説明

画像表示装置及びその駆動方法

【課題】少ないメモリ容量で、マルチライン駆動時の輝度ばらつきによる画質劣化を抑制できる、高品質な画像表示装置を提供する。
【解決手段】画像表示装置は、複数の発光素子を有する表示パネルと、選択信号を印加する走査配線をNラインずつ順次に切り替える走査回路と、画像データに基づき生成した変調信号を各変調配線に印加する変調回路と、前記変調回路に対して画像データを出力する画像処理回路と、を備える。画像処理回路は、各発光素子の固有輝度又は固有輝度に対応する値を、各発光素子の発光特性データとして記憶している記憶部と、前記発光特性データから算出した補正データを用いて、画像データに対し前記複数の発光素子の輝度のばらつきを抑制するための補正を行う補正演算部と、を有する。前記補正演算部は、同じ変調信号により同時に駆動されるNライン分のN個の発光素子の固有輝度の平均値から、補正データを算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像表示装置の発光素子間の輝度ばらつきを補正する技術に関する。
【背景技術】
【0002】
平面型表示装置(FPD)として、液晶表示装置(LCD)、プラズマ表示装置(PDP)、電界放出型表示装置(FED)、有機EL表示装置(OLED)等が知られている。
このような平面型表示装置では、基板上に多数の発光素子を形成する必要がある。これらの発光素子の特性は、製造条件等のわずかな違いにより影響を受ける。そのため、一般に、平面型表示装置に含まれる全ての発光素子の特性を完全に均一にすることは困難である。この発光特性の不均一さが表示装置の輝度ばらつきの原因となり、画質が劣化してしまう。例えば、電界放出型表示装置の場合、電子放出素子として、表面伝導型電子放出素子、スピント型、MIM型、カーボンナノチューブ型等が用いられている。電子放出素子の製造条件等の違いにより電子放出素子の形状等が異なると、電子放出素子の電子放出特性も異なることとなる。その結果、電界放出型表示装置の輝度ばらつきが生じ、画質が劣化してしまう。
【0003】
かかる課題に対し、各発光素子の発光特性に応じて画像信号を補正する構成が提案されている(輝度ばらつき補正)。例えば、画面の全素子に対して調整比率(補正データ)をあらかじめ用意し、入力画像データに乗算することで輝度ばらつきを補正する方式がある。
【0004】
一方、複数本のラインを同時に駆動する(発光させる)走査方法がある。以下、この走査方法をNライン駆動又はマルチライン駆動(Multi-Line Addressing; MLA)と呼ぶ
。この走査方法により、従来のような1ラインごとに発光ラインを順次走査していく方式(以下、シングルライン駆動と呼ぶ。)と比較して、1フレーム期間におけるそれぞれのピクセル選択時間をN倍の長さに設定することができる。そのため、表示パネルの発光輝度をおよそN倍にすることが可能となる。
しかしながら、マルチライン駆動時は複数本のラインを同時に駆動するため、同時に駆動されるライン上にある同一カラム上の複数の発光素子を同じ駆動信号で駆動せざるを得ない。一方、上記にて述べたようにパネルには素子毎に発光特性のばらつきがあるため、1素子毎に補正した最適な駆動信号で駆動する必要がある。つまり、マルチライン駆動の時は、1素子毎に補正した最適な駆動信号で駆動することができず、輝度ばらつきが発生してしまうことになる。
【0005】
従来、マルチライン駆動における補正データの生成方法として、同じ駆動信号で駆動されるN個の発光素子の中のいずれかの素子のシングルライン駆動用の補正データを、代表値として、マルチライン駆動用の補正データに利用する方法が知られている。また特許文献1には、N個の発光素子のシングルライン駆動用の補正データの平均値を、マルチライン駆動用の補正データとして用いる方法が提案されている。
しかし、従来の方法は、駆動信号を共用するN個の素子の輝度のばらつきが小さい場合には有効であるが、輝度のばらつきが大きい場合は誤差が発生してしまう。そのため、依然隣接ばらつきによる画質劣化が発生してしまう。
とはいえ、シングルライン駆動用の補正データとマルチライン駆動用の補正データの両方を予めメモリに格納しておくとなると、メモリ容量の増大とコストの増加を招くため、好ましくない。同時に駆動するライン数が可変の画像表示装置の場合は、この問題は特に重要となる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−215140号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、少ないメモリ容量で、マルチライン駆動時の輝度ばらつきによる画質劣化を抑制できる、高品質な画像表示装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の第1態様は、マトリクス状に配置された複数の走査配線及び複数の変調配線、並びに、各々が走査配線及び変調配線に接続された複数の発光素子を有する表示パネルと、選択信号を印加する走査配線をNラインずつ(Nは1以上の整数)順次に切り替える走査回路と、画像データに基づき生成した変調信号を各変調配線に印加する変調回路と、前記変調回路に対して画像データを出力する画像処理回路と、を備え、前記画像処理回路は、前記複数の発光素子それぞれを同じ条件で駆動した場合の各発光素子の輝度である固有輝度又は固有輝度に対応する値を、各発光素子の発光特性データとして記憶している記憶部と、前記発光特性データから算出した補正データを用いて、画像データに対し前記複数の発光素子の輝度のばらつきを抑制するための補正を行う補正演算部と、を有しており、前記補正演算部は、各画像データに適用する補正データを、当該画像データに基づき生成される変調信号により同時に駆動されるNライン分のN個の発光素子の固有輝度の平均値から、算出する、画像表示装置を提供する。
【0009】
