説明

磁気転写用マスターディスクの製造方法及び磁気記録媒体

【課題】凹凸パターンを有した原盤に電鋳を施してマスター基板を作成するにあたり、高精度なマスター基板を安定して形成することのできる磁気転写用マスターディスクの製造方法を提供するとともに、良好なプリフォーマット情報が磁気転写された磁気記録媒体を提供すること。
【解決手段】凹凸パターンPが形成された原盤17に電鋳により金属盤18を積層してマスター基板11を作成する磁気転写用マスターディスク10の製造方法において、電鋳に用いる電鋳装置60の陽極69と陰極72との極間距離xを、凹凸パターンPの最小パターンサイズpに対応した所定の範囲に規定して電鋳を行うようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気転写用マスターディスクの製造方法及び磁気記録媒体に係り、特にハードディスク装置等に用いられる磁気記録媒体にフォーマット情報等の磁気情報を転写するのに好適な磁気転写用マスターディスクの製造方法及び磁気記録媒体に関する。
【背景技術】
【0002】
近年、急速に普及しているハードディスクドライブに使用される磁気記録媒体である磁気ディスク(ハードディスク)は、磁気ディスクメーカーよりドライブメーカーに納入された後、ドライブに組み込まれる前に、フォーマット情報やアドレス情報がプリフォーマット情報として書き込まれるのが一般的である。この書き込みは、磁気ヘッドにより行うこともできるが、フォーマット情報やアドレス情報が書き込まれたマスターディスクより一括転写する方法が効率的であり、好ましい。
【0003】
この一括転写する磁気転写方法は、磁気転写用マスターディスク(以下、マスターディスクとのみ称することがある)と被転写用ディスク(以下、磁気記録媒体又はスレーブディスクと称することがある)とを密着させた状態で、片面又は両面に電磁石装置、永久磁石装置等の磁界生成手段を配設して転写用磁界を印加することにより、マスターディスクの有する情報(例えばサーボ信号)をスレーブディスクに磁気転写する。そして、磁気転写を精度良く行うには、マスターディスクとスレーブディスクとを均一に隙間なく密着させることが極めて重要である。
【0004】
ところで、この磁気転写方法に使用されるマスターディスクとしては、マスター基板の表面に情報信号に対応する凹凸パターンを形成し、この凹凸パターンの表面に磁性層を被覆したものが通常使用されている。この磁気転写用のマスターディスクは、情報を凹凸パターンで形成した原盤上に電鋳を施して、電鋳層から成る金属盤を原盤上に積層して該金属盤面に凹凸パターンを転写する電鋳工程、金属盤を原盤上から剥離する剥離工程、剥離した金属盤を所定サイズに打ち抜いてマスター基板にする打ち抜き工程を経た後、凹凸パターンの面に磁性層を被覆することにより製造されるのが一般的である(例えば、特許文献1参照。)。
【特許文献1】特開2001−256644号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、前述の情報を凹凸パターンで形成した原盤上に電鋳を施して、反転した凹凸パターンを転写させた金属盤を積層させる工程では、原盤の微細な凹凸パターンを精度よく転写させなければならない。特に、最小ビット長が100nm以下、即ち、凹凸パターンのトラック方向(円周方向)の最小寸法が100nm以下のパターンを含む原盤の場合は一層高精度な電鋳が求められる。
【0006】
また、最小パターンサイズが100nm以下の凹凸パターンを有するマスター基板からなる磁気転写用マスターディスクでは、磁気転写するスレーブディスクとの密着性が極めて重要であり、密着性が悪いとマスターディスクとスレーブディスクとのスペーシングにより、転写されたスレーブディスクの再生信号強度が低下する等の磁気転写不良が発生する。
【0007】
このため、この電鋳工程においては、金属盤のマスター基板として使用する領域全面に対して、厚み偏差が極力少なくなるように電鋳金属を高精度で積層させなければならないという課題を有していた。
【0008】
本発明は、このような事情に鑑みてなされたもので、情報信号に対応する凹凸パターンを有した原盤に電鋳を施して金属盤を積層させ、反転した凹凸パターンを有するマスター基板を作成する磁気転写用マスターディスクの製造方法において、微小な凹凸パターンを有する原盤に対し、高精度な金属盤を安定して形成することのできる磁気転写用マスターディスクの製造方法を提供するとともに、良好なプリフォーマット情報が磁気転写された磁気記録媒体を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の請求項1は前記目的を達成するために、転写情報に応じた凹凸パターンが形成された原盤に電鋳により所定厚さの金属盤を積層し、前記原盤より剥離した前記金属盤からマスター基板を作成し、該マスター基板の凹凸パターン上に磁性層を成膜する磁気転写用マスターディスクの製造方法において、前記電鋳に用いる電鋳装置の陽極と陰極との極間距離を、前記凹凸パターンの最小パターンサイズに対応した所定の範囲に規定して前記電鋳を行うことを特徴とする磁気転写用マスターディスクの製造方法を提供する。
