説明

異常検知・診断方法、および異常検知・診断システム

【課題】プラント等の設備において、異常を高感度、早期に検知することが可能な異常検知・診断方法およびシステムを提供する。
【解決手段】設備の運転時間などの稼動情報と、設備に付加した複数センサの出力信号とを用いて異常検知を行い、作業履歴や交換部品情報などの過去の対策事例からなる作業報告書などの保守履歴などを対象に、検知した異常と対策の紐付けを行い、異常検知と過去の保守履歴を結び付け、設備カルテも参照しながら、アクションが必要な異常を分類、提示することにより、診断の精度向上を図るようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラントや設備などの異常を早期に検知し、診断する異常検知・診断方法、異常検知・診断システムに関する。
【背景技術】
【0002】
電力会社では、ガスタービンの廃熱などを利用して地域暖房用温水を供給したり、工場向けに高圧蒸気や低圧蒸気を供給したりしている。石油化学会社では、ガスタービンなどを電源設備として運転している。このようにガスタービンなどを用いた各種プラントや設備において、その異常を早期に発見し、原因を診断し、対策を行うことは、社会へのダメージを最小限に抑えることができ、極めて重用である。
【0003】
ガスタービンや蒸気タービンのみならず、水力発電所での水車、原子力発電所の原子炉、風力発電所の風車、航空機や重機のエンジン、鉄道車両や軌道、エスカレータ、エレベータ、MRIなどの医療機器、半導体やフラットパネルディスプレイ向けの製造・検査装置、機器・部品レベルでも、搭載電池の劣化・寿命など、早期に異常を発見し、診断しなければならない設備は枚挙に暇がない。最近では、健康管理のため、脳波測定・診断に見られるように、人体に対する異常(各種症状)検知も重要になりつつある。
【0004】
このため、例えば特許文献1や特許文献2には、おもにエンジンを対象に、異常検知を行うことが記載されている。そこでは、過去のデータをデータベース(DB)としてもっておき、観測データと過去の学習データとの類似度を独自の方法で計算し、類似度の高いデータの線形結合により推定値を算出して、推定値と観測データのはずれ度合いを出力する。General Electric社のように、特許文献3には、異常検知をk−meansクラスタリングにより検出する例が記載されている。
【0005】
また、非特許文献2や特許文献4には、故障履歴や作業履歴をデータベースに蓄え、検索を可能とし、これを通して、保守に関する有益な知見を獲得することについて記載されている。
【0006】
更に、非特許文献3には、ガウシアンプロセスについて記載されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第6,952,662号明細書
【特許文献2】米国特許第6,975,962号明細書
【特許文献3】米国特許第6,216,066号明細書
【特許文献4】特開2009−110066号公報
【特許文献5】特開2009−251822号公報
【特許文献6】特開2003―303014号公報
【非特許文献】
【0008】
【非特許文献1】Stephan W.Wegerich;Nonparametric modeling of vibration signal features for equipment health monitoring、Aerospace Conference,2003.Proceedings.2003 IEEE,Volume 7,Issue,2003 Page(s):3113−3121
【非特許文献2】永野和俊、佐藤淳;的確で迅速な対応を支える遠隔保守ソリューション「TMSTATION」、東芝ソリューションテクニカルニュース、2008年秋季号、Vol.15
【非特許文献3】尾崎 晋作,和田 俊和,前田 俊二,渋谷 久恵;異常検出におけるSimilarity Based ModelingとGaussian Processesの関連に関して;パターン認識・メディア理解研究会(PRMU),画像工学(IE),133−138(2011.5)
【発明の概要】
【発明が解決しようとする課題】
【0009】
一般には、観測データをモニタし、設定したしきい値と比較して、異常を検知するシステムがよく用いられている。この場合は、各観測データであるところの測定対象の物理量などに着目してしきい値を設定するため、設計ベースの異常検知であると言える。
【0010】
この方法は、設計が意図しない異常は検知が困難であり、見逃しが発生し得る。例えば、設備の稼動環境や、稼動年数による状態変化、運転条件、部品交換の影響などにより、設定したしきい値が妥当とは言えなくなる。
【0011】
一方、特許文献1および2に開示されている事例ベースの異常検知に基づく手法では、学習データを対象に、観測データと類似度の高いデータの線形結合により推定値を算出し、推定値と観測データのはずれ度合いを出力するため、学習データの準備次第で、設備の稼動環境や、稼動年数による状態変化、運転条件、部品交換の影響などを考慮できる。
【0012】
しかし、特許文献1および2に開示されている手法では、データをスナップショットとして扱っており、時間的な振舞いを考慮していない。さらに、観測データになぜ異常が含まれるのかは、別途説明が必要である。特許文献3に記載されているk−meansクラスタリングのような、物理的意味が希薄な特徴空間内での異常検知では、さらに異常の説明は困難である。説明が困難な場合は、誤検出として扱われることになる。
【0013】
また、特許文献4に記載されている方法では、故障履歴や作業履歴をデータベースに蓄え、検索を可能とし、これを通して、保守に関する有益な知見を獲得するシステム(特許文献4によれば、保守カルテを表示するシステム)を構築している。ここでは、故障履歴や作業履歴に関する情報が、検索を通して、互いに紐付け(関連付け)でき、情報が見える形で提供されている。
【0014】
また、特許文献5に記載されている方法では、対象設備と、診断のためのセンサ双方の故障リスクを考慮し、総合的な診断・保守計画を提供されている。
【0015】
また、特許文献6に記載されている方法では、リスクとコストを考慮した保守計画が述べられている。
【0016】
しかし、異常検知と上記保守履歴情報の紐付け(関連付け)は不明瞭であり、システムに格納されている保守情報が有効に活用できるとは言いがたい。単純な検索機能では、故障履歴や作業履歴自体の紐付けさえも成功するとは限らない。このような保守情報は一般に、多様な情報が分散され、また、あいまいな言葉の羅列であることが多く、検索のかなめであるキーワードをかなり工夫しないと、うまく付き合わない。すなわち、検索のみに依存した方法では、異常の予兆も含め、検知された異常から、過去情報のどこを調査して原因を付き止め、どのような対策したのか、今回は何をすべきかなどを明確にすることはできず、異常検知の段階で、即座に診断したくても、現象や原因、交換すべき部品などが不明瞭なままであり、なすべき処置が分からない。従って、熟練保守員の現場での調査に依存しているのが実態である。
【0017】
そこで、本発明の目的は、センシングデータを対象にした異常検知情報と、作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を用いて、新たに発生した異常(予兆を含む)を的確に診断することが可能な異常検知・診断方法およびシステムを提供することである。
【0018】
更に、診断結果を可視化し、異常検知の感度向上、診断精度の向上のPDCAサイクルをまわす方法を提示することを目的とする。
【課題を解決するための手段】
【0019】
上記目的を達成するために、本発明は、作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を、キーワードの出現頻度や、キーワード間の連結関係やその頻度で相互に関連付けておき(前後いずれかに、ほかのキーワードとペアになったキーワードを複合キーワードと呼ぶ)、設備に付加した多次元センサの出力信号を対象とした異常検知に基づき、検知した異常と関連付けられた保守履歴情報とを結びつけることにより、予兆を検知した時点で、部品交換や調整、再立上げなどの対策との関連性を付与し、発生した異常に対しなすべき診断・処置を明らかにし、対策が必要な異常の場合、作業指示を実施するようにした(様子見ならば、そのように指示)。
【0020】
特に、保守履歴情報が使われた状況(以下、文脈とも言う)を表現するため、キーワードや、キーワード間の連結関係やその出現頻度を、文脈パターンと見なして取り扱う。すなわち、異常検知を含め、保守にまつわる作業などを表した主要なキーワードから、実際に使われた状況を考慮した文脈を、後述の頻度パターンとして獲得し、その文脈を活用する文脈志向の異常診断を実現する。
【0021】
具体的には、異常検知では、設備の運転時間などの稼動情報と、設備に付加した複数センサの出力信号とを用いて異常検知を行い、作業履歴や交換部品情報などの過去の対策事例からなる作業報告書などの保守履歴などを対象に、検知した異常と対策の紐付け(関連付け)を行い、異常検知と過去の保守履歴を結び付け、設備カルテも参照しながら、アクションが必要な異常を分類、提示することにより、診断の精度向上を図る。
【0022】
また、上記目的を達成するために、本発明では、プラント又は設備の異常或いはその予兆を早期に検知し、プラント又は設備を診断する異常検知・診断方法において、プラント又は設備に装着した複数のセンサから取得したセンサデータ、および/あるいは運転時間や操作時間などの稼動データを対象にプラント又は設備の異常或いは異常の予兆を検知し、プラント又は設備の保守履歴情報を用いてプラント又は設備の異常或いは異常の予兆と過去の対策を紐付けし、この紐付け結果に基づいて、対策が必要な異常或いは異常の予兆を分類、提示するようにした。
【0023】
そして、保守履歴情報は、オンコールデータ、作業報告書、調整・交換部品コード、画像情報、音情報、稼動時間などの稼動情報の内の何れかを含み、保守履歴情報から定めたキーワードの出現頻度と他のキーワードとの連結回数や頻度を算出して高出現頻度のパターンを得、得た高出現頻度のパターンをカテゴリとして、プラント又は設備で検知された異常或いは異常の予兆のセンサデータや稼動データを分類し、分類した結果に基づいて、対策が必要な異常或いは異常の予兆を分類、提示するようにした。
【0024】
また、上記目的を達成するために、本発明では、プラントまたは設備の異常或いはその予兆を検知し、プラント又は設備を診断する異常検知・診断システムを、プラント又は設備に装着した複数のセンサから取得したセンサデータ、および/あるいは運転時間や操作時間などの稼動データを対象にプラント又は設備の異常或いは異常の予兆を検知する異常検知部と、プラント又は設備に対する対策などの情報からなる保守履歴情報を蓄積したデータベース部と、このデータベース部に蓄積されたプラント又は設備の保守履歴情報を用いて異常検知部によりプラント又は設備の異常或いは異常の予兆と過去の対策を紐付けし、該紐付けした結果に基づいて、対策が必要な異常或いは異常の予兆を分類、提示する診断部とを備えて構成した。
【0025】
そして、データベース部に蓄積する保守履歴情報は、オンコールデータ、作業報告書、調整・交換部品コード、画像情報、音情報、稼動時間などの稼動情報の内の何れかを含み、診断モデル生成部は保守履歴情報から定めたキーワードの出現頻度と他のキーワードとの連結回数や頻度を算出して高出現頻度のパターンを得、この得た高出現頻度のパターンをカテゴリとして、プラント又は設備で検知された異常或いは異常の予兆のセンサデータや稼動データを分類し、この分類した結果に基づいて、対策が必要な異常或いは異常の予兆を分類、提示するようにした。
【発明の効果】
【0026】
本発明によれば、現場に存在する膨大な保守履歴情報を、異常との関係で整理でき、発生した異常や予兆に対して、必要な対策や調整などの視点で、迅速に対応を決定できる。そして、保守作業員に適切な指示を与えることができる。保守履歴情報が使われた状況を文脈パターンとして的確に表現でき、またこれを照合することができるため、蓄積された保守履歴情報の再利用が可能となる。
