説明

走査型撮像装置

【課題】変形又は傾斜した流路に対しても、1回の走査動作で良好に被検体の撮像を行うことが可能な走査型撮像装置を提供する。
【解決手段】走査型撮像装置は、励起用の第1のスポット光と、焦点検知用の2つの第2のスポット光とをそれぞれ基板4の流路に照射するスポット光投影部101を有する。さらに、第1のスポット光によって励起されて流路内の被検体から発せられた光と、一方の第2のスポット光が流路の上面で反射して生じた第1の反射光と、他方の第2のスポット光が流路の下面で反射して生じた第2の反射光とを撮像する撮像部102を有する。さらに、流路の深さ方向における第1及び第2のスポット光の焦点位置を調節する焦点位置調節手段を有する。焦点位置調節手段は、第1及び第2の反射光の強度を比較して求められる、流路の深さ方向における第1及び第2のスポット光の焦点位置の偏差方向及び偏差量に応じて動作するように構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板の流路内に配置された検体に励起光を照射することで検体から発せられる光を検出する走査型撮像装置に関するものである。
【背景技術】
【0002】
基板内にマイクロ流路を形成し、その中に検体DNA、試薬を流し、生化学的反応を行うマイクロTASの手法は、多くの分野で用いられ、その有用性は、周知のものである。
【0003】
このマイクロ流路内の二本鎖DNA量を検出する方法として、インターカレーター方式の蛍光標識を用いる手法が知られている。この手法では、二本鎖DNAを50℃から90℃程度まで加熱し、その時の蛍光強度の変化によってDNAが一本鎖に分離する温度を求めてDNAの種類が判定される。
【0004】
しかし、マイクロ流路は、その断面が数μmから百μm程度と大変小さい。このマイクロ流路の温度を変化させて流路内の蛍光強度を測定する場合、熱変化により、基板が撓み、流路の位置が変位する。特に基板が樹脂材料で構成されている場合には、基板の変形は大きく、流路位置の変位も大きい。さらに、流路内の蛍光標識からの微弱な蛍光を検知するためには、基板材料自身が発する自家蛍光の影響を避けることが好ましい。そのためには、撮像装置による撮像領域をできるだけ小さくし、自家蛍光は受光せずに蛍光標識からの蛍光のみを撮像することが好ましい。そのために、撮影光学系のNAを大きくし焦点深度を小さくする方法、コンフォーカル撮影の原理または光切断の原理を用いて光を検出する撮像深度を狭くする等の方法がある。しかし、これらの手法により撮像深度を小さくすると、流路の中にこの撮像深度が正確に配置されるように流路の位置を合わせなければ、蛍光を精度良く得ることはできない。さらに、上記のような基板の変形や、流路の製作誤差、配置誤差により、流路面と走査面がずれて部分的に撮像深度から流路が外れ、正確な測定ができないという問題もある。
【0005】
このような問題を解決する手段として、撮像装置にオートフォーカス機構を搭載することが考えられる。リアルタイムにオートフォーカスを行う装置が、特許文献1に開示されている。この装置は、DNAチップのプローブに結合した蛍光標識を検知する装置において、励起光のDNAチップ表面からの反射光を四葉素子で受光して、それらの素子の受光量の差分よりフォーカス位置の前後を判断する。そして、レンズ位置を調整して常にチップ表面にピントを保つ。
【0006】
また、特許文献2には1次元のセンサー(マルチチャンネル光電子倍増管)を用いた撮像系にAF機構を搭載した装置が開示されている。さらに、特許文献3には、4葉素子を用いて流路の上下の壁面を検知し、その間をジグザグにスキャンする方法が開示されている。
【特許文献1】特開2001−242081号公報
【特許文献2】特許第3551860号公報
【特許文献3】特開2006−322707号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
特許文献1に開示されている装置は、ダブルスキャニング方式のものである。すなわち、被検体上の一点に対物レンズを用いて励起光のスポット光を形成し、生じた蛍光を対物レンズを用いて光電子倍増管(PMT)等の光量検知素子に導き、被写体とスポット光を相対的に移動しながら、被写体全面の情報を得る。この方式は、被写体を二次元方向に駆動し走査する場合には、走査に時間がかかり、装置が大掛かりになるという欠点があり、また、液体を内部に有する流路基板を動かすことは、泡の発生や液漏れ等のおそれがあるため現実的ではない。また、固定した被写体に対し、励起光の投影、蛍光の集光に用いる対物レンズを含むオプティカルヘッドをスキャンする方法も開示されている。この方法は、被写体を動かすよりは、小さい駆動部により、早く走査することが可能だが、やはり、駆動部が必要であるため、装置が大型化し、さらに撮像に時間がかかるという問題は解消されない。さらにAF専用のセンサーも必要である。そして、対物レンズを光軸方向に駆動するボイスコイルモーターを対物レンズとともに走査するため、走査するオプティカルヘッドが重くなり、さらに走査に時間がかかる。