本発明の第2態様は、画像表示装置の駆動方法であって、前記画像表示装置は、マトリクス状に配置された複数の走査配線及び複数の変調配線、並びに、各々が走査配線及び変調配線に接続された複数の発光素子を有する表示パネルと、選択信号を印加する走査配線をNラインずつ(Nは1以上の整数)順次に切り替える走査回路と、画像データに基づき生成した変調信号を各変調配線に印加する変調回路と、前記複数の発光素子それぞれを同じ条件で駆動した場合の各発光素子の輝度である固有輝度又は固有輝度に対応する値を、各発光素子の発光特性データとして記憶している記憶部と、を有するものであり、前記駆動方法は、前記記憶部から発光特性データを読み込むステップと、読み込んだ発光特性データから補正データを算出するステップと、算出した補正データを用いて、画像データに対し前記複数の発光素子の輝度のばらつきを抑制するための補正を行うステップと、を含み、各画像データに適用する補正データが、当該画像データに基づき生成される変調信号により同時に駆動されるNライン分のN個の発光素子の固有輝度の平均値から、算出される、駆動方法を提供する。
【発明の効果】
【0010】
本発明によれば、少ないメモリ容量で、マルチライン駆動時の輝度ばらつきによる画質劣化を抑制できる、高品質な画像表示装置が実現される。
【図面の簡単な説明】
【0011】
【図1】輝度ばらつき補正部の構成を示すブロック図。
【図2】画像表示装置全体の構成を示すブロック図。
【図3】ダブルライン駆動の走査タイミングを示す図。
【図4】表示パネルのピクセル配列を示す図。
【図5A】4K2Kフォーマットのデータと表示パネルのピクセルの対応図。
【図5B】2K1Kフォーマットのデータと表示パネルのピクセルの対応図。
【図6】(A)は1素子単位での輝度ばらつきを示す図、(B)は2素子単位での輝度のばらつきを示す図。
【図7】第3実施形態の制御フローを示す図。
【図8】(A)は従来、(B)は第3実施形態のデータ格納例を示す図。
【発明を実施するための形態】
【0012】
本発明は、マルチライン駆動が可能な単純マトリクス方式(パッシブマトリクス方式)の画像表示装置に適用される。この種の画像表示装置は、概略、複数の発光素子を有する表示パネルと、表示パネルを駆動する駆動回路と、画像データに必要な処理を施し駆動回路に出力する画像処理回路とを備える。詳しくは、表示パネルは、マトリクス状に配置された複数の走査配線及び複数の変調配線と、各々が走査配線及び変調配線に接続された複数の発光素子と、を有して構成される。また駆動回路は、選択信号を印加する走査配線をNラインずつ(Nは1以上の整数)順次に切り替える走査回路(走査ドライバ)と、画像データに基づき生成した変調信号を各変調配線に印加する変調回路(変調ドライバ)と、を有して構成される。駆動時には、選択信号が印加されたNライン分の発光素子が変調信号に応じた輝度でそれぞれ発光する。マルチライン駆動の場合(N≧2の場合)は、同一カラムにあるNライン分のN個の発光素子が、同じ変調信号により同時に駆動されることとなる。
【0013】
本発明は、上記構造の画像表示装置において、発光素子毎の発光特性の不均一さによる輝度ばらつきを補正し、輝度ばらつきに起因する画質劣化を改善することが可能である。単純マトリクス方式の画像表示装置としては、電界放出型表示装置、液晶表示装置、プラズマ表示装置、有機EL表示装置などがあり、本発明はいずれの表示装置にも適用することができる。中でも、電子放出素子(冷陰極素子)と蛍光体(発光部材)から構成される発光素子を用いる電界放出型表示装置は、放出電流のばらつき等により明るさのむらが発生する可能性があるため、本発明が適用される好ましい形態である。
【0014】
また、表示パネルのサイズ(面積)が大きいと明るさのむらが目立ちやすいので、大面積の画像表示装置は本発明が適用される好ましい形態である。また、発光素子の数が多いほど輝度のばらつきが問題となる可能性があるため、2K1K、4K2K、8K4Kなどの高精細な画像表示装置は本発明が適用される好ましい形態である。なお、2K1Kは約2000×1000の解像度(フルHD相当)、4K2Kは約4000×2000の解像度(フルHDの約4倍)、8K4Kは約8000×4000の解像度(フルHDの約16倍)をさす。
【0015】
本発明は、記憶部に格納されている発光素子それぞれの発光特性データ(固有輝度)から、同時駆動ライン数Nに応じた補正データを算出する。すなわち、同時駆動ライン数Nが異なる複数の表示モードで、同じデータ(発光特性データ)を共用できるため、メモリ容量の増大を防止できる。したがって、シングルライン駆動(N=1)とマルチライン駆動(N≧2)の両方の表示モードをもつ画像表示装置は本発明が適用される好ましい形態である。例えば、シングルライン駆動を利用した4K2K高精細表示モードと2ライン駆動を利用した2K1K高輝度表示モードをもつ画像表示装置において、メモリ容量を増大させることなく、両表示モードで輝度ばらつきを抑えた高品質な画像表示を実現できる。なお、シングルライン駆動、2ライン駆動、3ライン駆動、4ライン駆動・・・のように画像表示装置のもつ表示モードの数が多くなるほど、本発明の利点はさらに顕著になる。
【0016】
[第1実施形態]
本発明の第1実施形態に係る画像表示装置及びその駆動方法ついて、以下に具体的に説明する。ここでは、電子放出素子と蛍光体からなる発光素子を用いる電界放出型表示装置を例示するが、前述したように本発明はこの構成に限定されるものではない。
【0017】
(1)画像表示装置の構成について
図2を参照して、画像表示装置全体の構成と信号の流れ、走査タイミングについての説明を行う。
【0018】
図2は画像表示装置全体の構成を示すブロック図である。符号200は表示パネルを示す。表示パネル200は薄型の真空容器を有し、その中ではリアプレートとフェースプレートがスペーサと呼ばれる支持部材を介して対向している。リアプレートは、4K2Kのピクセル数をもつマルチ電子源である。リアプレートには、2160本の走査配線213と11520本(=RGB×3840本)の変調配線212とがマトリクス状に形成されており、走査配線と変調配線の交差部分それぞれに電子放出素子214(例えば表面伝導型放出素子)が形成されている。フェースプレートは、ガラス基板、複数の電子放出素子214とそれぞれ対向するようにガラス基板上に設けられた複数の蛍光体、及び、複数の蛍光体を覆うメタルバックを有する。
【0019】
