説明

蓄電装置

【課題】充放電容量が大きく、且つ充放電による電池特性の劣化が少ない蓄電装置を提供する。また、充放電容量が大きく、且つ出力特性に優れた蓄電装置を提供する。また、充放電容量が大きく、サイクル特性に優れた蓄電装置を提供する。
【解決手段】集電体と、集電体から突出する複数の突起と、該複数の突起の表面に着接された外殻からなる活物質と、外殻に着接されたグラフェンとを有し、複数の突起の軸は揃っている負極を備えている蓄電装置である。なお、集電体及び複数の突起の間には共通部を設けてもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蓄電装置及びそれらの作製方法に関する。
【背景技術】
【0002】
近年、リチウム二次電池、リチウムイオンキャパシタ、空気電池などの、蓄電装置の開発が行われている。
【0003】
蓄電装置用の電極は、集電体の一表面に活物質を形成することにより作製される。負極活物質としては、例えば炭素又はシリコンなど、キャリアとなるイオン(以下、キャリアイオンと記す。)の吸蔵及び放出が可能な材料が用いられる。例えば、シリコン又はリンがドープされたシリコンは、炭素に比べ、約4倍のキャリアイオンを吸蔵することが可能であるため、理論容量が大きく、蓄電装置の大容量化という点において優れている。
【0004】
しかしながら、キャリアイオンの吸蔵量が増えると、充放電サイクルにおけるキャリアイオンの吸蔵放出に伴う体積の変化が大きく、集電体及びシリコン層の密着性が低下し、充放電により電池特性が劣化してしまうという問題がある。そこで、集電体上に、シリコンからなる層を形成し、該シリコンからなる層上にグラファイトからなる層を設けることで、シリコンからなる層の膨張収縮による電池特性の劣化を低減している(特許文献1参照)。
【0005】
また、シリコンは、グラファイトと比較して伝導性が低いため、シリコン粒子の表面をグラファイトで被覆し、当該シリコン粒子を含む活物質層を集電体上に形成することで活物質層の抵抗率を低減し、負極を作製している。
【0006】
一方、近年、半導体装置において、導電性を有する電子部材としてグラフェンを用いることが検討されている。
【0007】
グラフェンは化学的に安定であり、且つ電気特性が良好であるため、半導体装置に含まれるトランジスタのチャネル領域、ビア、配線等に応用が期待されている。また、リチウムイオンバッテリ用の電極材料の導電性を高めるために、粒子状の活物質にグラファイト又はグラフェンを被覆している(特許文献2参照)。
【0008】
また、複数の突起が設けられた正極及び負極を用いることで大容量化を図った蓄電装置において、充放電による電極の膨張によって、電極間に設けられたセパレータに加わる圧力を低減するため、正極及び負極のそれぞれ突起の先端に絶縁体を設けている(特許文献3乃至5参照)。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2001−283834号公報
【特許文献2】特開2011−29184号公報
【特許文献3】特開2010−219030号公報
【特許文献4】特開2010−239122号公報
【特許文献5】特開2010−219392号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、集電体上に設けられたシリコンの層をグラファイトの層で覆う場合、グラファイトの層の厚さがサブミクロンスケールからミクロンスケールと厚くなってしまい、電解質とシリコンの層との間でのキャリアイオンの移動量が低減してしまう。一方、グラファイトを被覆したシリコン粒子を含む活物質層は、活物質層に含まれるシリコン含有量が低減してしまう。これらの結果、シリコン及びキャリアイオンの反応量が低下してしまい、充放電容量の低下の原因となると共に、蓄電装置の急速充放電が困難である。
【0011】
また、粒子状の活物質をグラファイトで被覆しても、度重なる充放電に伴う膨張収縮、並びにこれらによって生じる微粉化を抑制することは困難であった。なお、本明細書において、微粉化とは、例えば活物質が膨張収縮により崩壊することをいう。
【0012】
そこで、本発明の一態様は、充放電容量が大きく、且つ充放電による電池特性の劣化が少ない蓄電装置を提供することにある。また、充放電容量が大きく、且つ出力特性に優れた蓄電装置を提供することにある。また、充放電容量が大きく、且つサイクル特性に優れた蓄電装置を提供することにある。
【課題を解決するための手段】
【0013】
本発明の一態様は、共通部と、共通部から突出した複数の突起と、共通部の表面及び複数の突起の表面に着接された外殻と、外殻の表面に着接されたグラフェンと、を有し、複数の突起の軸は揃っている負極を備えている蓄電装置である。
【0014】
本発明の一態様は、集電体と、集電体上に設けられた複数の突起と、集電体の表面及び複数の突起の表面に着接された外殻と、外殻の表面に着接されたグラフェンと、を有し、複数の突起の軸は揃っている負極を備えている蓄電装置である。なお、集電体及び複数の突起の間に共通部を設けてもよい。
【0015】
本発明の一態様は、共通部と、共通部から突出した複数の突起と、共通部の表面及び複数の突起の表面に着接された外殻と、外殻の表面に着接されたグラフェンと、を有し、複数の突起の上面形状が並進対称性を有する負極を備えている蓄電装置である。
【0016】
本発明の一態様は、集電体と、集電体上に設けられた複数の突起と、集電体の表面及び複数の突起の表面に着接された外殻と、前記外殻の表面に着接されたグラフェンと、を有し、複数の突起の上面形状が並進対称性を有する負極を備えている蓄電装置である。なお、集電体及び複数の突起の間に共通部を設けてもよい。
【0017】
上記電極において、共通部とは、集電体の全面を覆い、且つ複数の突起と同様の材料により形成される領域である。また、複数の突起の軸とは、複数の突起のうち、各突起の頂点(又は上面の中心)と、各突起が共通部又は集電体と接する面の中心とを通る直線のことである。即ち、各突起の長手方向における中心を通る直線をいう。なお、複数の突起の軸が揃っているとは、突起の数と同数存在する当該直線の方向が略一致することをいう。代表的には、突起の数と同数存在する当該直線でなす角度が10度以下、好ましくは5度以下である。以上のように、複数の突起とは、エッチング工程により形成した構造体を指し、任意の方向にランダムに伸長したウィスカー状の構造体とは異なる。
【0018】
共通部、複数の突起及び外殻はシリコンで形成される。また、共通部、複数の突起及び外殻は、リン又はボロン等の導電性を付与する不純物が添加されたシリコンで形成してもよい。
【0019】
共通部及び複数の突起は、単結晶構造、多結晶構造又は微結晶構造であり、外殻は非晶質構造である。また、共通部及び複数の突起は、互いに異なる結晶構造であってもよい。さらに、共通部及び複数の突起は、単結晶構造、多結晶構造及び微結晶構造から選択される複数の結晶構造を混合して有していてもよい。単結晶構造、多結晶構造又は微結晶構造を有する活物質は、充放電反応の膨張収縮に伴って微粉化しやすい。非晶質構造は、単結晶構造、多結晶構造又は微結晶構造に比べて構成元素の密度が低いため、充放電反応の膨張収縮に伴う微粉化が生じにくい。従って、外殻を非晶質構造とした活物質を用いることで、充放電反応の膨張収縮による影響を緩和でき、その結果、活物質が微粉化しにくい負極を作製できる。さらに、当該負極を用いることで、充放電容量が大きく、且つサイクル特性に優れた蓄電装置を作製できる。
【0020】
本明細書において、グラフェンとは、二重結合(sp結合ともいう。)を有する1原子層の炭素分子のシートのことをいう。また、グラフェンは、当該1原子層の炭素分子のシートである単層のグラフェン、及び当該単層のグラフェンが複数積層された多層グラフェンを含む。そして、グラフェンは、2原子%以上11原子%以下、好ましくは3原子%以上10原子%以下の酸素を含んでもよい。なお、グラフェンは、カリウムなどのアルカリ金属を添加したものでもよい。
【0021】
本発明の一態様は、シリコン基板上にマスクを形成した後、シリコン基板の一部をエッチングして、共通部と、共通部から突出される複数の突起とを形成し、共通部及び複数の突起上に非晶質シリコン層を形成し、非晶質シリコン層上にグラフェンを形成する電極の作製方法である。
【0022】
本発明の一態様は、集電体上にシリコン層を形成し、シリコン層上にマスクを形成した後、シリコン層の一部をエッチングして、集電体上に複数の突起を形成し、複数の突起上に非晶質シリコン層を形成し、非晶質シリコン層上にグラフェンを形成する負極の作製方法である。なお、集電体上に形成したシリコン層の一部をエッチングする際、集電体上に全面を覆う共通部を形成し、共通部から突出するように複数の突起を形成してもよい。
【0023】
負極の活物質は、共通部、及び共通部から突出する複数の突起を有する。また、複数の突起の軸が揃っており、さらに共通部に対して垂直方向に突出しているため、負極において突起の密度を高めることが可能であり、活物質の表面積を増加させることができる。従って、本発明の一態様に係る負極を用いることで、充放電容量が大きく、且つ出力特性に優れた蓄電装置を作製できる。
【0024】
また、負極の活物質は、複数の突起の間には隙間が設けられており、さらに活物質をグラフェンが覆うため、充電反応によって活物質が膨張しても、突起同士の接触を抑制することが可能であると共に、グラフェンが充放電によって生じる活物質の崩落を防ぐ。また、複数の突起は並進対称性を有し、負極において均一性高く形成されているため、正極及び負極においての局所的な反応が低減し、キャリアイオン及び活物質の反応が正極及び負極の間で均質に生じる。従って、本発明の一態様に係る負極を用いることで、充放電容量が大きく、且つサイクル特性に優れた蓄電装置を作製することができる。なお、本明細書において、崩落とは、例えば活物質が微粉化して集電体から剥離することをいう。
【0025】
また、蓄電装置において、活物質表面が電解質と接触することにより、電解質及び活物質が反応し、活物質表面に被膜が形成される。当該被膜は(SEI(Solid Electrolyte Interface))と呼ばれ、活物質と電解質の反応を和らげ、安定化させるために必要であると考えられている。しかしながら、当該被膜が厚くなると、キャリアイオンが負極の活物質に吸蔵されにくくなり、活物質と電解質間のキャリアイオンの伝導性の低下などの問題がある。そこで、活物質をグラフェンで被覆することで、当該被膜の膜厚増加を抑制することが可能であり、キャリアイオンの伝導性の低下を抑制することができる。従って、本発明の一態様に係る負極を用いることで、充放電容量が大きく、且つ充放電による電池特性の劣化が少ない蓄電装置を作製することができる。
