説明

給電システム

【課題】電力系統の運転状態に応じて、安定した電力供給が可能な給電システムを提供する。
【解決手段】電力系統5と電力変換装置3との接続点電圧Vaおよび電力変換装置3の出力電流Iaを検出する手段6、7と、接続点電圧Vaおよび出力電流Iaから有効電力を得る有効電力検出部8と、電力系統5内での電力供給状態又は機器運転状態を検出して、レベル検出信号を出力する系統状態検出部10と、予め設定された第1値と第2値とをレベル検出信号に基づいて切り換えて有効電力設定値Prefとして出力する有効電力設定部11と、有効電力検出部8の出力と有効電力設定部11の出力と系統状態検出部10の出力とに基づいて電力変換装置3の出力電圧の角周波数ωを演算する質点系演算部12と、角周波数ωと電流値Iaと、設定電圧値Vrefに基づいて、電力変換装置3の出力電圧目標値Ecを演算する電気特性演算部15と、を備える給電システム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の本発明の実施形態は、給電システムに関する。
【背景技術】
【0002】
近年、発電時に温室効果ガスを排出しない再生可能エネルギーを利用した発電設備を設置し、電力供給システムの低炭素化が検討されている。再生可能エネルギーを利用した発電は、火力発電等の発電システムと比べて電力供給量の制御が困難であり、安定した電力供給を実現することが望まれている。
【0003】
例えば、太陽光発電は日射量によって発電量に長時間の変動や短時間の変動が生じるため、蓄電池は蓄電量により出力が変動するため、火力発電等の発電システムに比べると安定した電力供給が困難である。これを解決するため従来の太陽光発電システムでは、蓄電池に代表される電力貯蔵装置と組み合わせて、太陽光発電モジュールと蓄電池の有効電力の合計を一定に制御する発電システムや、太陽光発電出力の短時間変動を抑制する方法が提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−318833号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、火力発電等の同期発電機は系統周波数が変動した際にそれを抑制する作用を潜在的に持っていること、さらに調速機が具備されており、系統周波数が変動した際にはそれを抑制するように発電量が調整されることから、系統周波数の安定化に寄与するのに対して、太陽光発電モジュールと電力貯蔵装置を組み合わせた従来の太陽光発電システムでは、系統周波数が変動した際に同期発電機で生じる上記のような周波数調整作用がないため、電力系統に大量導入された場合は系統周波数の安定化が困難になることが予想される。
【0006】
一方、系統周波数に対する変動抑制作用をはじめとする同期発電機の動作特性は、発電機ごとに固有であり、接続される系統の状況が変化しても特性を変えることはできないため、電力系統の運転状況などによっては必ずしも最適な動作をするとは限らない。
【0007】
本発明は上記事情を鑑みて成されたものであって、電力系統の運転状態に応じて安定した電力供給を行なう給電システムを提供することを目的とする。
【課題を解決するための手段】
【0008】
実施形態による給電システムは、直流電源の直流電力を交流電力に変換して電力系統に供給する電力変換部と、電力系統と前記電力変換装置との接続点電圧を検出する電圧検出部と、前記電力変換装置の出力電流を検出する電流検出部と、電圧検出部と電流検出部の出力から有効電力を得る有効電力検出部と、前記電力系統内での電力供給状態あるいは前記電力系統に含まれる機器の運転状態を検出して、検出結果に基づくレベル検出信号を出力する系統状態検出部と、前記系統状態検出部から出力された前記レベル検出信号が入力され、予め設定された第1値と第2値とを前記レベル検出信号に基づいて切り換えて有効電力設定値として出力する有効電力設定部と、前記有効電力検出部の出力と有効電力設定部の出力と系統状態検出部の出力とに基づいて前記電力変換装置の出力電圧の角周波数を演算する質点系演算部と、前記角周波数と電流検出部で検出された電流値と、設定電圧値に基づいて、前記電力変換装置の出力電圧目標値を演算する電気特性演算部と、を備え、前記出力電圧目標値に基づいて前記電力変換装置の出力電圧が制御される。
【図面の簡単な説明】
【0009】
【図1A】第1実施形態の給電システムの一構成例を示す図である。
【図1B】第1実施形態の給電システムの他の構成例を示す図である。
【図2】図1Aおよび図1Bに示す給電システムに接続される電力系統と、送電線潮流検出部と、レベル検出器との一構成例を示す図である。
【図3】図1Aおよび図1Bに示す給電システムの機械出力演算部の一構成例を示すブロック図である。
【図4】図1Aおよび図1Bに示す給電システムの質点系演算部の一構成例を示すブロック図である。
【図5A】第2実施形態の給電システムの一構成例を示す図である。
【図5B】第2実施形態の給電システムの他の構成例を示す図である。
【図6】図5Aおよび図5Bに示す給電システムに接続される電力系統の一構成例を示す図である。
【図7】図5Aおよび図5Bに示す給電システムの界磁電圧演算部の一構成例を示すブロック図である。
【図8A】第3実施形態および第4実施形態の給電システムの一構成例を示す図である。
【図8B】第3実施形態および第4実施形態の給電システムの他の構成例を示す図である。
【図9A】第5実施形態の給電システムの一構成例を示す図である。
【図9B】第5実施形態の給電システムの他の構成例を示す図である。
【図10A】第6実施形態の給電システムの一構成例を示す図である。
