説明

芳香族アミンの製造方法

【課題】副反応による不純物が効率よく除去された芳香族アミンの製造方法を提供すること。
【解決手段】気液反応器5における気液接触による芳香族ニトロ化合物の水素添加反応により得られた芳香族アミンと、気相反応器19における気相での芳香族ニトロ化合物の水素添加反応により得られた芳香族アミンとを、互いに混合する。そして、その混合物を、第1精留塔35で蒸留し、低沸点不純物を除去後、第1精留塔35の缶出液を第2精留塔40に導入して、蒸留し、高沸点不純物を除去する。これにより、蒸留操作に要するエネルギーを抑制しつつ、精製芳香族アミンを製造する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、芳香族アミンの製造方法に関する。
【背景技術】
【0002】
芳香族ニトロ化合物の水素還元(水素添加)による芳香族アミンの製造方法として、特許文献1には、アニリンを溶媒とし、パラジウム触媒またはパラジウム−白金系担持触媒を用いて、反応液中のニトロベンゼンを水素還元し、連続的にアニリンおよび反応生成水を蒸気として水素に同伴させて留出させる第一工程(気液反応)と、第一工程から留出してくる蒸気を、銅−クロム系触媒を充填した固定床反応器に導き、150〜250℃の温度で上記蒸気中に同伴されている未反応のニトロベンゼンを水素還元し、アニリンに転化させる第二工程(気相反応)と、を有する方法が記載されている。
【0003】
また、特許文献2には、チューブ反応器、中空シリンダ反応器などでの、気相反応によるニトロベンゼンの水素化方法が記載されている。
【特許文献1】特開平2−279657号公報
【特許文献2】特開平6−154588号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の第一工程(気液反応)では、気液反応器内での反応液の滞留時間が長いことに起因して、N−シクロヘキシルアニリンなどの高沸点不純物や、シクロヘキサノール、シクロヘキサノンなどの低沸点不純物が多く生成する。このうち、高沸点不純物は、気液反応器から触媒とともに抜き出し、分離することが可能であるが、低沸点不純物は、ほぼ全量が蒸気として第二工程(気相反応)に導入され、そのまま反応生成物中に混入する。
【0005】
一方、特許文献2に記載の気相反応によるニトロベンゼンの水素化は、逐次反応であって、ニトロベンゼンの転化率が100%に近づくと核水添反応が進行するため、N−シクロヘキシルアニリンなどの高沸点不純物が多く生成する。
また、通常、蒸留による精製に必要なエネルギーは、蒸留により分離される不純物の含有割合に対し、直線的ではなく、指数的に増加する。しかも、不純物の含有割合が多くなると、蒸留塔(精留塔)の段数の増加など、蒸留設備に要するコストの上昇を招くおそれがある。
【0006】
そこで、本発明の目的は、副反応による不純物が効率よく除去された芳香族アミンの製造方法を提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成するために、本発明の芳香族アミンの製造方法は、芳香族ニトロ化合物の気液接触による水素添加反応により得られた芳香族アミンと、芳香族ニトロ化合物の気相での水素添加反応により得られた芳香族アミンとを混合し、得られた混合物を蒸留することにより、前記芳香族アミンを精製する工程を有することを特徴としている。
この芳香族アミンの製造方法によれば、気相水素添加反応により得られた高沸点不純物を多く含む芳香族アミンと、気液接触反応により得られた低沸点不純物を多く含む芳香族アミンとを混合することにより、高沸点不純物と低沸点不純物とがともに希釈され、反応生成物である芳香族アミンの全量に対する各上記不純物の含有割合が低下する。
【0008】
本発明の芳香族アミンの製造方法では、前記芳香族ニトロ化合物の気液接触による水素添加反応で生じた反応熱を、前記芳香族アミンの気相での水素添加反応における、芳香族ニトロ化合物の気化のための熱源とすることが好適である。
また、本発明の芳香族アミンの製造方法では、前記芳香族ニトロ化合物の気液接触による水素添加反応で生じた反応熱を、前記混合物の蒸留のための熱源とすることが好適である。
【0009】
上記のように、芳香族ニトロ化合物の気液接触による水素添加反応で生じた反応熱を、芳香族アミンの気相での水素添加反応における芳香族ニトロ化合物の気化のための熱源としたり、芳香族ニトロ化合物の気液接触による水素添加反応と気相での水素添加反応とにより得られた芳香族アミンの混合物の蒸留のための熱源とすることで、上記反応熱を芳香族アミンの製造工程において効率よく利用することができる。
【0010】
反応生成物を蒸留により精製する場合において、高沸点不純物の分離と、低沸点不純物の分離とには、それぞれ別個の蒸留操作が必要となる。このため、上記製造方法において、気相水素添加反応により得られた芳香族アミン(気相反応物)と気液接触による水素添加反応により得られた芳香族アミン(気液反応物)とを混合後、得られた混合物を蒸留したときには、気相反応物と気液反応物とを個別に蒸留する場合に比べて、高沸点不純物を分離する蒸留操作と、低沸点不純物を分離する蒸留操作との両方の蒸留操作において、分離の対象となる不純物の含有割合を低減できる。
【0011】
それゆえ、上記芳香族アミンの製造方法によれば、蒸留操作に必要なエネルギーや、蒸留設備に対するコストを抑制することができる。
【発明の効果】
【0012】
本発明によれば、芳香族アミンの蒸留による精製に際して、高沸点不純物を分離する蒸留操作と低沸点不純物を分離する蒸留操作とのいずれにおいても、分離の対象となる不純物の含有割合を低減できることから、蒸留操作に必要なエネルギーや、蒸留設備に対するコストを抑制でき、ひいては、副反応による不純物を効率よく除去することができる。
【発明を実施するための最良の形態】
【0013】