複数の電子放出素子214は、複数の変調配線212と複数の走査配線213により単純マトリクス状に配線されている。変調ドライバ210と走査ドライバ211から変調配線212と走査配線213に信号を印加することにより、所望の電子放出素子から電子が放出される。高圧電源216を用いて上記メタルバックの電位を高電位にすることにより、放出された電子は加速し、メタルバックを通過して蛍光体に衝突する。それにより、蛍光体が発光し、画像(映像)が表示される。なお、このタイプの表示パネルの構成や製造方法は、例えば、特開2000−250463号公報に詳しく開示されている。
【0020】
次に、画像処理回路の構成、特に、映像信号(画像データ)が入力されてから駆動回路にデータを出力するまでの処理について説明する。画像表示装置は、例えば、映像信号供給装置に接続され、主に、映像信号S1や同期信号T1などの映像信号を用いた処理を行う部分と、通信信号C1などのコマンド信号を用いた処理を行う部分の2種類で構成される。
【0021】
まず、映像信号供給装置から入力された映像信号S1から、変調ドライバ210に入力する駆動信号S6を生成するまでの処理について説明する。
【0022】
映像信号S1はRGB入力部201に入力される。RGB入力部201は、水平解像度、走査線数、フレームレート、クロック周波数などが表示パネル200のそれらと整合するように映像信号S1を変換する変換回路や、色温度、ホワイトバランスなどを調整する調整回路などを有する。RGB入力部201は、上記変換回路や調整回路を用いて映像信号S1に所定の処理を施し、信号S2として出力する。
【0023】
RGB入力部201に図5Aに示すような4K2Kフォーマットの画像データ500が入力された際は、フォーマット変換を行わず、画像データ500の各ピクセルのデータが表示パネル200の対応するピクセルの駆動に利用される。すなわち、データD(0,0)、D(1,0)、・・・、D(3839,2159)がそれぞれピクセル(0,0)、(1,0)、・・・、(3839,2159)の
駆動に利用される。なお表示パネル200の1つのピクセルはRGB3つのサブピクセル(発光素子)から構成されている。一方、RGB入力部201に図5Bに示すような2K1Kフォーマットの画像データ501が入力された際は、フォーマット変換を行い、画像データ501の各ピクセルのデータを表示パネル200の4つ(2行2列)のピクセルの駆動に利用する。すなわち、図5Aの4つのピクセル(0,0)、(0,1)、(1,0)、(1,1)を、図5Bのように1つのピクセル(0,0)とするような、フォーマット変換が行われる。
【0024】
信号S2は、逆γ補正部202に入力される。逆γ補正部202は、画像データの値が表示パネル200の輝度に対して線形になるように、信号S2を変換し、信号S3として
出力する。この変換後の画像データは輝度に比例する値をもつため、「輝度データ」とも呼ばれる。一般的に、入力映像信号S1は、CRTディスプレイ装置で表示することを前提として、CRTディスプレイの入力−発光特性に合わせた0.45乗などの非線形変換
(ガンマ変換)が施されて伝送あるいは記録されている。逆γ補正部202は、そのような映像信号を、FEDやPDPなどの入力−発光特性が線形な表示デバイスに表示するために、映像信号に対して2.2乗などの逆ガンマ変換を施す。
【0025】
信号S3は、本実施形態での特徴となる輝度ばらつき補正部203に入力される。輝度ばらつき補正部203は、信号S3に対し、表示パネル200の電子放出素子214の発光特性のばらつきに起因する輝度ばらつきを抑制するための補正を施し、信号S4として出力する。輝度ばらつき補正部203の詳細については以降で詳しく説明する。なお、信号S4は、「補正輝度データ」とも呼ばれる。
【0026】
信号S4は、蛍光体補正部204に入力される。蛍光体補正部204は、変調ドライバ210の非線形性や蛍光体の輝度飽和特性などを考慮し、選択された発光素子が補正輝度データに比例する輝度で発光するように、信号S4にリニアリティ補正を施し、信号S5として出力する。ここで、R、G、B各色の蛍光体の輝度飽和特性が異なる場合には、補正輝度データに対し色毎に異なる変換を施せば良い。
【0027】
信号S5は、駆動変換部205に入力される。駆動変換部205は、RGBパラレルに入力される画像データ(S5)を表示パネル200のRGB蛍光体の配列に対応するように並び替えを行う。また、駆動変換部205は、この画像データを、変調ドライバ210の入力フォーマット(例えば、Mini LVDS、RSDSなど)に合ったデータに変換し、駆動信
号S6として出力する。
【0028】
なお、各信号処理部(201〜205)の動作タイミングは、映像信号供給装置から受け取った同期信号T1に基づいてタイミング制御部206が生成する同期信号T2によって制御される。また、各信号処理部(201〜205)の動作モードは、システム制御部207により、システムバス209を経由して各パラメータを設定することにより制御される。システム制御部207は、論理ロジックのみで構成されていてもよいし、CPUやマイコン、並列演算が可能なメディアプロセッサで構成されていてもよい。制御を行うプログラムはROMに内蔵されていてもよいし、入出力インタフェースを介して外部から転送されてもよい。上記パラメータとしては、データサイズの小さいものから大きいものまで様々あるが、いずれの場合においても、パラメータは電源遮断時にも記憶されている必要がある。そのため、上記パラメータは、フラッシュメモリなどに代表される大容量の不揮発性メモリ208に格納されており、必要に応じてシステム制御部207により読み出され、利用される。不揮発性メモリ208は、NANDタイプやNORタイプのフラッシュメモリだけではなく、ROMであっても、ハードディスクであっても良い。また、SRAMなどの揮発性メモリを電池駆動により不揮発性メモリのように使う構成であってもよい。
【0029】
また、システム制御部207は、通信信号C1により、映像信号供給装置側から起動要求や動作モードの切り替え要求などの各種要求を受け取り、エラーがなければその要求に従って画像表示装置の制御を行う。エラーがある場合には、映像信号供給装置側にそれを通知すると共に、画像表示装置のエラー処理(強制シャットダウンなど)をフェイルセーフで行う。
【0030】