【0008】
また、特許文献2に開示された装置は、撮像系と独立にフォーカス検知光学系を設け、一点に対してフォーカス調整するのみであり、スキャン中のフォーカスは固定である。このため、1ラインスキャンの途中での流路位置の変化に対してリアルタイムにフォーカス調整をすることはできない。
【0009】
さらに、特許文献3に開示されたスキャン方法はダブルスキャニングのスキャナーに応用される方法であり、さらにスキャンに時間がかかるため非効率的である。
【0010】
また、検体の温度を蛍光強度とともに正確に検知することはDNAの種類を判別するために重要だが、蛍光検出とともに検体の温度測定も可能なスキャナーはこれまで提案されていない。
【0011】
そこで本発明は、変形又は傾斜した流路に対しても、1回の走査動作で良好に被検体の撮像を行うことが可能な走査型撮像装置を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記目的を達成するため、本発明の走査型撮像装置は、
基板内に形成された流路に配置された被検体に照射される励起用の第1のスポット光と、前記流路に照射される焦点検知用の2つの第2のスポット光とを前記基板の上の互いに異なる位置に照射し、かつ前記第1及び第2のスポット光を少なくとも前記流路に沿って走査するスポット光投影手段と、
前記第1のスポット光によって励起されて前記被検体から発せられた光と、一方の前記第2のスポット光が前記流路の上面で反射して生じた第1の反射光と、他方の前記第2のスポット光が前記流路の下面で反射して生じた第2の反射光とを撮像する撮像手段と、
前記流路の深さ方向に対する前記第1及び第2のスポット光の焦点位置を調節する焦点位置調節手段と、を有し、
前記焦点位置調節手段は、前記第1及び第2の反射光の強度を比較して求められる、前記流路の深さ方向における前記第1及び第2のスポット光の焦点位置の偏差方向及び偏差量に応じて動作するように構成されている。
【発明の効果】
【0013】
本発明によれば、変形又は傾斜した流路に対しても、1回の走査動作で良好に被検体の撮像を行うことが可能な走査型撮像装置を提供することができる。
【発明を実施するための最良の形態】
【0014】
本発明の一実施形態に係る走査型撮像装置を説明する。本実施形態の装置による主な検出対象は、マイクロ流路内の2本鎖DNAの量、DNAチップのプローブに結合したターゲットDNAの量等である。
【0015】
[装置構成]
図1は、本発明の一実施形態に係る走査型撮像装置を示す概略構成図である。図2は、図1に示したスポット光投影部、撮像部及び基板等の構成を図1のA矢視方向から見た概略透視図である。
【0016】
本実施形態の走査型撮像装置は、筐体14内に配置されたスポット光投影部101及び撮像部102と、複数のマイクロ流路5,6,7が形成された基板4を支持する温調ブロック8及び温調部9とを有している。本実施形態の走査型撮像装置はさらに、筐体14を図1に示す方向15aに移動させる駆動部15と、メモリ17、CPU18及びA/D変換部19を備えた制御回路16と、温調部9の温度を制御する温調制御部10とを有している。
【0017】
スポット光投影部101は、マイクロ流路5〜7内の被検体に加えられた蛍光標識を励起する励起用の波長488nmのレーザー光を出射するレーザー光源1と、焦点検知用の波長532nmのレーザー光を出射するレーザー光源21,22とを有している。したがって、レーザー光源1から照射される第1のスポット光1a(図4参照)は第1の波長(488nm)を有し、レーザー光源21,22から照射される2つの第2のスポット光21a,22a(図4参照)はそれぞれ第2の波長(532nm)を有している。スポット光投影部101は、それらのレーザー光を走査するスキャンミラー等からなる走査部2と、レーザー光のスキャン位置を走査部2による偏向角度に比例した位置に変換するfθレンズ3と、をさらに有している。
【0018】
また、撮像部102は、結像光学系である結像素子アレイ(例えば、セルフォックレンズアレイ:日本板硝子社の登録商標)11と、蛍光フィルター12と、センサアレイであるラインセンサー13と、を有している。蛍光フィルター12は、励起光である第1の波長(488nm)の光は遮断し、第1の波長によって励起された蛍光標識から発せられる蛍光(波長500nm〜530nm)および第2の波長(532nm)の光は透過する特性を有している。