【0027】
また、検知した異常と過去の保守履歴を結び付け、該当設備の設備カルテも参照しながら、アクションが必要な異常を分類、提示するので、診断の精度を向上させることができる。
【0028】
これらによって、ガスタービンや蒸気タービンなどの設備のみならず、水力発電所での水車、原子力発電所の原子炉、風力発電所の風車、航空機や重機のエンジン、鉄道車両や軌道、エスカレータ、エレベータ、そして機器・部品レベルでは、搭載電池の劣化・寿命など、穴あけ加工中のドリル刃の破損(チッピング)、種々の設備・部品において異常の早期・高精度な発見、実行すべき診断・処置が明らかとなる。勿論、人体を対象に計測し、診断する場合にも適用できる。
【図面の簡単な説明】
【0029】
【図1】図1は本発明の異常検知システムが対象とする設備、多次元時系列信号、及びイベント信号の一例を示すブロック図である。
【図2】図2は多次元時系列信号の一例を示す信号波形のグラフである。
【図3A】図3Aは保守履歴の詳細情報の一例を示すブロック図である。
【図3B】図3Bは現象と原因と処置の関連付けの一例を示すブロック図である。
【図4A】図4Aは本発明の実施例を示し、作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を、キーワードベースで相互に関連付けておき、設備に付加した多次元センサの出力信号を対象とした異常検知に基づき、異常を検知し、検知した異常と関連付けられた保守履歴情報とを結びつける処理の流れを示す例である。
【図4B】図4Bは、バルブ交換に至った故障現象の頻度パターンを示すグラフである。
【図4C】図4Cは、学習時に検知された予兆を現象や対策に応じて分類することを示すブロック図である。
【図4D】図4Dは、運用時に検知された予兆を現象や対策に応じて分類することを示すブロック図である。
【図4E】図4Eは、異常事象に対する対策のジョイントヒストグラムを取得してこれの頻度上位の対策を頻度が高い順に示したグラフである。
【図5】図5はアラーム発生、現地調査の有無、処置の内容である、リセット、調整、部品交換、持ち帰り調査などの一例を示す表である。
【図6】図6は部品表であり、ユニット、パーツ番号、パーツ名称の一例を示す表である。
【図7A】図7Aは現象と、調整・交換部品の対象間の対応表であり、紐付け(関連付け)に基づいて頻度を表す表である。
【図7B】図7Bは現象と、調整・交換部品の対象間の対応表であり、紐付けに基づいて頻度を表すグラフである。
【図8A】図8Aは事例ベースに基づいて異常を検知する方法の処理の流れを示すフロー図である。
【図8B】図8Bは異常予兆検知の性能を表すための正誤表である。
【図9A】図9Aは2台の設備の稼動時間の累積値を示すグラフである。
【図9B】図9Bは2台の設備のセンサ信号の時間累積値を示すグラフである。
【図10A】図10Aはセンサ信号の時間累積値を稼動時間で正規化したグラフである。
【図10B】図10Bは稼動時間補正値と稼働時間の関係を示すグラフである。
【図11A】図11Aは本発明の異常検知システムの構成を示すブロック図である。
【図11B】図11Bは本発明の異常検知システムで作成された設備カルテの一例を示す表である。
【図12】図12は複数の識別器を用いた、事例ベースの異常検知手法を説明するブロック図である。
【図13A】図13Aは識別器の一例である部分空間法のうち投影距離法を説明する図である。
【図13B】図13Bは識別器の一例である部分空間法のうち局所部分空間法を説明する図である。
【図13C】図13Cは識別器の一例である部分空間法のうち相互部分空間法を説明する図である。
【図14A】図14Aは部分空間法にて学習データの選択を説明する図である。
【図14B】図14Bは観測データから見た学習データの距離の頻度分布を示すグラフである。
【図15】図15は各種の特徴変換を一覧にして説明した表である。
【図16】図16は部分空間法にて算出した残差ベクトルの軌跡を説明する3次元空間の図である。
【図17】図17は本発明を実行するプロセッサ周辺の構成を示すブロック図である。
【図18A】図18Aは、センサ信号をプロセッサで処理して時系列信号の特徴抽出・分類を実行することにより異常を検知する構成を示すブロック図である。
【図18B】図18Bは、異常予知・診断システム100の構成を示すブロック図である。
【図19】図19は、各センサ信号のネットワーク関係を示す図である。
【図20】図20は、本発明の保守履歴情報の詳細および保守履歴情報の関連付けを示すフロー図である。
【図21A】図21Aは、本発明の別の対象である穴明け加工用ドリルの外観を示す図である。
【図21B】図21Bは、本発明の別の対象である穴明け加工用ドリルで試料を加工している状態をカメラとマイクロホンとでモニタするシステムの概略の構成を示すブロック図である。
【発明を実施するための形態】
【0030】
本発明は、プラントや設備の異常或いはその予兆を早期に検知して診断する異常検知・診断システムに関するものであって、異常検知を行う際には、ほぼ正常な学習データを生成し、部分空間法などによる観測データの異常測度を算出し、異常を判定し、異常の種類を特定し、異常の発生時期の推定を行う。
【0031】
また、保守履歴情報を相互に関連付ける際には、保守履歴などのドキュメント群の複合キーワードを抽出し、画像の分類などを通して複合キーワードの関連付けを行う。
【0032】
そして、異常と複合キーワードの関連付けを頻度パターンとして表現する診断モデルを生成し、診断モデルを用いて、検知した異常予兆に対しなすべき診断・処置を明らかにするものである。
【0033】
以下に、本発明の実施の形態について、図面を参照して説明する。
【実施例】
【0034】
図1は本発明の異常検知・診断システム100を含む全体の構成を示す。以下、異常は、異常のみならず、異常の予兆も含むものとする。101,102は本発明の異常検知・診断システム100が対象とする設備であり、各設備101,102には各種のセンサで構成される多次元時系列信号取得部103が付設されている。この多次元時系列信号取得部103で取得されたセンサ信号104や、アラームや電源のオンオフを示すイベント信号105は本発明による異常検知・診断システム100に入力されて処理される。本発明による異常検知・診断システム100では、多次元時系列信号取得部103で取得されたセンサ信号104から多次元時系列センシングデータ106やイベント信号107を得、これらのデータを処理して設備101や102の異常検知・診断を行う。多次元時系列信号取得部103で取得するセンサ信号104の種類は、数十から数万個存在する。設備101や102の規模、設備が故障したときの社会的ダメージなどにより、種々のコストを勘案して多次元時系列信号取得部103で取得するセンサ信号104の種類が決まる。
【0035】
異常検知・診断システム100で取り扱う対象は,多次元時系列信号取得部103で取得された多次元・時系列のセンサ信号104であり,発電電圧,排ガス温度,冷却水温度、冷却水圧力、運転時間を含む稼動時間などである。設置環境のたぐいもモニタされる。センサのサンプリングタイミングも、数十msから数十秒程度まで、いろいろなものがある。イベント信号104及びイベントデータ105は、設備101や102の運転状態、故障情報、保守情報などからなる。図2は、センサ信号104−1〜104−4を、時刻を横軸に並べたものである。
【0036】
図3Aは、異常検知・診断システム100の保守履歴情報の詳細301を示すもので、センサデータ310を受けて、アラーム発報302、オンコールデータ303、保守作業履歴データ304、部品手配データ305を保守履歴情報と関連付けて示したものである。図3Aにおいて、オンコールデータ303は、電話連絡のデータを意味している。これらの情報は、データベース(DB)(図17の121)に格納されている。
【0037】
図3Aの矢印は、上流から下流に情報がリンクしていることを表している。この矢印は、下流からもたどることができる。この場合、キーワードに基づく検索という手段が使われる。検索は有効な手法であるが、検索可能なデータベース(DB)の構造にしておくことが必要である。また、キーワードの決め方には工夫が必要であり、部位の上下関係や現象の上下関係などを吸収する柔軟性も求められる。しかし、検索事態は、簡単な照合であるため、容易に使うことができる。
【0038】
図3Bは、保守履歴情報の関連付けを示す図で、データベース(DB)(図17の121)に記憶されている事例データ320から検索する現象321、原因322、処置323といった作業のキーワードを示す。現象321は、アラーム3211、機能不良(画質など)3212、動作不良3213などであり、より詳細な分類をもつ。原因322は、故障部位の特定3221にあたる。処置323には、再起動でなおるもの(完全に直ったわけではない)3231、調整を要したもの3232、部品交換に至ったもの3233がある。この図の場合も、矢印を用いて、対応関係が表現できる。
図4A乃至図4Eに、本発明による異常検知・診断システム100の実施例を示す。
【0039】
図4Aは、作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を、キーワードベースで相互に関連付けておき、設備に付加した多次元センサの出力信号を対象とした異常検知に基づき、異常を検知し、検知した異常と関連付けられた保守履歴情報とを結びつけ、さらにその結びつけた結果の的中率を評価し、診断精度向上をまわす仕組みの例である。保守履歴情報が使われ、記録された状況(文脈)を表現するため、キーワード間の関係とその出現頻度を、文脈パターンと見なして取り扱う例を示している。
【0040】
キーワード間の関係とその出現頻度を、文脈パターンと見なして取り扱う例として、バグオブワーズ法(bag of words)の概念を用いる方法について説明する。バグオブワーズ法は、特徴の袋詰めとでも言うべき手法であり、情報(特徴)の発生順序、位置関係などを無視して扱うものである。ここでは、アラーム発報、作業報告書、交換部品のコードなどから、キーワードやコードや言葉の発生頻度、ヒストグラムを作成し、このヒストグラムの分布形状を特徴とみなして、カテゴリに分類する。
【0041】
この方法の特徴は、非特許文献2に記載されているような一対一の検索とは異なり、複数の情報を同時に扱うことができる点にある。また、フリー記述にも対応でき、情報の追加や削除と言った変更にも対応しやすく、作業報告書などのフォーマット変更にも強い。複数の処置をしても、あるいは間違った処置が含まれていても、ヒストグラムの分布形状に着目するため、ロバスト性が高い。同様に、センサ信号も、複数のカテゴリに分類する。このカテゴリが、キーワードとなる。
【0042】
なお、複数キーワードの順序については、連結性を考慮しておくものとする。すなわち、通常の形態素分析でテキスト文書に対し、単語に分けて名詞のみ抽出し、各単語について前に接続する言葉と後に接続する言葉の種類を数え、それぞれWL種類とWR種類とすると(WL+1)×(WR+1)をその単語の重要度と考え、複合語の重要度は、複合語を構成する単語の重要度の積を(1/単語数)乗じたものに複合語としての頻度をかけたものとして算出する。これにより、キーワードの重要性で順位付けすることも可能となる。保守履歴文書のなかで、設備の症状に合わせて、対策の事例を抽出できることになる。
【0043】
たとえば、現象として、「10/12起動し、運転中に10番気筒の排気温度低下、1番気筒の排気温度上昇」、対策として「○○部に水が混入したため、△△部の□□部品交換」などの文書において、「排気」と「温度」は、重要な複合キーワードとなる。保守履歴文書の中で、これらの発生頻度も考慮し、「部品交換」という複合キーワードと結びつけるものである。
【0044】
こういった表現は、異常予兆発生から保守を行った状況を表しており、「文脈」とでも言うものである。文脈とは、
その情報は、どういった状況で有効だったのか?
