説明

空気調和機および空気調和機の運転方法

【課題】精度良く空調負荷の推定と検知を行い、ヒートポンプから冷媒自然循環式サイクルに効率良く切り替える空気調和機および空気調和機の運転方法を提供する。
空調機の省エネルギを達成するため、事にある。
【解決手段】蒸気圧縮式ヒートポンプから冷媒自然循環式サイクルを切り替える際、時々刻々と変化する空調負荷を複数回の同定により検知して現在の空調負荷を精度よく把握し、冷媒自然循環式サイクルでの能力と比べ、冷媒自然循環式サイクルにて現在の空調負荷を賄えると判断した時に、冷媒自然循環式サイクルに切り替えることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蒸気圧縮式ヒートポンプと冷媒自然循環式サイクルを併用する空気調和機およびその運転方法に関する。
【背景技術】
【0002】
近年、社会の省エネルギの推進が要望されている。この要望より、近年製造される空気調和機には省エネルギが実現出来る様な様々な工夫がなされている。空気調和機の実使用としては、種々の研究があるが、定格負荷の10〜20%の低負荷にて運転されていると言う報告もある。従って、低負荷に対する運転を向上させる事で、実際の運転効率向上が見込める。低負荷に対する運転を向上させる手段として、特許文献1や、特許文献2にある様に、圧縮機の起動停止(発停)頻度を低減させる技術がある。また駆動エネルギが不必要な冷媒自然循環式サイクルを併用し、蒸気圧縮式ヒートポンプから切り換えて、省エネルギを図る方法がある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2002−61925号公報
【特許文献2】特開2009−228922号公報
【特許文献3】特開2005−257197号公報
【特許文献4】特開平11−287524号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記特許文献1のものは、圧縮機の運転時間が短くなると、冷房運転時の目標値を上げることにより、目標値と実際の蒸発温度との偏差を小さくする様に構成されており、上記目標変更回路は、前回の変更量を考慮して今回の変更量を導出するため、調整がなされるためには、何度も圧縮機の発停が必要となり、その分、省エネルギ性の向上分は制限される。
【0005】
また特許文献2のものは、対象を冷蔵庫としているが、圧縮機が停止した際、圧縮機の平均回転数(以下、周波数と呼ぶ)を算出し、それが最適周波数下限より小さいか、或いは最適周波数上限より大きいかを判定し、低圧圧力の目標値を変更する。しかし、これも圧縮機が発停する必要があり、効率向上分が制限される。
【0006】
これらの技術は、現地の最適値に調整されていなかったパラメータを調整する技術形態の一つであるが、空気調和機の能力と負荷を合致させると言う考え方ではないため、例えば日中、太陽が昇って室外気温が上昇したり、日射が増えて負荷環境が変化していくと、それを前もって補正したり、素早く追従する事は出来ない。また空気調和機の運転調整に留まっているため、効率を決定する重要要素である圧縮機運転範囲の限界が空気調和機の限界となってしまう。
【0007】
また自然循環式サイクルを併用するものとして、特許文献3がある。特許文献3は主に判定後の運転制御法に関するものであるが、自然循環式サイクルが使用出来ると判定する方式として、主に室外温度と室内温度を比較して、室外温度が室内温度より(一定値以上)低いと判断した時に、蒸気圧縮式ヒートポンプから自然循環に切り替える方式を取っている。
【0008】
しかし、確かに室外温度が室内温度より低ければ自然循環式サイクルが作動出来るが、実際の運転では、自然循環式サイクルの能力が低く、空調負荷よりも小さい場合、室内温度が上昇し、著しく快適性に欠ける運転となってしまう。対策として、室外温度と室内温度により、予め自然循環式サイクルの能力を計算して記憶しておき、自然循環式サイクルに切り替わった際の能力を予測する方法があるが、空調負荷よりも大きいかどうかが判定出来ないため、室内温度を快適に保持する事は出来ない。
【0009】
また特許文献4の様に、室内負荷を室内外温度センサにより推定し、自然循環式サイクルの能力に応じて蒸気圧縮式ヒートポンプと切り換える方式もある。この方式は、室内負荷を温度を元に仮定し、前回の運転状態と比較している。ある検知された温度状態に対し、前回蒸気圧縮式ヒートポンプで運転していた場合は今回も蒸気圧縮式ヒートポンプとし、前回自然循環式サイクルで運転していた場合には、自然循環式サイクルと判定する。
【0010】
しかし、実際の空調負荷は、例えば冷房負荷の場合、外気温が上昇した際には増加し、オフィス機器等が多く稼働すれば増加する。また室内の人間が増えた場合や日照量や換気量が増えた場合も増加する。この様に、空調負荷は運転中に時々刻々と変化するものであって、一定では無く、前回の運転状態は参考とはなるが、現在の空調負荷を決める事は出来ない。
【0011】
そこで本発明は、蒸気圧縮式ヒートポンプから自然循環式サイクルを切り替える際、時々刻々と変化する空調負荷を複数回の同定により検知し、現在の空調負荷を把握した上で、自然循環式サイクルでの能力と比べ、自然循環式サイクルにて空調負荷を賄えると判断した時に、自然循環式サイクルに切り替える空気調和機および空気調和機の運転方法を提供する。
【課題を解決するための手段】
【0012】
上記目的を達成するために、本発明は、室外機を一台または複数台と、室内機を一台または複数台設け、前記室外機と前記室内機とを配管接続して閉回路をなし、前記閉回路の中に冷媒を封入し、
前記室内機においては、室内空気と熱交換を行う室内熱交換器と冷媒の流量を調節する室内膨張弁を順次配管接続し、
前記室外機においては、圧縮機と第一室外熱交換器及び室外膨張弁を配管接続してヒートポンプ回路を形成すると共に、前記圧縮機の低圧配管と前記室内膨張弁と第二室外熱交換器を配管接続して冷媒自然循環回路を形成し、
空調負荷に応じて前記圧縮機を用いるヒートポンプ運転と、前記冷媒自然循環回路を用いる冷媒自然循環式サイクル運転とを切換えて運転する制御演算装置を備えた空気調和機において、
前記制御演算装置は、空調負荷を検出する空調場熱負荷同定部と、ヒートポンプ運転の能力を検知するヒートポンプ能力検知部と、冷媒自然循環式サイクルの運転能力を予測する自然サイクル能力予測部と、冷媒自然循環式サイクルの運転中の運転能力を検知する自然サイクル能力検知部と、前記空調場熱負荷同定部で検出された空調負荷と冷媒自然循環式サイクルの運転能力とを比較する判定部を設け、
前記制御演算装置は、前記判定部で前記空調場熱負荷同定部で検知された空調負荷より冷媒自然循環式サイクルの運転能力の予測値が大きいと判定したとき冷媒自然循環式サイクル運転を起動し、この起動後に前記空調場熱負荷同定部で空調負荷を再度検知するとともに、前記自然サイクル能力検知部で冷媒自然循環式サイクル運転中の運転能力を検知し、前記再検出された空調負荷より大きいと前記判定部で判定したとき冷媒自然循環式サイクル運転を継続するように構成されたことを特徴とする。
【0013】
また、上記に記載の空気調和機において、前記制御演算装置は、前記判定部で冷媒自然循環式サイクルの運転中の運転能力が予測値より大きいと判定したとき、前記空調場熱負荷同定部で空調負荷を再度検知することを特徴とする。