【0019】
基板4には、複数種類の試薬に対応したマイクロ流路5,6,7が形成され、それらの中には、バッファー液で分離された複数の被検体DNA及び蛍光標識が入っている。この蛍光標識は、DNAの二本鎖の中に取り込まれた状態で励起され、蛍光を発するインターカレーター方式の蛍光標識(例えば、SYBR GreenI:Molecular Probe社の登録商標)である。この蛍光標識の励起波長は470〜490nmであり、500nm〜530nmの蛍光を発する。この液体は不図示の送液手段により流路の中を移動する。基板4は温調ブロック8により下面が覆われ、温調ブロック8は温調部9により加熱冷却される。温調部9の設定温度は温調制御部10によりコントロールされる。
【0020】
スポット光投影部101及び撮像部102を収容した筐体14は、ステッピングモーターや超音波モーター等からなる駆動部15により、走査部2の主走査方向2a(図2参照)に対して垂直な副走査方向15aに移動可能に構成されている。本実施形態の走査型撮像装置は、走査部2の主走査方向2aへの走査と、筐体14(すなわちスポット光投影部101及び撮像部102)の副走査方向15aへの移動とを行うことによって、流路5〜7内の蛍光標識の蛍光画像を撮像することが可能である。
【0021】
レーザー光源21,22から出射される焦点検知用の波長532nmのレーザー光は、蛍光フィルター12を透過する。これらの光源21,22から出射されたレーザー光は、レーザー光源1から出射されたレーザー光と同様に走査部2により走査される。そして、それらのレーザー光のうち、流路5〜7の上面及び下面で反射した反射光が、結像素子アレイ11によってラインセンサー13に導かれる。
【0022】
結像素子アレイ11を構成する素子は、屈折率分布型の材料により形成された光学素子であり、被写体像を一度レンズ内部に結像した後、像面に正立の被写体像を形成する。結像素子アレイ11は、このようなレンズを直線上に配列した部材であり、像面に広い範囲の正立被写体像を形成することができる。
【0023】
走査型撮像装置の全体を制御する制御回路16は、メモリ17、CPU18及びA/D変換部19を有し、走査部2の動作制御、ラインセンサー13の動作制御、温調制御部10の制御、駆動部15の制御を行う。制御回路16の働きにより、ラインセンサー13からの出力はA/D変換部19に送られ、さらにA/D変換部19によるA/D変換結果はメモリ17に送られる。
【0024】
メモリ17は、制御回路16が装置の制御に使う領域以外の領域にスキャン動作時の主走査用のメモリ領域を有する。その領域では、ラインセンサー13のデータの保存を目的とする複数のラインメモリを構成している。各画素を光スポットが通過する時間を一区切りとして、それぞれの時間に対してラインセンサー13の全画素のデータを保存するラインメモリが領域として確保されている。これらを時間別データ用ラインメモリと称する。さらに、それぞれのラインメモリの保存データから求められる値を保存するためにラインメモリが別途領域として確保されている。これを合成データ用ラインメモリと称する。
さらに、主走査と副走査との組合せの2次元データを保存するために主走査の複数回に対応して合成データ用ラインメモリのデータを記憶する複数のラインメモリも別途領域として確保されている。
【0025】
本実施形態の装置に用いることができる走査部2としては、ガルバノミラー、MEMSミラー、マイクロミラーアレイ、ポリゴンミラー等がある。また、本実施形態の装置に用いることができる結像光学系としては、結像素子アレイの他、マイクロレンズアレイや、通常の結像光学系を挙げることができる。また、本実施形態の装置に用いることができるセンサアレイとしては、ライン型のCCDセンサー、及び複数ラインを有する面積型のCCDセンサー、ライン型のCMOSセンサー、及び複数ラインを有する面積型のCMOSセンサーがある。
【0026】
[蛍光検出]
次に、図1及び図2を参照して、上述した走査型撮像装置を用いて、基板4内に形成された流路5〜7内の蛍光標識の撮像(蛍光検出)を行う方法を説明する。
【0027】