何を解決するために使ったのか?
それを使用した理由はなにか?
何に着目しているのか?
ほかの情報との関係は?
などを指している。
【0045】
説明のための仮説やそれに対する根拠を与えるものである。
こういった文脈を表すのが、上述した複合キーワードや、その出現頻度であり、これらの関係である。順序性や同時性(共起性)といった視点でも、複合キーワードの関係を見ることができる。
【0046】
図4Aに示した例は、頻度に着目して紐付けする例である。部品交換の事例にて説明する。同図Aにおいて、保守履歴情報401(図3Bの事例データ320の相当)のなかから、保守履歴情報の詳細402として交換部品の記録405(図3Bの部品交換3233に相当)を自動アクセスする。例えば、バルブ交換をした例について考える。この交換バルブの名称(パーツ名称)、部品コード(パーツ番号)、日時などがキーワードにされる。保守履歴情報401の周辺情報として、部品表などが通常準備されているため、この部品表にアクセスされ、交換部品が属しているユニットの名称などもキーワードが追加される。
【0047】
次に、この交換にいたる経緯にアクセスされる。作業報告書404には上記部品を交換するに至った経緯が記載されており、アラーム名称、現象名称、処置内容(再起動、調整、部品交換)に記載の確認箇所、調整箇所などがキーワードとして追加される。また、必要に応じて、オンコールデータ403の情報も用いられる。保守履歴情報の詳細402は、必要に応じて保守パーツ管理406の情報と対応付けられてテーブル420の作成に用いられる。
【0048】
アラーム名称は、設備の遠隔監視によって発報されたものである。図4Aでは、左側に示すセンサ信号・稼動データ410に属す情報である。アラーム名称は、水圧低下、圧力上昇、回転数超過、異音、画質不良など、異常を表す名称をさす。番号などのコードでも表現されている。現象診断が遠隔監視側でなされていれば、411にて実施される現象診断結果もキーワードに追加される。ここで、現象診断結果とは、監視しているセンサ信号の間の相関の有無や、位相関係を表している。これらをキーワード化したり、数量化して(根拠の数値化とも言える)、診断結果とする。対象は、異常でなく、その予兆の段階の場合もある。
【0049】
上記複数のキーワード、すなわちコードブックは、図4Aに示すように、テーブル形式420で、ヒストグラムが集計される。バルブ交換をした例においては、テーブル中、交換に至ったバルブ421の欄のところで出現頻度が高くなる。テーブル形式420では、下側の合計欄425がバルブで21%になっている。バルブ421以外のヒータ422やポンプ423も、同時に交換した場合は、その出現頻度も高くなる。また、現象診断411として、圧力低下が報告されているため、テーブル420中、バルブ421と圧力低下424の交差する箇所(テーブル420でハッチングした部分)の頻度が高くなる。
【0050】
図4Aでは、頻度でなく、正規化してパーセンテージ(%)で表現しているが、頻度そのものでも良い。同種のバルブ交換に至った事例を、集計すれば、より確かなテーブルが生成できる。このようにして、過去事例を反映した診断モデルができあがる。バグオブワーズ法(bag of words)では、この頻度パターンを特徴量としてとらえる。バルブの欄の頻度パターンが、バルブ交換に至ったときの、複数の現象に対する頻度を表している。
【0051】
なお、キーワード、コードブックは設計者、保守作業者らから与えられ、保守履歴情報401に格納されているが、それらの重要性に鑑み、重みを付与してもよい。時間が早い、遅いといったキーワード相互の時間関係を用いて、重みを付与してもよいし、選択基準としてもよい。先に説明したように、複数キーワードの順序については、各単語について前に接続する言葉と後に接続する言葉の種類や頻度を数え、連結性や関係性を考慮しておくものとする。このように、キーワードを複合化して考えると、保守履歴文書のなかで、設備の症状に合わせて、より的確な対策の事例を抽出できることになる。
【0052】
次に、新たに異常が発生した場合を考える。現象診断412にて、センサ信号視点で異常種類が決まり、たとえば異常名称は圧力低下であったとする。この場合、上記診断モデルに従えば、バルブ交換の確率が10%であり、ほかと比べると高い率であることが分かるため、このバルブ交換をするかどうかを、まずこの診断モデルにて現場にて確認することになる。勿論、センサ信号をさらにくわしく分析し、故障部位を特定することもあり得る。
【0053】
本実施例では、さらに上記テーブル420を活用する。通常は、現象は複雑であり、異常名称が圧力低下であるとしても、バルブ以外の部品を交換するケースの方も多いと考えられる。そこで、故障現象427を表した頻度パターン(図4Aのモデル420において、水温低下426や圧力上昇424の頻度430)に着目し(現象ごとに、図4Bに示したように、バルブ交換に至った故障現象の頻度パターン430を生成。縦軸は頻度、横軸は故障現象の種類や、故障現象への寄与度を表す)、この頻度パターン430を特徴量とみなして、この特徴に合うものとして、バルブの頻度パターン、すなわちバルブ421を選択する。
【0054】
図4Bに示した例では、横軸をバルブ交換に至った故障現象をとっているが、対策内容や確認箇所、調整箇所などを横軸の項目にすることも可能である。なお、故障現象への寄与度は、各センサ信号(図2の104)の正常状態からの乖離度である。
【0055】
従って、診断開始時は、観測され診断されるデータに関しては、頻度でなく、ある種のパターンとなっていることに注意が必要である。勿論、診断開始時に、寄与度のみならず、その時間的集計である寄与度の頻度として情報を利用できることもある。後述の図16に示す残差ベクトルの時系列変化に着目し、それを一定の時間ウィンドウ内の発生頻度として扱えば、頻度情報・頻度パターンとして扱うこともできる。いずれにせよ、上述した頻度パターンに基づく方法は、ある・なしと言った単純な処理でなく、分布の形態に着目するため、単なる検索に基づく手法に比べ、柔軟性、ロバスト性が極めて高い。
【0056】
このように、診断モデルを使えば、現場での診断作業が円滑に実施でき、大幅に作業時間を短縮できる。また、交換部品候補を事前に準備できるため、設備復旧時間も大幅に短縮できる。
【0057】
上記例では、頻度パターンを故障現象の種類としたが、確認部位、調整箇所、オンコールにて取得した情報、交換部品、持ち帰って判明した原因など、利用できる情報ならば何でもよい。頻度に着目したバグオブワーズ法(bag of words)が活用できる所以でもある。また、横軸の項目が多いときは、次元が高いとも言えるため、次元削減をしておくことも有効である。主成分分析や独立成分分析、特徴量の選択など、通常のパターン認識手法が有効に使えるとも言える。白色化などの正規化手法も使うことができる。
【0058】
図4Aの異常検知・診断システムにおいては、分類視点としては、交換部品の例が示されているが、これ以外の分類視点もあり得、ほかの定義のカテゴリ、例えば、数値や状態の確認箇所や抵抗値や設定時間などの設定ダイヤルなどの調整箇所を横軸にテーブル(診断モデル)420を作成してもよい。すなわち、目的、状況、使用者に応じて、複数のシートに分かれた、複数の診断モデルを使う。なお、バグオブワーズ法(bag of words)以外のパターン統計手法も使うことができる。
【0059】
さらに、これらの診断結果について、的中率を評価し、診断精度向上をまわす仕組みを構築できる。図4Aの対策指示の的中率評価429は、診断結果が実際にあっているかどうかを評価するものである。この的中率が上がるように、異常検知と診断を改善できるよう、的中率を表示するものである。対策が不要な異常予兆については、異常検知自体の過検出の恐れがある。そのため、この場合は、異常検知の感度、たとえばセンサ信号を判定しきい値と比較するif then形式では、その判定しきい値を調整する。事例ベースによる異常検知でも同様であるが、後述するパターン認識手法では、過検出が起きた場合、これらを正常データであると教示することもできる。このように、対策が必要であるが、対策が無意味であったり、対策の効果が小さい異常については、診断の精度が可視化できるため、その向上を図ることができる。いずれの場合も、異常検知と診断のPDCAサイクルを客観的数値に基づいて、まわすことが可能になる。
【0060】
この診断モデルは、初学者向けの教育用の情報としても活用できる。さらに、診断モデルをもとに、保守の作業手順書に反映することもできる。
【0061】
図4Aにおいて、現象分類432も重要である。ここで言う現象分類は、調整や交換といった処置の視点で、センサ信号410を対象に得られた異常に対してキーワード(カテゴリ)を定義しておくことである。定義されたキーワード(カテゴリ)は追加され、或いは修正され、診断モデル413に使われる。具体的には、異常やその予兆に、現象分類の結果に従い、キーワード(カテゴリ)を付加する。水圧上昇があったなら、水圧上昇というキーワード(カテゴリ)をつけるのが最も簡単なケースである。また、C4.5などの決定木にもとづく分類に従えば、自動的にキーワード(カテゴリ)を付加できる。現象に応じて、キーワードを付加するが、調整や交換の種類が判明した段階で、キーワード(カテゴリ)をグルーピングしたり、細分化して、新たなキーワード(カテゴリ)を付加する。このように現象分類は編集できることが必要である。
【0062】
図4Aに示した保守履歴情報401は、保守に関するEAMとでも言うべきものである。一般に、EAMは、enterprise asset managementの頭文字であり、企業資産管理・設備資産管理とも呼ばれる。企業が保有する設備資産に関するさまざまな情報を、そのライフサイクルを通じて一元管理することで、資産自体とそれにかかわる業務を可視化・標準化・効率化する業務改善ソリューションをさすが、図4Aは、保守に特化したEAMである。このような保守EAMでは、保守履歴情報401などの文書管理以外に、異常予兆検知、診断、保守パーツ計画からなる。なお、保守パーツ計画は、診断結果に基づき、保守を実施する場合の保守部品の在庫管理を適正化するものである。