次に、駆動変換部205から駆動信号S6が出力されてから、表示パネル200を駆動し、映像表示が行われるまでの処理について説明する。
【0031】
変調ドライバ210は、駆動変換部205から駆動信号S6を受け取る。そして、変調ドライバ210は、タイミング制御部206からのタイミング制御信号T3に従って、駆動信号S6から変調信号S7を生成し、変調信号S7を各変調配線212に印加する。
走査ドライバ211は、タイミング制御部206からのタイミング制御信号T4に従って順次ライン(走査配線)を選択する。選択される走査配線には走査ドライバ211から所定の選択電位の選択信号が印加される。
駆動電源215は、変調ドライバ210及び走査ドライバ211が出力する変調信号及び選択信号の電圧源である。
【0032】
このように、選択ライン(走査配線213)に対して選択信号を印加すると共に、各カラム(変調配線212)に対して変調信号を印加することで、選択ライン上の各電子放出素子214に選択信号と変調信号の差電圧が印加される。画像データ(駆動信号S6)の値に応じて変調信号のパルス幅、振幅、若しくはその両方を変調することで、各電子放出素子214から所望の電子放出を行わせることができる。
高圧電源216は、加速電圧(8〜10kV)を発生し、該加速電圧によりメタルバックの電位を高電位にする。それにより、電子放出素子214から放出された電子は、加速し、蛍光体に衝突する。そして、蛍光体への電子の衝突により、該蛍光体が発光する。
選択ラインを順次切り替えて上記処理を繰り返すことにより、表示パネル200に1画面分の画像が形成(表示)される。
【0033】
なお、駆動電源215と高圧電源216は、システム制御部207からのコントロール信号C2,C3により適応的に制御可能に構成されていることが好ましい。特に、起動時、電源オフ時、及び、エラー発生時には適切な立ち上げ/立ち下げシーケンスで各電源の
駆動順序や、高圧電源の昇圧、降圧方法が制御されることが好ましい。
【0034】
次に、Nライン駆動について説明する。ここでは、N=2の場合のダブルライン駆動を例にとり説明を行う。図3に、走査タイミングの一例を示す。
【0035】
まず、0番目の走査期間(図3中、走査期間0として示される期間(以下、同様に示す))においては以下の動作を行う。
変調ドライバ210はタイミング制御部206からのタイミング制御信号T3に対応して0,1行目用の輝度データに相当する変調信号S7を変調配線212に出力する。また、走査ドライバ211はタイミング制御部206からのタイミング制御信号T4に対応してY0,Y1に選択信号を印加する。選択された0,1行目の走査配線213に接続され、変調信号が印加されている変調配線212に接続されている電子放出素子214は、変調配線212の変調信号に応じた電子放出を行う。これにより、0,1行目の素子が発光する。
【0036】
また、1番目の走査期間(図3中、走査期間1として示される期間)においても同様に、以下の動作を行う。変調ドライバ210はタイミング制御信号T3に対応して2,3行目用の輝度データに相当する変調信号S7を変調配線212に出力する。また、走査ドライバ211はタイミング制御信号T4に対応してY2,Y3に選択信号を印加する。これにより、2,3行目の素子が発光する。2番目以降の走査期間についても同様の動作が行われ、2行ずつ素子が発光する。
【0037】
N>2の場合、選択信号が印加される走査配線の数がN本に増える以外は、ダブルライン駆動と同様である。なお、0,1行目のように隣接するNラインではなく、0,2行目のように離間した(間に非選択ラインを挟んだ)Nラインを同時に駆動することもできる。ただし後述するように、本実施形態では同一カラムのN個の素子の合計輝度に着目して輝度ばらつきの補正を行うことから、選択ライン間の距離はヒトの眼の積分効果が得られ
る距離よりも小さくなるように設定する。また、0,1行目の次に1,2行目を選択するというように、選択ラインの一部を重複させることもできる。また、0,1行目の次に4,5行目を選択するというように、間をあけることもできる。いずれの場合も、同時に駆動されるNライン上の同一カラム上のN個の電子放出素子214には、同じ変調信号S7が印加されることとなる。
【0038】
(2)輝度ばらつき補正の必要性について
次に、本実施形態における課題になっている、輝度ばらつき補正部203における輝度ばらつき補正の必要性と、通常のシングルライン駆動で行っている輝度ばらつき補正についての説明を行う。
【0039】
前述したように、平面型表示装置では、発光する素子の特性の不均一さが表示装置の輝度ばらつきの原因となり、画質が劣化してしまう。
このような課題に対し、各発光素子の発光特性に応じて画像データを補正する構成が提案されている。例えば、全ての発光素子をそれぞれ同じ条件で(つまり同じ値の画像データで)駆動して各発光素子の輝度を測定し、その測定値の逆数を各発光素子の補正データとして用いる方法がある。同じ駆動条件で測定される輝度は、素子の発光特性に依存する値をとる。ここでは、そのデータを発光素子の「発光データ」又は「固有輝度」と呼び、発光データを所定の輝度で規格化したデータを「発光特性データ」と呼ぶ。
【0040】
図2の構成を参照して、上記方法の原理を説明する。
表示パネル200の各発光素子(x,y) [ 0≦x≦11519, 0≦y≦2159 以下同じ ]に対応する輝度ばらつき補正前の輝度データS3をD(x,y)、各発光素子の発光量をP(x,y)とする。また、各発光素子の発光特性データをK(x,y)とする。
【0041】
補正を行わない場合には表示しようとする画像に対して素子の発光特性のばらつきが影響し、表示パネル200には、
P(x,y)=D(x,y)・K(x,y)
からなる画像が形成される。K(x,y)は発光特性に依存したばらつきを含むため、これが画像のざらつきや斑となって見える。
【0042】
そこで、各素子の発光特性データK(x,y)の逆数を補正データQ(x,y)として不揮発性メモリ208に予め格納しておき、輝度ばらつき補正部203によって輝度データD(x,y)に補正データQ(x,y)を乗算する。そして、補正輝度データD(x,y)・Q(x,y)にて表示パネル200を駆動すると、素子の発光特性が影響し、表示パネルには、