本発明の製造方法で製造する芳香族アミンとしては、例えば、アニリン、(o−,m−,p−)トルイジン、キシリジン類(例えば、2,3−,2,4−,2,5−キシリジンなど)、(1−,2−)ナフチルアミンなどの芳香族モノアミン類、例えば、(o−,m−,p−)ジアミノベンゼンなどの芳香族ジアミン類、などが挙げられる。
図1は、本発明の芳香族アミンの製造方法に用いられる装置の一実施形態を示す概略装置構成図である。以下、図1を参照しつつ、本発明の芳香族アミンの製造方法について説明する。
【0014】
図1において、この装置1は、芳香族ニトロ化合物の気液接触による水素添加反応に適用される気液反応装置2と、芳香族ニトロ化合物の気相での水素添加反応に適用される気相反応装置3と、これら2つの反応装置2,3で生成した芳香族アミンを蒸留する精製装置4と、を備えている。
気液反応装置2は、気液反応器5と、原料液供給ライン6と、原料ガス供給ライン7と、気液反応物取出しライン8と、凝縮器9と、気液分離器10と、気液反応物搬送ライン11と、原料ガス回収ライン12と、圧縮器13と、を備えている。
【0015】
気液反応器5は、液相にある芳香族ニトロ化合物の水素添加反応をすることができる反応器であって、このような反応器であれば、特に限定されず、各種の気液反応器が挙げられる。例えば、図示の気液反応器5は、ジャケット14を備える耐圧性の通気反応器などから構成される。
気液反応器5には、あらかじめ、反応に必要な溶媒が供給される。
【0016】
溶媒としては、例えば、反応生成物である芳香族アミンが挙げられる。
原料液供給ライン6は、その下流側端部が、気液反応器5内に配置されている。また、この原料液供給ライン6の上流側には、原料液源が接続されている。
原料液である芳香族ニトロ化合物としては、例えば、ニトロベンゼン、(o−,m−,p−)ニトロトルエン、ニトロキシレン類(例えば、3−ニトロ−o−キシレン、4−ニトロ−m−キシレン、2−ニトロ−p−キシレンなど)、(1−,2−)ニトロナフタレン、(o−,m−,p−)ジニトロベンゼンなどが挙げられる。具体的に、芳香族ニトロ化合物は、この製造方法の目的化合物である芳香族アミンの種類に合わせて、適宜選択される。例えば、目的化合物がアニリンである場合には、原料液として、ニトロベンゼンが用いられる。
【0017】
原料ガス供給ライン7は、その下流側端部が、気液反応器5内に配置されている。また、この原料ガス供給ライン7の上流側には、原料ガス源が接続されている。
原料ガスとしては、例えば、水素ガスが挙げられる。
気液反応物取出しライン8は、気液反応器5での気液反応により得られた反応生成物(以下、「気液反応物」という場合がある。)を気液反応器5から取り出すための経路であって、その上流側端部が、気液反応器5の頂部に接続されており、その下流側端部が、気液分離器10に接続されている。
【0018】
気液反応器5内へと過剰に供給された未反応の原料ガスと、この未反応の原料ガスに同伴された反応生成物とは、それぞれ蒸気として気液反応物取出しライン8を通して取り出され、気液分離器10へと送り込まれる。
気液反応物取出しライン8の途中には、凝縮器9が設けられている。
この凝縮器9は、気液反応器5から気液反応液取出しライン8を通して取り出された反応生成物の蒸気を冷却し、凝縮する。
【0019】
凝縮器9としては、反応生成物の蒸気を凝縮させ得るものであれば、特に限定されず、例えば、空冷式、水冷式などの各種の凝縮器から構成される。
気液分離器10は、気液反応物取出しライン8の下流側端部に接続されている。
この気液分離器10は、気液反応物取出しライン8から、凝縮器9を経て送り込まれた反応生成物と未反応の原料ガスとの混合物を、原料ガス(気体状態)と反応生成物(液体状態)とに分離する。
【0020】
気液分離器10としては、原料ガス(気体状態)と反応生成物(液体状態)とを分離させ得るものであれば、特に制限されず、例えば、円筒型圧力容器などから構成される。
気液反応物搬送ライン11は、その上流側端部が、気液分離器10の底部に接続されている。また、気液反応物搬送ライン11は、その下流側で、後述する気相反応装置3における気相反応物搬送ライン27と合流し、さらにその下流側で、後述する油水分離器33を介して、後述する精製装置4の第1精留塔35に接続している。
【0021】
気液分離器10で未反応の原料ガスと分離された液体状態の反応生成物は、気液反応物搬送ライン11に取り込まれて、油水分離器33に送り込まれる。気液反応物は、この油水分離器33で、芳香族アミンと、気液反応により生成した水とに分離され、取り出された芳香族アミンが精製装置4へと送り込まれる。
原料ガス回収ライン12は、その上流側端部が、気液分離器10の頂部に接続されており、その下流側端部が、原料ガス供給ライン7に接続されている。また、原料ガス回収ライン12の途中には、圧縮器13が設置されている。
【0022】
気液分離器10で反応生成物と分離された原料ガスは、原料ガス回収ライン12に取り込まれ、圧縮器13で圧縮された後、原料ガス供給ライン7に送り込まれる。これにより、気液反応器5内で過剰に供給された未反応の原料ガスが、気液反応の原料ガスとして再利用される。
気液反応装置2には、点線15で示すように、気液反応物取出しライン8上において、凝縮器9より上流側に、気相反応器16を設置してもよい。
【0023】
この場合、気液反応器5から気液反応物取出しライン8へと取り込まれた反応生成物の蒸気が、凝縮器9へと送り込まれる前に、気相反応器16において気相反応される。
気液接触による芳香族ニトロ化合物と水素ガスとの反応は、逐次反応による不純物の生成を抑制するため、通常、芳香族アミンへの転化率が80〜99.9%に抑制される。このため、気液反応物取出しライン8には、未反応の芳香族ニトロ化合物の一部が、蒸気として取り込まれる場合がある。しかし、気液反応物取出しライン8の途中に気相反応器16を備えていると、気液反応物取出しライン8に取り込まれた未反応の原料ガス(水素ガス)と、未反応の芳香族ニトロ化合物とを反応させることができ、反応生成物中への芳香族ニトロ化合物の混入を抑制できる。