【0063】
図4C及び図4Dは、センサデータ310を入力してイベントデータ105を用いて区間切出し441,441’を行い検知された予兆を、学習時教示した現象や対策情報(部品交換、調整、再立上げなど)444に応じて、特徴抽出分類442,442’して識別ルール443又は分類結果445を作成することを示すブロック図である。
【0064】
図4Cが学習時、図4Dが運用時である。センサデータ310を、現象や対策情報444に応じて特徴抽出分類442,442’する。これにより、新規に検知した予兆を、すみやかに対処に導くことができる。分類は、サポートベクターマシン、k−NN、決定木のような通常の識別器を使うことができる。図4C及び図4Dに示した例においては、異常予兆を含むように区間を決める。ただし、異常予兆時点からすべて、異常予兆時点を含む1/2、異常予兆時点を含む1/4など区間を選択する。
【0065】
図4Eは、さらに、異常と対策の関係を表すため、異常事象に対する対策のジョイントヒストグラムを取得し、これの頻度上位の対策(カテゴリ)を頻度が高い順に横軸に示したグラフである。縦軸は頻度を表す。ここでは、ある異常を例にとり、実際に行われた対策を示している。このような関係から、異常が発生した時のセンサデータを取得し、これを図4Cに示した方法により学習する(識別器のパラメータを決める)。そして、異常予兆が検知されたときに、センサデータを、上記学習データを用いてカテゴリに分類すれば、予兆の段階で、なすべき対策をイメージできることになる(今までは、異常の種類が特定できるが、対策までは思い浮かばない)。
【0066】
また、図4Eは、単独でも、対策の優先順位につながるものであり、これを表示することは有意義である。図示した例では、頻度が少ない対策も少なからずある。これらを網羅し、俯瞰できることに意味がある。
【0067】
図5に、アラーム番号501ごとのアラーム発生502、現地調査の有無503、処置の内容504を示す。処置内容504は、リセット5041、調整5042、部品交換5043、持ち帰り調査5044などを示している。図6は部品表600であり、ユニット601、パーツ番号602、パーツ名称603の一例である。
【0068】
図7Aは現象710と、調整・交換部品720の対象間の対応表700であり、紐付けに基づいて頻度を表すものである。これらに記載のキーワード721〜725を抽出しそれらの頻度の合計726を集計して、診断モデル作成に使用する。なお、現象710には、水圧低下711、圧力上昇712、回転数超過713、異音714、画質不良715などがある。これらは、設備の部位ごとに、分けてもよい。また、画質不良715には、設備ごとに、機能不良などにより、さらに細かい分類がなされているのが普通である。
【0069】
図7Bに、現象に対応する、部品毎の頻度パターン730を示す。ポンプA731や電源732に対し、調整や交換を行った場合に発生していた現象の発生頻度(実際には、作業報告書に記載されたキーワードの頻度でもよいし、作業者に付加されたカメラ等により記録された画像を分析した結果に基づき、抽出されたキーワードでもよい)を集計したものである。この頻度のパターンが、バグオブワーズ法(bag of words)の特徴量となる。調整や交換を分けて、それぞれ集計してもよいし、独立に集計してもよい。頻度パターンの各項目は、追加、編集可能な形態とする。
【0070】
なお、図7Aは調整や交換の結果を集計した結果であるが、共起性の考えを用いて、現象が同時に起きるものをペア、あるいは2組以上のグループとみなして、このグループをひとつの現象と見なすこともできる。これは、図4Aに記載している現象分類412に属する。なお、同時とは、定めた時間内に起きる現象を指しており、発生順序を考慮する場合と発生順序を考慮しない場合がある。発生順序を考慮する場合は、因果律を念頭に置いたものとなる。
【0071】
さらに、図7Bでは、頻度パターン730の各項目は、保守員から保守センターへの問合せの回数やその内容(キーワードにて記述)を含むものとする。
【0072】
こういった各種キーワード類の頻度パターン730は、設備のおかれた状況、異常発生の状況、保守の状況、部品交換にいたる状況、過去の事例などを表す「文脈」とも言えるものである。いままで、キーワード単独での検索に、前後関係、おかれた状況などを加えたものを、ある意味、検索できるようになると考えられる。言い方を変えると、今までは、if thenと言った形式で書かれており、使用状況が検索では、的を得ず、結果として、then部の診断や対策が無駄に終わることが多かったが、このような無効なキーワード表現・使用状況が、頻度パターンにより、より柔軟に表現され、的を得た形式になったと考えられる。これにより、if thenに基づく診断・対策に比べ、はるかに信頼性の高い診断が実施できるようになった。
【0073】
図8Aは、事例ベースに基づいて異常を検知する方法で、多次元センサ信号を対象にした事例ベース異常検知:多変量解析の例を示したものである。図1に示した多次元時系列センサ信号取得部103で取得したセンサデータ1〜N:104、および稼動時間などの稼動データ108を、本実施例による異常検知・診断システム100受け取って、特徴抽出・選択・変換1112、クラスタリング1116、学習データ選択(更新)1115を行い、多次元時系列のセンサデータ104に対して、多変量解析により識別部1113にて、正常データから見て、はずれ値となる観測センサデータ、あるいはその合成値を統合部1114に出力する。統合部1114において異常あるいは、その予兆が検知されると、上述した診断、すなわち故障現象への寄与度(寄与度のみならず、その時間的集計である頻度としてのパターン)と過去事例に基づく頻度パターンの照合動作などの診断を開始する。
【0074】
クラスタリング1116では、運転状態などに応じて、モード別にいくつかのカテゴリにセンサデータを分ける。センサデータ以外に、イベントデータ(設備のON/OFF制御、各種アラーム、設備の定期検査・調整など)105を用いて、その分析結果に基づき、学習データの選択や異常診断を行うこともある。イベントデータ105は、クラスタリング1116への入力として、イベントデータ105に基づいてモード別にいくつかのカテゴリにデータを分けることもできる。イベントデータ105の分析と解釈は、分析部1117にて行われる。
【0075】
さらには、識別部1113において、複数の識別器を用いた識別を行い、結果を統合部1114において統合することにより、よりロバストな異常検知も実現できる。識別部1113への入力であるしきい値は、異常予兆の判定用しきい値である。異常の説明メッセージは、統合部1114において出力される。
【0076】
図8Bは、異常予兆検知の性能を表すためのConfusion Matrixと呼ばれる正誤表と、性能の指標であるF値などを示したものであり、表の中で定義されるTP,TN,FP,FNを用いて、F=2× Precision× Recall/(Precision+ Recall)、Precision(適合率)=TP/(TP+FP)、Recall(再現率)=TP/(TP+FN) と定義される。的中率は、FN/(FP+TN)などと定義される。同様に、正常期間を異常とする虚報(誤報)は、FN/(TP+FN)などと定義される。これらの性能指標が、異常予兆検知の性能向上に使用される。
【0077】
稼動データの例を図9Aに示す。図9Aに示した例は、サイトが異なる同一機種の設備1081、1082についてそれぞれの設備の日単位での稼働時間の累積値を示したグラフである。横軸が日付け(相対値)、縦軸が稼動時間の累計(相対値)を表す。この図では、二つの設備は、ほぼ同じ稼動時間であり、すなわち同じ使われ方、運用がされていることがわかる。設備の稼働時間は、たとえば、鉱山用のマイニングに使われる大型のショベルのケースでは、ショベルの走行時間、旋回時間など、いろいろな稼働時間がある。たとえば、エンジン稼働合計時間、エンジン回転数合計時間、エンジン冷却水温度合計時間などである。街中で使われる中・小型のショベルや振動ローラでも同様であるが、その用途はさらに多様である。これらの稼動時間は、基本的にショベルの劣化と関係性をもつ。したがって、稼働時間に対する劣化の早いショベルは、保守に対する注意がより必要と考えられる。
【0078】
もちろん、設備の劣化は、部品交換を実施した、オーバーホールを実施したといった過去の経歴に依存するものである。
緯度、経度、高度なども異常検知をする上で、参考となる入力情報である。
【0079】
図9Bには、サイトが異なる同一機種の設備1081、1082のセンサ信号の累積値の例として、ショベルのエンジン冷却材の温度の累積値を示したものである。この例では、二つの設備1081と1082は、センサ信号の累積値が異なる傾向を示している。二つの設備1081と1082の図9Aに示したような稼動時間を知らなければ、この傾向の違いの良否は判断できない。この例では、センサ信号の累積値が異なる傾向を示したが、稼動時間が異なるにも拘らず、同じ傾向を示しているならば、そこには、また稼動に合わせた良否判断が必要である。
【0080】
図10A及びBに、センサ信号の累積値の校正の考え方を示す。稼動時間で校正することにより、基準に対する大小関係から、着目設備の状態をより的確に判断可能となる。この校正値を観測データまたは学習データとして扱う。図10Aは、センサ信号の累積値を稼動時間で正規化した例を示し、基準曲線1001に対して上限曲線1002と下限曲線1003を設定し、上限曲線1002を上回ったとき又は下限曲線1003を下回ったときに特性が劣化したものと判断される。
【0081】
一方、図10Bは、稼動時間自体をどのように補正するかを示したものである。ノーマル補正曲線(直線)1005に対して、ライフサイクルの後半など、設備状態にケアが必要な場合、補正を非直線化1006して、はずれを強調(晩年強調)することを示している。初期不良を強調したい場合、稼動初期を非直線化することも可能である。いわゆる故障の特性を表すバスタブ曲線に応じて、感度を変えることが可能になる。この曲線データは、テーブルなどに格納し、設備ごとに参照する。