【図10B】第6実施形態の給電システムの他の構成例を示す図である。
【図11】図10Aおよび図10Bに示す給電システムに接続される電力系統の一構成例を示す図である。
【発明を実施するための形態】
【0010】
以下、実施形態について、図面を参照して説明する。
図1Aに、第1実施形態の給電システムの一構成例を示す。本実施形態に係る給電システムは、太陽電池1と蓄電池2とから出力された直流電力を交流電力に変換して出力する電力変換装置3と、電圧検出部6と、電流検出部7と、有効電力検出部8と、送電線潮流検出部9と、レベル検出器10と、電力変換制御部16と、発電機特性演算装置100と、を備えている。
【0011】
電力変換装置3は、平滑リアクトル4を介して電力系統5に接続され、交流電力を電力系統5へ出力する。電圧検出部6は、平滑リアクトル4と電力系統5との接続点aに設置されて、接続点aにおける接続点電圧Vaを検出する。電流検出部7は、電力系統5と電力変換装置3との間に直列に接続され、電力変換装置3から出力される出力電流Iaを検出する。有効電力検出部8は、電圧検出部6から出力された接続点電圧Vaと電流検出部7から出力された出力電流Iaとを入力とし、発電機特性演算装置100へ有効電力Peを出力する。
【0012】
送電線潮流検出部9は電力系統5に含まれる送電線51(図2に示す)を流れる電力、すなわち送電線潮流PLを検出し、レベル検出器10へ供給する。レベル検出器10は、送電線潮流PLが一定範囲を逸脱したか否かを検出し、検出結果に応じたレベル検出信号を発電機特性演算装置100へ出力する。
【0013】
本実施形態では、送電線潮流検出部9およびレベル検出器10は、電力系統5内での電力供給状態あるいは電力系統5に含まれる機器の運転状態を検出して、検出結果に基づくレベル検出信号を出力する系統状態検出部である。なお、送電線潮流検出部9は、電力系統5内の送電線51に流れる電流を検出してもよい。その場合にはレベル検出器10は検出された電流が一定範囲を逸脱したか否かを検出する。
【0014】
発電機特性演算装置100は、有効電力設定部11と、質点系演算部12と、機械出力演算部13と、電圧設定部14と、電気特性演算部15と、を備えている。
【0015】
有効電力設定部11はレベル検出器10から出力されたレベル検出信号を受信して、有効電力設定値Prefを機械出力演算部13へ出力する。
機械出力演算部13は、有効電力設定部11から出力された有効電力設定値Prefと、レベル検出器10から出力されたレベル検出信号と、質点系演算部12から出力された角周波数ωと、を受信する。機械出力演算部13は機械トルクTmを質点系演算部12へ出力する。
【0016】
質点系演算部12は、機械出力演算部13から出力された機械トルクTmと、レベル検出器10から出力されたレベル検出信号と、有効電力検出部8で検出された有効電力Peと、を受信する。質点系演算部12は、各周波数ωを機械出力演算部13および電気特性演算部15へ出力する。
【0017】
電圧設定部14は、予め設定された電圧設定値Vrefを出力する。
電気特性演算部15は、レベル検出器10から出力されたレベル検出信号と、電圧検出部6で検出された接続点電圧Vaと、電流検出部7で検出された出力電流Iaと、質点系演算部12から出力された角周波数ωと、電圧設定部14から出力された電圧設定値Vrefと、を受信する。電気特性演算部15は、出力電圧目標Ecを電力変換制御部16へ出力する。
【0018】
電力変換制御部16は、発電機特性演算装置100の出力、即ち電気特性演算部15から出力された出力電圧目標Ecを入力とし、出力電圧目標Ecを達成するように電力変換装置3を制御する。
【0019】
図2は、図1Aに示す給電システムに接続される電力系統5、および送電線潮流検出部9とレベル検出器10の一構成例である。
電力系統5は、複数の発電機52a、52b、52c、53と、複数の負荷54a、54b、54c、55とを含み、それぞれが送電線51で接続される。発電機52a、52b、52cと発電機53とは送電線51を介して接続されている。送電線51に対して発電機52a、52b、52cが配置された側には、負荷55が接続されている。送電線51に対して発電機53が配置された側には、負荷54a、54b、54cが接続されている。この例では、発電機52a、52b、52c周辺には負荷が少なく、一方負荷54a、54b、54c側は発電機が少ないため、送電線51には通常発電機52a、52b、52c側から負荷54a、54b、54c側へ有効電力(電力潮流)PLが流れる。
【0020】
なお、ここでは、送電線51に対して発電機52a、52b、52c側を電源側系統と称し、送電線51に対して負荷54a、54b、54c側を負荷側系統と称する。負荷側系統には本実施形態の給電システムAが接続され、電源側系統には本実施形態の給電システムBが接続されている。以下の図2の説明では、給電システムAの構成の符号には「A」を末尾に付し、給電システムBの構成の符号には「B」を末尾に付して、それぞれの構成を区別する。
【0021】
送電線潮流検出部9A、9Bは、送電線51と直列に接続されており、送電線51を流れる有効電力すなわち電力潮流(送電線潮流)PLを検出し、検出結果をレベル検出器10A、10Bへ供給する。
【0022】
レベル検出器10A、10Bでは、送電線51の電力潮流PLが予め設定された一定の範囲を逸脱した場合、発電機特性演算装置100A、100Bに対してレベル検出信号を与える。レベル検出器10A、10Bでの検出に用いる設定レベルとして、例えば、送電線51の許容電力融通量の80%とした場合、送電線51を流れる電力潮流PLが許容電力融通量の80%以上となったときに、レベル検出器10A、10Bは発電機特性演算装置100A、100Bに対して所定のレベル検出信号を出力する。