【0026】
シリコンは炭素と比較すると電気伝導性が低く、また充放電による非晶質化することによってさらに電気伝導性が低下するため、シリコンを活物質とする負極は抵抗率が高くなる。しかしながら、グラフェンは導電性が高いため、シリコンをグラフェンで被覆することで、グラフェンにおいて電子の移動を十分速くすることができる。また、グラフェンは厚さの薄いシート状であるため、複数の突起をグラフェンで覆うことで、活物質層に含まれるシリコン量をより多くすることが可能であると共に、キャリアイオンの移動がグラファイトより容易となる。これらの結果、キャリアイオンの伝導性を高めることができ、活物質であるシリコン及びキャリアイオンの反応性を高めることが可能であり、キャリアイオンが活物質に吸蔵されやすくなる。従って、本発明の一態様に係る負極を用いることで、充放電容量が大きく、且つ出力特性に優れた蓄電装置を作製することができる。
【発明の効果】
【0027】
本発明の一態様により、充放電容量が高く、且つ充放電による劣化が少ない蓄電装置を提供することができる。また、充放電容量が高く、且つ出力特性に優れた蓄電装置を提供することができる。また、当該電極を用いることで、高いサイクル特性を有する蓄電装置を作製することができる。
【図面の簡単な説明】
【0028】
【図1】負極を説明する図。
【図2】負極が有する突起の形状を説明する図。
【図3】負極を説明する図。
【図4】負極の作製方法を説明する図。
【図5】負極を説明する図。
【図6】負極の作製方法を説明する図。
【図7】正極を説明する図。
【図8】正極を説明する図。
【図9】蓄電装置を説明する図。
【図10】電子機器を説明する図。
【図11】電子機器を説明する図。
【発明を実施するための形態】
【0029】
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
【0030】
(実施の形態1)
本実施の形態では、充放電による劣化が少なく、サイクル特性に優れた蓄電装置の負極の構造及びその作製方法について、図1乃至図4を用いて説明する。
【0031】
図1(A)は、本発明の一態様に係る負極206の断面図である。負極206が活物質として機能する構造である。
【0032】
なお、活物質とは、キャリアイオンの吸蔵及び放出に関わる物質を指す。活物質層は、活物質の他に、導電助剤、バインダー、グラフェン等のいずれか一以上を有する。よって、活物質と活物質層は区別される。
【0033】
また、キャリアイオンとしてリチウムイオンを用いる二次電池をリチウム二次電池という。また、リチウムイオンの代わりに用いることが可能なキャリアイオンとしては、ナトリウム、カリウム等のアルカリ金属イオン、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属イオン、ベリリウムイオン、又はマグネシウムイオン等がある。
【0034】
ここで、負極206の詳細な構造について、図1(B)及び図1(C)を用いて説明する。なお、負極206の代表形態を、図1(B)及び図1(C)において、それぞれ負極206a、206bとして説明する。
【0035】
図1(B)は、負極206aの拡大断面図である。負極206aは、活物質202、及び活物質202の表面に着接されたグラフェン204を有する。また、活物質202は、共通部202a、及び共通部202aから突出する複数の突起202bを有し、共通部202aの表面及び複数の突起202bの表面に着接された外殻203を有する。また、外殻203は非晶質構造を有している。
【0036】
活物質202としては、キャリアイオンの吸蔵放出が可能なシリコン、ゲルマニウム、スズ、アルミニウム等のいずれか一以上を用いる。なお、理論容量が大きいため、活物質202としてシリコンを用いることが好ましい。又は、リン、ボロン等の一導電型を付与する不純物元素が添加されたシリコンを用いてもよい。リン、ボロン等の一導電型を付与する不純物元素が添加されたシリコンは、導電性が高くなり、負極の導電率を高めることができるため、活物質202として一導電型を付与する不純物元素を添加しないシリコンを用いた負極を有する蓄電装置より、充放電容量を高めることができる。
【0037】
このように負極の活物質としてシリコンを用いることは、活物質として黒鉛を用いた場合と比較して理論容量を大きくすることができるため、容量が同じ蓄電装置において小型化を実現できる。
【0038】
共通部202aは、複数の突起202bの下地層として機能する。また、共通部202aは連続した層であり、共通部202a及び複数の突起202bは接している。
【0039】
突起202bは、円柱状(図2(A)参照)又は角柱状等の柱状突起221、円錐状(図2(B)参照)又は角錐状の錐体状突起222、板状突起223(図2(C)参照)、パイプ状突起224(図2(D)参照)等の形状を適宜有することができる。なお、突起202bの頂部又は稜は湾曲していてもよい。図1(B)において、突起202bは円柱状の突起であるとして図示している。
【0040】
本実施の形態に示す電極の上面形状について、図3を用いて説明する。なお、明瞭化のため、図3(A)乃至図3(D)には外殻203及びグラフェン204を図示していない。
【0041】
図3(A)は、共通部202aと、共通部202aから突出する複数の突起202bの上面図である。ここでは、上面形状が円形である複数の突起202bが配置されている。図3(B)は、図3(A)を方向aに移動したときの上面図である。図3(A)及び図3(B)おいて、複数の突起202bの位置が同一である。すなわち、図3(A)に示す複数の突起202bは並進対称性を有する。なお、ここでは、図3(A)において、方向aに移動したが、方向b、方向cにそれぞれ移動しても、図3(B)と同様の配置となる。
【0042】
また、複数の突起202bにおいて、破線209で示す対称性の単位における突起202bが占める割合は、25%以上60%以下が好ましい。すなわち、対称性の単位の空隙率は40%以上75%以下であることが好ましい。対称性の単位において、突起202bの占める割合を25%以上とすると、負極における充放電の理論容量を約1000mAh/g以上とすることができる。一方、60%以下とすることで、充放電容量を最大(すなわち理論容量)とし隣り合う突起が膨張しても突起同士が接触せず、充放電により活物質が膨張しても、突起の崩壊を防ぐことができる。この結果、充放電容量を高くすると共に隣り合う突起が接触せず、充放電による負極の劣化を低減することができる。
【0043】
図3(C)は、共通部202aと、共通部202aから突出する複数の突起の上面図である。ここでは、上面形状が円形である突起202bと、上面形状が正方形である突起202cが交互に配置されている。図3(D)は、突起202b、202cを方向bに移動したときの上面図である。図3(C)及び図3(D)の上面図において、突起202b、202cの配置が同一である。すなわち、図3(C)に示す複数の突起202b、202cは並進対称性を有する。
【0044】
並進対称性を有するように複数の突起を配置することで、負極において、それぞれの突起における電子伝導性のばらつきを低減することができる。このため、負極においての局所的な反応が低減され、キャリアイオン及び活物質の反応が均質にすすみ、拡散過電圧(濃度過電圧)を防ぐと共に、電池特性の信頼性を高めることができる。
【0045】
共通部202a及び複数の突起202bは適宜、単結晶構造、多結晶構造又は微結晶構造とすることができる。また、共通部202aと複数の突起202bは、共に同じ結晶構造であってもよく、互いは異なる結晶構造であってもよい。例えば、共通部202a及び複数の突起202bは、共に単結晶構造としてもよい。また、共通部202aは単結晶構造であり、複数の突起202bは多結晶構造としてもよい。さらに、共通部202a及び複数の突起202bは、単結晶構造、多結晶構造及び微結晶構造から選択される複数の結晶構造を混合して有していてもよい。
【0046】
なお、共通部202a及び複数の突起202bの界面は明確でない。このため、活物質202において、複数の突起202bの間に形成される谷のうち最も深い谷の底を通り、且つ活物質202において、突起202bが形成される面と平行な面を、共通部202a及び複数の突起202bの界面233として定義する。
【0047】
また、複数の突起202bそれぞれにおいて、突起の頂点(又は上面の中心)を通り、突起の突出方向に沿った直線(軸231)は揃っている。詳細には、軸231の方向は略一致しており、軸231のなす角度は10度以下、好ましくは5度以下である。なお、軸231とは、突起の頂点(又は上面の中心)と、突起が共通部と接する面の中心とを通る直線をいう。即ち、突起の長手方向における中心を通る直線をいう。軸231の方向は、複数の突起202bが共通部202aから伸張している方向であると換言できる。つまり、活物質202において、複数の突起202bの長手方向は揃っている。また、長手方向に切断した断面形状を縦断面形状と呼ぶ。また、複数の突起202bの長手方向と略垂直な面において切断した断面形状を横断面形状と呼ぶ。
【0048】
さらに、複数の突起202bのそれぞれの形状が略同一であると好ましい。このような構造とすることで、所望の電極容量に応じて必要な活物質の体積(又は重量)を概算しやすく、その活物質の体積を制御することが容易である。
【0049】
また、複数の突起202bの高さは、突起の幅の5倍以上100倍以下、好ましくは10倍以上50倍以下であり、代表的には0.5μm以上100μm以下、好ましくは1μm以上50μm以下である。複数の突起202bの高さを、0.5μm以上とすることで、充放電容量を高めることが可能であり、100μm以下とすることで、充放電において突起が膨張しても、微粉化することを防ぐことができる。なお、複数の突起202bにおける「高さ」とは、縦断面形状において、突起202bの頂点(又は上面の中心)から上記直線(軸)に沿って界面233までの距離をいう。
【0050】