【0082】
もちろん稼働時間とセンサ信号の双方を多次元ベクトルとしてまとめ、観測データや学習データとして扱ってもよい。その場合、学習データには、稼働時間のレンジをカバーする設備のデータを準備する必要がある。言い方を換えれば、運転や操作のパターンが異なったり、過去の稼動時間が異なる複数の設備のデータを一緒に扱え、これが故に、個々の設備の異常度合いを、より多くのデータで、より客観的に、設備が置かれた自然環境・人為環境も考慮して、総合的な異常検知が実現できる。一義的には稼動時間ではないが、ショベルやダンプの場合、対象とした土量などのトン数累積値なども、稼動時間に匹敵するものと考えられ、上記多次元ベクトルの一要素となりえる。さらには、定期点検の回数、交換部品の点数なども、上記多次元ベクトルの一要素となりえる
稼動時間について述べたが、種々の時間を考慮する、その結果として、設備のライフサイクルも考慮した、異常検知が行えることになる。
【0083】
図11Aに、異常検知・診断システム100で実行される異常予兆検知から対策に至る保守作業の全体像を示す。設備に付加した複数のセンサ信号104と稼動時間などの稼動情報108を、予兆検知部1101(後述する図18Bの1530に相当)に入力し、異常予兆の有無を判断する。予兆検知部1101では、学習データ管理部1102で管理されている学習データやしきい値管理部1103で管理されているしきい値を用いて、図8Aで説明したように正常状態からの逸脱の有無を監視する。予兆検知部1101と学習データ管理部1102及びしきい値管理部1103で構成される1110は、図8Aで説明した処理を実行する部分に相当する。
【0084】
予兆検知部1101で複数のセンサ信号104と稼動情報108とを処理して異常予兆が認められた場合、保守作業のトリガ11011が診断部1104へ出力される。同時に、どのセンサ信号・稼動情報のデータ、波形を見るべきか、波形の表示指示信号11012が波形表示部1105へ出力され、波形表示部1105に指示されたセンサ信号・稼動情報のデータ、波形が表示される。
【0085】
保守作業のトリガ11011が入力された診断部1104で行われる診断は、図4Aを用いて説明した方法でなされる。もちろん、作業者にも、確認のため、情報が出力される。診断部1104で診断した結果得られた情報として、対策候補11041が表示画面上に提示、指示され、この指示に基づいて、対策指示部1106で対策がなされる。指示した対策案の良否は、把握可能なため、対策指示の的中率評価部1107で的中率として評価できる。
【0086】
異常予兆検知の場合は、図8Bにて説明した通りであるが、ここでは、これを対策に広げている。対策においては、的中率は、3レベル程度あれば、妥当であると考える。すなわち、設備動作は改善され、的中したと考えられるもの、動作を正常に戻すことはなかったため、的中せずと考えられるもの、対策が不要であったものである。保守履歴情報は保守履歴情報管理部1109で管理され、その設備の既往症などが分かるカルテなどが設備カルテ作成部1109で生成される。
【0087】
図11Bに、設備カルテの例を示す。各設備における、ソフトウェアのバージョン情報や交換部品情報などを含む。この設備カルテも、対策検討や確認に使用される。
【0088】
対策指示の的中率評価部1107で算出した対策指示の的中率は、学習データ管理部1102における予兆検知の学習データの更新や是正、しきい値管理部1103におけるしきい値の修正などに使われ、予兆検知部1101における予兆検知の感度補正が実施される。たとえば、対策が不要な異常予兆の場合は、しきい値を上げて感度を抑制する。図8Aの識別部1113への入力であるしきい値を制御する。学習データ不足で異常予兆が検知されたときは、学習データを追加する。図8Aにおいて、学習データ選択(更新)部1115において、学習データの追加を行う。
【0089】
また、波形表示部1105では、有効なセンサ信号を、故障ごとに記憶しておき、それを優先的に表示する。
【0090】
図12に事例ベースに基づく異常検知処理を実行する異常検知・診断システム100の内部の構成を示す。この異常検知において、912は特徴抽出/選択/変換部で多次元時系列信号取得部103で取得された各種センサの信号104に基づく多次元時系列信号911を受けて処理する。913は識別器、914は統合処理部(グローバル異常測度)、915は主に正常事例からなる学習データ記憶部を示している。
【0091】
多次元時系列信号取得部911から入力された多次元時系列信号は、特徴抽出/選択/変換部12で次元が削減され、識別器913の複数の識別器913−1,913−2・・・913−nにより識別され、統合処理部(グローバル異常測度)914によりグローバル異常測度が判定される。学習データ記憶部915に記憶されている主に正常事例からなる学習データも複数の識別器913−1,913−2・・・913−nにより識別されて、グローバル異常測度の判定に用いられると共に、学習データ記憶部915に記憶されている主に正常事例からなる学習データ自体も取捨選択され、学習データ記憶部915での蓄積・更新が行われて精度の向上が図られる。
【0092】
学習データの更新は、データ間の類似度を評価し、類似したデータは重複があると考えられ、取り除くことを行い、類似していない正常データが観測された時は、これを追加することを行う。
【0093】
このように、学習データは自動的に追加・削除を行うことができ、異常判定に要する時間の短縮を図ることもできる。
【0094】
具体的には、下記手順にて行う。
■準備作業(オフライン)
(i)学習データを取得(No.1〜M)
(ii)すべての学習データに対し、相互に距離計算
(iii)学習データの個々に対し、距離順に順位付け
(各学習データが、それに近いものから順に番号の入ったテーブルをもつ)
(iv)遠いものは、妥当性確認
(重要ならば、学習データ不足の恐れあり)
(v)上記順位をテーブルとして保持
■診断開始
観測データ1(j=1)点目(観測クエリ)に対し、
(i)学習データの距離を計算
(ii)上位N個を探索データとする
(iii)部分空間方LSCにて、k個を選ぶ
観測データ2(j=2)点目以降
(iv)観測データj−1点目とj点目の距離d(j)を算出
(v)観測データj−1点目で選ばれた最近傍学習データから、距離min{d(j),th}離れた学習データまでを選択(thは、上限を与えるしきい値)
(vi)上記選択された学習データそれぞれから、近傍のN個の学習データをさらに選択
(vii)上記N+α個をカバーする学習データを、探索対象データとする
(N+αが小さければ、高速化可能)
(viii)LSCにて、k個を選ぶ(最近傍学習データを記憶し、次回j+1点目にて使う)
(ix)上記手順(iv)〜(vii)を繰り返す
(x)活用された学習データは使い、活用頻度の低いデータは削除
(学習データの更新自体を繰り返す診断対象では、(x)は不要)
考え方は、学習データを最小限にしながら、変動には追従しようと言うもので、前回探索した範囲から、観測データのふらつき分は、範囲を拡大するというものである。
【0095】
図12には、ユーザがパラメータを入力する入力部123に表示される操作PCの画面920も図示している。入力部123からユーザが入力するパラメータは、データサンプリング間隔1231、観測データ選択1232、異常判定しきい値1233などである。データサンプリング間隔1231は、例えば、何秒おきにデータを取得するかを指示するものである。
【0096】
観測データ選択1232は、センサ信号のどれをおもに使うかを指示するものである。異常判定しきい値1233は、算出した、モデルからの偏差・逸脱、はずれ値、乖離度、異常測度などと表現した、異常らしさの値を2値化するためのしきい値である。
【0097】
異常検知の的中率1234は、過去検知した異常予兆が、的中したかどうかを表す数値(出力)である。図8Bにて説明したが、的中率以外に、虚報率なども表示可能である。的中率、虚報率などの性能指標は、予兆検知の学習データの更新や是正、しきい値の修正などに使われ、予兆検知の感度補正が実施される。
【0098】
図12に示された識別器913はいくつかの識別器(913−1,913−2、・・・913−n)を準備し、統合処理部914でそれらの多数決をとる(統合)ことが可能である。即ち、異なる識別器群(913−1,913−2、・・・913−n)を用いたアンサンブル(集団)学習が適用できる。例えば、第一の識別器913−1は投影距離法、第二の識別器913−2は局所部分空間法、第三の識別器913−3は線形回帰法、第四の識別器913−4は非線形回帰法であるガウシアンプロセス法と言ったものである。事例データに基づくものならば、任意の識別器が適用可能である。ガウシアンプロセスについては、非特許文献3に記載がある。
【0099】
図13A乃至図13Cは、識別器913における識別手法の例を示したものである。図13Aに、投影距離法を示す。投影距離法は、学習データを近似する部分空間への投影距離により識別する方法である。
【0100】
投影距離法においては、先ず、学習パターン{x}のクラスタ毎の平均miと共分散行列Σiを次式により求める。
【0101】
【数1】

【0102】
ここで,niはクラスタωiに属する学習パターンの個数である。
【0103】
次に,Σiの固有値問題を解き,累積寄与率に基づき値の大きい方からr個の固有値に対応する固有ベクトルを並べた行列Uiを,クラスタωiのアフィン部分空間の正規直交基底とする。アフィン部分空間への投影距離 の最小値を未知パターンxの異常測度と定義する。正常学習データのみを使う1クラス分類であるが,学習データ自体が運転ON/OFFなど異なる状態を含むため,学習データに対して,観測データに近いk−近傍のデータを一つのクラスタとして部分空間を生成する。この時,観測データからの距離が所定範囲内にある学習データを選ぶ(RS法:Range Search)。また,過渡期の変動に対応すべく,選択したデータの時間的前後のL個(時刻t−t1〜t+t2,t1,t2はサンプリング考慮)の学習データも用いて部分空間を生成する(時間拡張RS法)。さらに,投影距離は,最低個数から選択個数までのうち,値が最小になるものを選ぶ。