【0023】
次に、上記給電システムにおいて、電力変換装置3の基本的な動作を説明する。電力変換装置3はいわゆるインバータであり、電力変換制御部16から出力される制御信号に基づいて交流電圧を出力する。その出力電圧は電力変換制御部16に入力される出力電圧目標Ecと等しい。この出力電圧が電力系統5の電圧に対して進み位相であれば電力変換装置3から電力系統5に向かって有効電力が流れ、位相差が大きいほど有効電力は大きくなる。また、電力変換装置3の出力電圧が大きくなれば電圧検出部6で検出される接続点電圧Va、すなわち電力変換装置3が電力系統5に接続される点aの電圧も大きくなり、電力変換装置3の出力電圧が小さくなれば接続点電圧Vaも小さくなる。
【0024】
以上により、発電機特性演算装置100の出力である出力電圧目標Ecの位相と大きさを個別に変化させることで電力変換装置3から出力される有効電力と、接続点電圧Vaとの大きさを独立に制御することができる。
【0025】
次に、出力電圧目標Ecを生成する発電機特性演算装置100の動作を説明する。
有効電力設定部11は、電力変換装置3から出力させるべき有効電力設定値Prefを出力する。本実施形態においては、有効電力設定部11はレベル検出器10から与えられるレベル検出信号により有効電力設定値Prefを切り換えるように構成されている。すなわち、有効電力設定部11には予め複数の値が設定され、レベル検出信号の値に応じて複数の値の中から選択された値が有効電力設定値Prefとして出力される。
【0026】
図2に示す場合では、給電システムAと給電システムBとのそれぞれのレベル検出器10A、10Bは、送電線51の潮流が一定値以上(あるいは一定値以下)になった場合に所定のレベル検出信号を各給電システムA、Bの有効電力設定部11A、11Bに与える。
【0027】
レベル検出器10A、10Bから有効電力設定部11A、11Bに出力される信号は、例えば、送電線51の潮流が一定範囲に含まれる場合(例えば、電力潮流PL<許容電力融通量×0.80)にはロー(Low)レベルのレベル検出信号であって、送電線51の潮流が一定範囲に含まれない場合(例えば、電力潮流PL≧許容電力融通量×0.80)にはハイ(High)レベルのレベル検出信号となる。
【0028】
この場合、ハイレベルのレベル検出信号を与えられた場合、負荷側系統に接続される給電システムAの有効電力設定部11Aでは有効電力設定値Prefを通常より大きな値、電源側系統に接続される給電システムBの有効電力設定部11Bでは有効電力設定値Prefを通常より小さな値に切り換える。
【0029】
したがって、負荷側の給電システムでは、有効電力設定部11には通常用いる値と、通常よりも大きな値との少なくとも2つの値(第1値および第2値)が予め設定されている。電源側の給電システムでは、有効電力設定部11には通常用いる値と、通常よりも小さい値との少なくとも2つの値(第1値および第2値)が予め設定されている。
【0030】
電力系統5に接続された給電システムが、負荷側として動作するか、電源側として動作するかは、給電システムが接続される電力系統5の構成に応じて予め設定されてもよく、設置後に設定を変更可能にしてもよい。レベル検出器10が送電線51の電力潮流PLの向きを検出して、発電機特性演算装置100が負荷側として動作するか電源側として動作するかを判断してもよい。その場合には、給電システムは負荷側として動作することも電源側として動作することも有り得るため、有効電力設定部11には通常用いる値と、通常よりも大きい値と、通常よりも小さい値との少なくとも3つの値が予め設定される。
【0031】
図3に、機械出力演算部13の一構成例のブロック図を示す。機械出力演算部13は、一般に調速機と呼ばれる発電機の制御装置と同等の作用をし、一例として図3の制御ブロック図のように構成される。
【0032】
機械出力演算部13は、増幅率Kの比例回路131と、時定数T1、T2の1次遅れ回路132、133と、定数切換回路134と、を備え、有効電力設定部11の出力である有効電力設定値Prefと質点系演算部12の出力である角周波数ωとが入力され同期発電機における機械トルクTm相当を演算して出力する。機械トルクTmは、火力発電機等の制御装置における、蒸気エネルギーに相当する。
【0033】
角周波数ωが基準角周波数ωoより低下すると比例回路131および1次遅れ回路132の入力は正値となり(ωo−ω>0)、最終的に機械トルクTmは増加する。逆に、角周波数ωが基準角周波数ωoより上昇すると比例回路131および1次遅れ回路132の入力は負値となり(ωo−ω<0)、最終的に機械トルクTmは減少する。角周波数ωの変化に対する機械トルクTmの変化の大きさや速さは、比例回路131の増幅率Kや1次遅れ回路132、133の時定数T1、T2により決まる。
【0034】
本実施形態を適用した給電システムAおよび給電システムBにおいては、レベル検出器10から所定のレベル検出信号が与えられた場合、すなわち送電線51の電力潮流が一定値を越えた場合、定数切換回路134は、増幅率Kを通常より大きな値、あるいは1次遅れ時定数T1、T2を通常より小さな値に切り換える。このように定数を切換えることにより角周波数ωの変化に対する機械トルクTmの変化が速くなる。なお、定数切換回路134は、定数毎に予め設定された複数の値を備え、レベル検出信号の値に応じてこれら複数の値を切り換えて定数として用いる。
【0035】