P(x,y)=D(x,y)・Q(x,y)・K(x,y) ‥‥[式1]
からなる画像が形成される。Q(x,y)はK(x,y)の逆数であるので、各素子の発光特性ばらつきがキャンセルされたP(x,y)=D(x,y)による均一な画像が得られる。
【0043】
(3)マルチライン駆動時の輝度ばらつき補正の課題について
次に、マルチライン駆動時の輝度ばらつき補正の課題と、従来の補正方法を用いても輝度ばらつきが発生してしまうことの説明を行う。
【0044】
<マルチライン駆動について>
マルチライン駆動とは、複数のライン(走査配線)を同時に選択することで、その複数の選択ライン上の発光素子を同時に駆動する走査方法のことである。マルチライン駆動では、シングルライン駆動と比較して、水平走査期間に長い時間を割り当てることができる。例えば、ダブルライン駆動では、水平走査期間の長さがシングルライン駆動の2倍となるため、表示パネルの発光輝度をおよそ2倍にすることが可能となる。
本実施形態では、図3で説明したように、隣接した2本の走査配線を同時に駆動するダ
ブルライン駆動を用いる。
【0045】
<ダブルライン駆動時の輝度ばらつき補正の課題について>
ダブルライン駆動時は2本の走査配線を同時に駆動するため、同じ変調配線に接続された2つの発光素子に同じ変調信号S7が印加される。そのため、シングルライン駆動の場合と異なり、素子毎の特性に応じて補正した最適な変調信号で駆動することができず、輝度ばらつきが発生してしまうことになる。
【0046】
例えば、図4のようなRのサブピクセル(0,0)とサブピクセル(0,1)をダブルライン駆動する例を考える。サブピクセル(0,0)、サブピクセル(0,1)の発光特性データをK(0,0)、K(0,1)とすると、前記(2)にて述べたように補正データQ(x,y)は各素子の発光特性データK(x,y)の逆数であるので、
Q(0,0)=1/K(0,0)
Q(0,1)=1/K(0,1)
となる。
【0047】
これらのうちサブピクセル(0,0)の補正データQ(0,0)を代表値として用いて、輝度デー
タの補正を行う場合を考える。
輝度データD(0,0)が与えられたときの、2つの素子での合計発光量P1(0,0)+P1(0,1)は、[式1]より、
P1(0,0)+P1(0,1)=D(0,0)・Q(0,0)・K(0,0)+D(0,0)・Q(0,0)・K(0,1)
=[{K(0,0)+K(0,1)}/K(0,0)]・D(0,0)
となる。
これに対し、2つの素子での目標合計発光量P0(0,0)+P0(0,1)は、2つの発光素子がそれぞれ最適な補正データQ(0,0)、Q(0,1)で補正された場合の発光量であるから、
P0(0,0)+P0(0,1)=D(0,0)・Q(0,0)・K(0,0)+D(0,0)・Q(0,1)・K(0,1)
=2・D(0,0)
となる。
【0048】
このため、以下の係数E1
E1={K(0,0)+K(0,1)}/K(0,0)
=1+K(0,1)/K(0,0) ‥‥[式2]
に対応する誤差が発生してしまう。
[式2]の示す意味から、発光特性データK(0,0)、K(0,1)の値が等しい場合には誤差は発生しないが、値が異なる場合にはK(0,1)/K(0,0)の比に応じた誤差が発生する。例えば、
表示パネルの全ての発光素子の輝度のばらつきが図6Aのような分布を示すと仮定し、
K(0,0)=0.7
K(0,1)=1.0
とすると、係数E1は約2.428となり、目標合計発光量に対する相対誤差は約21.4%となる。
【0049】
上記より、以下の[結論0]が導ける。
いずれかの発光素子のシングルライン駆動用の補正データをマルチライン駆動用の補正データに利用する方法では、シングルライン駆動と比較して輝度ばらつきが悪化する。 ‥‥[結論0]
【0050】
更に別の方法として、シングルライン駆動用の補正データの平均値をダブルライン駆動用の補正データとして利用する方法が知られている。
上記と同様に、図4のようなサブピクセル(0,0)、サブピクセル(0,1)をダブルライン駆動する例を考える。この方法ではシングルライン駆動用の補正データ
Q(0,0)=1/K(0,0)
Q(0,1)=1/K(0,1)
の平均値である
q1(0,0)={1/K(0,0)+1/K(0,1)}/2
をダブルライン駆動用の補正データとして用いる。
【0051】
この場合の2つの素子での合計発光量P2(0,0)+P2(0,1)は、
P2(0,0)+P2(0,1)=D(0,0)・q1(0,0)・K(0,0)+D(0,0)・q1(0,0)・K(0,1)
=[{K(0,0)+K(0,1)}2/{2・K(0,0)・K(0,1)}]・D(0,0)
となる。
2つの素子での目標合計発光量は上記と同様に
P0(0,0)+P0(0,1)=2・D(0,0)
である。
【0052】
このとき、以下の係数E2に対応する誤差が発生する。
E2={K(0,0)+K(0,1)}2/{2・K(0,0)・K(0,1)}
={1+K(0,1)/K(0,0)}・{1+K(0,0)/K(0,1)}/2 ‥‥[式3]
[式3]に[式2]を代入すると
E2=E1・{1+K(0,0)/K(0,1)}/2 ‥‥[式4]
となる。
[式4]の示す意味から、発光特性データK(0,0)、K(0,1)の値が等しい場合には誤差は発生しないが、値が異なる場合にはK(0,1)/K(0,0)の比に応じて誤差が発生し、上記の方法
の係数E1に対しての誤差が変化する。例えば、上記と同様に表示パネルの全ての発光素子の輝度のばらつきが図6Aのような分布を示すと仮定し、
K(0,0)=0.7
K(0,1)=1.0
とすると、係数E2は約2.064となり、目標合計発光量に対する相対誤差は約3.2%となる。
【0053】
上記より、以下の[結論1]が導ける。
シングルライン駆動用の補正データの平均値をマルチライン駆動用の補正データに利用する方法では、シングルライン駆動と比較して輝度ばらつきが悪化する ‥‥[結論1]
【0054】
(4)本実施形態の特徴の説明
次に、本実施形態の特徴となる輝度ばらつき補正部203におけるマルチライン駆動時の補正データ算出方法についての説明を行う。
【0055】
上記で述べたように、表示パネルには素子毎に発光特性のばらつきがあるため、ダブルライン駆動において最適な変調信号で駆動することは従来の方法では困難である。