【0014】
また、上記に記載の空気調和機において、前記制御演算装置は、さらに、前記判定部で冷媒自然循環式サイクルの運転中の運転能力が予測値より小さいと判定したとき冷媒自然循環式サイクルの運転状況を改善する運転状況改善部を備え、この運転状況改善部での改善の後、再度冷媒自然循環式サイクル運転を継続するように構成されたことを特徴とする。
【0015】
また、上記に記載の空気調和機において、前記制御演算装置は、空調する部屋の熱容量並びに熱通過係数を少なくとも要因とする外部空調負荷に関わるパラメータ及び内部空調負荷を、複数の検知による計測量を元に時々刻々同定し、経年変化や状態変化に追随して切り替え運転することを特徴とする。
【0016】
また、上記に記載の空気調和機において、前記制御演算装置は、空気温度条件と前記冷媒自然循環式サイクルの運転能力の関係を表す係数を、複数の検知による計測量を元に時々刻々同定し、経年変化や状態変化に追随して切り替え運転することを特徴とする。
【0017】
上記目的を達成するために、本発明は、室外機を一台または複数台と、室内機を一台または複数台設け、前記室外機と前記室内機とを配管接続して閉回路をなし、前記閉回路の中に冷媒を封入し、
前記室内機においては、室内空気と熱交換を行う室内熱交換器と冷媒の流量を調節する室内膨張弁を順次配管接続し、
前記室外機においては、圧縮機と第一室外熱交換器及び室外膨張弁を配管接続してヒートポンプ回路を形成すると共に、前記圧縮機の低圧配管と前記室内膨張弁と第二室外熱交換器を配管接続して冷媒自然循環回路を形成し、
制御演算装置により、空調負荷に応じて前記圧縮機を用いるヒートポンプ運転と、前記冷媒自然循環回路を用いる冷媒自然循環式サイクル運転とを切換えて運転する空気調和機の運転方法において、
前記制御演算装置は、空調負荷を検出する空調場熱負荷同定部と、ヒートポンプ運転の能力を検知するヒートポンプ能力検知部と、冷媒自然循環式サイクルの運転能力を予測する自然サイクル能力予測部と、冷媒自然循環式サイクルの運転中の運転能力を検知する自然サイクル能力検知部と、前記空調場熱負荷同定部で検出された空調負荷と自然循環サイクルの運転能力とを比較する判定部を設け、
前記制御演算装置により、検知された空調負荷より冷媒自然循環式サイクルの運転能力の予測値が大きいと判定したとき冷媒自然循環式サイクル運転を起動し、この起動後に空調負荷を再度検知するとともに冷媒自然循環式サイクル運転中の運転能力を検知し、前記再検出された空調負荷より冷媒自然循環式サイクル運転中の運転能力が大きいと判定したとき冷媒自然循環式サイクル運転を継続することを特徴とする。
【発明の効果】
【0018】
本発明によれば、通常運転中に部屋の熱容量並びに熱通過係数等の外部空調負荷に関わるパラメータや内部空調負荷を時々刻々同定し、部屋の空調負荷に合った能力を発揮する事で圧縮機の頻繁な発停を防止し、冷媒自然循環式サイクルの空調能力が空調負荷を十分賄える場合、冷媒自然循環式サイクルを利用して圧縮機を停止させる事で、圧縮機の頻繁な発停を防止し、効率の良い運転を行う事が出来る。
【図面の簡単な説明】
【0019】
【図1】本発明実施例の冷凍サイクル系統図である。
【図2】図1の制御演算装置の構成図である。
【図3A】実施例1の動作を全熱負荷で示す第1フローチャートである。
【図3B】同じく第2フローチャートである。
【図4A】実施例2の動作を顕熱負荷で示す第1フローチャートである。
【図4B】同じく第2フローチャートである。
【図5】本発明実施例の空調全熱内部負荷と同負荷の推定値を示すグラフである。
【図6】同じく外部負荷パラメータaの推定値を表すグラフである。
【図7】同じく外部負荷パラメータbの推定値を表すグラフである。
【図8】同じくパラメータcの推定値を表すグラフである。
【図9】同じくパラメータdの推定値を表すグラフである。
【発明を実施するための形態】
【0020】
以下、本発明の実施の形態1を説明する。図1は、空気調和機と制御演算装置の構成を示す冷凍サイクル系統図であり、1台或いは複数台の室外機20と、1台或いは複数台の室内機30を有し、室外機20と室内機30を配管28、29で接続して閉回路をなし、その閉回路の中に冷媒を封入している。
【0021】
室外機20は、1台或いは複数台の、運転回転数(以下周波数という)可変、或いは周波数固定の圧縮機(蒸気圧縮式ヒートポンプ)21と、第一室外熱交換器221と、第二室外熱交換器222と、これらの室外熱交換器221、222の冷媒流量を調整する室外膨張弁27とを配管接続すると共に、室外熱交換器221、222に送風する室外ファン23を備えている。
【0022】
室内機30は、室内空気と熱交換を行う室内熱交換器31とその室内熱交換器の冷媒流量を調整する室内膨張弁33を順次配管すると共に、室内熱交換器31に送風する室内ファン32が設けられている。また室内機30は空気調和の対象となる部屋に配置してある。
【0023】
室外機20は、四方弁25を有し、アキュムレータ24と液受容器26を備えているが、これらは無くても使用可能である。また室外機20及び室内機30の各液側及びガス側を、各液側管路28、ガス側管路29で接続して閉回路となし、その閉回路の中に冷媒が封入してある。そして、圧縮機21と第一室外熱交換器221及び室外膨張弁36を配管接続してヒートポンプ回路を形成すると共に、圧縮機21の低圧配管と前記室内膨張弁33と第二室外熱交換器222を配管接続して冷媒自然循環回路を形成している。
【0024】
さらに、室外機20には、室外温度を検知する室外温度検知器44、圧縮機冷媒吸入温度検知器40、及び圧縮機吐出温度検知器41、圧縮機冷媒吸入圧力を検知する圧縮機吸入圧力検知器45、圧縮機冷媒吐出圧力を検知する圧縮機吐出圧力検知器46が設けられ、圧縮機の周波数を操作するインバータ圧縮機周波数操作器21、室外ファン23の送風能力を操作する室外ファン送風能力操作器35、室外膨張弁27開度を操作する室外膨張弁開度操作器36、蒸気圧縮式ヒートポンプ21と冷媒自然循環式サイクルの第二室外熱交換器222を変えた方が良い時に、使用熱交換器を変更する第一の開閉弁54と第二の開閉弁55がそれぞれ設けられている。
【0025】
前記室外機20には、圧縮機21、第一室外熱交換器221、室外膨張弁27、室内膨張弁33、および室内熱交換器31を配管接続してヒートポンプ回路が形成される。また、圧縮機21の低圧配管、第二室外熱交換器222、室内膨張弁33、および室内熱交換器31を配管接続して冷媒自然循環回路が形成される。
【0026】
室内機30には、室内温度を検知する室内機吸込温度検知器48、その部屋への吹出空気温度を検知する室内機吹出温度検知器49、室内ファン32の送風能力を操作する室内ファン送風能力操作器38、室内膨張弁33の開度を操作する室内膨張弁開度操作器39、予め与えられた設定値を記憶或いは使用者が好みの熱環境を設定するための室内温度設定器56を有している。さらに、本実施例の空気調和機の動作手順を演算して制御する制御演算装置57が接続されている。
【0027】
上記構成において、前記制御演算装置57により、空調負荷に応じて前記圧縮機21を用いるヒートポンプ運転と、前記冷媒自然循環回路を用いる冷媒自然循環式サイクル運転とを切換えて運転がなされる。