図4に、質点系演算部12の一構成例のブロック図を示す。質点系演算部12は同期発電機の運動方程式を演算するものであり、一例として図4のブロック図のように構成される。質点系演算部12は、積分器121と、比例回路122と、定数切換回路123と、を備えている。
【0036】
図4において、積分器121のMはタービンを含めた発電機の慣性定数であり、比例回路122のDはダンピング係数である。機械トルクTmが一定で電気出力(有効電力)Peが減少すると積分器121への入力は正値となるので慣性定数Mとダンピング係数Dとに応じた変化率で角周波数ωは上昇する。逆に、電気出力(有効電力)Peが増加すると角周波数ωは低下する。電気出力(有効電力)Peが一定で機械トルクTmが変化する場合は極性が逆となる。機械トルクTmや電気出力(有効電力)Peの変化に対する角周波数ωの変化の大きさや速さは、慣性定数Mやダンピング係数Dにより決まる。
【0037】
本実施形態を適用した給電システムA、および、給電システムBにおいては、レベル検出器10から所定のレベル検出信号が与えられた場合、すなわち送電線51の電力潮流が一定値を越えた場合、定数切換回路123は、慣性定数Mあるいはダンピング係数Dを通常より小さな値に切り換える。なお、定数切換回路123は、定数毎に予め設定された複数の値を備え、レベル検出信号の値に応じてこれら複数の値を切り換えて定数として用いる。この切換えにより機械トルクTmや電気出力(有効電力)Peの変化に対する角周波数ωの変化が速くなる。
【0038】
機械出力演算部13では角周波数ωの上昇時は機械トルクTmを減少、角周波数ω低下時は機械トルクTmを増加させ、一方、質点系演算部12では機械トルクTm低下時は角周波数ωを減少し、機械トルクTm増加時は角周波数ωを増加するため、機械出力演算部13および質点系演算部12は角周波数ωの変動、すなわち周波数の変動を抑制するように作用する。
【0039】
電気特性演算部15は同期発電機の電気特性式、いわゆるPark式を演算するもので、演算では発電機の電気的な過渡応答特性を示す同期リアクタンスXd、過渡リアクタンスXd’、次過渡リアクタンスXd”、過渡時定数Td’、次過渡時定数Td”などの定数を使用する。
【0040】
電気特性演算部15は、レベル検出器10から出力されたレベル検出信号と、電圧設定部14の出力である電圧設定値Vrefと、質点系演算部12の出力である角周波数ωと、電流検出部7で得られる電力変換装置3の出力電流Iaと、電圧検出部6で得られる接続点電圧Vaとを入力として、発電機端子電圧相当の値を演算し、それを出力電圧目標Ecとして電力変換制御部16へ与える。
【0041】
本実施形態を適用した図2の給電システムAと給電システムBとにおいては、レベル検出器10から所定のレベル検出信号が与えられた場合、すなわち送電線51の電力潮流が一定値を越えた場合、電気特性演算部15は過渡時定数Td’、次過渡時定数Td”を通常より小さな値に切り換える。この切換えにより角周波数ωや電圧Va、電流Iaの変化に対する出力電圧目標Ecの変化が速くなる。なお、電気特性演算部15は、定数毎に予め設定された複数の値を備え、レベル検出信号の値に応じてこれら複数の値を切り換えて定数として用いる。
【0042】
以上により、本実施形態の給電システムにおいては同期発電機と同等の特性を持ちながら運転し、送電線の電力潮流が一定値を超えた場合には、負荷側に接続された給電システムでは出力を増加し、電源側に接続された給電システムでは出力を減少させることによって、送電線潮流を低減し、さらに発電機の特性を模擬する定数を切り換えることで通常時に比べて有効電力設定値Pref変更に対する実際の出力の変化速度があがり、送電線潮流を低減するまでの時間が短縮される。
【0043】
上記のように、本実施形態によれば、同期発電機の運動方程式、電気特性式(Park式)、同期発電機の制御装置である調速機の特性を演算する発電機特性演算装置100の出力に基づいて電力変換制御部16が電力変換装置3の出力電圧を制御するので、電力変換装置3は電力系統5の電圧や周波数の変化に対して同期発電機と同等に動作する。
【0044】
また、スケジュール通りに有効電力を出力するなど同期発電機と同様の運用も可能となるので、同期発電機と同様に扱うことができる。さらに電力系統5内の送電線潮流が一定値を越えた場合には、その電力潮流を低減するように電力変換装置3の出力が高速に変化することで重潮流を解消し系統の安定性や送電線の過負荷を防止することができる。
【0045】
図1Bに示すように、太陽電池1を持たない給電システムとしてもよい。蓄電池2には電力系統5からの電力が充電される。この場合、上記処理は蓄電池2から電力系統5へ電力が供給される時のみならず、電力系統5から蓄電池2へ電力が供給される時にも適用される。
【0046】
すなわち、本実施形態によれば、電力系統の運転状態に応じて安定した電力供給を行なう給電システムを提供することができる。
【0047】
次に、第2実施形態に係る給電システムについて図面を参照して説明する。なお、以下の実施形態の説明において、第1実施形態の給電システムと同じ構成については同一の符号を付し、重複する説明は省略する。
【0048】
図5Aに、本実施形態の給電システムの一構成例を示す。第1実施形態の給電システムと異なる点は、発電機特性演算装置100が界磁電圧演算部17をさらに備える点、および、電圧検出部6から出力される接続点電圧Vaが入力されるレベル検出器18をさらに備え、レベル検出器18の出力を界磁電圧演算部17と、電気特性演算部15とに与えている点である。レベル検出器18は、電力系統5内で送電線が短絡あるいは地絡したことを検出し、検出結果に基づくレベル検出信号を出力する系統状態検出部である。
【0049】