【0010】
また、本発明の請求項2は、転写情報に応じた凹凸パターンが形成された原盤に電鋳により所定厚さの金属盤を積層し、前記原盤より剥離した前記金属盤からマスター基板を作成し、該マスター基板の凹凸パターン上に磁性層を成膜する磁気転写用マスターディスクの製造方法において、前記電鋳時の最大電流密度を、前記凹凸パターンの最小パターンサイズに対応した所定の範囲に規定して前記電鋳を行うことを特徴とする磁気転写用マスターディスクの製造方法を提供する。
【0011】
前記請求項1又は請求項2に記載の発明は、前記凹凸パターンの最小パターンサイズが100nm以下の磁気転写用マスターディスクの製造方法において特に有効である。
【0012】
本発明の請求項4は、請求項1又は請求項3において、前記凹凸パターンの最小パターンサイズをp(nm)とし、前記極間距離をx(mm)としたときに、前記極間距離を(46−0.1p)≦x≦(65−0.1p)の範囲に規定したことを特徴とする。
【0013】
請求項4の発明によれば、電鋳装置の陽極と陰極との極間距離を、凹凸パターンの最小パターンサイズに対応して具体的な範囲で規定しているので、微小な凹凸パターンを有する原盤に対し、高精度な金属盤を安定して形成することができる。
【0014】
また、本発明の請求項5は、請求項2又は請求項3において、前記凹凸パターンの最小パターンサイズをp(nm)とし、前記最大電流密度をJ(A/dm2 )としたときに、前記最大電流密度をJ≦(0.03p+24)の範囲に規定したことを特徴とする。
【0015】
請求項5の発明によれば、電鋳時の最大電流密度の上限をを凹凸パターンの最小パターンサイズに対応して具体的に規定しているので、微小な凹凸パターンを有する原盤に対し、高精度な金属盤を安定して形成することができる。
【0016】
また、本発明の請求項6は、転写情報に応じた凹凸パターンが形成された原盤に電鋳により所定厚さの金属盤を積層し、前記原盤より剥離した前記金属盤からマスター基板を作成し、該マスター基板の凹凸パターン上に磁性層を成膜する磁気転写用マスターディスクの製造方法において、前記電鋳に用いる電鋳装置の陽極と陰極との極間距離及び電鋳時の最大電流密度を、前記凹凸パターンの最小パターンサイズに対応した所定の範囲に規定して前記電鋳を行うことを特徴とする磁気転写用マスターディスクの製造方法を提供する。
【0017】
また、本発明の請求項7は、請求項6の発明において、前記凹凸パターンの最小パターンサイズをp(nm)とし、前記極間距離をx(mm)とし、前記最大電流密度をJ(A/dm2 )としたときに、前記極間距離を(46−0.1p)≦x≦(65−0.1p)の範囲に規定するとともに、前記最大電流密度をJ≦(0.03p+24)の範囲に規定したことを特徴とする。
【0018】
請求項7の発明によれば、電鋳装置の陽極と陰極との極間距離を、凹凸パターンの最小パターンサイズに対応して具体的な範囲で規定するとともに、電鋳時の最大電流密度の上限を凹凸パターンの最小パターンサイズに対応して具体的に規定しているので、微小な凹凸パターンを有する原盤に対し、高精度な金属盤をより安定して形成することができる。
【0019】
また、本発明の請求項8は、請求項5又は請求項7の発明において、前記最大電流密度を(0.03p)≦Jの範囲に規定したことを特徴とする。請求項8の発明によれば、電鋳時の最大電流密度の上限に加えて下限も凹凸パターンの最小パターンサイズに対応して具体的に規定しているので、微小な凹凸パターンを有する原盤に対し、より高精度な金属盤をより安定して形成することができる。
【0020】
本発明の請求項9に記載の磁気記録媒体は、前記請求項1乃至請求項8に記載の磁気転写用マスターディスクを用い、プリフォーマット情報が磁気転写されたことを特徴とする。
【0021】
請求項9の発明によれば、本発明の磁気記録媒体は、情報に対応する微小な凹凸パターンが正確に形成されるとともに情報担持面の密着性に優れた磁気転写用マスターディスクを用いて、情報が正確に磁気転写されているので、良好なプリフォーマット情報信号を得ることができる。
【発明の効果】
【0022】
