説明

細胞分取及び培養方法とその装置

【課題】多数の細胞を同時にインキュベーションあるいは培養することを可能とする細胞インキュベーションチップおよび細胞インキュベーションチップへの細胞分別方法及びそのための装置を実現する。
【解決手段】複数の細胞を含む溶液を挿入でき、所定の大きさの細胞ないし細胞塊が通過するにふさわしい先端開口径を持つピペットと、ピペット内部の細胞を観察する手段と、ピペット先端部に細胞を含む溶液をピペット内部から押し出して液滴を形成する手段と、液滴内の細胞の有無を検出し細胞を含む液滴と含まない液滴を判断する手段とを備えて、液滴を基板上の所定の位置に滴下し並べる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多数の細胞を同時にインキュベーションあるいは培養することを可能とする細胞インキュベーションチップおよび細胞インキュベーションチップへの細胞分別方法及びそのための装置に関する。すなわち、細胞を所定の数ずつアレー状に並べ、多数の細胞を同時に培養できる細胞培養チップと細胞培養システムに関する。
【背景技術】
【0002】
細胞を研究する上での基本は、目的細胞の分離と分離した細胞の個別培養である。分離技術としては、大きく分けると、以下のように分類できる。
(1)比重の違いで細胞を分離する方法、
(2)蛍光標識抗体で染色した情報あるいは目視の情報による方法、
(3)セルソーターによる方法。
いずれの方法も細胞懸濁液から目的の細胞を分離することができ、目的に応じて使用されている。
【0003】
(1)の方法は、たとえば、精子細胞はX染色体を持つものと、Y染色体をもつ2種類があり、重篤な遺伝的疾病を持つ家系においては、男女産み分けのため、利用されることがある。精子細胞のわずかな比重の違いを用いて分離する場合には速度沈降法によって分離する。この技術は、汎用的ではあるが、比重をつける試薬に目的細胞が曝露されることと、遠心による高い加速度にさらされるため、通常の細胞内での遺伝子発現などの細胞の状態が変動してしまう可能性がある。さらに、分離に長時間を要するため、通常4℃程度の低温に長時間目的細胞をさらすことになる。
【0004】
(2)の方法は、未感作の免疫提示細胞と感作した免疫細胞とを見分けるような、細胞の比重の違いがほとんど無い場合に利用されるが、目視により目的細胞を1つ1つ分離する必要があり、分離に要する作業者の負担が大きい。さらに、目的細胞は蛍光標識抗体で染色されるため、目的細胞の状態が変動してしまう可能性がある。
【0005】
(3)の方法は、比重を用いずに細胞を分離する技術のひとつである。セルソーターは蛍光染色処理後の細胞を電荷を持たせた液滴中に1細胞単位で単離して滴下し、この液滴中における細胞の蛍光の有無、光散乱量の大小を基に、液滴が落下する過程で、落下方向に対して法平面方向に高電界を任意の方向に印加することで、液滴の落下方向を制御して、下部に置かれた複数の容器に分画して回収する技術である。この技術について詳しくは、非特許文献1に報告されている。
【0006】
このようにして分離した細胞を、培養、あるいは、所定時間インキュベーションするには、まず、所定の数の細胞をマイクロプレートやカルチャーディシュやカルチャーフラスコに培養液と細胞を入れ、pHを一定に保つために適度の二酸化炭素存在下でインキュベーションするのが一般的である。所定の数の細胞を分注するにはあらかじめ細胞懸濁液中の細胞数を算定盤やセルカウンターで一定体積あたりの細胞数をカウントし、目的の細胞数に見合った体積分をマイクロプレートなどにピペットを用いて入れるのが一般的である。
【0007】
培養容器としては、多数の細胞の培養に向いているのはマイクロプレートを使用する方法である。カルチャーディシュは比較的種類の少ない細胞の培養、カルチャーフラスコは多量培養に向いている。これらの容器に細胞を入れるのは、研究者や医療従事者が判断しながらピペットを操作して入れるのが一般的である。また、細胞には未知のコミュニティーエフェクトがあり孤立した細胞は増殖しづらく、培養系の中にある程度細胞が存在する必要がある。
【0008】