図6は、図5Aに示す第2実施形態の給電システムに接続される電力系統5、および電圧検出部6とレベル検出器18の構成例であり、本実施形態の給電システムは、電源側系統に接続される。レベル検出器18は給電システムと電力系統5との接続点電圧Vaの大きさが一定値以下になった場合、発電機特性演算装置100に対して所定のレベル検出信号を与える。レベル検出器18の設定レベルとしては、給電システムの近傍で短絡や地絡といった事故が発生した場合を想定した電圧の値、例えば定格電圧の50%以下といった値を使用する。
【0050】
例えば、レベル検出器18は、接続点電圧Vaの大きさが定格電圧の50%以下となった場合にハイレベルのレベル検出信号を出力し、接続点電圧Vaの大きさが定格電圧の50%よりも大きい場合にローレベルのレベル検出信号を出力する。
【0051】
図7に、界磁電圧演算部17の一構成例を示す。界磁電圧演算部17は、一般に言われる励磁制御装置に相当する。界磁電圧演算部17は、2つの1次遅れ回路171、172と、定数切換回路173と、を備えている。
【0052】
界磁電圧演算部17は、電圧設定値Vrefと電圧検出部6で得られた接続点電圧Vaとの差分(Vref−Va)に応じて界磁電圧Efd相当を出力する。接続点電圧Vaが電圧設定値Vrefより小さいと1次遅れ回路171の入力は正値となるので界磁電圧Efdは増加し、逆に接続点電圧Vaが電圧設定値Vrefより大きいと界磁電圧Efdは減少する。
【0053】
電気特性演算部15で得られる出力電圧目標Ecの大きさは界磁電圧演算部17の出力である界磁電圧Efdと同じ方向に変化するため、電力系統5の電圧が低下すると界磁電圧Efdが大きくなり、出力電圧目標Ecも大きくなり電力系統5の電圧低下を抑制するように作用する。逆に、電力系統5の電圧が上昇すると出力電圧目標Ecも小さくなり電力系統5の電圧上昇を抑制するように作用する。
【0054】
系統接続点電圧Vaの変化に対する界磁電圧Efdの変化の大きさや速さは、1次遅れ時定数T1、T2、1次遅れゲインK1、K2、出力リミット値Emax、Eminにより決まる。本実施形態を適用した給電システムにおいては、レベル検出器18からレベル検出信号が与えられた場合、すなわち接続点電圧Vaが大きく低下したとき、定数切換回路173は、たとえば1次遅れ時定数T1を通常より小さな値に切り換え、出力リミット値Emaxを通常より大きくし出力リミット値Eminを通常より小さくして出力範囲を広く切り換える。
【0055】
このように定数を切換えることにより、接続点電圧Vaの変化に対する界磁電圧Efdの変化が速く、かつ大きくなる。なお、定数切換回路173は、1次遅れ時定数T2や、1次遅れゲインK1、K2の値も切り換えるように構成されてもよい。例えば、接続点電圧Vaが大きく低下したとき、定数切換回路173は、1次遅れ時定数T1、T2を通常より小さな値とし、ゲインK1、K2を通常より大きな値とし、出力リミット値Emax、Eminを切り換えて通常より広い範囲としてもよい。これらの定数を切り換えることにより、接続点電圧Vaの変化に対する界磁電圧Efdの変化を早く、かつ大きくすることができる。また定数切換回路173は、定数毎に予め設定された複数の値を備え、レベル検出信号の値に応じてこれら複数の値を切り換えて定数として用いる。
【0056】
さらに電気特性演算部15では、レベル検出器18から所定のレベル検出信号が与えられた場合、すなわち接続点電圧Vaが大きく低下した場合、過渡時定数Td’、次過渡時定数Td”を通常より小さな値に切り換える。この切換えにより角周波数ω、界磁電圧Efd、および、電流Iaの変化に対する出力電圧目標Ecの変化が速くなる。
【0057】
以上により、本実施形態を適用した給電システムでは、同期発電機と同等の特性を持ちながら運転し、近傍で短絡や地絡などの事故が発生して電圧が大幅に低下した場合には、励磁制御装置の機能を大きくし、さらに、界磁電圧Efdや角周波数ωの変化に対する電気特性演算部の応答速度を早くすることで、系統電圧を維持することができる。これにより、電力系統5の発電機52a、52b、52cの過渡安定度が向上する。
【0058】
上記のように、本実施形態によれば、同期発電機の運動方程式、電気特性式(Park式)、同期発電機の制御装置である調速機と励磁装置の特性を演算する発電機特性演算装置100の出力に基づいて電力変換制御部16が電力変換装置3の出力電圧を制御するので、電力変換装置3は電力系統5の電圧や周波数の変化に対して同期発電機と同等に動作する。また、スケジュール通りに有効電力を出力するなど同期発電機と同様の運用も可能となるので、同期発電機と同様に扱うことができる。さらに、電力系統5内で短絡や地絡などの事故が発生した場合には、電圧維持機能を高くするように電力変換装置3の出力電圧が高速に変化することで、近傍の発電機の過渡安定度を向上させ、電力振動や脱調などの不安定現象を防止することができる。
【0059】
図5Bに示すように、太陽電池1を持たない給電システムとしてもよい。蓄電池2には電力系統5からの電力が充電される。この場合、上記処理は蓄電池2から電力系統5へ電力が供給される時のみならず、電力系統5から蓄電池2へ電力が供給される時にも適用される。
【0060】
すなわち、本実施形態によれば、電力系統の運転状態に応じて安定した電力供給を行なう給電システムを提供することができる。
【0061】