【0104】
観測データ1点に対して,最小限の学習データを選択するが,観測データ1点のみで最高感度かどうかは不明であり,後述するように(図13C、相互部分空間法)、観測データについても部分空間を生成する。学習データでは,時間拡張Range Search法で選択したL個×k組(以下)のデータからなる部分空間を生成するが、観測データは窓区間の長さが自由度になり、その選択が鍵になる。窓区間を長くとると,データの変動を捉えることになるが,時刻に独立な扱いのため変化を検知できない恐れが増し,さらに学習データも対応しなくなる。
【0105】
学習データが張る部分空間の次元数nに基づき,観測データの最小の窓区間を決める。次元数nは累積寄与率から算出し,観測データが最大n+1個となる条件で,次元数をもとに観測データの窓区間長Mを探索的に定め,部分空間を生成する。そして,部分空間同士のなす角度cosθあるいはその二乗を求める。立案手法は,時系列データに対し,最小限の学習部分空間をまず生成し,次に類似性と時間窓の観点で観測データを適切に選択し,類似部分空間を逐次生成することに特徴がある。
【0106】
なお、投影距離法では、各クラスの重心を原点とする。各クラスの共分散行列にKL展開を適用して得られた固有ベクトルを基底として用いる。いろいろな部分空間法が立案されているが、距離尺度を有するものならば、はずれ度合いが算出可能である。なお、密度の場合も、その大小により、はずれ度合いを判断可能である。投影距離法は、正射影の長さを求めることから、類似度尺度である。
【0107】
このように、部分空間にて距離や類似度を計算し、はずれ度合いを評価し、しきい値との比較により、異常予兆の有無を判断することになる。投影距離法などの部分空間法は、距離に基づく識別器のため、異常データが利用できる場合の学習法として、辞書パターンを更新するベクトル量子化や距離関数を学習するメトリック学習を使うことができる。
【0108】
図13Bに、識別器913における識別手法の別の例を示す。局所部分空間法と呼ばれる方法である。局所部分空間法は、距離近傍データが張る部分空間への投影距離により識別する方法であって、未知パターンq(最新の観測パターン)に近いk個の多次元時系列信号を求め、各クラスの最近傍パターンが原点となるような線形多様体を生成し、その線形多様体への投影距離が最小となるクラスに未知パターンを分類する。局所部分空間法も部分空間法の一種である。kは、パラメータである。異常検知では、未知パターンq(最新の観測パターン)から正常クラスまでの距離を求めて、これを偏差(残差)とし、しきい値と比較する。
【0109】
この手法では、例えば、k個の多次元時系列信号を用いて形成される部分空間への、未知パターンq(最新の観測パターン)からの正射影した点を推定値として算出することもできる。
【0110】
また、k個の多次元時系列信号を、未知パターンq(最新の観測パターン)に近い順に並べ替え、その距離に反比例した重み付けを行って、各信号の推定値を算出することもできる。投影距離法などでも、同様に推定値を算出できる。
【0111】
パラメータkは、通常は1種類に定めるが、パラメータkをいくつか変えて実行すると、類似度に応じて対象データを選択することになり、それらの結果から総合的な判断となるため、一層効果的である。
【0112】
さらには、図14Aに示すように、局所部分空間法におけるkの値として、観測データごとに適切な値とすべく、観測データからの距離が所定範囲内にある学習データを選択し、しかも学習データを最低個数から選択個数まで順次増やして投影距離が最小になるものを選んでもよい。
【0113】
これは、投影距離法にも適用できる。具体的手順は、下記の通りである。
1.観測データと学習データの距離を算出し、昇順に並替え。
2.距離 d<th かつ 個数k以下となる学習データを選択。
3.j=1〜k個の範囲で投影距離を算出し、最小値を出力。
ここで、しきい値thは、距離の頻度分布から、実験的に定める。図14Bの分布が、観測データから見た、学習データの距離の頻度分布を表している。この例では、設備のON,OFFに応じて、学習データの距離の頻度分布が双峰的になっている。二つの山の谷が、設備のONからOFFへ、または逆のOFFからONへの過渡期を表している。
【0114】
この考えは、レンジサーチ(Range Search:RS)と呼ばれる概念であり、これを学習データ選択に応用したと考える。特許文献1および2に開示されている方法にも、このレンジサーチ形の学習データ選択の概念は適用可能である。なお、局所部分空間法では、異常値が若干混ざっていても、局所部分空間にした時点で、その影響が大きく緩和される。
【0115】
なお、図示していないが、LAC(Local Average classifier)法と呼ぶ識別では、k近傍データの重心を局所部分空間と定義する。そして、未知パターンq(最新の観測パターン)から重心までの距離を求めて、これを偏差(残差)とする。
【0116】
図13Cは相互部分空間法と呼ばれる手法である。学習データのみならず、観測データも部分空間でモデル化する。この場合、観測データは、過去に遡るN個の時系列データである。相互部分空間法においては、(数2)で表されるデータの自己相関行列Aの固有値問題を解く。
A=1/N(Σφφ) ・・・(数2)
図13Cにおいて、φ及びψは、部分空間の正規直交規定を示す。また、cosθが類似度を表し、この類似度により観測データを評価し、しきい値と比較して、異常予兆を検知する。相互部分空間やその拡張は、たとえば「堀田政二, 河原智一,山口修,坂野 鋭,''核非線形相互部分空間法の振る舞いについて,''信学技報,PRMU2010,vol.110,no.187,pp.1−6,Sep.2010.」に述べられている。
【0117】
図12に示した、識別器913における識別手法の例は、プログラムとして提供される。なお、単に、1クラス識別の問題と考えれば、1クラスサポートベクターマシンなどの識別器も適用可能である。この場合、高次空間に写像する、radial basis functionなどのカーネル化が使えることになる。
【0118】
1クラスサポートベクターマシンでは、原点に近い側が、はずれ値、即ち異常になる。ただし、サポートベクターマシンは、特徴量の次元は大きくても対応できるが、学習データ数が増えると計算量が膨大となるという欠点もある。
【0119】
このため、MIRU2007(画像の認識・理解シンポジウム、Meeting on Image Recognition and Understanding 2007)にて発表されている、「IS−2−10 加藤丈和,野口真身,和田俊和(和歌山大),酒井薫,前田俊二(日立);パターンの近接性に基づく1クラス識別器」などの手法も適用可能であり、この場合、学習データ数が増えても、計算量は膨大なものとならないというメリットがある。
【0120】
このように、低次元モデルで多次元時系列信号を表現することにより、複雑な状態を分解でき、簡単なモデルで表現できるため、現象を理解しやすいという利点がある。また、モデルを設定するため、特許文献1および2に開示されている方法のように完全に、データを完備する必要はない。
【0121】
図15は、図11Aにて使われる多次元時系列センサ信号取得部103で取得した多次元時系列信号であるセンサデータ1〜N:104の次元を削減する特徴変換1200の例を示したものである。種類1260としては、主成分分析1201以外にも、独立成分分析1202、非負行列因子分解1203、潜在構造射影1204、正準相関分析1205など、いくつかの手法が適用可能である。図15には、方式図1210と機能1220を併せて示した。
【0122】
主成分分析1201は、PCAと呼ばれ、M次元の多次元時系列信号を、次元数rのr次元多次元時系列信号に線形変換し、ばらつき最大となる軸を生成するものである。KL変換でも構わない。次元数rは、主成分分析により求めた固有値を降順に並べ、大きい方から加算した固有値を全固有値の和で割り算した累積寄与率なる値に基づいて決める。
【0123】
独立成分分析1202は、ICA(Independent Component Analysis)と呼ばれ、非ガウス分布を顕在化する手法として効果がある。非負行列因子分解は、NMF((Non−negative Matrix Factorization)と呼ばれ、行列で与えられるセンサ信号を、非負の成分に分解する。
【0124】
機能1220の欄で教師なしとしたものは、本実施例のように、異常事例が少なく、活用できない場合に、有効な変換手法である。ここでは、線形変換の例を示した。非線形の変換も適用可能である。
【0125】
上述した特徴変換は、標準偏差で正規化する正準化なども含め、学習データと観測データを並べて同時に実施する。このようにすれば、学習データと観測データを同列に扱うことができる。
【0126】
図16は、残差パターンによる異常発生の予兆検知技術の説明図である。図16は、残差パターンの類似度算出の手法を示している。図16は、局所部分空間法により求めた各観測データの正常重心に対応し、各時点でのセンサ信号Aとセンサ信号Bとセンサ信号Cの正常重心からの偏差が空間内の軌跡として表現されている。正確には、各軸は主要な主成分を表している。
【0127】
図16では、時刻t−1、時刻t、時刻t+1を経過する観測データの残差系列が矢印のついた点線で示されている。観測データ及び異常事例それぞれの類似度は、それぞれの偏差の内積(A・B)を算出して推定することができる。また、内積(A・B)を大きさ(ノルム)で割って、角度θで類似度を推定することも可能である。観測データの残差パターンに対して類似度を求め、その軌跡により、発生すると予測される異常を推測する。
【0128】