【0056】
一方、入力信号フォーマットが多様化し、TV信号フォーマットとしてフルHDの2K1Kフォーマット、デジタルシネマ用のフォーマットとして4K2Kフォーマットの普及が進んでいる。そして、今後、画像表示装置は4K2Kなどの更なる高精細化が進んでいくことが考えられる。そこで、4K2Kなどの高精細ディスプレイで、現行の2K1KフォーマットTV信号を受信して表示することも当然のことながら要求される。
【0057】
2K1K表示パネルと同サイズの4K2K高精細表示パネルに、現行の2K1Kフォーマットの信号が入力された場合について考える。この場合、4K2K高精細表示パネルの4ピクセルのサイズは2K1K表示パネルの1ピクセルのサイズと同一となる。また、2K1Kフォーマットの入力データは前記(1)にて示したように、上記4ピクセルに同一のデータとして入力するようにフォーマット変換することが可能である。
このことから、2素子に共通なデータを入力しても2素子を1つのサブピクセルとして
見ることで現行TV信号の2K1Kフォーマットデータの画質の維持が可能であることがわかる。
【0058】
ところで、表示パネルには図6Aに示すように発光特性のばらつきに起因する輝度のばらつきがある。全素子を補正するには、最も暗い素子の固有輝度を目標輝度に設定し、目標輝度よりも明るい素子を暗くすることによって全素子の輝度を均一に揃えればよい。しかし、表示パネルに極端に暗い素子があった場合、最も暗い素子の固有輝度を目標輝度に設定すると表示パネル全体の輝度が著しく暗くなってしまう。このような場合は、固有輝度のばらつき(平均μ、標準偏差σなど)に基づき目標輝度を設定することが好ましい。例えば、図6Aのように、μ−3σ=0.4の輝度を目標輝度に設定し、その目標輝度に合わせて表示輝度を補正する。このようにμ−3σの輝度を目標輝度とすれば99%以上の素子の補正が可能である。なお、目標輝度よりも暗い素子は目標輝度に補正できないため、補正残りとなるが、実用上問題はない。
【0059】
図6Bは2素子の合計輝度での輝度ばらつきを示した図である。2素子の輝度を合計することで平均化と同じような効果が得られるため、見かけ上、輝度のばらつきが軽減していることがわかる。このため、発光素子1個当たりの目標輝度をシングルライン駆動のときと同じ値0.4(ダブルライン駆動に換算すると0.8)に設定しても、シングルライン駆動のときよりも補正残りが減少する。
【0060】
このことより、下記の[結論2]が導ける。
同じ変調信号で駆動される複数の素子の合計輝度(若しくは平均輝度)からマルチライン駆動用の補正データを作成すれば、シングルライン駆動と比較して、輝度ばらつきをより小さくすることが可能である。 ‥‥[結論2]
【0061】
以上の検討に基づき、本発明者らは、同じ変調信号で同時に駆動される複数の発光素子を1つのサブピクセルと考え、その複数の発光素子の固有輝度の合計値(若しくは平均値)から補正データを算出する、という方法を考案した。
この方法によれば、例えば、4K2K高精細表示パネルでダブルライン駆動を行うことで、2K1Kフォーマットの映像信号を2K1K解像度の表示パネルと同等の画質で表示することができる。加えて、表示パネル内に極端に暗い発光素子が含まれていたとしても、従来の補正方法よりもさらに輝度ばらつきを小さくすることが可能である。
【0062】
<輝度ばらつき補正部>
次に、本実施形態の輝度ばらつき補正部203について図1を用いて説明する。図1は図2における輝度ばらつき補正部203の詳細について示したブロック図である。輝度ばらつき補正部203は、大きく分けて、発光特性データ書き込み転送処理系と発光特性データ読み出し演算処理系の2つの処理系を有する。以下に各処理系について詳細に説明する。
【0063】
(a)発光特性データ書き込み転送処理系
この処理系は、輝度ばらつき補正の信号処理を行う前段階として、低速な不揮発性メモリ208から、高速な記憶部である揮発性メモリ102へ発光特性データを転送するために具備されている。
【0064】
具体的には、電源投入時に、システム制御部207は、図2の不揮発性メモリ208に格納された発光特性データを読み出し、メモリ書き込み制御部に対してシステムバス209を介して連続的に転送する。メモリ書き込み制御部100は、発光特性データを内部のバッファに格納すると共にフォーマット変換して、高速動作が可能な揮発性メモリ102に対してメモリ書き込みデータM1として書き込む。
【0065】
なお、本実施形態の不揮発性メモリ208は、発光特性データとして、表示パネル200の全素子をそれぞれ同じ駆動条件で駆動したときの固有輝度の値を格納している。ただし、発光特性データとしては、固有輝度の値そのものではなく、固有輝度に対応する値を用いてもよい。固有輝度に対応する値とは、所定の演算を行うことで固有輝度の値を実質的に復元可能な値であり、例えば、固有輝度を所定の輝度で規格化した値、固有輝度の逆数、固有輝度を所定の関数で変換した値などが該当する。
【0066】
(b)発光特性データ読み出し演算処理系
この処理系は、揮発性メモリ102から読み出した発光特性データから補正データを算出し、その補正データを用いて入力輝度データS3に対し輝度ばらつき補正を行い、補正輝度データS4を出力するために具備されている。
【0067】
上記(a)において、すべての発光特性データの揮発性メモリ102への転送が終了したら、システム制御部207は、補正演算部101に対して、補正演算の開始を指示する。補正演算部101は、タイミング制御部206からの同期信号T2に同期して、揮発性メモリ102から、発光特性データを、メモリ読み出しデータM2として順次読み出す。補正データ作成部103は上記読み出された発光特性データから同時に駆動する素子の発光特性データを選んで、それらの発光特性データ(固有輝度)の平均値からダブルライン駆動用の代表補正データS8を作成する。補正データS8は、固有輝度の平均値の逆数に比例する値をもつように算出される。なお、比例定数については、輝度データS3や補正輝度データS4の仕様や、固有輝度の平均値の最小値などに応じて適宜設定される。
【0068】
