹凸形成処理)等が挙げられる。この凹凸形成処理は、例えば、CVD成膜装置を用いて水素ガスとアルゴンガスとを炭素質膜表面にスパッタリングすることにより行う。また、本処理を行うことにより、厚膜の炭素質膜を得ることができる。
【0051】
その他、本発明において使用可能なケイ素を含有する炭素質膜としては、特開2007−23356号公報、特開2005−336456号公報及び特開2005−314454号公報に記載の非晶質炭素質膜を用いることができる。また、本明細書には、特開2007−23356号公報、特開2005−336456号公報及び特開2005−314454号公報に記載されるすべての事項が引用により取り込まれるものとする。
【0052】
このような本発明の固定用材料は、目的とする生体分子の精製や同定、定性又は定量等に用いたり、あるいは、目的とする生体分子の発現、相互作用、翻訳後修飾などといった生体分子の機能解析等に用いたりすることができる。すなわち、本固定用材料は、いわゆるプロテインチップやDNAチップ等として診断や治療等に利用することができる。
【0053】
(固相体)
本発明の固相体は、上述した固定用材料10に上記生体分子を固定化したものである。図1(b)に、固相体の一例として、生体分子6が固定化された固相体20を示す。本固相体20における固定用材料10には、既に説明した上記各種形態の本発明の固定用材料をそのまま適用することができる。したがって、本固相体によれば、生体分子6を炭素質膜4に固定化した固相体20を得ることができ、これにより、本発明の固定用材料において上記した各種の利点を得ることができる。また、本固相体は、いわゆるプロテインチップやDNAチップ等として、炭素質膜表面に固定化した生体分子の機能等を利用した診断や治療等を行うことができる。
【0054】
(固相体の製造方法)
本発明の固相体の製造方法は、上述した固定用材料の炭素質膜表面に生体分子を接触させることにより該生体分子を炭素質膜に保持させる工程を備えることができる。なお、本製造方法における固定用材料には、既に説明した本発明の固定用材料における構成、成分、形状や用途などをそのまま適用することができる。したがって、本製造方法における製造工程は、上記各種形態の本発明の固定用材料を製造するための製造工程を含むことができる。
【0055】
なお、本固相体には本固定用材料を用いていることから、本製造方法により生体分子を炭素質膜上に固定化して固相体を作製したのち当該炭素質膜表面を研磨等することにより、本製造方法により新たな生体分子を炭素質膜表面に再度固定化することができる。
【0056】
(固相体の使用方法)
本発明の固相体の使用方法は、上記固相体に固定化された上記生体分子に被験試料を供給して生体分子と被験試料中の成分との相互作用を生じさせる工程と、当該相互作用を検出する工程とを備えることができる。なお、本使用方法における固定用材料には、既に説明した本発明の固定用材料及び固相体における構成、成分、形状や用途などをそのまま適用することができる。したがって、本使用方法における工程は、上記各種形態の本発明の固定用材料及び固相体を使用するための各種工程を含むことができる。
【0057】
以下、本発明を具体例を挙げて説明するが、本発明は以下に例示する具体例に限定されるものではない。
【実施例1】
【0058】
[生体分子の固定用材料の作製]
プラズマCVD成膜装置(日本電子工業(株)製、型番:JPE−468−HVMS−601)を用いて、基材の表面にケイ素含有非晶質炭素質膜(以下、DLC−Si膜と称する)を形成した。基材としては、オーステナイト系ステンレス鋼SUS304(HV200)製のブロック試験片(6.3mm×15.7mm×10.1mm)を用いた。具体的には、まず、成膜装置内に設置された基台の上にブロック試験片を配置して成膜装置を密閉したのち、装置内のガスを排気した。次に、装置内に水素ガスを15sccm導入し、ガス圧を約133Paとした。その後、装置内面に設けたステンレス製陽極板と基台との間に200Vの直流電圧を印加して放電を開始した。そして、基材の温度が500℃になるまでイオン衝撃による昇温を行った。続いて、窒素ガス500sccm及び水素ガス40sccmを装置内に導入し、圧力約800Pa、電圧400V(電流1.5A)、温度500℃でプラズマ窒化処理を1時間行った。基材の断面組織を観察したところ、窒化深さは30μmであった。
【0059】
プラズマ窒化処理後、装置内に水素ガスとアルゴンガスとを30sccmずつ導入し、圧力約533Pa、電圧300V(電流1.6V)、温度500℃でスパッタリングし、基材の表面に微細な凹凸を形成した(凹凸形成処理)。凸部の幅は60nm、高さは30nmであった。次に、反応ガスとしてTMSガス及びメタンガスを表1に示す流量で装置内に導入し、さらに水素ガス及びアルゴンガスを30sccmずつ導入することにより、圧力約533Pa、電圧320V(電流1.8V)、温度500℃で成膜した。その際、膜厚が2.5〜3.0μmとなるよう成膜時間を制御した。これにより、ブロック試験片の表面にケイ素含有量の異なるDLC−Si膜が形成された2種類の試料を得た。これを生体分子の固定用材料とした。各試料の組成を表1に示す。
【表1】