複数の突起202bの長手方向と略垂直な面に切断した断面形状(横断面形状)において、各突起の幅は、0.1μm以上1μm以下、好ましくは0.2μm以上0.5μm以下である。複数の突起202bの幅を、0.1μm以上とすることで、また、充放電容量を高めることが可能であり、1μm以下とすることで、充放電において突起が膨張及び収縮しても、微粉化することを防ぐことができる。
【0051】
また、本発明の一態様に係る負極を用いた蓄電装置において、活物質202にシリコンを用いる場合、キャリアイオンが挿入される充電反応によって、活物質202の体積が2倍程度に膨張する。そのため、複数の突起202b(詳細には外殻203及びグラフェン204を含む。)のそれぞれは、一定の間隔を開けて共通部202a上に設けられている。突起202bの間隔は、例えば、突起202bの幅の1.29倍以上2倍以下とすることが好ましい。このようにすることで、充電反応で活物質202が膨張しても、突起202b同士が接触することを抑制できる。その結果、充放電による活物質202の微粉化を抑制することができるため、充放電による電池特性の劣化が少ない蓄電装置を作製することができる。
【0052】
活物質202は、非晶質構造を有する外殻203が、共通部202aの表面及び複数の突起202bの表面に着接されている。例えば、活物質202において、非晶質構造を有する外殻203の体積占有割合(活物質202に対する外殻203の体積割合)は、5%以上50%以下とすることが好ましい。例えば、複数の突起202bを図2(A)の円柱状の柱状突起221とする場合、複数の突起202b表面から外殻203表面までの距離(外殻203の厚さ)は、軸231から外殻203表面までの距離(柱状突起221の半径に相当)に対して0.025倍以上0.3倍以下とすることが好ましい。なお、外殻203は、結晶構造を有する共通部202a及び複数の突起202bより導電性が低いため、負極206aの導電性が低下しないようにできる限り薄く設けることが好ましい。
【0053】
共通部202aの表面及び複数の突起202bの表面に外殻203が着接していることで、得られる利点について、以下に示す。
【0054】
上記列挙した結晶構造を有するシリコンは、非晶質構造を有するシリコンに比べてシリコン元素の密度が大きいため、充電反応によって膨張することで、ひび割れ(クラックともいう)が発生しやすく、度重なる充放電で微粉化しやすい。特に、活物質として結晶構造を有するシリコンだけを用いた電極を備える蓄電装置において充電レートを高くすると、活物質は、ある一定の電位を境に急激に充電反応が起こることになり、急激な膨張が生じることになるため、活物質にクラックが非常に発生しやすくなる。さらには、度重なる充放電で活物質が微粉化しやすくなる。
【0055】
非晶質構造を有するシリコンは、結晶構造を有するシリコンに比べてシリコン元素の密度が小さいため、充電反応によって膨張した場合でもクラックが発生しにくく、度重なる充放電で微粉化しにくい。また、非晶質構造を有するシリコンは、ダングリングボンドなどの欠陥準位が存在するため、非晶質構造を有するシリコンのバンドギャップ内には複数の反応準位が存在する。従って、複数の反応準位が存在するため、巨視的な視点では、当該充電反応は結晶構造を有するシリコンに比べて広範囲な電位で起こっているといえる。つまり、非晶質構造を有するシリコンは徐々に膨張し、急激な膨張が起こりにくいため、クラックが発生しにくく、度重なる充放電で微粉化しにくい。
【0056】
そこで、共通部202aの表面及び複数の突起202bの表面に外殻203を着接させることで、充放電反応によって生じる膨張収縮の影響を緩和することができる。つまり、活物質202を用いた電極を備える蓄電装置において充電レートを高くしても、活物質202(特に共通部202a及び複数の突起202b)にクラックが発生することを抑制でき、さらには度重なる充放電による活物質202の微粉化を抑制することができる。従って、本発明の一態様に係る負極を用いることで、充放電容量が大きく、且つサイクル特性に優れた蓄電装置を作製することができる。
【0057】
グラフェン204は、導電助剤として機能する。また、グラフェン204は、活物質として機能する場合もあり、これによって負極206を備える蓄電装置の容量を増大させることができる。
【0058】
グラフェン204は、単層グラフェン又は多層グラフェンを含む。グラフェン204は、長さが数μmのシート状である。
【0059】
上記したように単層グラフェンは、sp結合を有する1原子層の炭素分子のシートのことをいい、炭素で構成される六員環が平面方向に広がっており、一部に、七員環、八員環、九員環、十員環等の多員環が形成されている。
【0060】
なお、多員環は、炭素及び酸素で構成される場合がある。又は、炭素で構成される多員環の炭素に酸素が結合する場合がある。このような多員環は、グラフェンに酸素を含む場合、六員環の一部の炭素−炭素結合が切断され、結合が切断された炭素に酸素が結合し、多員環が形成される。このため、当該炭素及び酸素の結合の内部には、イオンの移動が可能な通路として機能する間隙を有する。すなわち、グラフェンに含まれる酸素の割合が多いほど、イオンの移動が可能な通路である間隙の割合が増加する。
【0061】
なお、グラフェン204に酸素が含まれる場合、酸素の割合は全体の2原子%以上11原子%以下、好ましくは3原子%以上10原子%以下である。酸素の割合が低い程、グラフェンの導電性を高めることができる。また、酸素の割合を高める程、グラフェンにおいてイオンの通路となる間隙をより多く形成することができる。なお、グラフェンは、カリウムなどのアルカリ金属を添加したものでもよい。
【0062】
グラフェン204が多層グラフェンの場合、複数の単層グラフェンで構成され、代表的には、単層グラフェンが2層以上100層以下で構成されるため、極めて厚さが薄い。単層グラフェンが酸素を有することで、グラフェンの層間距離は0.34nmより大きく、0.5nm以下、好ましくは0.38nm以上0.42nm以下、更に好ましくは0.39nm以上0.41nm以下となる。通常のグラファイトは、層間距離が0.34nmである単層グラフェンで構成されているが、グラフェン204を構成する複数の単層グラフェン間の層間距離の方が長いため、単層グラフェンの表面と平行な方向におけるイオンの移動が容易となる。また、酸素を含み、多員環が構成される単層グラフェン又は多層グラフェンで構成され、所々に間隙を有する。このため、グラフェン204が多層グラフェンの場合、単層グラフェンの表面と平行な方向、即ち単層グラフェン同士の隙間と共に、グラフェンの表面に対する垂直方向、即ち単層グラフェンそれぞれに設けられる間隙をイオンが移動することが可能である。
【0063】
また、負極206a及び負極206bを含む負極206の活物質202において、共通部202aから複数の突起202bが突出しているため、板状の活物質に比べて表面積が増大している。また、複数の突起202bの軸は揃っており、さらに共通部202aに対して垂直方向に突出しているため、負極206a及び負極206bにおいて突起の密度を効率良く高めることが可能であり、表面積を効率良く増大させることができる。また、複数の突起202bの間には隙間が設けられており、さらに、活物質202をグラフェン204が覆うため、充電反応により活物質202が膨張しても、突起同士の接触を抑制することが可能であると共に、繰り返しの充放電反応によって活物質202が微粉化してもグラフェン204が活物質202の崩落を防ぐことができる。従って、本発明の一態様に係る負極を用いて蓄電装置を作製することで、出力特性及びサイクル特性に優れた蓄電装置を作製することができる。
【0064】
また、本発明の一態様に係る負極において、複数の突起は並進対称性を有し、負極において均一性高く形成されているため、正極及び負極においての局所的な反応が低減し、キャリアイオン及び活物質の反応が正極及び負極の間で均質に生じる。これにより、本発明の一態様に係る負極を用いて蓄電装置を作製することで、急速充放電が可能となると共に、充放電による活物質の微粉化及び崩落を抑制でき、サイクル特性がさらに向上した蓄電装置を作製することができる。
【0065】
さらには、本発明の一態様に係る負極を搭載した蓄電装置において、負極の突起の形状が略一致していることで、局所的な充放電を低減すると共に、活物質の体積(又は重量)を制御することが可能である。
【0066】
また、本発明の一態様に係る負極を搭載した蓄電装置において、負極の突起の高さが揃っていると、局所的な荷重を防ぐことが可能となり、蓄電装置の機械的強度を向上させることができる。そして、負極と正極の間に設けられるセパレータを平坦に配置することができることで、負極と正極が短絡する不良を低減することができる。さらに、蓄電装置の作製工程時において、局所的な荷重を抑制できるため歩留まりを向上させることができる。このように負極の突起の高さが揃えることで、電池の仕様を制御しやすくなる。
【0067】
また、蓄電装置において、活物質表面が電解質と接触することにより、電解質及び活物質が反応し、電極の表面に被膜が形成される。当該被膜はSEIと呼ばれ、電極と電解質の反応を緩和し、安定化させるために必要であると考えられている。しかしながら、当該被膜が厚くなると、キャリアイオンが電極(特に活物質)に吸蔵されにくくなり、電極と電解質間のキャリアイオン伝導性の低下などの問題がある。そこで、活物質202の表面にグラフェン204が着接されていることで、活物質202と電解質が接触することを防ぐため、当該被膜の膜厚の増加を抑制することが可能であり、キャリアイオン伝導性の低下を抑制することができる。従って、本発明の一態様に係る負極を用いることで、充放電による電池特性の劣化が少ない蓄電装置を作製することができる。
【0068】
また、グラフェンは電気導電性が高いため、活物質202の表面にグラフェン204が着接されていることで、グラフェン204において電子の移動を十分速くすることができる。また、グラフェンは厚さの薄いシート状であるため、複数の突起をグラフェンで覆うことで活物質202の量を多くすることが可能であると共に、キャリアイオンの移動がグラファイトより容易となる。その結果、キャリアイオンの伝導性を高めることができ、活物質202であるシリコン及びキャリアイオンの反応性を高めることが可能であり、キャリアイオンが活物質202に吸蔵されやすくなる。このため、本発明の一態様に係る負極を用いて蓄電装置を作製することで、急速充放電が可能な蓄電装置を作製することができる。
【0069】