【0024】
気相反応器16は、気相において芳香族ニトロ化合物と水素ガスとを反応させることができる反応器であって、このような反応器であれば、特に限定されず、各種の気相反応器が挙げられる。
この気液反応装置2において、気液反応器5は、ジャケット14に冷却水を供給するための冷却水供給ライン17と、気液反応器5での気液反応の反応熱によって気化した冷却水の蒸気をジャケット14から取り出すための蒸気取出しライン18と、を備えている。ジャケット14に供給された冷却水は、気液反応器5での気液反応の反応熱によって気化される。気化により生じた蒸気は、その後、蒸気取出しライン18から取り出される。
【0025】
蒸気取出しライン18は、その下流側端部が、後述する気相反応装置3の蒸発器22に蒸気を供給するための蒸気供給ライン32と、後述する精製装置4の第1精留塔35および第2精留塔40に蒸気を供給するための蒸気供給ライン49とに、それぞれ接続されている。
蒸気取出しライン18から取り出された蒸気は、各蒸気供給ライン32,49を経て、気相反応装置3の蒸発器22や、精製装置4の第1リボイラ38および第2リボイラ43へと送り込まれる。これにより、蒸気取出しライン18から取り出された蒸気が、蒸発器22、第1精留塔35、および第2精留塔40の熱源として再利用される。
【0026】
気相反応装置3は、気相反応器19と、原料液供給ライン20と、原料ガス供給ライン21と、蒸発器22と、混合ガス供給ライン23と、気相反応物取出しライン24と、凝縮器25と、気液分離器26と、気相反応物搬送ライン27と、原料ガス回収ライン28と、圧縮器29と、を備えている。
気相反応器19は、気相において芳香族ニトロ化合物の水素添加反応をすることができる反応器であって、このような反応器であれば、特に限定されず、各種の気相反応器が挙げられる。例えば、図示の気相反応器19は、冷却水供給ライン30と、蒸気排出ライン31とを備える、耐圧性の通気反応器などから構成される。
【0027】
原料液供給ライン20は、その下流側端部が、蒸発器22に接続されている。また、この原料液供給ライン20の上流側には、原料液源が接続されている。
原料ガス供給ライン21は、その下流側端部が、蒸発器22に接続されている。また、この原料ガス供給ライン21の上流側には、原料ガス源が接続されている。
原料液および原料ガスとしては、上記と同じものが挙げられる。
【0028】
蒸発器22は、原料液供給ライン20から供給される原料液(芳香族ニトロ化合物)と、原料ガス供給ライン21から供給される原料ガス(水素ガス)とを加熱する。
蒸発器22としては、原料液を気化させ得るものであれば、特に限定されず、各種の蒸発器から構成される。
混合ガス供給ライン23は、その上流側端部が、蒸発器22に接続されており、その下流側端部が、気相反応器19に接続されている。
【0029】
原料液と原料ガスとは、蒸発器22で混合、加熱されて、混合ガスとなり、混合ガス供給ライン23を経て、気体状態で気相反応器19へ供給される。
気相反応物取出しライン24は、気相反応器19での気相反応により得られた反応生成物(以下、「気相反応物」という場合がある。)を気相反応器19から取り出すための経路であって、その上流側端部が、気相反応器19に接続されており、その下流側端部が、気液分離器26に接続されている。
【0030】
気相反応器19内で生成した反応生成物の蒸気は、気相反応物取出しライン24を通して取り出されて、気液分離器26へと送り込まれる。
気相反応物取出しライン24の途中には、凝縮器25が設けられている。
この凝縮器25は、気相反応器19から気相反応液取出しライン24を通して取り出された反応生成物の蒸気を冷却し、凝縮する。
【0031】
凝縮器25としては、特に限定されず、例えば、気液反応装置2における凝縮器9と同じものが挙げられる。
気液分離器26は、気相反応物取出しライン24の下流側端部に接続されている。
この気液分離器26は、気相反応物取出しライン24から、凝縮器25を経て送り込まれた蒸気を、未反応の原料ガス(気体状態)と反応生成物(液体状態)とに分離する。
【0032】
気液分離器26としては、気液反応装置2における気液分離器10と同じものが挙げられる。
気相反応物搬送ライン27は、その上流側端部が、気液分離器26の底部に接続されている。また、気相反応物搬送ライン27は、その下流側で、気液反応物搬送ライン11と合流し、さらにその下流側で、油水分離器33を介して、後述する精製装置4の第1精留塔35に接続している。
【0033】
気液分離器26で未反応の原料ガスと分離された液体状態の反応生成物は、気相反応物搬送ライン27に取り込まれて、油水分離器33に送り込まれる。気相反応物は、この油水分離器33で、芳香族アミンと、気相反応により生成した水とに分離され、取り出された芳香族アミンが精製装置4に送り込まれる。
原料ガス回収ライン28は、その上流側端部が、気液分離器26の頂部に接続されており、その下流側端部が、原料ガス供給ライン21に接続されている。また、原料ガス回収ライン28の途中には、圧縮器29が設置されている。
【0034】
気液分離器26で反応生成物と分離された原料ガスは、原料ガス回収ライン28に取り込まれ、圧縮器29で圧縮された後、原料ガス供給ライン21に送り込まれる。これにより、気相反応器19内で過剰に供給された未反応の原料ガスが、気相反応の原料ガスとして再利用される。
この気相反応装置3において、蒸発器22には、蒸気供給ライン32が接続されている。蒸気供給ライン32は、その上流側端部が、蒸気取出しライン18の下流側端部に接続されている。このため、蒸発器22には、気液反応器5のジャケット14から取り出された蒸気が、蒸気取出しライン18と蒸気供給ライン32とを経て送り込まれる。