なお、上記第2実施形態では、レベル検出器18から出力されるレベル検出信号が電気特性演算部15と界磁電圧演算部17とに供給されていたが、レベル検出信号は有効電力設定部11、質点系演算部12、および機械出力演算部13に更に供給されても良い。その場合には、有効電力設定部11はレベル検出信号の値に応じて有効電力設定値Prefを切り換え、質点系演算部12はレベル検出信号の値に応じて演算に用いる定数を切り換え、機械出力演算部13はレベル検出信号の値に応じて演算に用いる定数を切り換える。このことによって、上述の第2実施形態と同様の効果を得ることができる。
【0062】
次に第3実施形態に係る給電システムについて図面を参照して説明する。
図8Aに、本実施形態に係る給電システムの一構成例を示す。第1実施形態の給電システムにおいては、レベル検出器10に入力される信号として送電線潮流PLの検出値を使用していたが、本実施形態では送電線潮流PLの検出値の代わりに、電力系統5全体の監視と制御とを行う中央制御装置CNTのLFC(Load Frequency Control)出力とLFC余力(LFCの出力信号余力)とを使用する。
【0063】
LFCは系統の周波数が変動した場合に、それを抑制するよう電力系統5に含まれる各発電機に対して出力の増減を指令する制御であり、例えば夜間など運転している発電機が少ない場合にはLFC余力が小さくなる。
【0064】
すなわち、LFC余力が一定値以下となると、電力系統5に含まれる発電機により発電可能な電力の余力が低下し、電力系統5に含まれる発電機による電力供給が不安定になる可能性が高くなる。したがって、本実施形態ではLFC余力が一定値以下となった場合には、給電システムによる出力電圧目標Ecを増大させ、給電システムによる電力供給を増加して、電力系統5を安定化させる。
【0065】
本実施形態では、レベル検出器10は、LFC余力が一定値以下となったことを検出すると所定のレベル検出信号を出力する。レベル検出器10は、電力系統5内での電力供給状態あるいは電力系統5に含まれる機器の運転状態を検出して、検出結果に基づくレベル検出信号を出力する系統状態検出部である。
【0066】
LFC余力が一定値以下となった場合には、第1実施形態の給電システムと同様に、有効電力設定値Pref、質点系演算部12の演算に使用する定数、機械出力演算部13の演算に使用する定数、電気特性演算部15の演算に使用する定数を切り換えることにより、給電システムによる出力電力が高速かつ大きく変化できるようにして、LFC調整量を増加させ、系統周波数を安定化することができる。
【0067】
図8Bに示すように、太陽電池1を持たない給電システムとしてもよい。蓄電池2には電力系統5からの電力が充電される。この場合、上記処理は蓄電池2から電力系統5へ電力が供給される時のみならず、電力系統5から蓄電池2へ電力が供給される時にも適用される。
【0068】
すなわち、本実施形態によれば、電力系統の運転状態に応じて安定した電力供給を行なう給電システムを提供することができる。
【0069】
次に、第4実施形態に係る給電システムについて図面を参照して説明する。
第1実施形態の給電システムにおいては、レベル検出器10に入力される信号として送電線潮流PLの検出値を使用していたが、本実施形態では送電線潮流PLの検出値の代わりに、予め設定されたスケジュールと異なる運転状態となった発電機の容量(例えば電力系統5に接続された発電機の運転状況)、あるいは、系統分離発生情報(例えば電力系統5に含まれる送電線と変圧器との運転状況)を使用する。
【0070】
本実施形態に係る給電システムは、例えば図8Aに示すように構成され、発電機の容量および系統分離発生情報は中央制御装置CNTからレベル検出器10へ出力される。レベル検出器10は、電力系統5内での電力供給状態あるいは電力系統5に含まれる機器の運転状態を検出して、検出結果に基づくレベル検出信号を出力する系統状態検出部である。
【0071】
すなわち、設定されたスケジュールと異なる運転をする発電機により発電されるべき容量が一定値以上となると、電力系統5において安定した電力供給が困難となる。また、電力系統5内で電力供給経路が分断した等のトラブルにより系統分離が発生すると、電力系統5において安定した電力供給が困難となる。そこで、本実施形態の給電システムでは、レベル検出器10においてスケジュールと異なる運転状態となった発電機の容量、あるいは、系統分離発生情報を検出して、給電システムから出力される有効電力Peを制御して安定した電力供給を行う。
【0072】
本実施形態では、レベル検出器10は、例えば緊急停止などにより設定されたスケジュールと異なる運転状態となった発電機の容量が一定値を逸脱したこと、あるいは、系統分離が発生したことを検出して、所定レベルのレベル検出信号を出力する。
【0073】
設定されたスケジュールと異なる運転状態となった発電機の容量が一定値を逸脱した場合、あるいは、系統分離が発生した場合、第1実施形態の給電システムと同様に、有効電力設定値Pref、質点系演算部12の演算に使用する定数、機械出力演算部13の演算に使用する定数、電気特性演算部15の演算に使用する定数を切り換える。このことにより、本実施形態に係る給電システムによる出力電力を高速に変化させ発電量の不足や余剰を防止し、系統周波数を安定化することができる。
【0074】
図8Bに示すように、太陽電池1を持たない給電システムよしてもよい。蓄電池2には電力系統5からの電力が充電される。この場合、上記処理は蓄電池2から電力系統5へ電力が供給される時のみならず、電力系統5から蓄電池2へ電力が供給される時にも適用される。
【0075】
すなわち、本実施形態によれば、電力系統の運転状態に応じて安定した電力供給を行なう給電システムを提供することができる。
【0076】
次に、第5実施形態に係る給電システムについて図面を参照して説明する。