なお、活物質202とグラフェン204の間に、酸化シリコン層を有してもよい。活物質202上に酸化シリコン層を設けることで、蓄電装置の充電時に酸化シリコン中にキャリアイオンが挿入される。この結果、LiSiO、NaSiO、KSiO等のアルカリ金属シリケート、CaSiO、SrSiO、BaSiO等のアルカリ土類金属シリケート、BeSiO、MgSiO等のシリケート化合物が形成される。これらのシリケート化合物は、キャリアイオンの移動パスとして機能する。また、酸化シリコン層を有することで、活物質202の膨張の影響を緩和することができる。従って、充放電容量を維持しつつ、活物質202の微粉化を抑えることができる。なお、充電の後、放電しても、酸化シリコン層において形成されたシリケート化合物から、キャリアイオンとなる金属イオンは全て放出されず、一部残存するため、酸化シリコン層は、酸化シリコン及びシリケート化合物の混合層となる。
【0070】
また、当該酸化シリコン層の厚さを2nm以上10nm以下とすることが好ましい。酸化シリコン層の厚さを2nm以上とすることで、充放電による活物質202の膨張を緩和することができる。また、酸化シリコン層の厚さ10nm以下であると、キャリアイオンの移動が容易であり、充放電容量の低下を抑制することができる。酸化シリコン層を活物質202上に設けることで、充放電による活物質202の微粉化を抑制することができる。
【0071】
また、図1(C)に示す負極206bのように、活物質202に含まれる複数の突起202bの頂部及びグラフェン204の間に、保護層207を設けてもよい。
【0072】
保護層207は、導電層、半導体層、又は絶縁層を適宜用いて、単層又は積層として形成される。保護層207の厚さは100nm以上10μm以下が好ましい。保護層207を設けることで、保護層207がエッチングによって複数の突起を形成する際のハードマスクとして機能し、複数の突起202bの高さのばらつきを低減することができる。つまり、保護層207は、エッチング速度が共通部202a及び複数の突起202bの一方又は双方におけるエッチング速度に対して十分遅い材料で形成された層である。なお、エッチングレートはエッチング条件(エッチングガスの種類やガス流量など)によっても変化するので、エッチング条件は適宜選択する。
【0073】
次に、負極206の作製方法について図4を用いて説明する。ここでは、負極206の一形態として、図1(B)に示す負極206aを用いて説明する。
【0074】
図4(A)に示すように、シリコン基板200上にマスク208a〜208eを形成する。
【0075】
シリコン基板200は、単結晶シリコン基板又は多結晶シリコン基板を用いる。なお、シリコン基板は、リンが添加されたn型シリコン基板、ボロンが添加されたp型シリコン基板を用いることで、集電体を設けずとも、活物質を負極として用いることができる。
【0076】
マスク208a〜208eは、フォトリソグラフィ工程により形成することができる。また、マスク208a〜208eは、インクジェット法、印刷法等を用いて形成することができる。
【0077】
次に、マスク208a〜208eを用いて、シリコン基板200を選択的にエッチングして、図4(B)に示すように、共通部202a及び複数の突起202bを形成する。シリコン基板のエッチング方法としては、ドライエッチング法、ウエットエッチング法を適宜用いることができる。なお、深堀りエッチング法であるボッシュ法を用いることで、高さの高い突起を形成することができる。
【0078】
例えば、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)装置を用い、エッチングガスとして塩素、臭化水素、及び酸素を用いて、n型のシリコン基板をエッチングすることで、共通部202a及び複数の突起202bを有する活物質202を形成することができる。なお、ここでは、共通部202aが残存するように、エッチング時間を調整する。また、エッチングガスの流量比は適宜調整すればよいが、エッチングガスの流量比の一例として、塩素、臭化水素、及び酸素それぞれの流量比を10:15:3とすることができる。
【0079】
共通部202a及び複数の突起202bを形成した後、マスク208a〜208eを除去する。
【0080】
本実施の形態に示すように、マスクを用いてシリコン基板をエッチングすることで、軸が揃っている複数の突起202bを形成することができる。さらには、形状が略一致している複数の突起を形成することができる。このようにして形成することで、複数の突起202bの高さを揃えることができる。
【0081】
次に、共通部202a及び複数の突起202b上に外殻203を形成する。外殻203は、プラズマCVD(Chemical Vapor Deposition)法又は熱CVD法に代表される化学蒸着法、又はスパッタリング法に代表される物理蒸着法を用いて形成することができる。
【0082】
CVD法で外殻203を形成する場合、共通部202a及び複数の突起202bが結晶構造を有するために、外殻203の非晶質構造を有するシリコンがエピタキシャル成長する可能性がある。そのため、被形成基板をできる限り低温にして外殻203を形成することが好ましく、このようにすることで、非晶質構造を有するシリコンの外殻203を形成することができる。
【0083】
また、共通部202a及び複数の突起202bを形成した後、希ガスなどを用いたプラズマで表面処理することにより、非晶質構造を有するシリコンの外殻203を形成することができる。
【0084】
次に、活物質202上にグラフェン204を形成することで、図4(C)に示すように、負極206aを作製することができる。
【0085】
グラフェン204の形成方法としては、活物質202上にニッケル、鉄、金、銅又はそれらを含む合金を核として形成した後、メタン又はアセチレン等の炭化水素を含む雰囲気で核からグラフェンを成長させる気相法がある。また、酸化グラフェンを含む分散液を用いて、活物質202の表面に酸化グラフェン設けた後、酸化グラフェンを還元し、グラフェンとする液相法がある。
【0086】
酸化グラフェンを含む分散液は、酸化グラフェンを溶媒に分散させる方法、溶媒中でグラファイトを酸化した後、酸化グラファイトを酸化グラフェンに分離して、酸化グラフェンを含む分散液を形成する方法などを用いることができる。ここでは、グラファイトを酸化した後、酸化グラファイトを酸化グラフェンに分離して形成した酸化グラフェンを含む分散液を用いて、活物質202上にグラフェン204を形成する方法について、説明する。
【0087】
本実施の形態では、Hummers法と呼ばれる酸化法を用いて酸化グラフェンを形成する。Hummers法は、グラファイト粉末に過マンガン酸カリウムの硫酸溶液等を加えて酸化反応させて酸化グラファイトを含む混合液を形成する。酸化グラファイトは、グラファイトの炭素の酸化により、エポキシ基、カルボキシル基等のカルボニル基、ヒドロキシル基等の官能基を有する。このため、複数のグラフェンの層間距離がグラファイトと比較して長い。次に、酸化グラファイトを含む混合液に超音波振動を加えることで、層間距離の長い酸化グラファイトを劈開し、酸化グラフェンを分離することができると共に、酸化グラフェンを含む分散液を形成することができる。なお、Hummers法以外の酸化グラフェンの形成方法を適宜用いることができる。
【0088】
なお、酸化グラフェンは、エポキシ基、カルボキシル基等のカルボニル基、ヒドロキシル基等を有する。これらの置換基は極性が高いため、極性を有する液体中において、異なる酸化グラフェン同士は分散しやすい。このため、極性を有する液体においては、均一に酸化グラフェンが分散すると共に、後の工程において、外殻203の表面に均一な割合で酸化グラフェンを設けることができる。
【0089】
酸化グラフェンを含む分散液に活物質202を浸し、活物質202上に酸化グラフェンを設ける方法としては、塗布法、スピンコート法、ディップ法、スプレー法、電気泳動法等がある。また、これらの方法を複数組み合わせてもよい。
【0090】
なお、複数の突起202bの高さが高くなるにつれて、複数の突起202bの間に形成される谷の領域に酸化グラフェンを含む分散液が届きにくくなり、酸化グラフェンが均一且つ十分に設けられなくなる。そこで、電気泳動法を用いることで、イオン化した酸化グラフェンを電気的に活物質まで移動させることができるため、当該谷の領域にも均一且つ十分に酸化グラフェンを設けることが可能である。つまり、電気泳動法は、複数の突起の高さが高い場合でも、共通部202a及び複数の突起202bの表面に均一且つ十分に酸化グラフェンを設けることができる。
【0091】
活物質202上に設けられた酸化グラフェンを還元する方法としては、真空中、空気中、あるいは不活性ガス(窒素あるいは希ガス等)中等の雰囲気で、150℃以上、好ましくは200℃以上の温度、活物質202が耐えうる温度以下で加熱する方法がある。加熱する温度が高い程、また、加熱する時間が長いほど、酸化グラフェンが還元されやすく、純度の高い(すなわち、炭素以外の元素の濃度の低い)グラフェンが得られる。又は、還元性溶液に浸し、酸化グラフェンを還元する方法がある。
【0092】
なお、Hummers法では、グラファイトを硫酸で処理するため、酸化グラファイトは、スルホン基等も結合しているが、この分解(脱離)は、200℃以上300℃以下、好ましくは200℃以上250℃以下で行われる。したがって、加熱により酸化グラファイトを還元する方法において、酸化グラフェンの還元は200℃以上で行うことが好ましい。
【0093】
上記還元処理において、隣接するグラフェン同士が結合し、より巨大な網目状あるはシート状となる。また、当該還元処理において、酸素の脱離により、グラフェン内には間隙が形成される。更には、グラフェン同士が基体の表面に対して、平行に重なり合う。この結果、グラフェンの層間及びグラフェン内の間隙においてキャリアイオンの移動が可能なグラフェン204が形成される。
【0094】
本実施の形態により、図1(B)に示す負極206aを形成することができる。
【0095】
また、シリコン基板200上に絶縁層を形成し、当該絶縁層上にマスク208a〜208eを形成し、当該マスク208a〜208eを用いて、分離された保護層207(図1(C)参照。)を形成した後、当該マスク208a〜208e及び分離された保護層207を用いてシリコン基板200を選択的にエッチングすることで、図1(C)に示す負極206bを形成することができる。このとき、複数の突起202bの高さが高い場合、即ちエッチング時間が長い場合、エッチング工程においてマスクの厚さが徐々に薄くなり、一部のマスクが除去され、シリコン基板200が露出されてしまう。この結果、突起の高さにばらつきが生じるが、分離された保護層207をハードマスクとして用いることで、シリコン基板200の露出を妨げることが可能であり、突起の高さのばらつきを低減することができる。