具体的には、図16には、異常事例Aの偏差1301、異常事例Bの偏差1302が示されている。矢印のついた点線で示されている時刻t−1、時刻t、時刻t+1を含む観測データの偏差系列パターンを見ると、時刻tでは異常事例Bに近いが、その軌跡からは、異常事例Bではなく、異常事例Aの発生を予測することができる。該当するものが過去の異常異例になければ、新規な異常と判定することもできる。また、図16に示した空間を、頂点が原点に一致する円錐状の区間で分け、この区間により、異常を識別することもできる。
【0129】
異常事例を予測するために、異常事例が発生するまでの偏差(残差)時系列の軌跡データをデータベース化しておき、観測データの偏差(残差)時系列パターンと軌跡データベースに蓄積された軌跡データの時系列パターンの類似度を算出して異常発生の予兆を検知することができる。
【0130】
このような軌跡を、GUI(Graphical User Interface)にてユーザに表示すると、異常の発生状況が視覚的に表現でき、対策などにも反映しやすい。
【0131】
総合的な残差のみを時間的経緯を無視して追跡していると、異常現象を理解しづらいが、残差ベクトルの時間経緯を追えると、現象が手に取るように分かる。理論的には、複合事象の各事象のベクトル加算演算を行うことにより、複合事象の異常発生の予兆を検知することができ、残差ベクトルが、的確に異常を表現することが分かる。過去の異常事例A,Bなどの軌跡が既知としてデータベースにあれば、これらと照合して、異常の種類を特定(診断)できる。
【0132】
また、図16を、一定の時間ウィンドウ内で残差ベクトルの発生として眺めれば、それを頻度として表現することもできる。頻度として扱うことができれば、図7Bに示したような形態の頻度分布情報を取得でき、これを現象のキーワードの出現頻度として扱うことができる。すなわち、診断に使うことができる。図16の残差ベクトルを頻度として扱うには、図16の各軸を一定幅に区切り、各立方体の区間に入るかどうかで、頻度分布を作成できる。図16では、3次元、通常は多次元の頻度分布になるが、縦一列に並べるなどして1次元化(ベクトル化)することが可能であり、通常の頻度分布、頻度パターンとして扱うことができる。
【0133】
図17に、本発明の異常検知・診断システム100のハードウェア構成を示す。本システムは、プロセッサ120、データベース(DB)121、表示部122及び入力部(I/F)123を備えて構成される。異常検知を実行するプロセッサ120に、対象とするエンジンなどのセンサデータ104を入力し、欠損値の修復などを行って、データベースDB121に格納する。プロセッサ120は、取得した観測センサデータ104、学習データからなるデータベース(DB)121のDBデータを用いて、異常検知を行う。表示部122では、各種表示を行い、異常信号の有無を出力する。トレンドを表示することも可能とする。イベントの解釈結果も表示可能とする。さらに、プロセッサ120は、保守履歴情報などが格納されているデータベース(DB)121をアクセスし、キーワードを抽出・検索し、診断モデルを生成することにより、異常診断を行い、その診断結果を表示部122にて表示する。現場での点検作業を記したフォールトツリー(診断手順書)では、センサデータを対策や調整視点で分類し、予兆を検知した段階で、最初に設備のチェックすべき分岐点などを指示するものである。
【0134】
診断結果は、図4A乃至Eにて示した診断モデルを含む。即ち、現象診断の結果、現象分類の結果、診断モデルなどを表示するものである。また、図5、図6、図7A及び図7Bに示した各種情報も表示する。特に、図7Bに示した頻度ヒストグラムは、図7Aの頻度パターンを可視化するものとして重要な表示ファクタである。設備のおかれた状況、異常発生の状況、保守の状況、部品交換にいたる状況、過去の事例などを表す「文脈」として、その一部を、選択表示する。これらは、項目のマージなどの観点で編集可能である。
【0135】
さらに、診断結果のみならず、その的中率も表示部122にて表示する。これにより、診断結果の可視化が可能となり、PDCAサイクルをまわすことが可能となる。
的中率は、たとえば、的中率=有効であった対策/提示した対策案と言ったものである。
【0136】
上記ハードウェアとは別に、これに搭載するプログラムを、メディア媒体やオンラインサービスにより顧客に提供することもできる。
【0137】
データベース(DB)121は、熟練エンジニアらがDBを操作できる。特に、異常事例や対策事例を教示でき、格納できる。(1)学習データ(正常)、(2)異常データ、(3)対策内容、(4)フォールトツリー(診断手順を、if thenのように、木構造表現したもの)情報が、格納される。データベース(DB)121を、熟練エンジニアらが手を加えられる構造にすることにより、洗練された、有用なデータベースができあがることになる。また、データ操作は、学習データ(個々のデータや重心位置など)を、アラームの発生や部品交換に伴い、自動的に移動させることにより行う。また、取得データを自動的に追加することも可能である。異常データがあれば、データの移動に、一般化ベクトル量子化などの手法も適用できる。
【0138】
また、図16にて説明した過去の異常事例A、Bなどの軌跡を、データベース(DB)121に格納し、これらと照合して、異常の種類を特定(診断)する。この場合、軌跡をN次元空間内のデータとして表現し、格納する。プロセッサ120によるデータの処理や表示部122で表示するデータの指示は、入力部(I/F)123で行う。
【0139】
図18A及び図18Bに、異常検知、及び異常検知後の診断を示す。図18Aにおいて、時系列データ取得部103から送られてくる設備1501からの時系列信号(センサ信号)104から、プロセッサ120の内部で信号処理して時系列信号の特徴抽出・分類1524を実行することにより、異常を検知する。設備1501は、1台のみとは限らない。複数台の設備を対象にしてもよい。同時に、各設備の保守のイベント105(アラームや作業実績など。具体的には、設備の起動、停止、運転条件設定、各種故障情報、各種警告情報、定期点検情報、設置温度などの運転環境、運転累積時間、部品交換情報、調整情報、清掃情報など)などの付帯情報を取り込み、異常を高感度に検知する。
【0140】
図18Aにおいて、時系列信号104の特徴抽出・分類1524に示した時系列データの波形1525が、観測信号を表し、本実施例にて検知した異常を、丸印1526で予兆として示している。この予兆は、異常測度が定めたしきい値以上になり(あるいは、設定した回数以上、異常測度がしきい値を超えれば)、異常ありと判定されたものである。この例では、設備停止に至る前に、異常予兆を検知でき、しかるべき対策が実施できる。
【0141】
図18Bに示すように、異常予知・診断システム100のプロセッサ120における予兆検知部1530により早期に予兆として発見できれば、故障となって稼動停止となる前に、何らかの対策がうてることになる。そして、センサデータ104を処理して部分空間法などにより予兆検知し(1531)、イベントデータ105を入力してイベント列照合なども加えて総合的に予兆かどうか判断し(1532)、この予兆に基づき、図4A乃至図4Eにて示した方法にて異常診断部1540で異常診断を行い、故障候補の部品の特定やいつ当該部品が故障停止に至るかなどを推測する。そして、必要な部品の手配を、必要なタイミングで行う。
【0142】
異常診断部1540は、予兆を内包しているセンサを特定する現象診断と対策や調整視点で予兆を分類することによる現象診断部1541と、故障を引き起こす可能性のあるパーツを特定する原因診断部1542に分けると考えやすい。予兆検知部1530では、異常診断部1540に対して、異常の有無という信号のほか、特徴量に関する情報を出力する。異常診断部1540は、これらの情報をもとにデータベース121に記憶してある情報を用いて現象診断部1541で現象診断を行う。また、現象を分類する。さらには、センサデータを調整や対策などの視点で分類する。すなわち、図4A乃至図4Eにて示した方法に基づき、原因診断部1542においてデータベース121に記憶してある情報を用いてチェック箇所の推奨や調整箇所の特定、交換すべき部品の特定としての原因診断が行われる。
【0143】
図19に、得られた、各センサ信号の異常への影響度の情報から、各センサ信号のネットワークを作成した例を示す。基本的な温度1601、圧力1602、モータなどの回転数1603、電力1604などのセンサ信号に関して、異常への影響度の割合に基づき、センサ信号間に重みを付与できる。これらの関係も、キーワードとして、図4A乃至図4Eの診断モデルで活用される。
【0144】
こういった関連性ネットワークができると、設計者が意図しない信号間の連動性、共起性、相関性などが明示でき、異常の診断時にも有用である。ネットワークの生成は、各センサ信号の異常への影響度のほか、相関、類似度、距離、因果関係、位相の進み/遅れなどの尺度で、これを生成することができる。
【0145】
<対象設備のモデル;選択されたセンサ信号のネットワーク>
図20に異常検知、原因診断の部分に関して、さらにその構成を示す。図20において、複数のセンサからデータを取得するセンサデータ取得部1701(図1の時系列データ取得部103に相当)、ほぼ正常データからなる学習データ1704、学習データをモデル化するモデル生成部1702、観測データとモデル化した学習データの類似度により観測データの異常の有無を検知する異常検知部1703、各信号の影響度を評価するセンサ信号の影響度評価部1705、各センサ信号の関連性を表すネットワーク図を作成するセンサ信号ネットワーク生成部1706、異常事例、各センサ信号の影響度、選択結果などからなる関連データベース1707、設備の設計情報からなら設計情報データベース1708、原因診断部1709、診断結果を格納する関連データベース1710、および入出力部1711からなる。これらの処理を通して得られたキーワードも、図4A乃至図4Eの診断モデルで活用される。言い換えれば、これらの処理は、キーワード生成部としてみることも可能である。
【0146】