図9Aに本実施形態に係る給電システムの一構成例を示す。第1実施形態においては、レベル検出器10に入力される信号として送電線潮流PLの検出値を使用していたが、本実施形態では送電線潮流PLの検出値の代わりに、接続点電圧Vaの周波数検出値を使用している。
【0077】
本実施形態に係る給電システムは、周波数検出部19を備えている。周波数検出部19は接続点電圧Vaの周波数を検出し、検出した値をレベル検出器10へ出力している。周波数検出部19およびレベル検出器10は、電力系統5内での電力供給状態あるいは電力系統5に含まれる機器の運転状態を検出して、検出結果に基づくレベル検出信号を出力する系統状態検出部である。
【0078】
本実施形態では、レベル検出器10は、接続点電圧Vaの周波数が一定範囲を逸脱したことを検出し、所定レベルのレベル検出信号を出力する。接続点電圧Vaの周波数が一定範囲を逸脱した場合、第1実施形態の給電システムと同様に、有効電力設定値Pref、質点系演算部12の演算に使用する定数、機械出力演算部13の演算に使用する定数、電気特性演算部15の演算に使用する定数を切り換えることにより、本実施形態に係る給電システムによる出力電力を高速に変化させ、系統周波数を安定化することができる。
【0079】
図9Bに示すように、太陽電池1を持たない給電システムよしてもよい。蓄電池2には電力系統5からの電力が充電される。この場合、上記処理は蓄電池2から電力系統5へ電力が供給される時のみならず、電力系統5から蓄電池2へ電力が供給される時にも適用される。
【0080】
すなわち、本実施形態によれば、第1実施形態の給電システムと同様に電力系統の運転状態に応じて安定した電力供給を行なう給電システムを提供することができる。
【0081】
次に、第6実施形態に係る給電システムについて図面を参照して説明する。本実施形態の説明において、第2実施形態に係る給電システムと同様の構成については同一の符号を付して説明を省略する。
【0082】
第2実施形態に係る給電システムにおいては、レベル検出器18に入力される信号として接続点電圧Vaを使用し、接続点電圧Vaの値が一定値以下まで低下したことを検出して短絡や地絡などの事故を検出していたが、本実施形態では接続点電圧Vaの代わりに、電力系統5に設置された事故検出保護リレー56の出力を使用している。
【0083】
図10Aに本実施形態に係る給電システムの一構成例を示す。
図11に、本実施形態に係る給電システムに接続される電力系統の一構成例を示す。事故検出保護リレー56が動作すると、事故検出保護リレー56からレベル検出器18へ事故検出保護リレー56が動作したことを通知する所定の信号が出力される。レベル検出器18は、事故検出保護リレー56から所定の信号が出力されたことを検出して、所定レベルのレベル検出信号を出力する。レベル検出器18は、電力系統5内で送電線が短絡あるいは地絡したことを検出し、検出結果に基づくレベル検出信号を出力する系統状態検出部である。
【0084】
事故検出保護リレー56が動作した場合、第2実施形態の給電システムと同様に、界磁電圧演算部17の演算に使用する定数、電気特性演算部15の演算に使用する定数を切り換えることにより、本実施形態に係る給電システムの電圧維持機能を高くするように電力変換装置3の出力電圧が高速に変化することで、近傍の発電機の過渡安定度を向上させ、電力振動や脱調などの不安定現象を防止することができる。
【0085】
図10Bに示すように、太陽電池1を持たない給電システムよしてもよい。蓄電池2には電力系統5からの電力が充電される。この場合、上記処理は蓄電池2から電力系統5へ電力が供給される時のみならず、電力系統5から蓄電池2へ電力が供給される時にも適用される。
【0086】
すなわち、本実施形態によれば、第2実施形態の給電システムと同様に電力系統の運転状態に応じて安定した電力供給を行なう給電システムを提供することができる。
【0087】
なお、上記第1実施形態乃至第6実施形態の給電システムにおいては、給電システムの動作特性を変化させるための条件と、特性を変化させるために切り換える定数の組合せの例を示したが、給電システムが接続される電力系統の特性に応じて、これらの条件と定数の組合せを任意に選択することで、各電力系統の運転の安定性をより向上させることができる。
【0088】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、電圧検出部6で得られる電圧を指定値に自動制御しない場合、即ち有効電力の増減等による電圧変動を許容する場合は、電圧設定部14で界磁電圧相当値Efdを設定することにより界磁電圧演算部14を省略することができる。また、同期発電機単体の特性のみが必要で角周波数ωの変動抑制が不要な場合は、有効電力設定部11で機械出力Tmを設定することにより機械出力演算部13を省略することができる。
【符号の説明】
【0089】
a…接続点、Va…接続点電圧、Ia…出力電流、Pe…有効電力(電気出力)、PL…送電線潮流(電力潮流)、Pref…有効電力設定値、Tm…機械トルク、Vref…電圧設定値、Ec…出力電圧目標、ω…角周波数、Efd…界磁電圧、Emax…出力リミット値(最大値)、Emin…出力リミット値(最小値)、CNT…中央制御装置、
1…太陽電池、2…蓄電池、3…電力変換装置、4…平滑リアクトル、6…電圧検出部、7…電流検出部、8…有効電力検出部、9、9A、9B…送電線潮流検出部、10、10A、10B、18…レベル検出器、11、11A、11B…有効電力設定部、12…質点系演算部、13…機械出力演算部、14…電圧設定部、15…電気特性演算部、16…電力変換制御部、17…界磁電圧演算部、19…周波数検出部、5…電力系統、51…送電線、52a、52b、52c、53…発電機、54a、54b、54c、55…負荷、56…事故検出保護リレー、