【非特許文献1】Kamarck,M.E, Methods Enzymol., 第151巻第150頁から165頁(1987年)
【発明の開示】
【発明が解決しようとする課題】
【0009】
従来技術は、分離した細胞を同時に培養する方法及び装置として、必ずしも研究者や医療従事者を満足させるものではない。一般的には、多数のカルチャーフラスコを並べて培養を行っているにすぎず、培養の労力やコストが膨大なものになってしまう。また、各培養に処する細胞の数はあらかじめ細胞懸濁液に含まれる細胞数をカウントし、それから逆算される体積を持って細胞数としている。このため、たとえば、細胞一個一個をスタートとして培養を行おうとすると、無限希釈した細胞懸濁液をマイクロプレートやディッシュに播いて増殖してきたもののみを選別するなどの方法をとる必要があった。
【0010】
この方法は、大腸菌や酵母などの単細胞生物のクローニングには効力を発揮するが、多細胞生物由来の細胞では、効率が悪い問題がある。さらに前記したように、細胞同士のコミュニティーエフェクトが断ち切られると、集団での細胞と挙動が異なることが容易に推測できるので、たとえば、細胞10個づつの集団ごとにマイクロプレートウェルやディッシュに分注することが必要となるが、実際上は、正確に分注できない問題がある。
【0011】
本発明は、細胞を所定の数ずつアレー状に並べる方法と、多数の細胞を同時に培養できる細胞培養チップとを提案することを目的とする。
【課題を解決するための手段】
【0012】
本発明では、所定の数の細胞または細胞塊を、細胞培養チップの所定の位置に配置できるように、細胞培養チップの表面に親水領域を所定の間隔で独立して形成する。この親水領域に対して、細胞の懸濁液を吸い上げたピペット先端から必要な細胞数を持つ適当な大きさの液滴として滴下させる。この際、ピペット先端を光学系でモニターして液滴の大きさおよび細胞数を監視して、制御する。
【発明の効果】
【0013】
本発明によれば、自動的に一定の微小体積に一定数の細胞が入った液滴を作成し、細胞培養チップの所定の位置に配置できる。よって、微小な体積スペースで所定の細胞をインキュベーションすることができる。さらに、微小であることは、限られた面積に多数の細胞をアレー状にインキュベーションすることができるスケールメリットがある。
【発明を実施するための最良の形態】
【0014】
(実施例1)
図1(a)は、実施例1に好適な細胞培養チップ100の平面図、(b)は平面図のA−A位置で矢印方向に見たときの断面図である。1はシリコン基板であり、例えば、その厚さは1mm、大きさは20mm×20mmである。2は壁であり、シリコン基板で製作され、その厚さは、例えば、1mm、高さは0.5mmである。壁2で囲われた領域は疎水性領域3とされ、そのなかに、親水性領域4が周期的に配列される。親水性領域4の大きさは、この領域の一つに収容する細胞の大きさあるいは数によって決定されるが、400μm×400μm程度である。親水性領域4の間隔は、細胞を含む液滴が、お互いが接触して混ざらないだけの間隔とするが、取り扱いの便を考えると、2000から4000μm程度が良い。5は位置決め用のマーカーであり、シリコン基板1の一面に形成される。
【0015】
親水性領域と疎水性領域の作成方法は、例えば、疎水性のシリコン基板1の上面を酸化して、一旦、全領域を親水性のSiO薄膜とする。その後、疎水性とすべき領域のSiO薄膜をフッ酸で溶解除去して疎水性領域を作成すれば良い。
【0016】
(実施例2)
図2(a)は、細胞培養チップ100に細胞を分配する実施例2のシステム構成を説明する概念図、図2(b)は、細胞培養チップ100の親水性領域4に細胞が分配された結果を示す断面図である。
【0017】