設計情報データベースには、設計情報以外の情報も含み、エンジンを例にとると、年式、モデル、部品表(BOM)、過去の保守情報(オンコール内容、異常発生時のセンサ信号データ、調整日時、撮像画像データ、異音情報、交換部品情報など)、稼動状況情報、輸送・据付時の検査データなどを含む。
【0147】
最後に、別の対象例を図21A及びBに示す。図21Aは、穴明け加工用のドリル2100の外観を示したものである。同図左側が刃先2101である。図21Bは、ドリル2100で試料2110を加工している状態を示す。試料2110を加工中に、ドリル2100の刃先2101に欠損が生じることがあり、この状態管理が重要である。そこで、穴明け加工用モータ(図示せず)のサーボアンプ(図示せず)から電力信号を得て、この電力波形から、刃先2101の欠損の有無を検知する。検知方法は、図8Aに示したものである。別に、振動測定用センサを付加して、高次の多次元センサ信号とし、検知感度をさらに高めることも可能である。さらには、マイクロホン2130にて、穴あけ加工中に音を拾い、この音信号を対象に、欠損検知することも可能である。特徴変換としては、フーリエ変換のたぐいが適している。
【0148】
また、予兆検知した場合、カメラ2120による画像検出によって、刃先2101の外観チェックを実施してもよい。穴あけごとに、外観チェックを行うか、一定数量の穴加工後に、外観チェックを行う。
【0149】
なお、図21Bに示すように、穴あけ対象の試料2110から、切子2111がどのように出るかも、カメラ2120による画像検出の対象となり得、画像を対象に、図8Aに示した方法で、異常検知を行うことも可能である。
【0150】
ドリル以外には、カッターなども対象に刃先の異常検知が可能である。さらには、穴あけ対象製品のできばえ(穴の開き具合)をカメラ2120で観察することも可能である。
【産業上の利用可能性】
【0151】
本発明は、プラント、設備の異常検知として利用することが出来る。
【符号の説明】
【0152】
100・・・異常予知・診断システム 103・・・多次元時系列信号取得部
120・・・プロセッサ 121・・・データベース部 122・・・表示部
123・・・入力部。

【特許請求の範囲】
【請求項1】
プラント又は設備の異常或いは異常の予兆を検知し、前記プラント又は設備を診断する異常検知・診断方法であって、
前記プラント又は設備に装着した複数のセンサから取得したセンサデータ、および/あるいは運転時間や操作時間などの稼動データを対象に前記プラント又は設備の異常或いは異常の予兆を検知し、
前記プラント又は設備の保守履歴情報を用いて前記プラント又は設備の異常或いは異常の予兆と過去の対策を紐付けし、
該紐付け結果に基づいて、対策が必要な異常或いは異常の予兆を分類、提示する
ことを特徴とする異常検知・診断方法。
【請求項2】
前記保守履歴情報は、オンコールデータ、作業報告書、調整・交換部品コード、画像情報、音情報の内の何れかを含み、前記保守履歴情報から定めたキーワードの出現頻度と他のキーワードとの連結回数や頻度を算出して高出現頻度のパターンを得、該得た高出現頻度のパターンをカテゴリとして、前記プラント又は設備で検知された異常或いは異常の予兆のセンサデータや稼動データを分類し、該分類した結果に基づいて、対策が必要な異常或いは異常の予兆を分類、提示することを特徴とする請求項1に記載の異常検知・診断方法。
【請求項3】
前記プラント又は設備の稼動データを取得し、また前記複数のセンサからセンサデータを取得し、該取得したセンサデータおよび/あるいは稼動データのうち、ほぼ正常データからなるデータを学習データとしてモデル化し、該モデル化した学習データを用いて前記取得したセンサデータ、稼動データの異常測度をベクトルとして算出し、該算出した異常測度ベクトルの大きさ或いは角度に基づいて、前記プラント又は設備の異常を検知することを特徴とする請求項1又は2に記載の異常検知・診断方法。
【請求項4】
前記稼動データを用いて、前記取得したセンサデータを校正し、校正したセンサデータを対象に、ほぼ正常データからなるデータを学習データとしてモデル化し、該モデル化した学習データを用いて前記校正したセンサデータの異常測度をベクトルとして算出し、該算出した異常測度ベクトルの大きさ或いは角度に基づいて、前記プラント又は設備の異常を検知することを特徴とする請求項1又は2又は3に記載の異常検知・診断方法。
【請求項5】
対策結果に基づいて指示対策案の的中率を算出することを更に含み、この算出した的中率に基づいて予兆検知の感度を調整可能なことを特徴とする請求項1に記載の異常検知・診断方法。
【請求項6】
設備カルテを生成し、出力することを更に含むことを特徴とする請求項1に記載の異常検知・診断方法。
【請求項7】
プラント又は設備の異常或いは異常の予兆を検知し、前記プラント又は設備を診断する異常検知・診断方法であって、
前記プラント又は設備に装着した複数のセンサから取得したセンサデータ、および/あるいは運転時間や操作時間などの稼動データを対象に前記プラント又は設備の異常或いは異常の予兆を検知し、
対象を撮像して得た画像を用いて状態監視を行う
ことを特徴とする異常検知・診断方法。
【請求項8】
プラント又は設備の異常或いは異常の予兆を検知し、前記プラント又は設備を診断する異常検知・診断システムであって、
前記プラント又は設備に装着した複数のセンサから取得したセンサデータおよび/あるいは運転時間や操作時間などの稼動データを対象に前記プラント又は設備の異常或いは異常の予兆を検知する異常検知部と、
前記プラント又は設備に対する対策などの情報からなる保守履歴情報を蓄積したデータベース部と、
該データベース部に蓄積された前記プラント又は設備の保守履歴情報を用いて前記異常検知部により前記プラント又は設備の異常或いは異常の予兆と過去の対策とを紐付けし、該紐付け結果に基づいて対策が必要な異常或いは異常の予兆を分類、提示する診断部と
を備えたことを特徴とする異常検知・診断システム。
【請求項9】
前記データベース部に蓄積する保守履歴情報は、オンコールデータ、作業報告書、調整・交換部品コード、画像情報、音情報の内の何れかを含み、前記診断モデル生成部は前記保守履歴情報から定めたキーワードの出現頻度と他のキーワードとの連結回数や頻度を算出して高出現頻度のパターンを得、該得た高出現頻度のパターンをカテゴリとして、前記プラント又は設備で検知された異常或いは異常の予兆のセンサデータや稼動データを分類し、該分類した結果に基づいて、対策が必要な異常或いは異常の予兆を分類、提示することを特徴とする請求項8に記載の異常検知・診断システム。
【請求項10】
前記診断モデル生成部は、前記プラント又は設備の稼動データを取得し、また前記複数のセンサからセンサデータを取得し、該取得したセンサデータおよび/あるいは稼動データのうち、ほぼ正常データからなるデータを学習データとしてモデル化し、該モデル化した学習データを用いて前記取得したセンサデータ、稼動データの異常測度をベクトルとして算出し、該算出した異常測度ベクトルの大きさ或いは角度に基づいて、前記プラント又は設備の異常を検知することを特徴とする請求項8又は9に記載の異常検知・診断システム。
【請求項11】
前記診断モデル生成部は、前記稼動データを用いて、前記取得したセンサデータを校正し、校正したセンサデータを対象に、ほぼ正常データからなるデータを学習データとしてモデル化し、該モデル化した学習データを用いて前記校正したセンサデータの異常測度をベクトルとして算出し、該算出した異常測度ベクトルの大きさ或いは角度に基づいて、前記プラント又は設備の異常を検知することを特徴とする請求項8又は9に記載の異常検知・診断システム。
【請求項12】
前記診断モデル生成部は、前記稼動データを用いて、前記取得したセンサデータを校正し、校正したセンサデータを対象に、ほかのプラントや設備も対象に、ほぼ正常データからなるデータ群を学習データとしてモデル化し、該モデル化した学習データを用いて前記校正したセンサデータの異常測度をベクトルとして算出し、該算出した異常測度ベクトルの大きさ或いは角度に基づいて、前記プラント又は設備の異常を検知することを特徴とする請求項11に記載の異常検知・診断システム。
【請求項13】
対策案を提示する対策案指示部と、
対策結果に基づいて指示対策案の的中率を算出する的中率評価部と
を更に含み、該的中率評価部で算出した的中率に基づいて、予兆検知の感度を調整可能なことを特徴とする請求項8に記載の異常検知・診断システム。
【請求項14】
プラント又は設備の異常或いは異常の予兆を検知し、前記プラント又は設備を診断する異常検知・診断システムであって、
前記プラント又は設備に装着した複数のセンサから取得したセンサデータ、および/あるいは運転時間や操作時間などの稼動データを対象に前記プラント又は設備の異常或いは異常の予兆を検知する異常検知部と、
前記プラント又は設備の保守履歴情報を用いて前記プラント又は設備の異常或いは異常の予兆と過去の対策を紐付けし、該紐付け結果に基づいて対策が必要な異常或いは異常の予兆を分類し提示する診断部と、
設備カルテを生成するカルテ生成部と
を有することを特徴とする異常検知・診断システム。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図4D】
image rotate

【図4E】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図13C】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18A】
image rotate

【図18B】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21A】
image rotate

【図21B】
image rotate


【公開番号】特開2013−41448(P2013−41448A)
【公開日】平成25年2月28日(2013.2.28)
【国際特許分類】
【出願番号】特願2011−178316(P2011−178316)
【出願日】平成23年8月17日(2011.8.17)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】