【0028】
図2は、前記制御演算装置57の構成図である。制御演算装置57は、この装置全体を制御する制御部100と、空調する場所の空調熱負荷を検出する空調場熱負荷同定部101と、ヒートポンプ21の運転能力を検知するヒートポンプ能力検知部102と、外気温度等から冷媒自然循環回路による冷媒自然循環式サイクルの運転能力を予測する自然サイクル能力予測部104と、冷媒自然循環式サイクルの運転中の運転能力を検知する自然サイクル能力検知部103と、前記空調場熱負荷同定部101で検出された空調負荷と冷媒自然循環式サイクルの運転能力の予測値、または運転能力とを比較する判定部106を備えている。判定部106は、冷媒自然循環式サイクルの運転中の運転能力と運転能力の予測値とも比較し、制御演算装置57は判定部106が冷媒自然循環式サイクルの運転中の運転能力が小さいと判定したとき、冷媒自然循環式サイクルの運転状況を改善する運転状況改善部105を備えている。また、107は上記各検知部をまとめて示し、108は上記各操作部をまとめて示している。
【0029】
制御演算装置57は、判定部106が空調場熱負荷同定部101で検知された空調負荷より冷媒自然循環式サイクルの運転能力の予測値が大きいと判定したとき、冷媒自然循環式サイクル運転を起動し、この起動後に空調場熱負荷同定部101で空調負荷を再度検知するとともに、自然サイクル能力検知部103で冷媒自然循環式サイクル運転中の運転能力を検知し、前記再検出された空調負荷より大きいと判定部106で判定したとき、冷媒自然循環式サイクル運転を継続するように構成される。
【0030】
また、制御演算装置57は、前記判定部106が冷媒自然循環式サイクルの運転中の運転能力が予測値より大きいと判定したとき、前記空調場熱負荷同定部101で空調負荷を再度検知する。制御演算装置57は、空調する部屋の熱容量並びに熱通過係数を少なくとも要因とする外部空調負荷に関わるパラメータ及び内部空調負荷を、複数の検知による計測量を元に時々刻々同定し、経年変化や状態変化に追随して切り替え運転する。さらに、制御演算装置57は、空気温度条件と前記冷媒自然循環式サイクルの運転能力の関係を表す係数を、複数の検知による計測量を元に時々刻々同定し、経年変化や状態変化に追随して切り替え運転する。
【0031】
次に、本実施例による空気調和機の動作について説明する。初めに、室外機30は、室内機20よりも高い位置に設置されているものとする。理由は、自然循環システムを稼動させるために、室外機30から室内機20に冷媒を流すために必要であり、近年の小型、中型ビルは、屋上に室外機を設置する場合が多く、室外機もそう言った使い方に合わせて設計されている場合が多いため、本施工に適合していると言える。
【0032】
一般的に、空気調和機の能力(ヒートポンプの運転能力)は、圧縮機21の運転周波数を変更する事によって変化し、能力範囲は機種によって違いはあるが、定格を100%とすると30%〜120%程度である。近年は、ヒートアイランド現象により、夏場に高い気温が発生する事が多く、また、空気調和機が施工される時点では、テナントの負荷が不明なため、空気調和機の容量選定としては、安全側を見越して、やや空調負荷に対して大きな容量を選定する傾向がある。そのため、夏場の酷暑時期以外は、空調負荷に対して空調能力が大きく、空気調和機容量の10%〜20%で運転される事が多くなっている。
【0033】
空気調和機は、特にヒートポンプ(蒸気圧縮式ヒートオンプ)を使用するものは、50%程度の能力出力時に最も効率が高くなるが、それ以下になると、圧縮機自体の効率低下や、ファン動力の占める割合が多くなる理由等により、効率が低下する。加えて、能力制御の不完全性により、不必要な空調能力を出力し、不要なサーモオフ、サーモオンが頻繁に行われる。この頻繁なサーモオフ、サーモオンによる断続運転は、空気調和機としては効率を低下させる。この圧縮機発停による効率低下は、例えばJIS B8616にも効率低下係数CDとして表現されている。この様に、空気調和機は、小さい負荷にて運転した場合、ハードウェア(ヒートポンプ自体の特性)による効率低下、ソフトウェア(運転制御)による効率低下があるため、大きく効率が低下する。
【0034】
そこで、先ずは運転制御の改善による効率向上について記す。
【0035】
運転制御の改善は、例えば特許第03388305号にある様に、部屋の熱容量、熱通過率等のパラメータをシステム同定によって同定し、圧縮機周波数、能力、空調負荷の関係を明確にする事で、過度な能力を抑制して圧縮機の発停を防止し、不快感、効率低下を防止出来る。ここでは空調負荷として顕熱を例にとり、その要因を室外温度、熱容量と熱通過率を基本としたモデルで表現しているが、実際には、日射や侵入空気、人体発熱や機器発熱の様な内部発熱がある。また、直ちに熱負荷になるものと、時間遅れや振幅減少を伴って熱負荷になるものがあり、これらを一つ一つの熱負荷を分解して検知する事は困難である。
【0036】
そこで、上記の通り単純なモデルで使用するが、このパラメータは時々刻々同定するため、値も時々刻々変化する。実際の負荷要因は、例えば日射によるものは、1時間単位でゆっくりと変化するが、パラメータが同定されるために要する時間は、20〜30ステップ程度なので、同定ステップを10秒毎に行えば、3〜5分程度である。従って、同定パラメータは、実際の負荷の変動を追随する事が出来るので、同定値はゆっくり変動する事になる。ここで重要な事は、負荷要因の変動に合わせて、同定パラメータが追随し、変化する熱負荷環境に適応していると言う事である。従って、熱負荷が高い午前中にも、熱負荷が低い夜間でも、負荷パラメータに追随して、効率低下防止機能が働いている。
【0037】
しかし、空調負荷が、空気調和機の最低能力を下回る場合、断続運転をせざるを得ない。これはハードウェアの改善を必要とする。
【0038】
空気調和機の圧縮機の効率改善は必要であるが、それとは別に、近年、事務所やサーバルーム等、室外温度が室内温度よりも下がっても内部負荷が大きいため、空調負荷が発生する環境において、冷媒自然循環式サイクルを取り入れる事例が増えている。ここで冷媒自然循環式サイクルとは、室外機にて、室外温度で冷媒を凝縮、液化させ、室内機との高低差を利用して、液冷媒を室内機に搬送し、室内温度で冷媒を蒸発、気化(室内冷房の場合)させ、ガス化した冷媒を室外機まで搬送させる循環方式であり、高低差利用による搬送動力不要なシステムである。
【0039】
冷媒自然循環式サイクルは搬送動力が不要なため、空気調和機の効率は大きく向上する。しかし欠点は、高低差が必要な事、室内温度が室外温度より低い場合で無いと能力を発揮しない事、また発生能力は、室内温度と室外温度の差に比例するため、空調負荷と逆の関係にある事である。
【0040】
そのため、冷媒自然循環式サイクルに切り替える判断を間違えると、空調能力よりも空調負荷が大きい場合、室温が高くなって快適性に欠ける運転となったり、また室温上昇を防止させるために再度圧縮機を起動させる必要が出たりし、切り替えしない方が省エネルギとなる場合すらある。
【0041】
そこで次の様な方法にて、無駄な切り替えを防止する。先ず、空調負荷の顕熱に関するモデルを下記数式(1)の通りとする。
【0042】
【数1】