実施例2では、細胞12を分配するためのピペット11の先端に形成される液滴を光学的にモニターしながら細胞培養チップ100の親水性領域4に細胞12を分配する。図2(a)において、19はXY方向に駆動されるステージであり、27はステージ19の駆動装置である。ステージ19の上面には細胞培養チップ100の温度を制御するためのヒーター22が設けられ、この上面に細胞培養チップ100が載置される。細胞培養チップ100の上部には、分配すべき細胞12を含む懸濁液13があらかじめ吸い上げられて保持されているピペット11が配置される。ピペット11の根元部には、チューブ30を介してシリンジポンプ31が設けられ、シリンジポンプ31には駆動装置32が取り付けられている。シリンジポンプ31が駆動装置32により駆動されると、ピペット11内の懸濁液13が細胞12とともに押し出される。なお、ピペット11の根元部とチューブ30との接続部が離れたように図示されているのは、ピペット11を拡大して表示するためであり、分離されているわけではない。
【0018】
一方、ピペット11の先端部には、ピペット11の先端部に培養液を供給するための他のピペット20の先端が配置される。ピペット20の根元部にはチューブ34を介してシリンジポンプ35が設けられ、シリンジポンプ35には駆動装置36が取り付けられている。シリンジポンプ35が駆動装置36により駆動されると、シリンジポンプ35内の培養液がピペット20から押し出される。
【0019】
また、ピペット11の先端部に形成された液滴を細胞培養チップ100の親水性領域4に移すためのピペットの上下動駆動装置37が設けられる。ここでは、上下動駆動装置37はピペット11に連係するものとする。上下動駆動装置37に、使用者により、ピペット11を下げる信号が与えられると、ピペット11は下に動き、ピペット11の先端部に形成された液滴を細胞培養チップ100の親水性領域4に移す。上下動駆動装置37に、使用者により、ピペット11を復旧させる信号が与えられると、ピペット11は図に示す位置に戻る。ピペット11の図に示す位置への復旧は、下げ操作から、パソコン26により、タイムシーケンシャルに行われるものとしても良い。一点差線39は上下動駆動装置37とピペット11との連係を意味する。
【0020】
さらに、ピペット11の先端部の近傍の内部および先端部に形成される液滴の大きさをモニターするための光学系を構成する光源16、集光レンズ17が設けられ、これに対向する位置で細胞培養チップ100の下部にコリメートレンズ18およびモニター25が設けられる。したがって、細胞培養チップ100、温調器22およびステージ19は、光学的に透明である必要がある。26は、いわゆる、パソコンであり、モニター25からの入力信号に応じて、あらかじめ格納してある所定のプログラムから得られる制御信号、および、使用者がモニター25の表示画面を見ながら与える操作入力信号28に応じて駆動装置27,32,36および37に必要な信号を与える。なお、ここでは、図示しなかったが、モニター25の検出している画面と同一の表示をパソコン26のモニターに表示するのが便利である。そうすれば、モニター25は、小型のCCDカメラとすることができる。また、操作入力信号28は、パソコン26の入力装置を介して与えられるものである。
【0021】
ここで、ピペット11のサイズについて考えると以下のようである。ピペット11は、その先端に、必要な細胞数を持つ適当な大きさの液滴を構成できるようにすることが必要である。一方、ピペット11内には、細胞を含む懸濁液をピペットで吸い上げてから使用するが、液滴を構成するときに、ピペット11の先端を通過する細胞がモニター25で誤り無く検出できることが必要である。したがって、ピペット11の先端部の直径は細胞1個あるいは所定の細胞数の塊が通過するのを許すが、計数できないほどの細胞が、一度に通過できないものとする。すなわち、現在、汎用的に使用されている培養用ピペットのように径が太いものではなく、透明で、先端部の直径が、一般的な動物細胞用として20〜100μm、バクテリアなどの微生物用では5μm程度とするのが良い。
【0022】
細胞培養チップ100の親水性領域4に細胞12を分配する操作について以下説明する。まず、システムが起動されると、使用者は、図1(a)で説明したマーカー5に着目して細胞培養チップ100が所定の起動位置にあるように位置決めする。次に、細胞12の最初の分配位置をピペット11および20の先端部に対応する位置に移動させる操作入力信号28に応じて、駆動装置27によりステージ19を操作する。細胞培養チップ100が所定の位置まで来ると、ピペット11内部の細胞懸濁液13を細胞12とともに排出する操作を行う。この際、ピペット11の先端部の外側と先端部近傍の内部を光源16とモニター25からなる光学系で監視する。モニター25の出力をパソコン26に取り込み、パソコン26の画像演算結果をもとに駆動装置32を動作させて、シリンジポンプ31の送液を制御することができる。