以上説明したように、本発明に係る磁気転写用マスターディスクの製造方法及び磁気記録媒体によれば、電鋳時の電鋳装置の極間距離を凹凸パターンの最小パターンサイズに対応させて所定の範囲に規定するので、微小な凹凸パターンを有する原盤に対し、高精度な金属盤を安定して形成することができる磁気転写用マスターディスクの製造方法を得ることができる。
【0023】
また、磁気記録媒体はこの製造方法によって製造された磁気転写用マスターディスクを用いてプリフォーマット情報が磁気記録されるので、良好なプリフォーマット情報信号が得られる。
【発明を実施するための最良の形態】
【0024】
以下、添付図面に従って、本発明に係る磁気転写用マスターディスクの製造方法及び磁気記録媒体の好ましい実施の形態について詳説する。
【0025】
図1は磁気転写用マスターディスク10(以下、単にマスターディスク10と称する場合がある)の部分斜視図であり、図2は図1のA−A線に沿った断面図であり、磁気記録媒体である被転写用ディスク(スレーブディスク14)を想像線で示したものである。
【0026】
図1及び図2に示すように、マスターディスク10は、金属製のマスター基板11と磁性層12とで構成され、マスター基板11の表面に転写情報に対応する微細な凹凸パターンP(例えばサーボ情報パターン)を有すると共にその凹凸パターンPに磁性層12が被覆されている。
【0027】
これにより、マスター基板11の片面に磁性層12が被覆された微細な凹凸パターンPを有する情報担持面13が形成される。図1から分かるように、この微細な凹凸パターンPは、平面視で長方形であり、磁性層12が形成された状態でトラック方向(図の矢印方向)の長さpと、半径方向の長さLとによりなる。
【0028】
この長さpと長さLとの最適値は、記録密度や記録信号波形により異なるが、例えば長さpを80nm、長さLを200nmにできる。この微細な凹凸パターンPはサーボ信号の場合は、半径方向に長く形成される。この場合、例えば半径方向の長さLが0.05〜20μm、トラック方向(円周方向)の長さpが0.01〜5μmであることが好ましい。
【0029】
この範囲で半径方向の方が長い凹凸パターンPを選ぶことがサーボ信号を担持するパターンとして好ましい。凹凸パターンPの深さh(突起の高さ)は、30〜800nmの範囲が好ましく、50〜300nmの範囲がより好ましい。
【0030】
マスター基板11は、電鋳により作製され、図3に示すように、中心孔11G及び円形外周(以後単に外周と称する場合がある)11Hを有する円盤状に形成され、片面の(情報担持面13)の内周部11D及び外周部11Eを除く円環状領域11Fに凹凸パターンPが形成される。
【0031】
このマスター基板11の製造の詳細は後述するが、主に、情報を凹凸パターンPで形成した原盤上に電鋳を施して、電鋳層から成る金属盤を原盤上に形成して該金属盤に凹凸パターンPを転写する電鋳工程と、金属盤を原盤上から剥離する剥離工程と、剥離された金属盤を所定形状に打ち抜く打抜き工程とにより製造される。
【0032】
本発明において、電鋳層としては各種金属や合金類を使用できるが、本実施の形態では好ましい一例として、Ni電鋳層の例で以下に説明する。このNi電鋳層は、電鋳時の電極間距離を所定の範囲に設定するとともに、電鋳時の電流密度を制御しながら電鋳する。
【0033】
次に、上記の如く構成される本発明のマスターディスク10の製造方法を詳細に説明する。図4はマスターディスク10を製造するステップを示す工程図である。先ず、図4(a)に示すように、表面が平滑且つ清浄なシリコーンウエハーによる原板15(ガラス板、石英板でもよい)の上に、密着層形成等の前処理を行い、電子線レジスト液をスピンコート等で塗布してレジスト膜16を形成し、ベーキングする。
【0034】
そして、高精度な回転ステージ又はX−Yステージを備えた電子ビーム露光装置(図示せず)にて、そのステージに搭載した原板15にサーボ信号等に対応して変調した電子ビームBを照射し、レジスト膜16に所望の凹凸パターンP' を描画露光する。
【0035】
次に、図4(b)に示すように、レジスト膜16を現像処理し、露光部分を除去して残ったレジスト膜16によって所望の凹凸パターンP' を形成する。本発明においては、凹凸パターンP' は、最小パターンサイズが100nm以下の微小なパターンである。この凹凸パターンP' 上に例えばスタッパリングによりNi導電膜(図示せず)を付与し、電鋳可能な原盤17を作製する。
【0036】
次に、この原盤17を図4(c)に示すように、原盤17の全面に電鋳装置で電鋳処理を施し、Ni金属による所望厚みの金属盤18(Ni電鋳層)を積層する。Niは面心立方格子の結晶構造を有しており、電鋳時の電流密度を制御して所定の結晶構造となるように電鋳する。
【0037】