【0060】
なお、DLC−Si膜中のケイ素量は、ラザフォード後方散乱法(RBS)により定量した。また、DLC−Si膜中の水素量は、弾性反跳粒子検出法(ERDA)により定量した。
【0061】
また、比較のため、上記ブロック試験片にケイ素を含有しない非晶質炭素質膜(以下、DLC膜と称する)をカソードアーク式イオンプレーティング装置により成膜した。これにより得られた試料を比較例1とした。また、上市されているスライドガラス型タンパク質固定化用基板(Full Moon BioSystems社製、製品名「Protein Slides」、品番:PRT25)を比較例2とした。
【0062】
2.シラノール基の検出
実施例1,2及び比較例1の各試料表面におけるシラノール基の存在を確認するために、誘導体化XPS法によりシラノール分析を行った。具体的には、まず、誘導体化試薬であるトリデカフルオロ−1,1,2,2−テトラヒドロオクチルジメチルクロロシラン(FOCS)をクロロホルムで1%に希釈した溶液中に各試料を1時間浸漬した。次に、クロロホルムにより2回繰り返し洗浄し、2分間超音波洗浄を行った。その試料をXPS装置(アルバック・ファイ(株)製、型番:PHI−5500−MC)内に入れ、フッ素量を求めた。その結果を表1に示す。なお、表1におけるフッ素量は、対照試料としての比較例1のフッ素量を差分した値を示す。
【0063】
表1に示すように、実施例1及び実施例2のDLC−Si膜表面にはフッ素が検出された。また、その量は、DLC−Si膜中のケイ素量が多い実施例2の方が実施例1よりも多かった。一方、ケイ素を含有していない比較例1のDLC膜表面には、フッ素が検出されなかった。これらのことから、非晶質炭素質膜中にケイ素を含有することにより、非晶質炭素質膜表面にシラノール基が形成されることが示唆された。また、膜表面におけるシラノール基量は、非晶質炭素質膜中のケイ素の含有量に対応し、ケイ素量が多いと膜表面のシラノール基量が多くなる傾向にあることが認められた。
【0064】
3.タンパク質の固定化能の評価
0.1−500ng/mLの各濃度のビオチン化抗体溶液1μL(緩衝液:TPBS(0.01% Tween20,リン酸緩衝食塩液)を実施例1、2及び比較例1、2の各試料表面に滴下し、これを真空乾燥した。その後、試料をTPBS溶液に浸漬し、5分間撹拌することによって洗浄した。この洗浄操作は3回繰り返した。この試料を1%のゼラチンを含むTPBS溶液に30分間浸漬してブロッキング処理を行った。その後、0.1μg/mLアルカリフォスファターゼ標識アビジン及び1%のゼラチンを含むTPBS溶液に30分間浸し反応させた。さらに、これをTPBS溶液に浸漬し、5分間撹拌することによって洗浄した。この洗浄操作は3回繰り返した。その後、純水で軽くすすいだ後、N2ブローにより試料を乾燥させた。この試料表面に化学発光溶液(CDP−star with emerald II)を滴下してギャップカバーグラスにより試料上面をカバーした後、化学発光検出器(アイシン精機(株)製、型番:LV−400)によりビオチン化抗体溶液を滴下した部分(スポット)に生ずる化学発光の強度を測定した。ビオチン化抗体溶液の滴下濃度を横軸に、スポットの化学発光強度を縦軸にとったときの対応関係から傾きを算出した。その結果を表2に示す。また、各試料の検出感度を表2に示す。
【表2】