【0023】
モニター25でピペット11の先端を監視しながら、駆動装置32を動作させて、シリンジポンプ31を動かし、細胞12を含む懸濁液13をピペット11の先端から排出して、ピペット先端に液滴21を形成する。このとき、液滴21中に所定の細胞数が挿入されたことをモニター25を通してパソコン26が認識し、駆動装置32に停止指令を出して、シリンジポンプ31を停止させる。
【0024】
以下、説明をシンプルにするため、液滴21に挿入される細胞12の数は1個として説明するが、細胞数は目的に応じて任意に使用者が決めればよい。たとえば、10個でもよい。細胞12の認識は、ピペット11の先端部の液滴21中に存在する細胞12を直接検出するだけでも良いが、より効率的には、ピペット11の内部を移動する細胞12をモニター25で監視し、パソコン26で細胞のピペット内での位置と移動速度を計算し、ピペット11の先端から液滴21内に排出される時を予測してシリンジポンプ31を制御してもよい。後者の認識方法を用いれば、たとえば短い間隔で複数の細胞がピペット内を移動している場合などに細胞を1個だけ液滴の中に入れる場合に有利となる。
【0025】
ここで、細胞懸濁液13の細胞濃度が低いときは、細胞がピペット11の先端から出る直前に液滴21を形成し始め、所定時間後に液滴形成を停止すれば、液滴21の大きさを一定にすることができる。液滴を形成したくないときは、たとえばブロアーでピペット11の先端から出てくる液を吹き飛ばせばよい。あるいは、基板1の外にドレインを設け、そこに排出してもよい。
【0026】
一方、細胞懸濁液13の細胞濃度が高いと、ピペット11から排出される液量がまちまちとなる。すなわち、ピペット11から排出される細胞12の排出の頻度が上がるから、液を排出させる時間を所定の時間に固定していると、その時間内に次の細胞が液的21の中に入ってしまう可能性がある。このようなケースでは、ピペット20を用いる。ピペット20とこれに連結されたシリンジポンプ35には、培養液あるいは細胞希釈液のみが入れられている。すなわち、モニター25を通して細胞12が液滴21に入るのをパソコン26が確認したとき、駆動装置32に停止指令を出して、シリンジポンプ31を停止させるとともに、このときまでに液滴21を形成するのに駆動されたシリンジポンプ31の繰り出し量から、その時点の液滴21の体積を割り出す。この体積と液滴21の所望の体積との差をパソコン26で計算する。この計算結果に応じて、その時点に出来ている液滴21にピペット20で培養液あるいは細胞希釈液を加えるように、パソコン26から駆動装置36に動作信号を送り、シリンジポンプ35を駆動して、ピペット20を用いて液滴21の体積が所定の値になるまで液を加える。
【0027】
このとき、ピペット20に液滴中の細胞が逆流しないように、ピペット20の先端は細胞が通らない大きさ、たとえば0.2μmφとするのが良い。あるいは、先端が0.2μmのフィルター構造を有するものとするのが良い。
【0028】
このようにして作成した細胞が1個含まれる液滴21は、ピペット11の上下動駆動装置37により、ステージ19の上に置かれた基板1の上の親水性領域4に接触させられ、液滴21は基板1の親水性領域4に移動する。細胞12を含む液滴21が基板1の親水性領域4、すなわち、細胞培養チップ100の親水性領域4に移動したことが確認されると、使用者は操作信号28を与えて、ステージ駆動装置10を動かし、次の液滴を置く位置にピペット先端が位置するように、細胞培養チップ100を移動させる。この移動は、親水性領域4の配置の情報をパソコン26に与えておけば、パソコン26によって自動的に行うことができる。そして、この新しい位置で、上述のようにしてピペット11の先端に新たな液滴を形成し、細胞培養チップ100の親水性領域4に移動させる。これを繰り返して、細胞培養チップ100の親水性領域4の必要な部位に液滴を置く。これらの、すべての操作を、乾燥を防ぐため湿潤雰囲気の中で行う。液滴15の配置が終わると、壁2で囲われた領域内全てにシリコンオイル38を張る。