補正データ規格化部104は、補正データS8を目標輝度で規格化することにより、補正輝度が目標輝度となるように補正データS8最適な大きさに調整し、規格化補正データS9として出力を行う。例えば、図6Bに示すように、シングルライン駆動と同じく素子1個当たりの目標輝度を0.4(2素子の合計目標輝度を0.8)とした場合、合計輝度が0.8の素子ペアに対する補正データの値が1となるように、各補正データの値に係数を乗じる。つまり、合計輝度が0.8の素子ペアに対する補正データS8の逆数を、各補正データS8の値に一律に乗じるのである。ただし、補正データ規格化部104は、規格化後の補正データの値が1を超えないように制限すると良い(この制限される部分が補正残りに対応する)。なお、この補正データ規格化部104の構成及び処理は省略しても良い。
【0069】
入力データ補正部105は、乗算器で、正規化補正データS9を輝度データS3に乗じることで、補正輝度データS4を生成する。
【0070】
前述した(3)と同様に、図4のようなサブピクセル(0,0)、サブピクセル(0,1)をダブルライン駆動する例を考える。本実施形態では素子毎の発光特性データK(0,0)、K(0,1)の平均値からダブルライン駆動用の代表補正データS8を作成する。例えば、
q2(0,0)=2/{K(0,0)+K(0,1)}
をダブルライン駆動用の補正データとして用いる。
【0071】
この場合の2つの素子での合計発光量P3(0,0)+P3(0,1)は、ダブルライン駆動のため輝度信号D(0,0)と補正データq2(0,0)が共用されるため
P3(0,0)+P3(0,1)=D(0,0)・q2(0,0)・K(0,0)+D(0,0)・q2(0,0)・K(0,1)
=D(0,0)・q2(0,0)・{K(0,0)+K(0,1)}
=2・D(0,0)
となる。
これに対し、2つの素子での目標合計発光量P0(0,0)+P0(0,1)は、2つの発光素子がそ
れぞれ最適な補正データQ(0,0)、Q(0,1)で補正された場合の発光量であるから、
P0(0,0)+P0(0,1)=D(0,0)・Q(0,0)・K(0,0)+D(0,0)・Q(0,1)・K(0,1)
=2・D(0,0)
である。
【0072】
以上より、本実施形態の輝度ばらつき補正によれば、ダブルライン駆動における2素子の合計発光量を目標合計発光量と一致させることができる。よって、ダブルライン駆動時において、輝度ばらつきに起因する画質劣化を改善し、高品質な画像の表示が可能となる。なお、ここではダブルライン駆動を例にとり説明したが、N>2のNライン駆動の場合にも本実施形態の方法により適切な輝度ばらつき補正が可能である。
【0073】
[第2実施形態]
第1実施形態では、固定の目標輝度(シングルライン駆動と同じ目標輝度)に基づき補正データを規格化した。これに対し、第2実施形態では、同じ変調信号で同時に駆動されるN個の発光素子の固有輝度の平均値のばらつき度合いに応じて目標輝度を変化させる。これにより、マルチライン駆動時の目標輝度の向上を実現する。
【0074】
本実施形態での具体的な処理について、第1実施形態と同様に図1を用いて説明する。
本実施形態では、補正データ規格化部104において規格化を行う際、μ−3σを目標輝度として規格化して補正を行う。ここで、μ(平均)、σ(標準偏差)は、N個の発光素子の固有輝度の平均値のばらつきを表す統計量である。例えば、図6Bのような2素子の例で考えると、2素子の合計輝度がμ−3σに等しい素子ペアに対する補正データの値が1となるように、各補正データの値に係数を乗じる。つまり、補正データ規格化部104は、合計輝度がμ−3σの素子ペアに対する補正データの逆数を、各補正データの値に一律に乗じるのである。この場合も、補正データ規格化部104は、規格化後の補正データの値が1を超えないように制限する。図6Aと図6Bから分かるように、通常、輝度を平均化することで見かけ上のばらつきが低減するため、Nの値が大きくなるほど目標輝度(μ−3σ)の値も大きくなる。つまり、補正する素子の割合(99%以上)を変えずに、目標輝度の値を大きくすることができる。
【0075】
以上述べたように、本実施形態によれば、固有輝度の平均値のばらつき度合いに応じて目標輝度の値を決定することにより、輝度ばらつき補正の品質を維持しながら、さらなる輝度の向上が可能となる。
なお、目標輝度の値については、補正データ規格化部104が動的に計算してもよいし、不揮発性メモリ208に予め格納してもよい。また目標輝度の値は、μ−3σではなく、統計量(平均、標準偏差、分散、中央値、最頻値など)から求まる他の値を用いることもできる。
【0076】
[第3実施形態]
本発明の第3実施形態に係る画像表示装置は、同時駆動ライン数Nの値が互いに異なる複数の表示モードを有しており、表示モードが変更されると変更後のNの値に応じて輝度ばらつき補正に用いる補正データを変更する。以下、4K2Kの高精細表示モードと2K1Kの高輝度表示モードを切り替え可能な構成を例示する。
【0077】
従来、4K2Kの高精細表示モードと2K1Kの高輝度表示モードの両方で高精度な輝度ばらつき補正を行うには、図8Aのように不揮発性メモリ208に表示モード毎の補正データを格納する必要があった。図8Aの符号800はシングルライン駆動用の補正データを示し、符号801はダブルライン駆動用の補正データを示している。これはメモリ容量の増大を招くため好ましくない。表示モードの数が増えるほどこの問題は重要になる。
【0078】
そこで本実施形態では、図8Bのように、不揮発性メモリ208に各発光素子の発光特性データを格納しておき、補正データ作成部103(図1)が表示モードに合わせて(Nの値に合わせて)補正データを動的に作成する。このことにより、4K2Kの高精細表示モードと2K1Kの高輝度表示モードとで同じ発光特性データを共用できる。
【0079】
本実施形態での具体的な制御方法について、図1、図2、図7を用いて説明する。図7は、本実施形態の特徴を表すフローチャートである。第1実施形態との違いは、4K2K高精細表示モードと2K1K高輝度表示モードの切り替えのため、システム制御部207に補正データ作成方法と走査方法の変更指示機能を持たせた点である。
【0080】