【0035】
すなわち、蒸発器22において、原料液供給ライン20と原料ガス供給ライン21とから蒸発器22へと供給される原料液と原料ガスとの混合物を加熱し、気化するための熱媒には、気液反応器5のジャケット14において冷却水の気化により生じた蒸気が用いられる。また、これにより、気相反応装置3においては、気液反応器5での気液反応の反応熱が、蒸発器22の熱源として有効利用される。
【0036】
油水分離器33は、気液反応物搬送ライン11と気相反応物搬送ライン27との合流後のラインの途中に設けられている。
油水分離器33は、気液反応物搬送ライン11および気相反応物搬送ライン27から、それぞれ液体状態で送り込まれる反応生成物を、油状の芳香族アミンと、反応生成水とに分離する。
【0037】
油水分離器33としては、液体状態の気液反応物および気相反応物を、芳香族アミンと反応生成水とに分離させ得るものであれば、特に限定されず、例えば、円筒型圧力容器などから構成される。
水回収ライン34は、その上流側端部が、油水分離器33に接続されている。
油水分離器33によって分離された反応生成水は、水回収ライン34を経て回収され、必要に応じて、反応生成水に含まれるアニリンが、蒸留などによって回収される。
【0038】
精製装置4は、第1精留塔35と、第1還流ライン36と、低沸点不純物回収ライン37と、第1リボイラ38と、缶出液搬送ライン39と、第2精留塔40と、第2還流ライン41と、製品回収ライン42と、第2リボイラ43と、高沸点不純物回収ライン44と、を備えている。
第1精留塔35は、気液反応物搬送ライン11と、気相反応物搬送ライン27との、それぞれの下流側端部に接続されている。この第1精留塔35には、気液反応装置2の気液反応器5での気液反応により生成した反応生成物と、気相反応装置3の気相反応器19での気相反応により生成した反応生成物との混合物が導入される。
【0039】
第1精留塔35としては、気液反応物搬送ライン11と気相反応物搬送ライン27とからそれぞれ送り込まれた反応生成物の混合物を精留し、これにより分離された低沸点不純物を留出液として排出し、かつ低沸点不純物が分離された反応生成物を缶出液として取り出すことができるものであれば、特に限定されず、各種の精留塔が挙げられる。
それゆえ、これに限定されないが、例えば、第1精留塔35の理論段数は、好ましくは、5〜50段、さらに好ましくは、10〜25段である。
【0040】
第1還流ライン36は、その上流側端部が、第1精留塔35の頂部に接続されており、その下流側端部が、第1精留塔35内に接続されている。この第1還流ライン36は、第1精留塔35からの留出液を、第1精留塔35の外部を通って、再び第1精留塔35内へと循環させるための経路である。
低沸点不純物回収ライン37は、その上流側端部が、第1還流ライン36の途中に接続されている。この低沸点不純物回収ライン37は、第1精留塔35の留出液に含まれている低沸点不純物を、第1還流ライン36から取り込んで、回収する。
【0041】
低沸点不純物は、芳香族ニトロ化合物の水素添加反応において生成する副生成物のうち、その沸点が、反応の目的化合物である芳香族アミンの沸点よりも低い化合物をいう。この低沸点不純物としては、例えば、芳香族アミンや芳香族ニトロ化合物の分解物や、その水素添加物などが挙げられる。
具体的に、ニトロベンゼンの水素添加反応によるアニリンの製造において生成する低沸点不純物としては、例えば、シクロヘキサノール(沸点161℃)、シクロヘキサノン(沸点155℃)、シクロヘキシルアミン(沸点134℃)、ベンゼン(沸点80℃)、フェノール(沸点182℃)などが挙げられる。なお、アニリンの沸点は、184℃である。
【0042】
第1還流ライン36の途中には、低沸点不純物回収ライン37の接続部分より上流側において、さらに、凝縮器45と、還流液タンク46と、ポンプ47が設置されている。
凝縮器45は、第1精留塔35から取り出された留出液を凝縮する。
この凝縮器45としては、特に限定されず、例えば、気液反応装置2における凝縮器9と同じものが挙げられる。
【0043】
還流液タンク46は、凝縮器45で凝縮された留出液(還流液)を貯留する。
ポンプ47は、還流液タンク46に貯留された留出液を第1精留塔35内へ送り込む。
第1還流ライン36に取り込まれた第1精留塔35の留出液は、凝縮器45と、還流液タンク46とを経た後、第1精留塔35での蒸留条件に応じた還流比により、その一部が、ポンプ47で第1精留塔35内へと循環され、残余が、ポンプ47で低沸点不純物回収ライン37へと送り出される。
【0044】
第1リボイラ38は、第1精留塔35内に導入された反応生成物の加熱器である。この第1リボイラ38は、第1精留塔35の塔底液を、第1精留塔35の外部を通って、再び第1精留塔35内へと循環させるための塔底液循環ライン48の途中に設置される。
第1リボイラ38としては、特に限定されず、精留装置において用いられる各種のリボイラが挙げられる。
【0045】
缶出液搬送ライン39は、その上流側端部が、第1精留塔35の底部に接続されており、その下流側端部が、第2精留塔40に接続されている。
第1精留塔35での蒸留により、低沸点不純物と分離された反応生成物は、缶出液搬送ライン39に取り込まれて、第2精留塔40内に導入される。
第2精留塔40は、缶出液搬送ライン39の下流側端部に接続されている。この第2精留塔40には、第1精留塔35での蒸留により低沸点不純物が除去された反応生成物が導入される。
【0046】
第2精留塔40としては、缶出液搬送ライン39から送り込まれた第1精留塔35の缶出液を精留し、これにより分離された高沸点不純物を缶出液として排出し、かつ高沸点不純物が分離された反応生成物を留出液として取り出すことができるものであれば、特に限定されず、各種の精留塔が挙げられる。