【0096】
なお、負極206a及び負極206bを含む負極206において、グラフェン204の代わりに活物質202より導電性の高い膜、例えば、ニッケル薄膜などを活物質202上に形成してもよい。
【0097】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【0098】
(実施の形態2)
本実施の形態では、実施の形態1と異なる構造の負極及びその作製方法について、図5及び図6を用いて説明する。本実施の形態で説明する負極は、実施の形態1と比較して、集電体を有する点が異なる。
【0099】
図5(A)は負極216の断面図である。負極216は、集電体211上に活物質層215が設けられている。
【0100】
ここで、負極216の詳細な構造について、図5(B)乃至図5(D)を用いて説明する。ここでは、負極216に含まれる活物質層215の形態を、図5(B)乃至図5(D)において、それぞれ活物質層215a、215b、215cとして説明する。
【0101】
図5(B)は、集電体211及び活物質層215aの拡大断面図である。集電体211上に活物質層215aが設けられている。また、活物質層215aは、活物質212及び活物質212の表面に着接されたグラフェン214を有する。また、活物質212は、共通部212a、及び共通部212aから突出する複数の突起212bを有し、共通部212aの表面及び複数の突起212bの表面に着接された外殻213を有する。また、外殻213は非晶質構造を有している。
【0102】
なお、共通部212a及び複数の突起212bの界面は明確でない。このため、活物質212において、複数の突起212bの間に形成される谷のうち最も深い谷の底を通り、且つ活物質212において、突起212bが形成される面と平行な面を、共通部212a及び複数の突起212bの界面243として定義する。
【0103】
また、複数の突起212bの軸241が揃っている。なお、突起の軸241とは、突起の頂点(又は上面の中心)と、突起が共通部と接する面の中心とを通る直線をいう。即ち、突起の長手方向における中心を通る直線をいう。軸241の方向は、複数の突起212bが共通部212aから伸張している方向であると換言できる。つまり、活物質212において、複数の突起212bの長手方向は揃っている。
【0104】
集電体211は、ステンレス、金、白金、亜鉛、鉄、アルミニウム、銅、チタン等に代表される金属、及びこれらの合金など、導電性の高い材料を用いることができる。なお、集電体211として、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることが好ましい。また、集電体211として、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。
【0105】
集電体211は、箔状、板状(シート状)、網状、パンチングメタル状、エキスパンドメタル状等の様々な形状のものを適宜用いることができる。
【0106】
活物質212は、実施の形態1に示す活物質202と同様の材料を適宜用いることができる。
【0107】
共通部212aは、実施の形態1に示す共通部202aと同様に、複数の突起212bの下地層として機能し、集電体211上に連続している層である。また、共通部212a及び複数の突起212bは接している。
【0108】
複数の突起212bは、実施の形態1に示す複数の突起202bの形状を適宜用いることができる。
【0109】
共通部212a及び複数の突起212bは、実施の形態1に示す複数の突起202bと同様に、単結晶構造、多結晶構造、又は微結晶構造とすることができる。また、共通部212aと複数の突起212bは、互いは異なる結晶構造であってもよい。例えば、共通部212a及び複数の突起212bは、共に単結晶構造としてもよい。また、共通部212aは単結晶構造であり、複数の突起212bは多結晶構造としてもよい。さらに、共通部212a及び複数の突起212bは、単結晶構造、多結晶構造及び微結晶構造から選択される複数の結晶構造を混合して有していてもよい。
【0110】
突起212bの高さ及び幅は、実施の形態1に示す突起202bと同様にすることができる。
【0111】
外殻213は、実施の形態1に示す外殻203と同様に非晶質構造で形成されている。
【0112】
グラフェン214は、実施の形態1に示すグラフェン204と同様の構造を適宜用いることができる。
【0113】
なお、図5(C)の活物質層215bに示すように、共通部を有さず、集電体211上に分離された複数の突起212bが設けられ、集電体211及び複数の突起212b上に外殻213が、外殻213上にグラフェン214が形成されてもよい。
【0114】
グラフェン214は集電体211の一部と接するため、グラフェン214において電子が流れやすくなり、キャリアイオン及び活物質の反応性を高めることができる。
【0115】
また、集電体211として上記列挙したシリサイドを形成する金属材料を用いる場合、集電体211において、活物質212と接する側にシリサイド層が形成される場合がある。集電体211にシリサイドを形成する金属材料を用いると、チタンシリサイド、ジルコニウムシリサイド、ハフニウムシリサイド、バナジウムシリサイド、ニオブシリサイド、タンタルシリサイド、クロムシリサイド、モリブデンシリサイド、コバルシリサイド、ニッケルシリサイド等がシリサイド層として形成される。
【0116】
また、図5(D)に示す活物質層215cのように、複数の突起212bの先端及び外殻213の間に保護層217を設けてよい。保護層217は、実施の形態1に示す保護層207と同様の材料を適宜用いることができる。ここでは、図5(B)に示す活物質212を用いて説明したが、図5(C)に示す活物質に保護層217を設けてもよい。
【0117】
本実施の形態に示す負極は、集電体211を支持体として活物質層を設けることができる。このため、集電体211が箔状、網状等の可撓性を有する場合、可撓性を有する負極を作製することができる。
【0118】
次に、負極216の作製方法について図6を用いて説明する。ここでは、活物質層215の一形態として、図5(B)に示す活物質層215aを用いて説明する。
【0119】
図6(A)に示すように、集電体211上にシリコン層210を形成する。次に、シリコン層210に、実施の形態1と同様に、マスク208a〜208eを形成する。
【0120】
シリコン層210は、CVD法、スパッタリング法、蒸着法等を適宜用いて形成することができる。シリコン層210としては、単結晶シリコン、多結晶シリコン、又は非晶質シリコンを用いて形成する。なお、シリコン層210は、リンが添加されたn型シリコン層、ボロンが添加されたp型シリコン層としてもよい。
【0121】
次に、マスク208a〜208eを用いて、シリコン層210を選択的にエッチングして、図6(B)に示すように、共通部212a及び複数の突起212bを有する活物質212を形成する。シリコン層210のエッチング方法としては、ドライエッチング法、ウエットエッチング法を適宜用いることができる。なお、ドライエッチング法でも、ボッシュ法を用いることで、高さの高い突起を形成することができる。
【0122】
共通部212a及び複数の突起212bを形成した後、マスク208a〜208eを除去する。
【0123】
次に、共通部212a及び複数の突起212b上に外殻213を形成する。外殻213は、実施の形態1に示す外殻203と同様に形成することができる。
【0124】
次に、活物質212上に、グラフェン214を形成することで、集電体211上に活物質層215aを有する負極216を作製することができる。
【0125】
グラフェン214は、実施の形態1に示すグラフェン204と同様に形成することができる。
【0126】
なお、図6(B)において、共通部212aをエッチングし、集電体211を一部露出させることで、図5(C)に示す活物質層215bを有する負極を作製することができる。
【0127】
また、シリコン層210上に絶縁層を形成し、当該絶縁層上にマスク208a〜208eを形成し、当該マスク208a〜208eを用いて、分離された保護層217を形成した後、当該マスク208a〜208e及び分離された保護層217を用いてシリコン層210を選択的にエッチングすることで、図5(D)に示すような活物質層215cを有する負極を作製することができる。このとき、複数の突起212bの高さが高い場合、即ちエッチング時間が長い場合、エッチング工程においてマスクの厚さが徐々に薄くなり、一部のマスクが除去され、シリコン層210が露出されてしまう。この結果、突起の高さにばらつきが生じるが、分離された保護層217をハードマスクとして用いることで、シリコン層210の露出を妨げることが可能であり、突起の高さのばらつきを低減することができる。
【0128】
なお、活物質層215a乃至活物質層215cのいずれかを一形態とする負極216においても、実施の形態1に示したように、グラフェン214の代わりに活物質212より導電性の高い膜、例えば、ニッケル薄膜などを活物質212上に形成してもよい。
【0129】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【0130】
(実施の形態3)
本実施の形態では、蓄電装置の構造及び作製方法について説明する。
【0131】
はじめに、正極及びその作製方法について説明する。
【0132】
図7(A)は正極311の断面図である。正極311は、正極集電体307上に正極活物質層309が形成される。
【0133】
正極集電体307は、白金、アルミニウム、銅、チタン、ステンレス等の導電性の高い材料を用いることができる。また、正極集電体307は、箔状、板状、網状等の形状を適宜用いることができる。
【0134】
正極活物質層309は、LiFeO、LiCoO、LiNiO、LiMn等のリチウム化合物、V、Cr、MnO等を材料として用いることができる。
【0135】