【0029】
図2(b)は、図2(a)を参照して説明した、細胞培養チップ100に細胞を分配する実施例2のシステムによって、細胞培養チップ100の親水性領域4に細胞が分配された結果を示す断面図である。シリコン基板1上の壁2で囲われた領域内の親水性領域4に細胞12と、これを包み込む形の液滴15が配置されている。壁2で囲われた領域内全てにシリコンオイル38が張られている。液滴15は0.2から2μl程度なので、0.5mmの高さの壁2の内側に、シリコンオイル38を入れると、液滴15は乾燥から保護される。
【0030】
ここで、シリコンオイルを使用する理由は、シリコンオイルがガス透過性に優れる点にある。これにより、常に液滴15中の細胞12に酸素を供給でき、極微量の培養液の中で細胞12を飼い続けることができる。シリコンオイルの厚みは薄いほうが良く、液滴15がシリコンオイルに埋まる程度が良く、たとえば深さ0.5mmになるようにシリコンオイルを静かに流し込む。これにより、細胞の種類と状態にもよるが、たとえば上皮細胞であれば通常は数時間観察できる。細胞観察はモニター25を用いても良いし、別の観察用の装置に移しても良い。
【0031】
(実施例3)
より長時間、細胞をインキュベーションして観察できるようにするには、酸素透過性を確保するだけでは不十分で、細胞12を包み込んでいる液滴15を新しい培養液に交換する必要がある。
【0032】
図3は、実施例2のシステム構成の内、細胞12を包み込んでいる液滴15を新しい培養液に交換する機能に着目した実施例3のシステム構成を説明する概念図である。実体としては、実施例2のシステム構成のピペット20とこれに連係したチューブ34、シリンジポンプ35および駆動装置36が利用できるので、図2を利用して、関連の無いものを削除した構成で説明する。もちろん、コンタミ等の防止の観点でピペット20とこれに連係したチューブ34、シリンジポンプ35を新しいものに置換しても良いことは言うまでも無い。
【0033】
ピペット20の先端が新しい培養液に交換する液滴15の位置になるように、ステージ19を移動させて、着目している液滴15をモニター25で監視する。モニター25で液滴15とピペット20の先端とを監視しながら、液滴15の中にピペット20を挿入する。ここでは、上下動駆動装置37はピペット20に連係するものとする。上下動駆動装置37に、使用者により、ピペット20を下げる信号が与えられるとピペット20は下に動き、ピペット20の先端部が液滴15の中に挿入される。
【0034】
ピペット20の先端部が液滴15の中に入ったことがモニター25を通して確認できたら、使用者は、培養液を交換する旨の信号28をパソコン26に与える。パソコン26は、液滴15の大きさおよびこれに包含されている細胞の数、大きさの情報を与えられていれば、培養液を交換する旨の信号28に応じて、シリンジポンプ36を駆動して、所定量の古い培養液を一定量排出(吸引して外部に捨てる)し、基質や成長因子などを含む新しい培養液を供給する操作を自動的に、タイムシーケンシャルに実行することができる。この際、重要なのは、液滴15に包含されている細胞12が古い培養液とともに排出されてはならないし、不要なバクテリアが新しい培養液とともに混入することも許されない。
【0035】
このため、ピペット20の先端は、細胞が吸引されない内径、たとえば0.2μmとするのが良い。あるいは、先端が0.2μmのフィルター構造を有しているものとしても良い。また、ピペット20およびこれに連係するチューブ34、シリンジポンプ35の衛生管理は十分に行う。
【0036】
(実施例4)
所定時間、細胞をインキュベーションし、モニター25による観察が終了し、所定の細胞のみを回収する操作について説明する。
【0037】