それゆえ、これに限定されないが、例えば、第2精留塔40の理論段数は、好ましくは、2〜50段、さらに好ましくは、5〜30段である。
【0047】
高沸点不純物は、芳香族ニトロ化合物の水素添加反応において生成する副生成物のうち、その沸点が、反応の目的化合物である芳香族アミンの沸点よりも高い化合物をいう。この高沸点不純物としては、例えば、多環芳香族化合物(芳香族アミンや芳香族ニトロ化合物の二量体など)や、その水素添加物が挙げられる。
具体的に、ニトロベンゼンの水素添加反応によるアニリンの製造における高沸点不純物としては、例えば、N−シクロヘキシルアニリン(沸点278℃)、ジフェニルアミン(沸点302℃)、アゾベンゼン(沸点293℃)などが挙げられる。
【0048】
第2還流ライン41は、その上流側端部が、第2精留塔40の頂部に接続されており、その下流側端部が、第2精留塔40内に接続されている。この第2還流ライン41は、第2精留塔40からの留出液を、第2精留塔40の外部を通って、再び第2精留塔40内へと循環させるための経路である。
製品回収ライン42は、その上流側端部が、この第2還流ライン41の途中に接続されている。この製品回収ライン42は、第2精留塔40の留出液を製品として、第2還流ライン41から取り込んで、回収する。
【0049】
第2還流ライン41の途中には、製品回収ライン42の接続部分より上流側において、さらに、凝縮器50と、還流液タンク51と、ポンプ52が設置されている。
凝縮器50は、第2精留塔40から取り出された留出液を凝縮する。
この凝縮器50としては、特に限定されず、例えば、気液反応装置2における凝縮器9と同じものが挙げられる。
【0050】
還流液タンク51は、凝縮器50で凝縮された留出液(還流液)を貯留する。
ポンプ52は、還流液タンク51に貯留された留出液を第2精留塔40内へ送り込む。
第2還流ライン41に取り込まれた第2精留塔40の留出液は、凝縮器50と、還流液タンク51とを経た後、第2精留塔40での蒸留条件に応じた還流比により、その一部が、ポンプ52で第2精留塔40内へと循環され、残余が、ポンプ52で製品回収ライン42へと送り出される。
【0051】
第2リボイラ43は、第2精留塔40内に導入された反応生成物の加熱器である。この第2リボイラ43は、第2精留塔40の塔底液を、第2精留塔40の外部を通って、再び第2精留塔40内へと循環させるための塔底液循環ライン53の途中に設置される。
第2リボイラ43としては、特に限定されず、精留装置において用いられる各種のリボイラが挙げられる。
【0052】
第2精留塔40での蒸留により、高沸点不純物と分離された反応生成物は、留出液として、製品回収ライン42に取り込まれる。
こうして、気液反応装置2の気液反応器5での気液反応により生成した反応生成物と、気相反応装置3の気相反応器19での気相反応により生成した反応生成物との混合物を精製した芳香族アミンの製品が、製品回収ライン42から取り出される。
【0053】
上記の方法により得られた芳香族アミンは、低沸点不純物と高沸点不純物とのいずれについても、その含有割合が低減されている。
精製装置4により蒸留された最終製品における不純物の含有割合としては、これに限定されないが、例えば、低沸点不純物について、好ましくは、10000wt ppm以下、さらに好ましくは、1000wt ppm以下、特に好ましくは、100wt ppm以下である。また、高沸点不純物について、好ましくは、100wt ppm以下、さらに好ましくは、10wt ppm以下、特に好ましくは、1wt ppm以下である。
【0054】
この精製装置4において、第1精留塔35の第1リボイラ38と、第2精留塔40の第2リボイラ43には、いずれも、蒸気供給ライン49が接続されている。蒸気供給ライン49は、その上流側端部が、蒸気取出しライン18の下流側端部に接続されている。このため、各リボイラ38,43には、気液反応器5のジャケット14から取り出された蒸気が、蒸気取出しライン18と蒸気供給ライン49とを経て送り込まれる。
【0055】
すなわち、各リボイラ38,43において、各精留塔35,40の塔底液を加熱するための熱媒には、気液反応器5のジャケット14において冷却水の気化により生じた蒸気が用いられる。また、これにより、精製装置4においては、気液反応器5での気液反応の反応熱が、各リボイラ38,43の熱源として有効利用される。
以上の説明では、気液反応物搬送ライン11から送り込まれた気液反応物と、気相反応物搬送ライン27から送り込まれた気相反応物とを、予め混合してから、第1精留塔35へ導入した。しかし、気液反応物搬送ライン11と気相反応物搬送ライン27とは、予め合流することなく、個別に第1精留塔35に接続されていてもよく、それゆえ、気液反応物と気相反応物とは、各搬送ライン11,27から第1精留塔35内への導入後に混合されてもよい。
【0056】
また、以上の説明では、気液反応物搬送ライン11上の気液反応物と、気相反応物搬送ライン27上の気相反応物とを、各搬送ライン11,27の合流後に、油水分離器33に導入し、芳香族アミンと、反応により生成した水とを分離した。しかし、油水分離器は、気液反応物搬送ライン11上と、気相反応物搬送ライン27上とに、それぞれ個別に設置されていてもよい。すなわち、気液反応物と気相反応物とは、互いに混合する前に、個別に、油水分離によって芳香族アミンと反応生成水とに分離してもよい。
【0057】
また、以上の説明では、気液反応物搬送ライン11と気相反応物搬送ライン27とから送り込まれた各反応生成物の混合物から、まず、低沸点不純物を除去し、次に、高沸点不純物を除去することで、反応生成物を精留している。
しかし、各不純物の除去順序は、これに限定されず、上記混合物から、まず、高沸点不純物を除去し、次に、低沸点不純物を除去してもよい。
【0058】