図5は電鋳装置の槽構造を表す断面図である。この電鋳装置60は、鍍金液(浴)62を貯留する鍍金槽64と、鍍金槽64よりオーバーフローした鍍金液62を受けるドレーン槽66と、陽極となるNiペレット68、68…が充填されたチタンケース69を収容し、鍍金槽64よりオーバーフローした鍍金液62を受けるアノード室70と、原盤17を保持する陰極72等より構成されている。
【0038】
鍍金槽64には鍍金液供給配管74より鍍金液62が供給されるようになっている。また、鍍金槽64よりドレーン槽66にオーバーフローした鍍金液62は、ドレーン槽排水配管76より回収されるようになっている。また、鍍金槽64よりアノード室70にオーバーフローした鍍金液62は、アノード室排水配管78より回収されるようになっている。
【0039】
鍍金槽64とアノード室70とは、樹脂製の隔壁板80により区分けされている。また、鍍金槽64側の隔壁板80の表面には、電流の流れをコントロールする電流遮蔽板(バッフル板)82が陰極72と対向するように固定されている。この電流遮蔽板82は、電鋳した膜厚が面内で均一になるように、電極の所定部分を覆うように形成されているものである。
【0040】
以上の構成からなる電鋳装置60において、陰極72に原盤17を保持させ、陰極72に負電極を接続し、アノード室70のチタンケース69に正電極を接続し、原盤17を50〜150rpmの回転速度で回転させながら通電することにより、金属盤18の電鋳が行われる。
【0041】
通常、マスターディスク10に使用される金属はニッケル(Ni)であり、マスターディスク10を電鋳で製造する場合には、応力の小さなマスター基板11が得られ易いスルファミン酸ニッケル浴を使用することが好ましい。
【0042】
スルファミン酸ニッケル浴は、例えば、スルファミン酸ニッケルを400〜800g/L、ホウ酸を20〜50g/L(過飽和)をベースとして界面活性剤(例えばラウリル硫酸ナトリウム)等の添加物を必要に応じて添加したものである。メッキ浴の浴温度は40〜60°Cが好適である。電鋳時の対極にはチタンケース69に入れたNiペレット68、68…を使用することが好ましい。
【0043】
この電鋳工程において、本発明は、電鋳装置60の陽極と陰極72間の距離、具体的にはチタンケース69の陰極側の表面から陰極72までの距離を極間距離x(mm)とし、凹凸パターンPの円周方向の最小寸法を最小パターンサイズp(nm)としたとき、極間距離xを(46−0.1p)≦x≦(65−0.1p)の範囲に規定している。
【0044】
極間距離xが短か過ぎると、面内における厚みの分布が悪化する。具体的には陰極72の中心に対して外側が薄く、内側が厚く成膜されるため、面内の厚み偏差が大きくなるので好ましくない。極間距離xが(46−0.1p)mmに満たないと厚み偏差が大になり、良質なマスター基板11を得ることができないが、本発明においては、極間距離xの下限を(46−0.1p)mmと規定しているので、面内の厚み偏差が小さく、良質なマスター基板11を得ることができる。
【0045】
また、極間距離xが長過ぎると、電流が不足してうまく電鋳することができない。極間距離xが(65−0.1p)を超えた場合は、微細な凹凸パターンPを正確に再現できないが、本発明においては、極間距離xの上限を(65−0.1p)と規定しているので、微細な凹凸パターンPを正確に再現し良好な電鋳を行うことができる。
【0046】
また、この電鋳工程において、本発明は、電鋳時の最大電流密度をJ(A/dm2 )としたとき、凹凸パターンPの円周方向の最小パターンサイズp(nm)に対応して最大電流密度Jを(0.03p)≦J≦(0.03p+24)の範囲に規定している。
【0047】
最大電流密度をJが大き過ぎると、Niの析出が促進されて膜の成長速度が速くなりすぎるため、結晶サイズが大きくなるとともに膜中の空隙が増加し、その結果、面内の厚み偏差を増大させる。
【0048】
最大電流密度Jが(0.03p+24)A/dm2 を超えた場合、Ni膜が微小凹部に入り込まず、パターン形状通りに成膜されない。また金属盤18の裏面も粗くなるが、本発明においては、最大電流密度Jの上限を(0.03p+24)A/dm2 と規定しているので、微細な凹凸パターンPを正確に再現するとともに、裏面の粗さも少なく良好な電鋳を行うことができる。
【0049】
また、最大電流密度をJが小さ過ぎる場合は、無機系不純物の析出が比較的多くなるとともに、パターン形状の段差を増長する方向で膜成長が進むため、この場合もパターン形状通りに成膜されない。また、初期時間が掛かり過ぎるため裏面が粗くなる。また、電鋳時間が増大するため効率が悪化する。
【0050】