図4は、実施例2のシステム構成の内、所定の細胞12を包み込んでいる液滴15の中から細胞を回収する機能に着目した実施例4のシステム構成を説明する概念図である。実体としては、実施例2のシステム構成のピペット11とこれに連係したチューブ30、シリンジポンプ31および駆動装置32が利用できるので、図2を利用して、関連の無いものを削除した構成で説明する。もちろん、コンタミ等の防止の観点でピペット11とこれに連係したチューブ30、シリンジポンプ31を新しいものに置換しても良いことは言うまでも無い。さらに、細胞回収のことを考慮して、より太いサイズのピペット11とするのも良い。
【0038】
回収したい細胞を包含している液滴15の位置になるように、ステージ19を移動させて、着目している液滴15をモニター25で監視する。モニター25で液滴15とピペット11の先端とを監視しながら、液滴15の中にピペット11を挿入する。ここでは、上下動駆動装置37はピペット11に連係するものとする。上下動駆動装置37に、使用者により、ピペット11を下げる信号が与えられるとピペット11は下に動き、ピペット11の先端部が液滴15の中に挿入され、液滴15の中の細胞12をピペット11内に吸い上げて回収する。
【0039】
ピペット11の先端部が液滴15の中に入ったことがモニター25を通して確認できたら、使用者は、液滴15の中の細胞12を吸引する旨の信号28をパソコン26に与える。パソコン26は、液滴15の大きさおよびこれに包含されている細胞の数、大きさの情報が与えられていれば、細胞12を吸引する旨の信号28に応じて、シリンジポンプ31を駆動して培養液と一緒に細胞12をピペット11に吸引する操作を自動的に、タイムシーケンシャルに実行することができる。ここで、シリコンオイル38を突き抜けてピペット11を細胞12を含む液滴15内に挿入して吸い上げるので、多少のシリコンオイル38が一緒に吸い上げられることになるが、無視しても、支障が無い程度の量でしかない。
【0040】
ピペット11に吸引された細胞12は、所定の回収容器に排出し、目的細胞を回収する。
【0041】
目的細胞を回収した後、別の液滴15から細胞12を回収するときは、新たに回収したい細胞を包含している液滴15の位置がモニター25で監視できる位置になるように、ステージ19を移動させ、新たに着目している液滴15をモニター25で監視しながら、上述の手順で細胞12をピペット11に吸引し、所定の回収容器に排出し、新たな目的細胞を回収する。
【0042】
ここで、実施例4に適するピペット11のサイズについて検討すると以下のようである。実施例2の液滴の作成のときは、ピペット11のサイズの先端部の直径は、一般的な動物細胞用として20〜100μm、バクテリアなどの微生物用では5μm程度とするのが良いとしたが、実施例4では、所定時間インキュベーションした後細胞を取り出すことを考慮すると、細胞が分裂して細胞塊になったものを吸いあげるに十分な径が必要である。具体的には100〜400μm程度である。
【0043】
(実施例5)
図5(a)は、本発明の実施に好適な実施例5の細胞培養チップ100の他の構成例を示す平面図、図5(b)は平面図のA−A位置で矢印方向に見たときの断面図、図5(c)は、液滴の形成法を説明する図である。図5(a)と図1(a)とを対比して明らかなように、実施例5の細胞培養チップ100は、実施例1のそれと同じ平面構造である。また、材料、サイズ、製法も同様である。実施例5の細胞培養チップ100の断面構造は、実施例1のそれとは異なる。すなわち、壁2で囲われた領域は疎水性領域3とされ、そのなかに、親水性領域4が周期的に配列される点では変わらないが、親水性領域4がウェルとして形成されている。この大きさは、直径400μm(あるいは400μm×400μm)で深さ100μmとする。
【0044】
図5(c)に示すように、この実施例5では、壁2で囲われた領域に、あらかじめ、シリコンオイル38を塗布しておく。シリコンオイル38の層を突き抜けて、図2を参照して説明した実施例2のピペット11とピペット20を挿入し、ウェル51内で、細胞懸濁液13をピペット11から、希釈液をピペット20から供給し、液滴21を直接、親水性領域4のウェルの中に形成する。ピペット11,20の先端を基板1のウェルの壁に接触させておくことで、形成された液滴21をウェル内に、自動的に形成し、実施例2における液滴15とすることができる。