又は、オリビン型構造のリチウム含有複合酸化物(一般式LiMPO(Mは、Fe(II),Mn(II),Co(II),Ni(II)の一以上)を用いることができる。一般式LiMPOの代表例としては、LiFePO、LiNiPO、LiCoPO、LiMnPO、LiFeNiPO、LiFeCoPO、LiFeMnPO、LiNiCoPO、LiNiMnPO(a+bは1以下、0<a<1、0<b<1)、LiFeNiCoPO、LiFeNiMnPO、LiNiCoMnPO(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、LiFeNiCoMnPO(f+g+h+iは1以下、0<f<1、0<g<1、0<h<1、0<i<1)等のリチウム化合物を材料として用いることができる。
【0136】
又は、一般式LiMSiO(Mは、Fe(II),Mn(II),Co(II),Ni(II)の一以上)等のリチウム含有複合酸化物を用いることができる。一般式LiMSiOの代表例としては、LiFeSiO、LiNiSiO、LiCoSiO、LiMnSiO、LiFeNiSiO、LiFeCoSiO、LiFeMnSiO、LiNiCoSiO、LiNiMnSiO(k+lは1以下、0<k<1、0<l<1)、LiFeNiCoSiO、LiFeNiMnSiO、LiNiCoMnSiO(m+n+qは1以下、0<m<1、0<n<1、0<q<1)、LiFeNiCoMnSiO(r+s+t+uは1以下、0<r<1、0<s<1、0<t<1、0<u<1)等のリチウム化合物を材料として用いることができる。
【0137】
なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオン、アルカリ土類金属イオン、ベリリウムイオン、又はマグネシウムイオンの場合、正極活物質層309として、上記リチウム化合物及びリチウム含有複合酸化物において、リチウムの代わりに、アルカリ金属(例えば、ナトリウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム等)、ベリリウム、又はマグネシウムを用いてもよい。
【0138】
図7(B)は、正極活物質層309の平面図である。正極活物質層309は、キャリアイオンの吸蔵放出が可能な粒子状の正極活物質321と、当該正極活物質321の複数を覆いつつ、当該正極活物質321が内部に詰められたグラフェン323とを有する。複数の正極活物質321の表面を異なるグラフェン323が覆う。また、一部において、正極活物質321が露出していてもよい。なお、グラフェン323は、実施の形態1に示すグラフェン204を適宜用いることができる。
【0139】
正極活物質321の粒径は、20nm以上100nm以下が好ましい。なお、正極活物質321内を電子が移動するため、正極活物質321の粒径はより小さい方が好ましい。
【0140】
また、正極活物質321の表面に炭素膜が被覆されていなくとも十分な特性が得られるが、炭素膜が被覆されている正極活物質とグラフェンを共に用いると、キャリアが正極活物質間をホッピングし、電流が流れるためより好ましい。
【0141】
図7(C)は、図7(B)の正極活物質層309の一部における断面図である。正極活物質層309は、正極活物質321、及び正極活物質321を覆うグラフェン323を有する。グラフェン323は断面図において線状で観察される。同一のグラフェン又は複数のグラフェンにより、複数の正極活物質を内包する。即ち、同一のグラフェン又は複数のグラフェンの間に、複数の正極活物質が内在する。なお、グラフェンは袋状になっており、該内部において、複数の正極活物質を内包する場合がある。また、グラフェンに覆われず、一部の正極活物質が露出している場合がある。
【0142】
正極活物質層309の厚さは、20μm以上100μm以下の間で所望の厚さを選択する。なお、クラックや崩落が生じないように、正極活物質層309の厚さを適宜調整することが好ましい。
【0143】
なお、正極活物質層309には、グラフェンの体積の0.1倍以上10倍以下のアセチレンブラック粒子や1次元の拡がりを有するカーボン粒子(カーボンナノファイバー等)、公知のバインダーを有してもよい。
【0144】
なお、正極活物質は、キャリアイオンの吸蔵により体積が膨張する材料である。このため、充放電により正極活物質層が脆くなり、正極活物質層の一部が崩落してしまい、その結果、蓄電装置の信頼性が低下する。しかしながら、正極活物質の周辺をグラフェン323で覆うことで、正極活物質が充放電により体積が増減しても、当該周囲をグラフェンが覆うため、グラフェンは正極活物質の分散や正極活物質層の崩落を妨げることが可能である。即ち、グラフェンは、充放電にともない正極活物質の体積が増減しても、正極活物質同士の結合を維持する機能を有する。
【0145】
また、グラフェン323は、複数の正極活物質と接しており、導電助剤としても機能する。また、キャリアイオンの吸蔵放出が可能な正極活物質321を保持する機能を有する。このため、正極活物質層にバインダーを混合する必要が無く、正極活物質層当たりの正極活物質量を増加させることが可能であり、蓄電装置の充放電容量を高めることができる。
【0146】
次に、正極活物質層309の作製方法について説明する。
【0147】
粒子状の正極活物質及び酸化グラフェンを含むスラリーを形成する。次に、正極集電体上に、当該スラリーを塗布した後、実施の形態1に示すグラフェンの作製方法と同様に、還元雰囲気での加熱により還元処理を行って、正極活物質を焼成すると共に、酸化グラフェンに含まれる酸素を脱離させ、グラフェンに間隙を形成する。なお、酸化グラフェンに含まれる酸素は全て還元されず、一部の酸素はグラフェンに残存する。以上の工程により、正極集電体307上に正極活物質層309を形成することができる。この結果、正極活物質層309の導電性が高まる。
【0148】
酸化グラフェンは酸素を含むため、極性溶媒中では負に帯電する。この結果、酸化グラフェンは互いに分散する。このため、スラリーに含まれる正極活物質が凝集しにくくなり、焼成による正極活物質の粒径の増大を低減することができる。このため、正極活物質内の電子の移動が容易となり、正極活物質層の導電性を高めることができる。
【0149】
なお、図8に示すように、正極311の表面にスペーサ331を設けてもよい。図8(A)はスペーサを有する正極の斜視図であり、図8(A)の点線A−Bの断面図を図8(B)に示す。
【0150】
図8(A)及び図8(B)に示すように、正極311は、正極集電体307上に正極活物質層309が設けられる。また、正極活物質層309上にスペーサ331が設けられる。
【0151】
スペーサ331は、絶縁性を有し、且つ電解質と反応しない材料を用いて形成することが可能であり、代表的には、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリアミド、の有機材料、ガラスペースト、ガラスフリット、ガラスリボン等の低融点ガラスを用いることができる。スペーサ331を正極311上に設けることで、後に形成する蓄電装置において、セパレータが不要である。この結果、蓄電装置の部品数を削減することが可能であり、コストを削減できる。
【0152】
スペーサ331は、平面形状を格子状、円又は多角形の閉ループ状等の、一部の正極活物質層309を露出させる形状とすることが好ましい。この結果、正極及び負極の接触を防ぐと共に、正極及び負極の間のキャリアイオンの移動を促すことができる。
【0153】
スペーサ331の厚さは、1μm以上5μm以下、好ましくは2μm以上3μmとすることが好ましい。この結果、従来の蓄電装置のように、正極及び負極の間に厚さ数十μmのセパレータを設けた場合と比較して、正極及び負極の間隔を狭めることが可能であり、正極及び負極の間のキャリアイオンの移動距離を短くできる。このため、蓄電装置内に含まれるキャリアイオンを充放電に有効活用できる。
【0154】
スペーサ331は、印刷法、インクジェット法等を適宜用いて形成することができる。
【0155】
次に、蓄電装置の構造及び作製方法について説明する。
【0156】
本実施の形態の蓄電装置の代表例であるリチウム二次電池の一形態について図9を用いて説明する。ここでは、リチウム二次電池の断面構造について、以下に説明する。
【0157】
図9は、リチウム二次電池の断面図である。
【0158】
リチウム二次電池400は、負極集電体407及び負極活物質層409で構成される負極411と、正極集電体401及び正極活物質層403で構成される正極405と、負極411及び正極405で挟持されるセパレータ413とで構成される。なお、セパレータ413中には電解質415が含まれる。また、負極集電体407は外部端子419と接続し、正極集電体401は外部端子417と接続する。外部端子419の端部はガスケット421に埋没されている。即ち、外部端子417、419は、ガスケット421によって絶縁されている。
【0159】
負極411は、実施の形態1に示す負極206又は実施の形態2に示す負極216を適宜用いて形成すればよい。
【0160】
正極集電体401及び正極活物質層403はそれぞれ、本実施の形態に示す正極集電体307及び正極活物質層309を適宜用いることができる。
【0161】
セパレータ413は、絶縁性の多孔体を用いる。セパレータ413の代表例としては、例えば、紙、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いればよい。ただし、電解質415に溶解しない材料を選ぶ必要がある。
【0162】
なお、正極405として、図8に示すように、正極活物質層上にスペーサを有する正極を用いる場合は、セパレータ413を設けなくともよい。
【0163】
電解質415の溶質は、キャリアイオンを有する材料を用いる。電解質の溶質の代表例としては、LiClO、LiAsF、LiBF、LiPF、Li(CSON等のリチウム塩がある。
【0164】
なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオン、アルカリ土類金属イオン、ベリリウムイオン、又はマグネシウムイオンの場合、電解質415の溶質として、上記リチウム塩において、リチウムの代わりに、アルカリ金属(例えば、ナトリウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム等)、ベリリウム、又はマグネシウムを用いてもよい。
【0165】