最大電流密度Jが(0.03p)A/dm2 に満たない場合、前述の理由により良質なマスター基板11を得ることができないが、本発明においては、最大電流密度Jの下限を(0.03p)A/dm2 と規定しているので、微細な凹凸パターンPを正確に再現し良好な電鋳を行うことができる。
【0051】
次に、金属盤18を原盤17から剥離し、残留するレジスト膜16を除去・洗浄する。これにより、図4(d)に示すように、反転した凹凸パターンPを有し、且つ所定サイズに打ち抜く前の外径Dを有するマスター基板11の原板11' が得られる。
【0052】
この原板11' は、電鋳工程において、前述したように極間距離をx(mm)とし、電鋳時の最大電流密度をJ(A/dm2 )とし、凹凸パターンPの最小パターンサイズをp(nm)としたときに、極間距離xを(46−0.1p)≦x≦(65−0.1p)の範囲に規定し、最大電流密度Jを(0.03p)≦J≦(0.03p+24)の範囲に規定しているので、面内の厚み偏差が小さく、微細な凹凸パターンPを正確に再現するとともに、裏面の粗さも少ない良好な電鋳物である。
【0053】
この原板11' を打ち抜いて、図4(e)に示す外径dの所定サイズのマスター基板11が得られる。打抜きにあたっては、最初に原板11' の凹凸パターンPが形成された表面側に保護シートを貼付して、原板11' の凹凸パターンPが形成された表面を保護する。保護シートとしては、トライレイナ社製の商品名シリテクト、日東電工社製の商品名KLシート等が用いられる。
【0054】
次に凹凸パターンP側に貼付されていた保護シートが剥離され、次いで凹凸パターンPに磁性層12が形成される。磁性層12の形成は、磁性材料を真空蒸着法、スパッタリング法、イオンプレーティング法等の真空成膜手段、あるいはメッキ法、塗布法等により成膜する。
【0055】
磁性層の磁性材料としては、Co、Co合金(CoNi、CoNiZr、CoNbTaZr等)、Fe、Fe合金(FeCo、FeCoNi、FeNiMo、FeAlSi、FeAl、FeTaN等)、Ni、Ni合金(NiFe等)、を用いることができる。特にFeCo、FeCoNiを好ましく使用することができる。磁性層12の厚みは50〜500nmの範囲が好ましく、100〜400nmの範囲が更に好ましい。
【0056】
尚、磁性層12の上に、ダイヤモンドライクカーボン(DLC)、スパッタカーボン等の保護膜を設けることが好ましく、保護膜の上に更に潤滑剤層を設けても良い。この場合、保護膜として厚さが3〜30nmのDLC膜と潤滑剤層とする構成が好ましい。
【0057】
また、磁性層と保護膜との間に、Si等の密着強化層を設けるようにしても良い。潤滑剤はスレーブディスク14との接触過程で生じるずれを補正する際の、摩擦による傷の発生などの耐久性の劣化を改善する効果を有する。以上の工程によって、本発明の磁気転写用マスターディスク10が製造される。
【0058】
尚、マスターディスク10の他の製造工程としては、原盤17に電鋳を施して第2原盤を作製する。そして、この第2原盤を使用して電鋳を行い、反転した凹凸パターンPを有する金属盤を作製し、所定サイズに打ち抜いてマスター基板11としてもよい。
【0059】
更には、第2原盤に電鋳を行うか、樹脂液を押しつけて硬化を行って第3原盤を作製し、この第3原盤に電鋳を行って金属盤18を作製し、更に反転した凹凸パターンPを有する金属盤18を剥離して所定サイズに打ち抜き、マスター基板11としてもよい。第2原盤又は第3原盤を繰り返し使用し、複数の金属盤18を作製することができる。
【0060】
また、原盤の作製において、レジスト膜を露光・現像処理した後、エッチング処理を行って、原盤の表面にエッチングによる凹凸パターンP’を形成してからレジスト膜を除去してもよい。
【0061】
次に、上記の如く製造したマスターディスク10の凹凸パターンPをスレーブディスク14に転写する磁気転写方法について説明する。図6は本発明に係るマスターディスク10を使用して磁気転写を行うための磁気転写装置20の要部斜視図である。
【0062】
磁気転写時には図7(a)に示される後記する初期直流磁化を行った後のスレーブディスク14のスレーブ面(磁気記録面)を、マスターディスク10の情報担持面13に接触させ、所定の押圧力で密着させる。そして、このスレーブディスク14とマスターディスク10との密着状態で、磁界生成手段30により転写用磁界を印加して、マスターディスク10の凹凸パターンPをスレーブディスク14に転写する。
【0063】
スレーブディスク14は、両面又は片面に磁気記録層が形成されたハードディスク、フレキシブルディスク等の円盤状記録媒体であり、マスターディスク10に密着させる以前に、グライドヘッド、研磨体などにより表面の微小突起及び付着塵埃を除去するクリーニング処理(バーニッシィング等)が必要に応じて施される。
【0064】