【0043】
ここでtは時刻、T(t)は室温、T(t)は外気温、QaS(t)は空気調和機による顕熱能力、LiS(t)は内部負荷による顕熱負荷、Cは室内家具や室内空気と壁表面を合わせた熱容量、Kは外気導入量、放熱量を合わせた熱通過係数を表す。空気調和機としては、圧縮機を用いる蒸気圧縮式ヒートポンプや自然循環式サイクルどちらでも成り立つ。
【0044】
実際には、室内空気と内壁、室外空気と外壁が熱交換をし、壁内部は熱伝導により熱交換を行うため、数式(1)よりも高次の方程式となり、加えて空間的にも広がりがあるため、分布定数系による表現をしなければならない。しかし次数の低次元化による誤差、集中定数系による誤差は本発明の本質とは別問題であるので、ここでは数式(1)にて十分精度良くモデル化されている事を前提に話を進める。
【0045】
また数式(1)は顕熱負荷だけであるため、潜熱負荷に関するモデルを作成し、それについて考慮するとより良い効果が得られる。但し顕熱負荷と同じ考え方であるため、ここでは省略する。
【0046】
数式(1)を、一度数式(2)の通り書き直す。
【0047】
【数2】

【0048】
数式(2)をサンプル時間Δtにて離散化すると、下記の通りとなる。
【0049】
【数3】

【0050】
【数4】

【0051】
ここでkはサンプリングを表す番号である。係数cとdはこのモデル(2)では同じ値であるが、敢えて別に扱う。次に、下記ベクトルを定義する。
【0052】
【数5】