【0045】
実施例5においても、液滴21を形成するウェルの領域とピペット11,20の先端は、モニター25により監視しながら制御することが必要であるが、実施例2の説明から容易に分かることなので、図と説明を簡略化した。
【0046】
(実施例6)
上述の実施例では、いずれも、一つのピペットは、一つの機能を持つものとして説明されているが、実施例6では、一つのピペットに、二つの機能を持たせた例について説明する。
【0047】
図6(a)は、ピペット81の先端が仕切り板82により二つの流路とされた例を示す図、図6(b)は、ピペット87の内側にピペット89を有する構造として二つの流路とされた例を示す図である。
【0048】
図6(a)に示す構造では、第一の流路83を第2の流路84に比して十分に大きくし、第一の流路83から細胞懸濁液、第2の流路84から希釈液を供給できる構造とすることで、実施例2記載のピペット11とピペット20とを一体型としたものとすることができる。それぞれの流路の制御は独立したフリンジポンプで行うことは言うまでも無い。
【0049】
図6(b)に示す構造では、内側のピペット89は内径が50μmとし、外側のピペット87との内壁までの間隔は最大で8μmとしている。これにより、内側のピペット87から細胞懸濁液、外側のピペット89から希釈液を供給することとして、実施例2記載のピペット11とピペット20とを一体型としたものとすることができる。それぞれの流路の制御は独立したフリンジポンプで行うことは言うまでも無い。
【0050】
いずれの場合でも、希釈液を供給する側のサイズを、細胞懸濁液を供給する側から細胞が回り込まないものとすることで、実施例2記載のピペット11とピペット20とを一体型としたものとすることができる。
【0051】
(その他)
上述したいずれの実施例でも、基板1の下面には細胞をインキュベーションする場合の基板温度をコントロールする手段22が存在する。基本的に細胞を顕微鏡で観察しながらのインキュベーションとなるので、基板1そのものは透明である必要がある。温度をコントロールするヒーター22も透明である必要があり、ITO素子を用いるのが良い。ITO素子としない場合は、例えば、透明な循環液が内部を温調した溶液が流れている構造のものを使用しても良い。この場合は、モニター25の光学系に制約が生ずることがあるが長焦点対物レンズを用いれば解決する。
【0052】
ピペット先端部を移動する細胞の計数については、例えば、ピペット先端部に対となる電極を設置し、細胞がピペットから出るときの電気的な変化を捕らえ、あるいは、先端部にレーザーなどを照射し、細胞が通過するときの光散乱を検出し、ピペットから細胞が排出されることを確認して計数することもできる。
【0053】
図3を参照しながら、細胞12を包み込んでいる液滴15を新しい培養液に交換する機能について説明したが、この機能を利用すれば、細胞に影響のある種々物質、たとえば、細胞培養用の基質、増殖因子、サイトカインや内分泌かく乱物質をはじめとする化学物質などを液滴内に注入して、細胞への影響を評価することができる。
【図面の簡単な説明】
【0054】
【図1】(a)は、実施例1に好適な細胞培養チップ100の平面図、(b)は平面図のA−A位置で矢印方向に見たときの断面図である。
【図2】(a)は、細胞培養チップ100に細胞を分配する実施例2のシステム構成を説明する概念図、(b)は、細胞培養チップ100の親水性領域4に細胞が分配された結果を示す断面図である。
【図3】実施例2のシステム構成の内、細胞12を包み込んでいる液滴15を新しい培養液に交換する機能に着目した実施例3のシステム構成を説明する概念図である。
【図4】実施例2のシステム構成の内、所定の細胞12を包み込んでいる液滴15の中から細胞を回収する機能に着目した実施例4のシステム構成を説明する概念図である。
【図5】(a)は、本発明の実施に好適な実施例5の細胞培養チップ100の他の構成例を示す平面図、(b)は平面図のA−A位置で矢印方向に見たときの断面図、(c)は、液滴の形成法を説明する図である。