スレーブディスク14の磁気記録層には、塗布型磁気記録層、メッキ型磁気記録層、又は金属薄膜型磁気記録層を採用できる。金属薄膜型磁気記録層の磁性材料としては、Co、Co合金(CoPtCr、CoCr、CoPtCrTa、CoPtCrNbTa、CoCrB、CoNi等)、Fe、Fe合金(FeCo、FePt、FeCoNi等)、Ni、Ni合金(NiFe等)、を用いることができる。
【0065】
これらは磁束密度が大きいこと、磁界印加方向と同じ方向(面内記録なら面内方向)の磁界異方性を有していることにより、明瞭な転写を行えるため好ましい。そして、磁性材料の下(支持体側)に必要な磁気異方性を付与するために、非磁性の下地層を設けることが好ましい。この下地層には、結晶構造と格子定数を磁性層12に合わすことが必要である。その為には、Cr、CrTi、CoCr、CrTa、CrMo、NiAl、Ru等を用いることが好ましい。
【0066】
マスターディスク10による磁気転写は、スレーブディスク14の片面にマスターディスク10を密着させて片面に転写を行う場合と、図示しないが、スレーブディスク14の両面に一対のマスターディスク10を密着させて両面で同時転写を行う場合とがある。
【0067】
転写用磁界を印加する磁界生成手段30は、密着保持されたスレーブディスク14とマスターディスク10の半径方向に延びるギャップ31を有するコア32にコイル33が巻き付けられた電磁石装置34、34が上下両側に配設されており、上下で同じ方向にトラック方向と平行な磁力線を有する転写用磁界を印加する。
【0068】
磁界印加時には、スレーブディスク14とマスターディスク10とを一体的に回転させつつ磁界生成手段30によって転写用磁界を印加させ、マスターディスク10の凹凸パターンPをスレーブディスク14のスレーブ面に磁気的に転写する。尚、この構成以外に磁界生成手段の方を回転移動させるようにしてもよい。
【0069】
転写用磁界は、最適転写磁界強度範囲(スレーブディスク14の保磁力Hcの0.6〜1.3倍)の最大値を超える磁界強度がトラック方向のいずれにも存在せず、最適転写磁界強度範囲内の磁界強度となる部分が1つのトラック方向で少なくとも1カ所以上存在し、これと逆向きのトラック方向の磁界強度が何れのトラック方向位置においても最適転写磁界強度範囲内の最小値未満である磁界強度分布の磁界をトラック方向の一部分で発生させている。
【0070】
図7は、面内記録による磁気転写方法の基本工程を説明する説明図である。先ず、図7(a)に示すように、予めスレーブディスク14に初期磁界Hi をトラック方向の一方向に印加して初期磁化( 直流消磁) を施しておく。
【0071】
次に、図7(b)に示すように、このスレーブディスク14の記録面(磁気記録部)とマスターディスク10の凹凸パターンPが形成された情報担持面13とを密着させ、スレーブディスク14のトラック方向に初期磁界Hi とは逆方向に転写用磁界Hd を印加して磁気転写を行う。転写用磁界Hd が凹凸パターンPの凸部の磁性層12に吸い込まれてこの部分の磁化は反転せず、その他の部分の磁界が反転する結果、図7(c) に示すように、スレーブディスク14の磁気記録面にはマスターディスク10の凹凸パターンPが磁気的に転写記録される。
【0072】
かかる磁気転写において、マスターディスク10が正確な凹凸パターンPを有していることと、スレーブディスク14とマスターディスク10とを良好に密着させることが高精度な転写を行う上で重要であるが、本発明の磁気転写用マスターディスクの製造方法によって製造された微小な凹凸パターンPが正確に再現され面内の厚み偏差の小さなマスターディスク10を使用することにより、良好な密着を行うことができ、良質な磁気記録媒体14を得ることができる。
【実施例1】
【0073】
次に、実施例と比較例について説明する。先ず、最小パターンサイズpが10nm、50nm、100nmの3 種類の凹凸パターンPを有する公称0.85インチ、1インチ、1.8インチ、2.5インチの4種類のマスター基板11を作成した。
【0074】
夫々のマスター基板11に対し、電鋳時の電柱装置60の極間距離x(mm)を(46−0.1p)≦x≦(65−0.1p)の範囲に設定して電鋳したもの(実施例)と、(46−0.1p)≦x≦(65−0.1p)の範囲外に設定して電鋳したもの(比較例)とを作成し、夫々のマスター基板11の面内の厚み偏差(μm)を測定した。
【0075】
この場合、電鋳時の最大電流密度Jを15(A/dm2 )に固定して行った。また、電柱装置60の電流遮蔽板82の開口径も厚み偏差に関係するため、電鋳されるマスター基板11の原板11' の外径Dの90%に固定して行った。
【0076】