【0053】
【数6】

【0054】
ここで(・)’は転置を表し、
【0055】
【数24】

【0056】
はそれぞれa〜dの推定値を表す。また推定ベクトル
【0057】
【数25】

【0058】
の初期値は既知、或いは0とする。この推定ベクトルは、下記数式に示す値
【0059】
【数7】

【0060】
を最小にしたい場合、下記数式に示す逐次計算の形で求められる。
【0061】
【数8】

【0062】
【数9】

【0063】
ここで、Pは共分散行列と呼ばれるもので、上記の例では4×4次元、初期値は既知、或いは0を代入する。
【0064】
上記数式(7)を最小にする意味合いは、得られたデータが最もモデルである数式(3)に合致する様にパラメータを見出す事である。これはシステム同定であり、元々は観測雑音やシステム雑音が印加するシステムのモデルパラメータを同定する事を目的に発展した。
【0065】
さてここで、全ての状態量は観測可能として扱っているが、空気調和機の顕熱能力QaSはρAを空気密度、Gを室内ファン風量、cpを空気の比熱、TiEを室内機吹出温度とすると
【0066】
【数10】

【0067】
にて観測出来るが、室内内部顕熱負荷LiS(k)は観測出来ない。本質的に、システム同定は、未知パラメータを同定するためには、状態量は観測可能でなければならない。そこで、ここでは数式(2)と(3)で分かる通り、cとdが同じ値である事を利用する。
【0068】
先ず、LiS(k)の初期値として、常識的な初期値(物理的に取りうる値)を入力する。次に、そのLiS(k)を用いて(4)〜(8)に沿ってシステム同定を行う。その際、正確では無いがa〜dが求まるので、
【0069】
【数11】

【0070】
【数12】

【0071】
として、室内内部顕熱負荷LiS(k)を求める事が出来る。以上より、パラメータa〜d及びLiS(k)を推定する事が出来た。a、bが求まると、C、Kの値は、数式(4)を用いて下記の通り求まる。
【0072】
【数13】

【0073】
次に、空調顕熱負荷は、外部顕熱負荷K{T(k)−T(k)}と内部顕熱負荷
iS(k)を足したものになるので、この値を
【0074】
【数14】

【0075】
とおく。ここでL(k)は顕熱空調負荷である。
【0076】
以上より、顕熱だけであるが、現在の空調負荷L(k)が推定出来た。以上の過程を潜熱負荷に対しても同様に行うが、潜熱負荷は外気と室内の絶対湿度差と換気量より決まる外部潜熱、人間の呼気等の内部潜熱を足し合わせたものとなり、基本的な考えは顕熱負荷と同じなので省略する。同じ手順で潜熱空調負荷L(k)を推定すると、全熱空調負荷L(k)は
【0077】
【数15】

【0078】
にて計算出来る。
【0079】
次に冷媒自然循環式サイクルについて検討する。冷媒自然循環式サイクルより出力可能な全熱空調能力をQNAcとし、QNAcを外気温度、室内温度、冷媒自然循環式サイクルの配管長や室内外高低差に応じて予め計算で予測しておき、
【0080】
【数16】

【0081】
となった場合、つまり自然循環式サイクルにて空調負荷を賄えると判断出来る場合に、蒸気圧縮式ヒートポンプの圧縮機を停止させ、自然循環式サイクルに切り替える。また、切り替え後も、空調能力と室内温度の変化を数式(1)〜(15)の手順で、現時刻の空調負荷を推定し続ける事が出来る。
【0082】
次に、逆に蒸気圧縮式ヒートポンプに切り替える方法について説明する。
自然循環式サイクルは室内外ファンにより能力を調整出来るが、その範囲は小さく限られている。そこで室内温度が上昇すれば、その時点で能力不足と認識し、蒸気圧縮式ヒートポンプに切り替えると判断する手法もあるが、能力が不足する理由として、自然循環式サイクルとして発揮出来る能力が元々不足している場合と、本来は能力が発揮出来るにも拘らず、蒸発器に液冷媒が過剰に滞留したり、或いは冷媒量が不足している等、運転状態が悪いために能力不足になっている場合の二種類がある。そこで、先に説明した通り、自然循環方式の際にも空調負荷が推定出来るため、空調負荷推定値を用いる。
【0083】
現在の空調能力は観測出来るため、それをQNA(k)とし、熱交換器の仕様、外気温、室温、配管長、高低差、ファン風量等の条件によって予め予測された能力QNAc(k)と比較する。その際、
【0084】
【数17】

【0085】
の場合は、現在の運転状態が悪い状態にあると判断し、その悪化条件を見つけて対処し、再度冷媒自然循環式サイクルを継続する。この悪化条件を見つけて対処する具体例としては、蒸発器に液冷媒が過剰に滞留したり、或いは冷媒量が不足している等、運転状態が悪いために能力不足になっている場合が多いので、蒸気圧縮式ヒートポンプを強制的に駆動して、液冷媒を循環させる。
【0086】
【数18】

【0087】
の場合は、問題無く運転されていると考える。
【0088】
また推定空調負荷と現在発揮している能力が推定空調負荷L(k)に対し
【0089】
【数19】

【0090】
であり、かつ室温をT(k)、設定温度をTsetとすると
【0091】
【数20】

【0092】
の場合は、現在室内温度が設定温度に近づいている最中か、或いは窓を開ける等、一時的に空調負荷が急変して室内温度が上昇している状態と考え、そのまま冷媒自然循環式サイクルを継続する。
【0093】
但し、室温が許容値を超えた場合、
【0094】
【数21】