また、電解質415の溶媒としては、キャリアイオンの移送が可能な材料を用いる。電解質415の溶媒としては、非プロトン性有機溶媒が好ましい。非プロトン性有機溶媒の代表例としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン等があり、これらの一つ又は複数を用いることができる。また、電解質415の溶媒としてゲル化される高分子材料を用いることで、漏液性を含めた安全性が高まる。また、リチウム二次電池400の薄型化及び軽量化が可能である。ゲル化される高分子材料の代表例としては、シリコンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド、ポリプロピレンオキサイド、フッ素系ポリマー等がある。また、電解質415の溶媒として、難燃性及び難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、蓄電装置の内部短絡や、過充電等によって内部温度が上昇しても、蓄電装置の破裂や発火などを防ぐことができる。
【0166】
また、電解質415として、LiPO等の固体電解質を用いることができる。他の固体電解質としては、LiPOに窒素を混ぜたLiPO(x、y、zは正の実数)、LiS−SiS、LiS−P、LiS−B等を用いることができ、上記列挙した固体電解質にLiIなどをドープしたものを用いることもできる。なお、電解質415として固体電解質を用いる場合は、セパレータ413は不要である。
【0167】
外部端子417、419は、ステンレス鋼板、アルミニウム板などの金属部材を適宜用いることができる。
【0168】
なお、本実施の形態では、リチウム二次電池400として、ボタン型リチウム二次電池を示したが、封止型リチウム二次電池、円筒型リチウム二次電池、角型リチウム二次電池等様々な形状のリチウム二次電池を用いることができる。また、正極、負極、及びセパレータが複数積層された構造、正極、負極、及びセパレータが捲回された構造であってもよい。
【0169】
次に、本実施の形態に示すリチウム二次電池400の作製方法について説明する。
【0170】
実施の形態1、実施の形態2及び本実施の形態に示す作製方法により、適宜、正極405及び負極411を作製する。
【0171】
次に、正極405、セパレータ413、及び負極411を電解質415に含浸させる。次に、外部端子417に、正極405、セパレータ413、ガスケット421、負極411、及び外部端子419の順に積層し、「コインかしめ機」で外部端子417及び外部端子419をかしめてコイン型のリチウム二次電池を作製することができる。
【0172】
なお、外部端子417及び正極405の間、又は外部端子419及び負極411の間に、スペーサ、及びワッシャを入れて、外部端子417及び正極405の接続、並びに外部端子419及び負極411の接続をより高めてもよい。
【0173】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【0174】
(実施の形態4)
本発明の一態様に係る蓄電装置は、電力により駆動する様々な電気機器の電源として用いることができる。
【0175】
本発明の一態様に係る蓄電装置を用いた電気機器の具体例として、表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画又は動画を再生する画像再生装置、携帯電話、携帯型ゲーム機、携帯情報端末、電子書籍、ビデオカメラ、デジタルスチルカメラなどのカメラ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、エアコンディショナーなどの空調設備、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、透析装置などが挙げられる。また、蓄電装置からの電力を用いて電動機により推進する移動体なども、電気機器の範疇に含まれるものとする。上記移動体として、例えば、電気自動車、内燃機関と電動機を併せ持った複合型自動車(ハイブリッドカー)、電動アシスト自転車を含む原動機付自転車などが挙げられる。
【0176】
なお、上記電気機器は、消費電力の殆ど全てを賄うための蓄電装置(主電源と呼ぶ)として、本発明の一態様に係る蓄電装置を用いることができる。或いは、上記電気機器は、上記主電源や商用電源からの電力の供給が停止した場合に、電気機器への電力の供給を行うことができる蓄電装置(無停電電源と呼ぶ)として、本発明の一態様に係る蓄電装置を用いることができる。或いは、上記電気機器は、上記主電源や商用電源からの電気機器への電力の供給と並行して、電気機器への電力の供給を行うための蓄電装置(補助電源と呼ぶ)として、本発明の一態様に係る蓄電装置を用いることができる。
【0177】
図10に、上記電気機器の具体的な構成を示す。図10において、表示装置5000は、蓄電装置5004を用いた電気機器の一例である。具体的に、表示装置5000は、TV放送受信用の表示装置に相当し、筐体5001、表示部5002、スピーカー部5003、蓄電装置5004等を有する。蓄電装置5004は、筐体5001の内部に設けられている。蓄電装置5004には本発明の一態様に係る蓄電装置が用いられている。表示装置5000は、商用電源から電力の供給を受けることもできるし、蓄電装置5004に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、蓄電装置5004を無停電電源として用いることで、表示装置5000の利用が可能となる。
【0178】
表示部5002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。
【0179】
なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
【0180】
図10において、据え付け型の照明装置5100は、蓄電装置5103を用いた電気機器の一例である。具体的に、照明装置5100は、筐体5101、光源5102、蓄電装置5103等を有する。蓄電装置5103には本発明の一態様に係る蓄電装置が用いられている。図10では、蓄電装置5103が、筐体5101及び光源5102が据え付けられた天井5104の内部に設けられている場合を例示しているが、蓄電装置5103は、筐体5101の内部に設けられていても良い。照明装置5100は、商用電源から電力の供給を受けることもできるし、蓄電装置5103に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、蓄電装置5103を無停電電源として用いることで、照明装置5100の利用が可能となる。
【0181】
なお、図10では天井5104に設けられた据え付け型の照明装置5100を例示しているが、本発明の一態様に係る蓄電装置は、天井5104以外、例えば側壁5105、床5106、窓5107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
【0182】
また、光源5102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
【0183】
図10において、室内機5200及び室外機5204を有するエアコンディショナーは、蓄電装置5203を用いた電気機器の一例である。具体的に、室内機5200は、筐体5201、送風口5202、蓄電装置5203等を有する。蓄電装置5203には本発明の一態様に係る蓄電装置が用いられている。図10では、蓄電装置5203が、室内機5200に設けられている場合を例示しているが、蓄電装置5203は室外機5204に設けられていても良い。或いは、室内機5200と室外機5204の両方に、蓄電装置5203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、蓄電装置5203に蓄積された電力を用いることもできる。特に、室内機5200と室外機5204の両方に蓄電装置5203が設けられている場合、停電などにより商用電源から電力の供給が受けられない時でも、蓄電装置5203を無停電電源として用いることで、エアコンディショナーの利用が可能となる。
【0184】
なお、図10では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、本発明の一態様に係る蓄電装置を用いることもできる。
【0185】
図10において、電気冷凍冷蔵庫5300は、本発明の一態様に係る蓄電装置5304を用いた電気機器の一例である。具体的に、電気冷凍冷蔵庫5300は、筐体5301、冷蔵室用扉5302、冷凍室用扉5303、蓄電装置5304等を有する。蓄電装置5304に本発明の一態様に係る蓄電装置が用いられている図10では、蓄電装置5304が、筐体5301の内部に設けられている。電気冷凍冷蔵庫5300は、商用電源から電力の供給を受けることもできるし、蓄電装置5304に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、蓄電装置5304を無停電電源として用いることで、電気冷凍冷蔵庫5300の利用が可能となる。
【0186】
なお、上述した電気機器のうち、電子レンジ等の高周波加熱装置、電気炊飯器などの電気機器は、短時間で高い電力を必要とする。よって、商用電源では賄いきれない電力を補助するための補助電源として、本発明の一態様に係る蓄電装置を用いることで、電気機器の使用時に商用電源のブレーカーが落ちるのを防ぐことができる。
【0187】
また、電気機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、蓄電装置に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。例えば、電気冷凍冷蔵庫5300の場合、気温が低く、冷蔵室用扉5302、冷凍室用扉5303の開閉が行われない夜間において、蓄電装置5304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉5302、冷凍室用扉5303の開閉が行われる昼間において、蓄電装置5304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。
【0188】
次に、本発明の一態様に係る蓄電装置を用いた携帯情報端末について図11(A)、図11(B)、及び図11(C)を用いて説明する。
【0189】
図11(A)及び図11(B)は2つ折り可能なタブレット型端末である。図11(A)は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a、表示部9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省電力モード切り替えスイッチ9036、留め具9033、操作スイッチ9038、を有する。