マスター基板11の面内の厚み偏差による品質判断は、公称0.85インチのマスター基板11では1μm以下をOKとし、1μmを越えるものをNGとした。また、公称1インチのマスター基板11では1.5μm以下をOKとし、1.5μmを越えるものをNGとし、1.8インチのマスター基板11では2μm以下をOKとし、2μmを越えるものをNGとし、2.5インチのマスター基板11では2.5μm以下をOKとし、2.5μmを越えるものをNGとした。
【0077】
図8に詳細の数値を一覧表示した。図8に示すように、最小パターンサイズpが10nmの場合、極間距離x(mm)が規定範囲(45≦x≦64)の下限を超える44mm、及び上限を超える65mmの比較例において厚み偏差がいずれもNGであった。また、極間距離x(mm)が規定範囲内の46mm、55mm、63mmの実施例において厚み偏差がいずれもOKであった。
【0078】
最小パターンサイズpが50nmの場合も、間距離x(mm)が規定範囲(41≦x≦60)の下限を超える40mm、及び上限を超える61mmの比較例において厚み偏差がいずれもNGであり、極間距離x(mm)が規定範囲内の42mm、50mm、59mmの実施例において厚み偏差がいずれもOKであった。
【0079】
また、最小パターンサイズpが100nmの場合においても、間距離x(mm)が規定範囲(36≦x≦55)の下限を超える35mm、及び上限を超える56mmの比較例において厚み偏差がいずれもNGであり、極間距離x(mm)が規定範囲内の37mm、45mm、54mmの実施例において厚み偏差がいずれもOKであった。
【実施例2】
【0080】
実施例1同様、最小パターンサイズpが10nm、50nm、100nmの3 種類の凹凸パターンPを有する公称0.85インチ、1インチ、1.8インチ、2.5インチの4種類のマスター基板11を作成した。
【0081】
夫々のマスター基板11に対し、電鋳時の最大電流密度J(A/dm2 )を(0.03p)≦J≦(0.03p+24)の範囲に設定して電鋳したもの(実施例)と、(0.03p)≦J≦(0.03p+24)の範囲外に設定して電鋳したもの(比較例)とを作成し、夫々のマスター基板11の面内の厚み偏差(μm)を測定した。
【0082】
この場合、電鋳時の電鋳装置60の極間距離xを50(mm)に固定して行った。また、電鋳装置60の電流遮蔽板82の開口径を電鋳されるマスター基板11の原板11' の外径Dの90%に固定して行った。
【0083】
マスター基板11の面内の厚み偏差による品質判断は、実施例1 と同じく、公称0.85インチのマスター基板11では1μm以下をOKとし、1μmを越えるものをNGとした。また、公称1インチのマスター基板11では1.5μm以下をOKとし、1.5μmを越えるものをNGとし、1.8インチのマスター基板11では2μm以下をOKとし、2μmを越えるものをNGとし、2.5インチのマスター基板11では2.5μm以下をOKとし、2.5μmを越えるものをNGとした。
【0084】
図9に詳細の数値を一覧表示した。図9に示すように、最小パターンサイズpが10nmの場合、最大電流密度J(A/dm2 )が規定範囲(0.3≦J≦24.3)の下限を超える0.2(A/dm2 )、及び上限を超える24.5(A/dm2 )の比較例において厚み偏差がいずれもNGであった。また、最大電流密度J(A/dm2 )が規定範囲内の0.4(A/dm2 )、12.3(A/dm2 )、24.2(A/dm2 )の実施例において厚み偏差がいずれもOKであった。
【0085】
最小パターンサイズpが50nmの場合も、最大電流密度J(A/dm2 )が規定範囲(1.5≦J≦25.5)の下限を超える1.3(A/dm2 )、及び上限を超える25.7(A/dm2 )の比較例において厚み偏差がいずれもNGであった。また、最大電流密度J(A/dm2 )が規定範囲内の1.6(A/dm2 )、13.5(A/dm2 )、25.4(A/dm2 )の実施例において厚み偏差がいずれもOKであった。
【0086】
また、最小パターンサイズpが100nmの場合においても、最大電流密度J(A/dm2 )が規定範囲(3≦J≦27)の下限を超える2.8(A/dm2 )、及び上限を超える27.2(A/dm2 )の比較例において厚み偏差がいずれもNGであった。また、最大電流密度J(A/dm2 )が規定範囲内の3.1(A/dm2 )、15.0(A/dm2 )、26.9(A/dm2 )の実施例において厚み偏差がいずれもOKであった。
【0087】