【0095】
の時は不快な状態を避けるため、冷媒自然循環式サイクルから蒸気圧縮式ヒートポンプに切り替える。
【0096】
また
【0097】
【数22】

【0098】
となった場合は、空調負荷が大きいため、冷媒自然循環式サイクルでは設定温度に保持出来ないのは確実なので、蒸気圧縮式ヒートポンプに切り替える。
【0099】
以上が蒸気圧縮式ヒートポンプから冷媒自然循環式サイクルに、また冷媒自然循環式サイクルから蒸気圧縮式ヒートポンプに切り替えるアルゴリズムである。
【0100】
実施例1は、空調負荷を全熱負荷として記述したが、室内温度のみを制御する場合、顕熱能力と顕熱負荷だけを扱っても良い。図3A、図3Bは、実施例1を示すフローチャートであり、以下動作を説明する。
【0101】
ステップ1で運転が開始されるとステップ2で空調機が起動し、ステップ3で。蒸気圧縮式ヒートポンプ21が起動する。ステップ4でヒートポンプ能力検知部102によってヒートポンプの全熱能力が検知され、次のステップ5で空調場熱負荷同定部101で空調する場所の全熱負荷Lが同定される。
【0102】
次のステップ6では、前記の全熱負荷L(k)より冷媒自然循環式サイクル運転の予め予測された全熱能力QNAc(k)(予測値)が大きいか否かを判定部106によって判定される(数式16参照)。全熱能力QNAc(k)は、熱交換器の仕様、外気温、室温、配管長、高低差、ファン風量等の条件によって、予め自然サイクル能力予測部104で予測される。判定の結果、不成立(F)であればステップ4に戻り、成立(T)であればステップ7でヒートポンプ21を停止し、ステップ8で冷媒自然循環式サイクルの運転を起動する。
【0103】
次のステップ9では、運転中の冷媒自然循環式サイクルの全熱能力QNAが自然サイクル能力検知部103で検知される。続いて、ステップ10では、上記で検知された全熱能力QNAが予測された全熱能力QNAcより小さいか判定される(前記数式17参照)。Qtは誤差許容値である。判定の結果、成立(T)であれば、冷媒自然循環式サイクルの運転状態が悪いために全熱能力QNAが不足していると判断して、ステップ18で自然循環サイクル運転状況の改善動作を行う。具体的には前述のように蒸気圧縮式ヒートポンプを強制的に駆動して、液冷媒を循環させる。判定の結果、不成立(F)であれば、全熱能力QNAが十分大きいので(数式18参照)、問題無く冷媒自然循環式サイクルが運転されていると判断し、ステップ11で再度空調場の全熱負荷Lを同定する。
【0104】
ステップ12では、上記で得られた全熱負荷Lとステップ9で検知された全熱能力QNAとが判定部106で比較され、全熱能力QNAが全熱負荷Lより大きいか否かが判定される。判定の結果、全熱能力QNAが全熱負荷Lより大きいとき(T)、ステップ13に移り、小さいとき(F)ステップ17に移る。ステップ17では自然循環サイクルの運転を停止し、ステップ3に戻ってヒートポンプを起動する。
【0105】
ステップ13では、空調されている室温Tと設定温度Tsetを比較し、室温Tが設定温度に第1許容値Tt1を加えた値を超えたか否か判定する。室温Tが許容値を超えたとき(前記数式21参照)、ステップ17に移って、自然循環サイクルの運転を停止し、ステップ3に戻ってヒートポンプを起動する。室温Tが許容値を超えてないとき、さらにステップ14で設定温度Tsetを超えたか否か判定される。判定の結果、超えていれば(T)ステップ9に戻り、超えていなければ(F)ステップ15に移る。
【0106】
ステップ15では、室温Tが設定温度から第2許容値Tt2を引いた値より小さいか否を判定する。判定の結果、室温Tが小さい場合(T)、室温Tが十分低いと判断してステップ16で空調運転を停止する。判定の結果、室温Tが大きい場合(F)はステップ9に戻り、冷媒自然循環式サイクルの運転を継続しつつ、冷媒自然循環式サイクルの全熱能力QNAが自然サイクル能力検知部103で検知される。
【0107】
図3A、図3Bのフローチャートでは、蒸気圧縮式ヒートポンプ運転から冷媒自然循環式サイクルの運転に切り替える際に、冷媒自然循環式サイクル起動の前後のステップ5と11で空調する場所の全熱負荷Lを求めることで、時々刻々と変化する空調負荷を常に正確に求めている。また、上記の各全熱負荷は、全熱能力との比較直前に求められるので、常に新しい全熱負荷が求められる。そして、上記で得た各全熱負荷Lと、冷媒自然循環式サイクルの全熱能力の予測値と現在値とをそれぞれ比較して、冷媒自然循環式サイクルの全熱能力で全熱負荷Lを賄えると判断したときに、冷媒自然循環式サイクルを起動および運転継続している。
【0108】
したがって、冷媒自然循環式サイクルの起動後に同サイクルの全熱能力の不足により、圧縮機の運転に切り換わることが少なくなり、圧縮機の発停の頻発を防止することができる。
【0109】
また、図3A、図3Bのフローチャートでは、冷媒自然循環式サイクル起動後のステップ9で、運転中の冷媒自然循環式サイクルの全熱能力を検知し、ステップ10で、上記で検知された全熱能力が予め予測された全熱能力より小さいか判定され、小さい場合はステップ18で、冷媒自然循環式サイクル運転の改善動作を行い、再度、ステップ9で運転中の冷媒自然循環式サイクルの全熱能力を検知して上記動作を繰返す。
【0110】
したがって、冷媒自然循環式サイクルの起動後に同サイクルの運転中の実際の全熱能力を把握し、これに基いて運転継続を決めているので、冷媒自然循環式サイクルの能力不足で運転に切り換わることが少なくなり、圧縮機の発停の頻発を防止することができる。また、冷媒自然循環式サイクルの起動後に同サイクルの全熱能力の不足が判明しても、運転の改善動作により運転中の全熱能力を回復することができ、圧縮機の運転に切り換わることが少なくなる。
【0111】
図4A、図4Bは、上記で説明した実施例1の全熱負荷を顕熱負荷に置き換えて示した実施例2のフローチャートである。動作は、図3A、図3Bのフローチャートと同じであるため、説明を省略する。
【0112】
図5〜図9は、空調負荷を表すパラメータを推定している計算結果である。図5で、81は空調全熱内部負荷L(k)で、82は空調全熱内部負荷推定値Lを示し、ここでは、内部負荷量Lは、周期3600ステップのゆっくりとした正弦波と、確率分布として正規分布を示す白色雑音を加えた変動をしていると仮定した。図5〜図9の通り、各パラメータa〜dの推定値は比較的安定して推定出来ており、内部負荷Liは時間が掛かっているが、±5%以内の推定が出来ている。83はパラメータa推定値、84はパラメータb推定値、85はパラメータc推定値、86はパラメータd推定値である。
【0113】
最後に、年間の省電力、効率を計算する。JIS B8616の指標とは別に、年間効率を擬似的ではあるが、より正確に表す下記の値Eを次の数式で定義する。
【0114】
【数23】