【0065】
まず、実施例1、2と比較例1とを比較すると、表2に示すように、上記対応関係の傾きは、実施例1及び2においては比較例1の2倍以上の値であった。また、検出感度については、実施例1、2は同等であったのに対し、比較例1ではその25分の1であった。これらのことから、非晶質炭素質膜に含有されるケイ素がタンパク質に対する固定化能の発現に寄与していることがわかった。また、DLC膜にはシラノール基が検出されなかったのに対し、DLC−Si膜表面にはシラノール基が検出されたことから、DLC−Si膜では、シラノール基とタンパク質との相互作用によりタンパク質を膜表面に固定化したと考えられた。
【0066】
また、実施例1と実施例2とを比較した場合、実施例1においても固定化力及び検出感度が良好であったことから、FOCSを用いて誘導体化XPS分析を行った場合のフッ素量として4at%以上のシラノール基が膜表面に形成されていれば、タンパク質を膜表面に確実に保持できるといえる。
【0067】
実施例1,2及び比較例2では、表2に示すように、傾き及び検出感度とも同等の値であった。したがって、DLC−Si膜においては、上市されている従来のタンパク質固定用材料(スライドグラス型タンパク質固定化用基板)と同等の固定化能を有することが認められた。
【図面の簡単な説明】
【0068】
【図1】本発明の固定用材料及び固相体の一例を示す図。図1(a)は固定用材料、図1(b)は固相体を示す。
【符号の説明】
【0069】
2 基板、4 炭素質膜、6 生体分子、10 固定用材料、20 固相体

【特許請求の範囲】
【請求項1】
ケイ素を含有する炭素質膜を備える、生体分子の固定用材料。
【請求項2】
前記炭素質膜は、表面にシラノール基を備える、請求項1に記載の固定用材料。
【請求項3】
前記シラノール基は、トリデカフルオロ−1,1,2,2−テトラヒドロオクリルジメチルクロロシラン(FOCS)によって誘導体化後にXPS分析する誘導体化XPS法によってフッ素として検出される、請求項2に記載の固定用材料。
【請求項4】
前記シラノール基は、前記誘導体化XPS法によって測定するとき、フッ素量として2at%以上である、請求項2又は3に記載の固定用材料。
【請求項5】
前記炭素質膜は、非晶質炭素質膜である、請求項1〜4のいずれかに記載の固定用材料。
【請求項6】
前記炭素質膜は、ケイ素を1.5at%以上30.0at%以下含有する、請求項1〜5のいずれかに記載の固定用材料。
【請求項7】
前記炭素質膜は、全炭素中sp2混成軌道炭素を40%at以上70at%以下含有する、請求項1〜6のいずれかに記載の固定用材料。
【請求項8】
タンパク質の固定化用である、請求項1〜7のいずれかに記載の固定用材料。
【請求項9】
生体分子が固定化された固相体であって
前記生体分子は、請求項1〜7のいずれかに記載の固定用材料の前記炭素質膜表面に保持されている、固相体。
【請求項10】
生体分子が固定化された固相体の製造方法であって、
請求項1〜7のいずれかに記載の固定用材料の前記炭素質膜表面に前記生体分子を接触させることにより前記生体分子を前記炭素質膜に保持させる工程、を備える、製造方法。
【請求項11】
生体分子が固定化された固相体の使用方法であって、
請求項9に記載の固相体に固定化された前記生体分子に被験試料を供給して前記生体分子と前記被験試料中の成分との相互作用を生じさせる工程と、
前記相互作用を検出する工程と、
を備える、使用方法。

【図1】
image rotate


【公開番号】特開2008−232877(P2008−232877A)
【公開日】平成20年10月2日(2008.10.2)
【国際特許分類】
【出願番号】特願2007−73984(P2007−73984)
【出願日】平成19年3月22日(2007.3.22)
【出願人】(000003609)株式会社豊田中央研究所 (4,200)
【Fターム(参考)】