【図6】(a)は、ピペット100の先端が仕切り板101により二つの流路とされた例を示す図、(b)は、ピペット110の内側にピペット111を有する構造として二つの流路とされた例を示す図である。
【符号の説明】
【0055】
1…シリコン基板、2…壁、3…疎水性領域、4…親水性領域、5…配置決め用のマーカー、12…細胞、11,20…ピペット、13…細胞12を含む懸濁液、16…光源、17…集光レンズ、18…コリメートレンズ、19…ステージ、22…ヒーター、25…モニター、26…パソコン、27,32,36,37…駆動装置、28…操作入力信号、30,34…チューブ、31,35…シリンジポンプ、38…シリコンオイル、39…駆動装置とピペットとの連係を示す線、100…細胞培養チップ。

【特許請求の範囲】
【請求項1】
複数の細胞を含む溶液を保持でき、所定の大きさの細胞ないし細胞塊が通過するにふさわしい先端開口径を持つピペットと、
前記ピペット先端の細胞を観察する手段と、
前記ピペット先端部に細胞を含む溶液をピペット内部から押し出して液滴を形成する手段と、
前記液滴内に所定の細胞が包含され、所定の大きさの液滴となったことを判断する手段と、
を備え、前記ピペット先端部に形成された前記液滴を基板上の所定の位置に滴下し並べることを特徴とする細胞分取装置。
【請求項2】
所定の数の細胞を含む液滴を形成する手段と、前記液滴のサイズをコントロールする手段、前記液滴を基板上にアレー状に配列するための基板と、前記基板上に形成されて前記液滴の溶媒より比重が小さくかつ実質的に液滴と混ざらない溶媒層からなることを特徴とする細胞培養システム。
【請求項3】
所定の数の細胞を含む液滴を形成する手段、前記液滴のサイズをコントロールする手段、前記液滴を基板上にアレー状に配列する基板、前記基板上に形成されて前記液滴の溶媒より比重が小さくかつ実質的に液滴の溶媒と混ざらない溶媒層、前記基板上の液滴の溶媒を交換する手段、前記細胞の培養中に前記液滴の温度をコントロールする手段、前記基板上にアレー状に配した液滴中の細胞を観察する手段、所定時間培養した後前記細胞を回収する手段からなることを特徴とする細胞培養システム。
【請求項4】
所定の大きさを持つ基板の一面を疎水性の領域にするとともに該疎水性の領域に所定の間隔で独立した複数の親水性の領域を形成した基板、前記複数の親水性の領域を囲う基板上に形成された壁とよりなるとともに、前記親水性の領域に所定の液滴に包含された細胞を配列し、かつ、前記液滴の溶媒より比重が小さくかつ実質的に液滴の溶媒と混ざらない溶媒層で覆ったことを特徴とする細胞培養チップ。
【請求項5】
前記溶媒層を先に設けた後、前記基板の複数の親水性の領域に所定の液滴に包含された細胞を配列した請求項4記載の細胞培養チップ。
【請求項6】
前記所定の数の細胞を含む液滴を形成する手段が、細胞を含む懸濁液を供給するピペットの先端部と培養液を供給するピペットの先端部とがつき合わせた形で配置され、それぞれの液量を制御して、液滴のサイズを制御する請求項1記載の細胞分取装置。
【請求項7】
前記所定の数の細胞を含む液滴を形成する手段が、細胞を含む懸濁液を供給するピペットの先端部と培養液を供給するピペットの先端部とがつき合わせた形で配置され、それぞれの液量を制御して、液滴のサイズを制御する請求項2または3記載の細胞培養システム。
【請求項8】
前記二つのピペットに対応する流路が一つのピペット内に形成された請求項6記載の細胞分取装置。
【請求項9】
前記二つのピペットに対応する流路が一つのピペット内に形成された請求項7記載の細胞培養システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2006−81482(P2006−81482A)
【公開日】平成18年3月30日(2006.3.30)
【国際特許分類】
【出願番号】特願2004−270768(P2004−270768)
【出願日】平成16年9月17日(2004.9.17)
【出願人】(504296024)有限責任中間法人 オンチップ・セロミクス・コンソーシアム (39)
【Fターム(参考)】