この場合、まず、気液反応物搬送ライン11と気相反応物搬送ライン27とから、高沸点不純物分離用の精留塔へと、気液反応物と気相反応物との混合物を送り込み、1回目の蒸留をする。この1回目の蒸留により分離された高沸点不純物を、高沸点不純物分離用精留塔の缶出液として排出し、かつ高沸点不純物が分離された反応生成物を、高沸点不純物分離用精留塔の留出液として取り出す。
【0059】
次に、高沸点不純物分離用精留塔の留出液を、低沸点不純物分離用の精留塔に送り込み、2回目の蒸留をする。この2回目の蒸留により分離された低沸点不純物を、低沸点不純物分離用精留塔の留出液として排出し、かつ低沸点不純物が分離された反応生成物(製品)を、低沸点不純物分離用精留塔の缶出液として取り出す。これにより、上述の場合と同様に、精留された芳香族アミンの製品が得られる。
【0060】
以下、図1に示す装置1を参照し、本発明の芳香族アミンの製造方法の一実施形態について、ニトロベンゼンと水素ガスとの反応によるアニリンの製造方法を例にとって説明する。
この方法では、まず、気液反応装置2の気液反応器5における気液反応と、気相反応装置3の気相反応器19における気相反応とにより、それぞれアニリンが製造される。次いで、気液反応で生成したアニリンと気相反応で生成したアニリンとの混合物に対し、精製装置4の第1精留塔35による低沸点不純物の分離のための蒸留と、第2精留塔40による高沸点不純物の分離のための蒸留とにより、アニリンが精製される。
【0061】
気液反応装置2の気液反応器5における気液反応では、予め、気液反応器5内にアニリン(溶媒)が仕込まれる。この気液反応器5に対し、原料液供給ライン6からニトロベンゼン(原料液)を供給し、原料ガス供給ライン7から水素(原料ガス)を供給し、かつパラジウムが担持された活性炭(触媒)を供給することで、気液接触による水素添加反応を開始する。
【0062】
ニトロベンゼンと水素との供給量の比は、水素がニトロベンゼンに対し化学量論的に過剰となる割合である。具体的には、例えば、ニトロベンゼン1モルに対し、化学量論的に1.5〜5モル倍の水素が供給される。この場合には、水素が化学量論的に0.5〜4モル倍過剰となる。
気液反応器5の反応液におけるニトロベンゼンの濃度は、ニトロベンゼンが不足したときの核水添反応を抑制し、かつ過剰に供給されたニトロベンゼンの同伴による反応生成物中への混入を抑制する観点より、好ましくは、0.05〜10重量%、さらに好ましくは、0.5〜3重量%である。
【0063】
また、気液反応器5での気液反応の反応条件は、例えば、反応温度が150〜250℃、反応圧力(ゲージ圧)が0.3〜1.5MPa−Gである。
そして、気液反応器5では、ニトロベンゼンと、過剰の水素とが、気液接触して、発熱反応により反応生成物(アニリンおよび水)が生成する。
生成した反応生成物と、未反応の原料液の一部とは、過剰の水素に同伴され、蒸気として気液反応物取出しライン8へ排出される。
【0064】
気相反応装置3の気相反応器19における気相反応では、予め、気相反応器19内に、銅系触媒などの触媒が仕込まれる。この気相反応器19に対し、原料液供給ライン20と、原料ガス供給ライン21とから、ニトロベンゼンと水素を供給することで、気相での水素添加反応を開始する。
原料液供給ライン20から気相反応器19内へ供給するニトロベンゼンは、原料ガス供給ライン21から供給する水素と原料液供給ライン20上で混合後、蒸発器22で気化させる。
【0065】
蒸発器22でのニトロベンゼンの気化温度は、蒸発器22内の圧力、水素の混合割合などによって異なるが、通常、150〜200℃である。
なお、気液反応器5での気液反応の反応温度は、上記のとおり、150〜250℃であることから、気液反応器5のジャケット14に接続された蒸気取出しライン18では、140〜240℃の蒸気を取り出すことができる。特に、気液反応の反応温度が170〜250℃であるときは、蒸気取出しライン18から、160〜240℃の蒸気を取り出すことができる。このような蒸気は、気相反応装置3における蒸発器22でのニトロベンゼンの気化に必要な熱源として十分である。
【0066】
また、気液接触によるニトロベンゼンの水素添加反応によって発生する反応熱Qは、ニトロベンゼン1kmolあたり、約410000kJであり、ニトロベンゼンの気化に必要な熱量Qは、ニトロベンゼン1kmolあたり、約45000〜48000kJである。
それゆえ、上記した反応熱Qと気化熱Qとによれば、気液反応器5でのアニリンの生産量が、気相反応器19でのアニリンの生産量に対し、Q/Q×100として、11.7%以上の能力を有しているときは、気液反応器5の蒸気取出しライン18から取り出された蒸気によって、蒸発器22でのニトロベンゼンの気化に必要な熱量を賄うことができる。
【0067】
図2は、ゲージ圧0.34MPa−Gの条件下で、ニトロベンゼンを気化させるのに必要な水素量の温度変化を示すグラフである。
例えば、図2に示すように、蒸発器22での気化温度が低い場合には、ニトロベンゼンを気化させるために水素の含有割合を大きくする必要があり(図2中の曲線(ii)参照)、原料ガス供給ライン21からの水素の供給量が、ニトロベンゼンの水素添加反応における化学量論量(ニトロベンゼン1molに対し、3mol;図2中の曲線(i)参照)を上回る。例えば、気化温度が150℃である場合には、ニトロベンゼンの気化のために、ニトロベンゼン1molに対する水素の供給量を22.0molとする必要があり、ニトロベンゼン1molに対し、水素が19.0mol過剰となる。
【0068】
気相反応器19へと過剰に供給された水素は、気相反応物取出しライン24を経て、気液分離器26で反応生成物と分離される。さらに、分離された水素は、原料ガス回収ライン28から取り出され、圧縮器29にて昇圧後、原料ガス供給ライン21に供給される。従って、過剰に供給された水素は、新たな原料ガスとしてリサイクルされるものの、圧縮器29での昇圧にエネルギーを要することなどを鑑みると、蒸発器22でのニトロベンゼンの気化温度を、できるだけ高く設定することが好ましい。