100、100A、100B…発電機特性演算装置、121…積分器、122…比例回路、123…定数切換回路、131…比例回路、132、133…1次遅れ回路、134…定数切換回路、171、172…1次遅れ回路、173…定数切換回路、
K…ゲイン(増幅率)、T…時定数、M…慣性定数、D…ダンピング係数、Xd…同期リアクタンス、Xd’…過渡リアクタンス、Xd”…次過渡リアクタンス、Td’…過渡時定数、Td”…次過渡時定数。

【特許請求の範囲】
【請求項1】
直流電源の直流電力を交流電力に変換して電力系統に供給する電力変換部と、
電力系統と前記電力変換部との接続点電圧を検出する電圧検出部と、
前記電力変換部の出力電流を検出する電流検出部と、
電圧検出部と電流検出部の出力から有効電力を得る有効電力検出部と、
前記電力系統内での電力供給状態あるいは前記電力系統に含まれる機器の運転状態を検出して、検出結果に基づくレベル検出信号を出力する系統状態検出部と、
有効電力設定値を出力する有効電力設定部と、
前記有効電力検出部の出力と前記有効電力設定値と前記系統状態検出部の出力とに基づいて前記電力変換部の出力電圧の角周波数を演算する質点系演算部と、
前記角周波数と電流検出部で検出された電流値と、設定電圧値に基づいて、前記電力変換部の出力電圧目標値を演算する電気特性演算部と、
前記レベル検出信号に基づいて前記有効電力設定値を予め設定された第1値あるいは第2値に切り換える手段、および、前記各周波数の演算に用いられる定数と前記出力電圧目標値の演算に用いられる定数との少なくとも一方を前記レベル検出信号に基づいて切り換える定数切換手段の少なくとも一方と、を備え、
前記出力電圧目標値に基づいて前記電力変換部の出力電圧が制御される給電システム。
【請求項2】
前記系統状態検出部は、前記電力系統内の送電線に流れる電流あるいは電力潮流を検出する送電線潮流検出部と、前記電力系統の送電線の電流あるいは電力潮流が一定範囲を逸脱したか否かを検出して、検出結果に基づくレベル検出信号を出力するレベル検出器と、を備える請求項1記載の給電システム。
【請求項3】
前記系統状態検出部は、前記電力系統の中央制御装置から与えられるLFCの出力信号余力が一定範囲を逸脱したか否か、および、前記電力系統に含まれる送電線と変圧器との運転状況から電力系統分離が発生しているか否か、の少なくとも1つを検出する請求項1記載の給電システム。
【請求項4】
前記系統状態検出部は、前記電圧検出部で検出された電圧の周波数を検出する周波数検出部と、前記周波数検出部で検出された周波数が一定範囲を逸脱したか否か検出し、前記一定範囲を逸脱した場合に所定のレベル検出信号を出力するレベル検出器と、を備える請求項1記載の給電システム。
【請求項5】
前記直流電源は蓄電池である請求項1記載の給電システム。
【請求項6】
直流電源の直流電力を交流電力に変換して電力系統に供給する電力変換部と、
電力系統と前記電力変換部の接続点電圧を検出する電圧検出部と、
前記電力変換部の出力電流を検出する電流検出部と、
電圧検出部と電流検出部の出力から有効電力を得る有効電力検出部と、
前記電力系統内で送電線が短絡あるいは地絡したことを検出し、検出結果に基づくレベル検出信号を出力する系統状態検出部と、
予め設定された有効電力設定値を出力する有効電力設定部と、
前記有効電力検出部の出力と有効電力設定部の出力と系統状態検出部の出力に基づいて前記電力変換部の出力電圧の角周波数を演算する質点系演算部と、
前記電圧検出部で検出された電圧と、前記設定電圧と、前記系統状態検出部の出力信号とに基づいて模擬同期発電機の界磁電圧相当値を演算し出力する界磁電圧演算部と、
前記角周波数と、電流検出部で検出された電流値と、前記系統状態検出部から出力されたレベル検出信号と、前記界磁電圧相当値とに基づいて、前記電力変換部の出力電圧目標値を演算する電気特性演算部と、を備え、
前記界磁電圧演算部は、前記レベル検出信号に基づいて演算に用いる定数を切り換える切換回路を備え、
前記出力電圧目標値に基づいて前記電力変換部の出力電圧が制御される給電システム。
【請求項7】
前記系統状態検出部は、前記電圧検出部の出力が所定値以下であるか否か、または、前記電力系統内の送電線系統事故を検出する保護リレーが動作したか否かを検出する請求項6記載の給電システム。
【請求項8】
前記有効電力設定部の出力と前記質点系演算部の出力と前記系統状態検出部の出力とに基づいて、模擬同期発電機の機械出力相当値を計算する機械出力演算部をさらに備え、
前記質点系演算部は、前記機械出力相当値と、前記有効電力検出部で検出した有効電力値と、前記系統状態検出部の出力とに基づいて、前記電力変換部の出力電圧の角周波数を演算するよう構成されたことを特徴とする請求項1乃至請求項7のいずれか1項記載の給電システム。
【請求項9】
前記質点系演算部は、前記系統状態検出部の出力に基づいて演算に用いる定数を切り換える定数切換回路を備えている請求項1乃至請求項8のいずれか1項記載の給電システム。
【請求項10】
前記機械出力演算部は、前記系統状況検出部の出力に基づいて演算に用いる定数を切り換える定数切換回路を備えている請求項8記載の給電システム。
【請求項11】
前記電気特性演算部は、前記系統状況検出部の出力に基づいて演算に用いる定数を切り換える定数切換回路を備えている請求項1乃至請求項8のいずれか1項記載の給電システム。
【請求項12】
前記直流電源は蓄電池である請求項6記載の給電システム。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11】
image rotate