【0115】
ここでQ(T)は室外温度Tにおける空気調和機の発生する能力、P(T)空気調和機の消費電力、nはTが発生する発生時間である。分子は年間に発生する能力の総和であり、分母は年間に発生する消費電力の総和である。これは、ある室外温度Tが発生した際、空調負荷が一意に決まり、それと同じ能力と消費電力を空気調和機が発生させ、室内温度を設定温度に保って安定している、と言う事を前提にしている。実際の空調負荷は、前述した通り、室外温度だけに依存せず、日射やその他の影響を受け、また時々刻々変化していくので、Eは必ずしも実使用上の空気調和機の年間効率を表す指標とはならないが、室外温度T毎に能力と消費電力を測定し、指標に入れ込む事で、JIS B8616より、より正確に年間効率を表していると言える。
【0116】
数式(23)を元に、従来機と、本発明の空気調和機の年間効率Eを計算にて比較したところ、従来の空気調和機に対して、本発明の空気調和機は4%向上する事が確認された。この効果は冷媒自然循環式サイクルに依るものであるが、外気温度発生率、空調期間はJIS B8616に準拠しており、東京の気候であるため、更に気温が低くて内部負荷が高い空調場では、効果が大きくなると期待される。上記の例で、発生能力が同じと仮定すると、年間の消費電力も従来機に比べて、本発明の空気調和機は4%低減出来る。
【符号の説明】
【0117】
1…運転開始ステップ、2…空調機起動ステップ、3…蒸気圧縮式ヒートポンプ起動ステップ、4…蒸気圧縮式ヒートポンプ全熱能力検知ステップ、5…空調場全熱負荷同定ステップ、6…自然循環式サイクル予測全熱能力対空調全熱負荷判定ステップ、7…蒸気圧縮式ヒートポンプ停止ステップ、8…自然循環式サイクル起動ステップ、9…自然循環式サイクル全熱能力検知ステップ、10…自然循環式サイクル運転状況判定ステップ、11…空調全熱負荷同定ステップ、12…自然循環式サイクル全熱能力対空調全熱負荷判定ステップ、13…快適性判定ステップ、14…室温状態判定ステップ、15…サーモオフ判定ステップ、16…空調機サーモオフ実施ステップ、17…自然循環式サイクル停止ステップ、18…自然循環式サイクル運転状況改善ステップ、20…室外機、21…圧縮機、221…第一の室外熱交換器、222…第二の室外熱交換器23…室外ファン、24…アキュムレータ、25…四方弁、26…受容器、27…室外膨張弁、28…液側配管、29…ガス側配管、30…室内機、31…室内熱交換器、32…室内ファン、33…室内膨張弁、34…インバータ圧縮機周波数操作器、35…室外ファン送風能力操作器、36…室外膨張弁開度操作器、37…四方弁操作器、38…室内ファン送風能力操作器、39…室内膨張弁開度操作器、40…圧縮機吸入温度検知器、41…圧縮機吐出温度検知器、42…過冷却熱交換器出口温度検知器、43…室外熱交換器出口温度検知器、44…室外温度検知器、45…圧縮機吸入圧力検知器、46…圧縮機吐出圧力検知器、47…室外湿度検知器、48…室内機吸込温度検知器、49…室内機吹出温度検知器、50…室内機液管温度検知器、51…室内機ガス温度検知器、52…室内機吸込湿度検知器、53…室内機吹出湿度検知器、54…第一の開閉弁、55…第二の開閉弁、56…室内温度設定器、57…制御演算装置、61…運転開始ステップ、62…空調機起動ステップ、63…蒸気圧縮式ヒートポンプ起動ステップ、64…蒸気圧縮式ヒートポンプ顕熱能力検知ステップ、65…空調場顕熱負荷同定ステップ、66…自然循環式サイクル予測顕熱能力対空調顕熱負荷判定ステップ、67…蒸気圧縮式ヒートポンプ停止ステップ、68…自然循環式サイクル起動ステップ、69…自然循環式サイクル顕熱能力検知ステップ、70…自然循環式サイクル運転状況判定ステップ、71…空調顕熱負荷同定ステップ、72…自然循環式サイクル顕熱能力対空調顕熱負荷判定ステップ、73…快適性判定ステップ、74…室温状態判定ステップ、75…サーモオフ判定ステップ、76…空調機サーモオフ実施ステップ、77…自然循環式サイクル停止ステップ、78…自然循環式サイクル運転状況改善ステップ、81…空調全熱内部負荷、82…空調全熱内部負荷推定値、83…パラーメータa推定値、84…パラメータb推定値、85…パラメータc推定値、86…パラメータd推定値、100…制御部、101…空調場熱負荷同定部、102…ヒートポンプ能力検知部、103…自然サイクル能力検知部、104…自然サイクル能力予測部、105…運転状況改善部、106…判定部。