【0069】
気相反応器19での気相反応の反応条件は、例えば、反応温度が150〜250℃、反応圧力(ゲージ圧)が0.1〜0.5MPa−Gである。
そして、気相反応器19では、ニトロベンゼンと、化学量論的に過剰の水素とが、気相中で接触して、発熱反応により反応生成物(アニリンおよび水)が生成する。この気相反応において、通常、ニトロベンゼンは完全に反応する。
【0070】
精製装置4の第1精留塔35における蒸留では、まず、第1精留塔35に対し、気液反応器5での気液反応により生成した反応生成物と、気相反応器19での気相反応により生成した反応生成物とが、それぞれ気液反応物搬送ライン11と、気相反応物搬送ライン27とを経て、互いに混合した状態で導入される。
第1精留塔35での蒸留条件は、これに限定されないが、例えば、還流比(精留度)が、好ましくは、1〜10、さらに好ましくは、3〜7であり、塔頂温度が、好ましくは、70〜150℃、さらに好ましくは、100〜120℃である。第1精留塔35内の圧力は、好ましくは、大気圧以下、さらに好ましくは、塔頂圧力(絶対圧)が、好ましくは、10〜20kPa−absである。
【0071】
次いて、第2精留塔40に対し、第1精留塔35での蒸留により低沸点不純物が除去された反応生成物が、缶出液搬送ライン39から導入される。
第2精留塔40での蒸留条件は、これに限定されないが、例えば、還流比(精留度)が、好ましくは、0.1〜1.0、さらに好ましくは、0.2〜0.5であり、塔頂温度が、好ましくは、100〜140℃、さらに好ましくは、110〜130℃である。第2精留塔40内の圧力は、好ましくは、大気圧以下、さらに好ましくは、塔頂圧力(絶対圧)が、好ましくは、10〜20kPa−absである。
【0072】
上述のとおり、気液反応物は、不純物として、低沸点不純物を多く含んでおり、気相反応物は、不純物として、高沸点不純物を多く含んでいる。これに対し、第1精留塔35に導入される反応生成物は、気液反応物と気相反応物との混合物であることから、気液反応物のみ、または気相反応物のみの場合と比べて、低沸点不純物と高沸点不純物とのいずれについても希釈され、その濃度が低くなっている。
【0073】
それゆえ、精製装置4による反応生成物の蒸留時には、第1精留塔35による低沸点不純物の分離処理と、第2精留塔40による高沸点不純物の分離処理とのいずれにおいても、蒸留操作に要するエネルギーの指数的な増加を抑制することができ、結果的に、精製装置4における蒸留操作全体に要するエネルギーを低減できる。
気液反応物と気相反応物との混合割合は、特に限定されず、一般には、例えば、気液反応器5によるアニリンの生産量と、気相反応器19によるアニリンの生産量との比に設定される。
【0074】
精製装置4における蒸留操作全体に要するエネルギーの最適化の観点からすると、気液反応物と気相反応物との混合割合は、重量比で、好ましくは、4:1〜1:4、さらに好ましくは、5:5〜1:4である。
なお、気液反応器5でのアニリンの生産量が、気相反応器19でのアニリンの生産量に比べて大きく、蒸気取出しライン18から取り出される蒸気が、蒸発器22でのニトロベンゼンの気化に必要な熱量を上回る場合には、この蒸気を、さらに精製装置4における熱源として利用できる。この場合、例えば、蒸気取出しライン18内の蒸気を、蒸気供給ライン49を経て、精製装置4における第1リボイラ38や第2リボイラ43に供給し、各精留塔35,40での蒸留処理の熱媒とする。
【0075】
上述のアニリンの製造方法によれば、アニリンの蒸留操作に必要なエネルギーを抑制することができる。また、気液反応によって生じる反応熱を、気相反応時のニトロベンゼンの気化処理や、蒸留処理における熱源として利用できることから、反応設備や蒸留設備に対するコストを抑制することができる。
それゆえ、上述のアニリンの製造方法は、製造コストが低減されたアニリンの製造方法として好適である。
【0076】
以上、本発明の芳香族アミンの製造方法の一実施形態を、ニトロベンゼンと水素との反応によるアニリンの製造方法を例にとって説明したが、本発明は、上記の反応に限定されるものではなく、芳香族ニトロ化合物と、水素との反応による芳香族アミンの製造方法についても広く適用される。
【実施例】
【0077】
次に、実施例を挙げて本発明を説明するが、本発明は、下記の実施例によって限定されるものではない。
参考例1
内容積1リットルのオートクレーブに攪拌機と、水素ガス導入管と、触媒投入口と、反応液抜出口と、ニトロベンゼン導入口と、アニリン導入口と、蒸気発生口と、コンデンサと、を取り付けた。
【0078】
このオートクレーブ内に、アニリン350gと、触媒70mgとを仕込んだ。触媒としては、活性炭にパラジウムを5重量%の割合で担持させたものを使用した。
オートクレーブ内の温度を200℃まで昇温後、オートクレーブ内に、ニトロベンゼン(毎時175g)と、水素(毎分5ノルマルリットル)とを供給し、気液接触による反応を開始した。反応時には、系内の全圧(ゲージ圧)を、0.5MPa−Gに保った。また、反応開始後には、触媒を毎時3.5mg供給し、オートクレーブ内の反応液を、触媒とともに毎時17.5g抜き出した。反応液の液量と、温度と、圧力とを一定に保ち、反応液中のニトロベンゼンの濃度を0.3〜2重量%に保ちながら、56時間反応を続けた。
【0079】
オートクレーブ内で発生した蒸気は、過剰に導入された水素とともに取り出し、コンデンサで凝縮して、受器で捕集した。受器で捕集した粗アニリンは、やや黄色を帯びた透明液であった。
この粗アニリンは、ニトロベンゼンを4000wt ppm含有していた。また、この粗アニリンは、低沸点不純物として、シクロヘキシルアミンを80wt ppm、シクロヘキサノンを500wt ppm含有していた。一方、粗アニリンは、高沸点不純物として、N−シクロヘキシルアニリンを350wt ppm含有していた。