【0190】
表示部9631aは、一部をタッチパネルの領域9632aとすることができ、表示された操作キー9638にふれることでデータ入力をすることができる。なお、表示部9631aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部9631aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部9631aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示画面として用いることができる。
【0191】
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一部をタッチパネルの領域9632bとすることができる。また、タッチパネルのキーボード表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれることで表示部9631bにキーボードボタン表示することができる。
【0192】
また、タッチパネルの領域9632aとタッチパネルの領域9632bに対して同時にタッチ入力することもできる。
【0193】
また、表示モード切り替えスイッチ9034は、縦表示又は横表示などの表示の向きを切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えスイッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
【0194】
また、図11(A)では表示部9631bと表示部9631aの表示面積が同じ例を示しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネルとしてもよい。
【0195】
図11(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9633、充放電制御回路9634、バッテリー9635、DCDCコンバータ9636を有する。なお、図11(B)では充放電制御回路9634の一例としてバッテリー9635、DCDCコンバータ9636を有する構成について示しており、バッテリー9635は、本発明の一態様に係る蓄電装置が用いられている。
【0196】
なお、タブレット型端末は2つ折り可能なため、未使用時に筐体9630を閉じた状態にすることができる。従って、表示部9631a、表示部9631bを保護できるため、耐久性に優れ、長期使用の観点からも信頼性の優れたタブレット型端末を提供できる。
【0197】
また、この他にも図11(A)及び図11(B)に示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
【0198】
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の一面又は二面に設けることで効率的なバッテリー9635の充電を行う構成とすることができるため好適である。なおバッテリー9635としては、本発明の一態様に係る蓄電装置を用いると、小型化を図れる等の利点がある。
【0199】
また、図11(B)に示す充放電制御回路9634の構成、及び動作について図11(C)にブロック図を示し説明する。図11(C)には、太陽電池9633、バッテリー9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、バッテリー9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図11(B)に示す充放電制御回路9634に対応する箇所となる。
【0200】
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、バッテリー9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにしてバッテリー9635の充電を行う構成とすればよい。
【0201】
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段によるバッテリー9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力電送モジュールや、また他の充電手段を組み合わせて行う構成としてもよい。
【0202】
また、上記実施の形態で説明した蓄電装置を具備していれば、図11に示した電気機器に特に限定されない。
【0203】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【符号の説明】
【0204】
200 シリコン基板
202 活物質
202a 共通部
202b 突起
202c 突起
203 外殻
204 グラフェン
206 負極
206a 負極
206b 負極
207 保護層
208a マスク
208b マスク
208c マスク
208d マスク
208e マスク
210 シリコン層
211 集電体
212 活物質
212a 共通部
212b 突起
213 外殻
214 グラフェン
215 活物質層
215a 活物質層
215b 活物質層
215c 活物質層
216 負極
217 保護層
221 柱状突起
222 錐体状突起
223 板状突起
224 パイプ状突起
231 軸
233 界面
241 軸
243 界面
307 正極集電体
309 正極活物質層
311 正極
321 正極活物質
323 グラフェン
331 スペーサ
400 リチウム二次電池
401 正極集電体
403 正極活物質層
405 正極
407 負極集電体
409 負極活物質層
411 負極
413 セパレータ
415 電解質
417 外部端子
419 外部端子
421 ガスケット
5000 表示装置
5001 筐体
5002 表示部
5003 スピーカー部
5004 蓄電装置
5100 照明装置
5101 筐体
5102 光源
5103 蓄電装置
5104 天井
5105 側壁
5106 床
5107 窓
5200 室内機
5201 筐体
5202 送風口
5203 蓄電装置
5204 室外機
5300 電気冷凍冷蔵庫
5301 筐体
5302 冷蔵室用扉
5303 冷凍室用扉
5304 蓄電装置
9630 筐体
9631 表示部
9631a 表示部
9631b 表示部
9632a 領域
9632b 領域
9033 留め具
9034 表示モード切り替えスイッチ
9035 電源スイッチ
9036 省電力モード切り替えスイッチ
9038 操作スイッチ
9639 キーボード表示切り替えボタン
9633 太陽電池
9634 充放電制御回路
9635 バッテリー
9636 DCDCコンバータ
9637 コンバータ
9638 操作キー

【特許請求の範囲】
【請求項1】
共通部、及び前記共通部から突出した複数の突起と、
前記共通部の表面及び前記複数の突起の表面に着接された外殻と、
前記外殻の表面に着接されたグラフェンと、を有し、
前記複数の突起それぞれの軸が揃っている負極を備えていることを特徴とする蓄電装置。
【請求項2】
集電体と、
前記集電体上に設けられた共通部と、
前記共通部から突出した複数の突起と、
前記共通部の表面及び前記複数の突起の表面に着接された外殻と、
前記外殻の表面に着接されたグラフェンと、を有し、
前記複数の突起それぞれの軸が揃っている負極を備えていることを特徴とする蓄電装置。
【請求項3】
共通部、及び前記共通部から突出した複数の突起と、
前記共通部の表面及び前記複数の突起の表面に着接された外殻と、
前記外殻の表面に着接されたグラフェンと、を有し、
前記複数の突起の上面形状が並進対称性を有する負極を備えていることを特徴とする蓄電装置。
【請求項4】
集電体と、
前記集電体上に設けられた共通部と、
前記共通部から突出した複数の突起と、
前記共通部の表面及び前記複数の突起の表面に着接された外殻と、
前記外殻の表面に着接されたグラフェンと、を有し、
前記複数の突起の上面形状が並進対称性を有する負極を備えていることを特徴とする蓄電装置。
【請求項5】
請求項1乃至請求項4のいずれか一において、
前記共通部、前記複数の突起及び前記外殻はシリコンで形成されていることを特徴とする蓄電装置。
【請求項6】
請求項1乃至請求項5のいずれか一において、
前記共通部及び前記複数の突起は単結晶構造、多結晶構造及び微結晶構造のいずれか一以上であり、
前記外殻は非晶質構造であることを特徴とする蓄電装置。
【請求項7】
集電体と、
前記集電体上に設けられた複数の突起と、
前記集電体の表面及び前記複数の突起の表面に着接された外殻と、
前記外殻の表面に着接されたグラフェンと、を有し、
前記複数の突起それぞれの軸が揃っている負極を備えていることを特徴とする蓄電装置。
【請求項8】
集電体と、
前記集電体上に設けられた複数の突起と、
前記集電体の表面及び前記複数の突起の表面に着接された外殻と、
前記外殻の表面に着接されたグラフェンと、を有し、
前記複数の突起の上面形状が並進対称性を有する負極を備えていることを特徴とする蓄電装置。
【請求項9】
請求項7又は請求項8において、
前記複数の突起及び前記外殻はシリコンで形成されていることを特徴とする蓄電装置。
【請求項10】
請求項7乃至請求項9のいずれか一において、
前記複数の突起は単結晶構造、多結晶構造及び微結晶構造のいずれか一以上であり、
前記外殻は非晶質構造であることを特徴とする蓄電装置。
【請求項11】
請求項1乃至請求項10のいずれか一において、
前記複数の突起は、柱状、錐体状、板状、又はパイプ状であることを特徴とする蓄電装置。
【請求項12】
請求項1乃至請求項11のいずれか一において、
前記複数の突起の先端と前記外殻の間に、導電層、半導体層及び絶縁層のいずれか一以上で設けられた保護層を有することを特徴とする蓄電装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−77562(P2013−77562A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【出願番号】特願2012−201238(P2012−201238)
【出願日】平成24年9月13日(2012.9.13)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】