【特許請求の範囲】
【請求項1】
室外機を一台または複数台と、室内機を一台または複数台設け、前記室外機と前記室内機とを配管接続して閉回路をなし、前記閉回路の中に冷媒を封入し、
前記室内機においては、室内空気と熱交換を行う室内熱交換器と冷媒の流量を調節する室内膨張弁を順次配管接続し、
前記室外機においては、圧縮機と第一室外熱交換器及び室外膨張弁を配管接続してヒートポンプ回路を形成すると共に、前記圧縮機の低圧配管と前記室内膨張弁と第二室外熱交換器を配管接続して冷媒自然循環回路を形成し、
空調負荷に応じて前記圧縮機を用いる蒸気圧縮式ヒートポンプ運転と、前記冷媒自然循環回路を用いる冷媒自然循環式サイクル運転とを切換えて運転する制御演算装置を備えた空気調和機において、
前記制御演算装置は、空調負荷を検出する空調場熱負荷同定部と、蒸気圧縮式ヒートポンプの運転能力を検知するヒートポンプ能力検知部と、冷媒自然循環式サイクルの運転能力を予測する自然サイクル能力予測部と、冷媒自然循環式サイクルの運転中の運転能力を検知する自然サイクル能力検知部と、前記空調場熱負荷同定部で検出された空調負荷と冷媒自然循環式サイクルの運転能力とを比較する判定部を設け、
前記制御演算装置は、前記判定部で前記空調場熱負荷同定部で検知された空調負荷より冷媒自然循環式サイクルの運転能力の予測値が大きいと判定したとき冷媒自然循環式サイクル運転を起動し、この起動後に前記空調場熱負荷同定部で空調負荷を再度検知するとともに、前記自然サイクル能力検知部で冷媒自然循環式サイクル運転中の運転能力を検知し、前記再検出された空調負荷より大きいと前記判定部で判定したとき冷媒自然循環式サイクル運転を継続するように構成されたことを特徴とする空気調和機。
【請求項2】
請求項1に記載の空気調和機において、前記制御演算装置は、前記判定部で冷媒自然循環式サイクルの運転中の運転能力が予測値より大きいと判定したとき、前記空調場熱負荷同定部で空調負荷を再度検知することを特徴とする空気調和機。
【請求項3】
請求項1または2に記載の空気調和機において、前記制御演算装置は、さらに、前記判定部で冷媒自然循環式サイクルの運転中の運転能力が予測値より小さいと判定したとき冷媒自然循環式サイクルの運転状況を改善する運転状況改善部を備え、この運転状況改善部での改善の後、再度冷媒自然循環式サイクル運転を継続するように構成されたことを特徴とする空気調和機。
【請求項4】
請求項1に記載の空気調和機において、前記制御演算装置は空調する部屋の熱容量並びに熱通過係数を少なくとも要因とする外部空調負荷に関わるパラメータ及び内部空調負荷を、複数の検知による計測量を元に時々刻々同定し、経年変化や状態変化に追随して切り替え運転することを特徴とする空気調和機。
【請求項5】
請求項1に記載の空気調和機において、前記制御演算装置は空気温度条件と前記冷媒自然循環式サイクルの運転能力の関係を表す係数を、複数の検知による計測量を元に時々刻々同定し、経年変化や状態変化に追随して切り替え運転することを特徴とする空気調和機。
【請求項6】
室外機を一台または複数台と、室内機を一台または複数台設け、前記室外機と前記室内機とを配管接続して閉回路をなし、前記閉回路の中に冷媒を封入し、
前記室内機においては、室内空気と熱交換を行う室内熱交換器と冷媒の流量を調節する室内膨張弁を順次配管接続し、
前記室外機においては、圧縮機と第一室外熱交換器及び室外膨張弁を配管接続してヒートポンプ回路を形成すると共に、前記圧縮機の低圧配管と前記室内膨張弁と第二室外熱交換器を配管接続して冷媒自然循環回路を形成し、
制御演算装置により、空調負荷に応じて前記圧縮機を用いるヒートポンプ運転と、前記冷媒自然循環回路を用いる冷媒自然循環式サイクル運転とを切換えて運転する空気調和機の運転方法において、
前記制御演算装置は、空調負荷を検出する空調場熱負荷同定部と、ヒートポンプ運転の能力を検知するヒートポンプ能力検知部と、冷媒自然循環式サイクルの運転能力を予測する自然サイクル能力予測部と、冷媒自然循環式サイクルの運転中の運転能力を検知する自然サイクル能力検知部と、前記空調場熱負荷同定部で検出された空調負荷と冷媒自然循環式サイクルの運転能力とを比較する判定部を設け、
前記制御演算装置により、検知された空調負荷より冷媒自然循環式サイクルの運転能力の予測値が大きいと判定したとき冷媒自然循環式サイクル運転を起動し、この起動後に空調負荷を再度検知するとともに冷媒自然循環式サイクル運転中の運転能力を検知し、前記再検出された空調負荷より冷媒自然循環式サイクル運転中の運転能力が大きいと判定したとき冷媒自然循環式サイクル運転を継続することを特徴とする空気調和機の運転方法。
【請求項7】
請求項6に記載の空気調和機の運転方法において、前記制御演算装置により、冷媒自然循環式サイクルの運転中の運転能力が予測値より大きいと判定したとき、空調負荷を再度検知することを特徴とする空気調和機の運転方法。
【請求項8】
請求項6または7に記載の空気調和機の運転方法において、前記制御演算装置により、さらに、冷媒自然循環式サイクルの運転中の運転能力が予測値より小さいと判定したとき冷媒自然循環式サイクルの運転状況を改善し、この改善の後再度冷媒自然循環式サイクル運転を継続することを特徴とする空気調和機の運転方法。
【請求項9】
請求項6に記載の空気調和機の運転方法において、前記制御演算装置により空調する部屋の熱容量並びに熱通過係数を少なくとも要因とする外部空調負荷に関わるパラメータ及び内部空調負荷を、複数の検知による計測量を元に時々刻々同定し、経年変化や状態変化に追随して切り替え運転することを特徴とする空気調和機の運転方法。
【請求項10】
請求項6に記載の空気調和機の運転方法において、前記制御演算装置により空気温度条件と前記冷媒自然循環式サイクルの運転能力の関係を表す係数を、複数の検知による計測量を元に時々刻々同定し、経年変化や状態変化に追随して切り替え運転することを特徴とする空気調和機の運転方法。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−113533(P2013−113533A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−261867(P2011−261867)
【出願日】平成23年11月30日(2011.11.30)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成22年度独立行政法人新エネルギー・産業技術総合開発機構 次世代ヒートポンプシステム研究開発 実負荷に合わせた年間効率向上ヒートポンプシステムの研究開発委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(399048917)日立アプライアンス株式会社 (3,043)
【Fターム(参考)】