【0080】
参考例2
ステンレス製の高圧固定床流通式反応管に、銅系触媒10.1gと、炭化ケイ素(SiC)35.1gとの混合物からなる触媒を充填した。反応管には、直径(内径)22mmの円筒体で、その中央に熱電対用の直径(外径)3mmの鞘管を備えるものを使用した。触媒層は、反応管の径方向に154mmとなるように充填した。また、触媒層の上部に、SiC 45.3gを予熱層として充填した。さらに、反応管に、水素ガスの導入管と、ニトロベンゼンの導入管と、ガス出口と、コンデンサと、を取り付けた。
【0081】
この反応管を電気炉で加熱し、反応圧力(ゲージ圧)0.34MPa−Gの環境下、水素ガス(毎分583.7ミリリットル(23℃、0.34MPa−G))と、ニトロベンゼン(毎分0.17g)とを供給し、気相反応を開始した。反応管の触媒層の最高温度が約240℃となるように電気炉の温度を調整しながら、約1000時間反応を続けた。
反応管から取り出された反応生成物(ガス)をコンデンサで凝縮し、粗アニリンを捕集した。この粗アニリンは、無色透明であった。
【0082】
反応開始から約500時間経過後に採取された粗アニリンは、低沸点不純物として、シクロヘキシルアミンを34wt ppm、シクロヘキサノールを279wt ppm、およびシクロヘキサノンを7wt ppm含有しており、高沸点不純物として、N−シクロヘキシルアニリンを9378wt ppm含有していた。
反応開始から約1000時間経過後に採取された粗アニリンは、低沸点不純物として、シクロヘキシルアミンを25wt ppm、シクロヘキサノールを195wt ppm、およびシクロヘキサノンを7wt ppm含有しており、高沸点不純物として、N−シクロヘキシルアニリンを5765wt ppm含有していた。
【0083】
実施例1
ニトロベンゼンの水素添加反応によるアニリンの製造において、気相反応による反応生成物(気相反応物)の反応マスモデルと、気液接触の反応による反応生成物(気液反応物)の反応マスモデルと、それらの混合物とについて、蒸留計算を、(株)アスペンテック・ジャパンのプロセスシミュレータ「Aspen Plus」(登録商標)によって実行した。
【0084】
気相反応物および気液反応物の各反応マスモデルでは、低沸点不純物をシクロヘキサノールとし、高沸点不純物をN−シクロヘキシルアニリンとした。気相反応物の反応マスモデルと、気液反応物の反応マスモデルとの組成を、表1に示す。
【0085】
【表1】

【0086】
蒸留設備のモデルは、低沸点不純物分離用の精留塔を、理論段数18段、供給段4段とし、高沸点不純物分離用の精留塔を、理論段数8段、供給段5段のものを使用した。また、蒸留時の操作圧力は、低沸点不純物の分離と、高沸点不純物の分離とのいずれにおいても、15kPaとした。
低沸点不純物分離用の精留塔における低沸点不純物の排出量は、蒸留原料液の供給量に対し、5重量%とし、高沸点不純物分離用の精留塔における高沸点不純物の排出量は、蒸留原料液の供給量に対し、4重量%とした。
【0087】
製品中の不純物の許容濃度を、低沸点不純物について100wt ppm、高沸点不純物について0.5wt ppmとし、この濃度に合わせて、必要な還流比を決定するとともに、必要なリボイラ熱量を算出した。
こうして、蒸留原料液における、気相反応物の反応マスモデルと、気液反応物の反応マスモデルとの混合比を適宜変化させて、各混合比のリボイラ熱量を計算により求めた。その計算結果を表2に示す。
【0088】
なお、リボイラ熱量は、低沸点不純物分離用精留塔でのリボイラ熱量と、高沸点不純物分離用精留塔でのリボイラ熱量との合計量Q/kWを、精留後のアニリン量[kg]で除したものである。
【0089】
【表2】

【0090】
本発明は、以上の記載に限定されるものではなく、特許請求の範囲に記載した事項の範囲において、種々の設計変更を施すことが可能である。
【図面の簡単な説明】
【0091】
【図1】本発明の芳香族アミンの製造方法に用いられる装置の一実施形態を示す概略装置構成図である。
【図2】ニトロベンゼンの気化温度(0.34MPa−G)と、ニトロベンゼンと水素との供給量の比との関係を示すグラフである。
【図3】実施例1でのリボイラ熱量の計算結果を示すグラフである。
【符号の説明】
【0092】
5:気液反応器、 11:気液反応物搬送ライン、 19:気相反応器、 27:気相反応物搬送ライン、 35:第1精留塔、 40:第2精留塔。

【特許請求の範囲】
【請求項1】
芳香族ニトロ化合物の気液接触による水素添加反応により得られた芳香族アミンと、芳香族ニトロ化合物の気相での水素添加反応により得られた芳香族アミンとを混合し、得られた混合物を蒸留することにより、前記芳香族アミンを精製する工程を有することを特徴とする、芳香族アミンの製造方法。
【請求項2】
前記芳香族ニトロ化合物の気液接触による水素添加反応で生じた反応熱を、前記芳香族アミンの気相での水素添加反応における、芳香族ニトロ化合物の気化のための熱源とすることを特徴とする、請求項1に記載の芳香族アミンの製造方法。
【請求項3】
前記芳香族ニトロ化合物の気液接触による水素添加反応で生じた反応熱を、前記混合物の蒸留のための熱源とすることを特徴とする、請求項1または2に記載の芳香族アミンの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−266315(P2008−266315A)
【公開日】平成20年11月6日(2008.11.6)
【国際特許分類】
【出願番号】特願2008−77781(P2008−77781)
【出願日】平成20年3月25日(2008.3.25)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】