以上説明したように、本発明の磁気転写用マスターディスクの製造方法では、原盤17に電鋳によって金属盤18を積層させてマスター基板11を作成するにあたり、電鋳装置60の極間距離xを原盤17の最小パターンサイズpに応じて所定の範囲に規定するとともに、電鋳時の最大電流密度Jを原盤17の最小パターンサイズpに応じて所定の範囲に規定するので、原盤17の微小な凹凸パターンPを正確に転写するとともに、面内の厚み偏差を減少させることができ、良好なマスター基板を作成することができる。また、このようにして製造されるマスターディスク10によって高品質の磁気記録媒体を安価に得ることができる。
【図面の簡単な説明】
【0088】
【図1】マスターディスクの部分斜視図
【図2】図1のA−A線に沿った断面図
【図3】マスター基板の平面図
【図4】マスターディスクの製造方法を示す工程図
【図5】電鋳装置を示す断面図
【図6】磁気転写装置の要部斜視図
【図7】磁気転写方法の基本工程を示す工程図
【図8】実施例1を示す一覧表
【図9】実施例2を示す一覧表
【符号の説明】
【0089】
10…マスターディスク(磁気転写用マスターディスク)、11…マスター基板、11’…原板、12…磁性層、14…スレーブディスク(磁気記録媒体)、17…原盤、18…金属盤、60…電鋳装置、68…Niペレット、69…チタンケース(陽極)、72…陰極、J…最大電流密度、p…最小パターンサイズ、P・P’…凹凸パターン、x…極間距離

【特許請求の範囲】
【請求項1】
転写情報に応じた凹凸パターンが形成された原盤に電鋳により所定厚さの金属盤を積層し、前記原盤より剥離した前記金属盤からマスター基板を作成し、該マスター基板の凹凸パターン上に磁性層を成膜する磁気転写用マスターディスクの製造方法において、
前記電鋳に用いる電鋳装置の陽極と陰極との極間距離を、前記凹凸パターンの最小パターンサイズに対応した所定の範囲に規定して前記電鋳を行うことを特徴とする磁気転写用マスターディスクの製造方法。
【請求項2】
転写情報に応じた凹凸パターンが形成された原盤に電鋳により所定厚さの金属盤を積層し、前記原盤より剥離した前記金属盤からマスター基板を作成し、該マスター基板の凹凸パターン上に磁性層を成膜する磁気転写用マスターディスクの製造方法において、
前記電鋳時の最大電流密度を、前記凹凸パターンの最小パターンサイズに対応した所定の範囲に規定して前記電鋳を行うことを特徴とする磁気転写用マスターディスクの製造方法。
【請求項3】
前記凹凸パターンの最小パターンサイズが100nm以下であることを特徴とする請求項1又は請求項2に記載の磁気転写用マスターディスクの製造方法。
【請求項4】
前記凹凸パターンの最小パターンサイズをp(nm)とし、前記極間距離をx(mm)としたときに、前記極間距離を(46−0.1p)≦x≦(65−0.1p)の範囲に規定したことを特徴とする請求項1又は請求項3に記載の磁気転写用マスターディスクの製造方法。
【請求項5】
前記凹凸パターンの最小パターンサイズをp(nm)とし、前記最大電流密度をJ(A/dm2 )としたときに、前記最大電流密度をJ≦(0.03p+24)の範囲に規定したことを特徴とする請求項2又は請求項3に記載の磁気転写用マスターディスクの製造方法。
【請求項6】
転写情報に応じた凹凸パターンが形成された原盤に電鋳により所定厚さの金属盤を積層し、前記原盤より剥離した前記金属盤からマスター基板を作成し、該マスター基板の凹凸パターン上に磁性層を成膜する磁気転写用マスターディスクの製造方法において、
前記電鋳に用いる電鋳装置の陽極と陰極との極間距離及び電鋳時の最大電流密度を、前記凹凸パターンの最小パターンサイズに対応した所定の範囲に規定して前記電鋳を行うことを特徴とする磁気転写用マスターディスクの製造方法。
【請求項7】
前記凹凸パターンの最小パターンサイズをp(nm)とし、前記極間距離をx(mm)とし、前記最大電流密度をJ(A/dm2 )としたときに、前記極間距離を(46−0.1p)≦x≦(65−0.1p)の範囲に規定するとともに、前記最大電流密度をJ≦(0.03p+24)の範囲に規定したことを特徴とする請求項6に記載の磁気転写用マスターディスクの製造方法。
【請求項8】
前記最大電流密度を(0.03p)≦Jの範囲に規定したことを特徴とする請求項5又は請求項7に記載の磁気転写用マスターディスクの製造方法。
【請求項9】
前記請求項1乃至請求項8のうちいずれか1項に記載の磁気転写用マスターディスクを用い、プリフォーマット情報が磁気転写されたことを特徴とする磁気記録媒体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2006−268978(P2006−268978A)
【公開日】平成18年10月5日(2006.10.5)
【国際特許分類】
【出願番号】特願2005−86954(P2005−86954)
【出願日】平成17年3月24日(2005.3.24)
【出願人】(000005201)富士写真フイルム株式会社 (7,609)
【Fターム(参考)】