画像表示装置の電源投入時に、図2のシステム制御部207は、不揮発性メモリ208から輝度ばらつき補正部203に発光特性データを転送する(S101)。またシステム制御部207は、映像信号供給装置から入力される通信信号C1により表示モードの判定を行う。なお映像信号供給装置では、ユーザのモード切り替え要求や、入力映像信号の種別などに従って、適切な表示モードが決定される。
【0081】
S102において表示モードが4K2K高精細表示モードだった場合は、S103にて補正データ作成部103が発光特性データK(x,y)からシングルライン駆動用の補正データ
Q(x,y)=1/K(x,y)
を作成する。そして第1実施形態と同様の処理が行われた後、変調ドライバ210に対してシングルライン駆動用の駆動信号S6が出力される(S104)。走査ドライバ211は、走査配線を1ラインずつ駆動する(S105)。これにより、シングルライン駆動による4K2K解像度の画像表示が行われる。
【0082】
一方、S102において表示モードが4K2K高精細表示モードでなかった場合は、S106にて表示モードが2K1K高輝度表示モードであるかの判定を行う。S106において、表示モードが2K1K高輝度表示モードだった場合は、S107にて補正データ作成部103が発光特性データK(x,y)、K(x,y+1)からダブルライン駆動用の補正データ
q(x,y)=2/{K(x,y)+K(x,y+1)}
を作成する。そして第1実施形態と同様の処理が行われた後、変調ドライバ210に対してダブルライン駆動用の駆動信号S6が出力される(S108)。走査ドライバ211は、走査配線を2ラインずつ駆動する(S109)。これにより、ダブルライン駆動による2K1K解像度の画像表示が行われる。
【0083】
以上説明したように、第3実施形態では、表示モードを判定して、発光特性データより表示モードに応じた補正データを作成する。このことにより、図8Aのように不揮発性メモリ208に表示モード毎に補正データを格納しておく必要がないため、図8Bのようにメモリの容量を増やさずに、各表示モードに応じた適切な輝度ばらつき補正が可能になる。
【符号の説明】
【0084】
101:補正演算部、200:表示パネル、203:輝度ばらつき補正部、208:不揮発性メモリ、210:変調ドライバ、211:走査ドライバ

【特許請求の範囲】
【請求項1】
マトリクス状に配置された複数の走査配線及び複数の変調配線、並びに、各々が走査配線及び変調配線に接続された複数の発光素子を有する表示パネルと、
選択信号を印加する走査配線をNラインずつ(Nは1以上の整数)順次に切り替える走査回路と、
画像データに基づき生成した変調信号を各変調配線に印加する変調回路と、
前記変調回路に対して画像データを出力する画像処理回路と、を備え、
前記画像処理回路は、
前記複数の発光素子それぞれを同じ条件で駆動した場合の各発光素子の輝度である固有輝度又は固有輝度に対応する値を、各発光素子の発光特性データとして記憶している記憶部と、
前記発光特性データから算出した補正データを用いて、画像データに対し前記複数の発光素子の輝度のばらつきを抑制するための補正を行う補正演算部と、
を有しており、
前記補正演算部は、各画像データに適用する補正データを、当該画像データに基づき生成される変調信号により同時に駆動されるNライン分のN個の発光素子の固有輝度の平均値から、算出する
ことを特徴とする画像表示装置。
【請求項2】
前記補正演算部は、
N個の発光素子の固有輝度の平均値の逆数に比例する値をもつように、補正データを算出する補正データ作成部と、
前記補正データを画像データに乗じる乗算器と、を有する
ことを特徴とする請求項1に記載の画像表示装置。
【請求項3】
前記補正演算部は、
前記補正データ作成部により算出された補正データを発光素子1個当たりの目標輝度に基づき規格化する補正データ規格化部を有しており、
前記乗算器が規格化された補正データを画像データに乗じる
ことを特徴とする請求項2に記載の画像表示装置。
【請求項4】
前記補正データ規格化部は、
N個の発光素子の固有輝度の平均値のばらつきを表す統計量から発光素子1個当たりの目標輝度の値を決定する
ことを特徴とする請求項3に記載の画像表示装置。
【請求項5】
Nの値が互いに異なる複数の表示モードを有しており、
前記補正演算部は、表示モードが変更されると、変更後のNの値に応じて補正データを変更する
ことを特徴とする請求項1〜4のうちいずれか1項に記載の画像表示装置。
【請求項6】
前記発光素子は、電子を放出する冷陰極素子と前記冷陰極素子から放出された電子により発光する発光部材から構成される
ことを特徴とする請求項1〜5のうちいずれか1項に記載の画像表示装置。
【請求項7】
画像表示装置の駆動方法であって、
前記画像表示装置は、マトリクス状に配置された複数の走査配線及び複数の変調配線、並びに、各々が走査配線及び変調配線に接続された複数の発光素子を有する表示パネルと、選択信号を印加する走査配線をNラインずつ(Nは1以上の整数)順次に切り替える走
査回路と、画像データに基づき生成した変調信号を各変調配線に印加する変調回路と、前記複数の発光素子それぞれを同じ条件で駆動した場合の各発光素子の輝度である固有輝度又は固有輝度に対応する値を、各発光素子の発光特性データとして記憶している記憶部と、を有するものであり、
前記駆動方法は、
前記記憶部から発光特性データを読み込むステップと、
読み込んだ発光特性データから補正データを算出するステップと、
算出した補正データを用いて、画像データに対し前記複数の発光素子の輝度のばらつきを抑制するための補正を行うステップと、
を含み、
各画像データに適用する補正データが、当該画像データに基づき生成される変調信号により同時に駆動されるNライン分のN個の発光素子の固有輝度の平均値から、算出されることを特徴とする画像表示装置の駆動方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−221134(P2011−221134A)
【公開日】平成23年11月4日(2011.11.4)
【国際特許分類】
【出願番号】特願2010−87872(P2010−87872)
【出願日】平成22年4月6日(2010.4.6)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】