レーザー光源1から出射されたレーザー光は、走査部2によって反射され、fθレンズ3により直径10μm程度の第1のスポット光1aに集光される。走査部2は、光線の反射点を含む直交する2軸を回転軸として回転自在なマイクロミラーデバイスであり、第1の回転軸2bを中心とした角振動で主走査を行い、第2の軸2cを中心とする角度調整によりフォーカス調整を行う。走査部2で反射したレーザー光は、主走査方向2aに1秒間に10回程度の速さで往復振動する。これにより、スポット光は、図3に示すように、流路5,6,7に略平行な方向2301に10往復/秒の周期で走査される。この走査は、等速走査が望ましいが、実際には正確な等速走査は困難であり速度が生じる。そのため、正弦波状の非等速走査でも良い。この光スポットのスキャン開始の基準位置は、不図示の光センサーを光スポットが通過することにより検知される。
【0028】
走査部2の光線反射点は、fθレンズ3の焦点位置と一致している。そのため、fθレンズ3の屈折により光線は、走査部2による偏向角度に比例した距離だけ離れ、光軸に平行に進む収束光になる。結像素子アレイ11とラインセンサー13は、このスポット光の投影位置とラインセンサー13の受光部とが共役となるように配置されている。これにより、照明光束の通過領域のみが照明領域となるため、この光線幅が撮像深度となり、基板4の自家蛍光の影響を受けない高精度な撮像(蛍光検出)が可能となる。したがって、撮像光路と照明光路との交点に流路5〜7が一致した場合には、流路5〜7内の蛍光標識から発せられた蛍光は、結像素子アレイ11によりラインセンサー13の受光部に導かれる。
【0029】
走査部2による一走査が終了すると、スポット光投影部101及び撮像部102を収容した筐体14は、主走査方向2aに対して垂直な方向である副走査方向15aに駆動部15によって移動させられる。すなわち、走査部2により主走査が行われ、駆動部15により副走査が行われる。この主走査と副走査とを組み合わせることにより、図3に破線で示す撮像範囲2302,2303,2304における蛍光画像が撮像される。図3に示すように流路5〜7の長さ方向と平行に主走査を行う際には、流路5〜7の間を飛び越して副走査することが可能であるため、走査動作の効率が良い。本実施形態では結像素子アレイ11のような小さな光学部品を用いているため、このような飛び越し走査を短時間で行うことが可能である。
【0030】
[フォーカス検知]
上述したように、レーザー光源21,22は、フォーカス検知用の波長532nmのレーザー光を出射する光源である。この波長の光は蛍光フィルター12を透過する。レーザー光源21,22から出射されたレーザー光も、上述したレーザー光源1からのレーザー光と同様、走査部2によって反射され、fθレンズ3により直径10μmの第2のスポット21a,22aに集光される。このとき、これらの光線は、走査部2の反射面では一致するが、基板4の流路5〜7が形成されている面では、図4に示すように励起用スポット光1aとは、異なる位置に投影される。図4は、マイクロ流路6における、各レーザー光源1,21,22から出射されたレーザー光によるスポット光1a,21a,22aの位置関係を示している。破線矢印線30はスポット光1aの走査軌跡と方向を示す線であり、スポット光21a,22aは、スポット光1aに対して走査方向及びこれに対して垂直な方向に、それぞれ互いに逆方向に変位して投影される。
【0031】
図5は、各レーザー光源1,21,22から出射されたレーザー光がマイクロ流路の上面及び下面で反射する様子を示す図である。
【0032】
励起光の光源であるレーザー光源1からの励起光の投影光軸1bと、マイクロ流路6内の蛍光標識が励起されて発する蛍光の撮像光軸13bとの交点がマイクロ流路6内に位置した合焦状態では、それらの光軸1b,13bは以下の関係になっている。すなわち、レーザー光源1からの励起光の投影光軸1bと、ラインセンサー13の受光部に入射する光の撮影光軸13bとは、マイクロ流路6の流路上面6aと流路下面6bとの中間で交わる。すなわち、ラインセンサー13はマイクロ流路6内から発せられる蛍光のみを受光する。
【0033】
励起光は、流路5〜7に到るまでの間、及び流路5〜7を通過した後も、基板4の材料を励起し、基板4も自家蛍光を発する。しかし、撮影光軸13bとの交点より離れた位置で発した自家蛍光は、ラインセンサー13の画素に対し、画素の配列方向に対して垂直な方向にずれた位置に投影されるため、基板4の自家蛍光が信号としてラインセンサー13に受光されることはない。そのため、ラインセンサー13では本来の検出対象であるマイクロ流路6内から発せられる蛍光のみが検出されるので、S/N比が良好な検出が可能である。
【0034】
また、各レーザー光源21,22から照射された2つのスポット光21a,22aのうち、レーザー光源21から照射された一方のスポット光21aは、光軸21bに沿って基板4の上面4aにおいて励起光の投影光軸1bから偏心した位置に投影される。そして、流路上面6aに向かう。基板4の材質と流路6中の流体とは屈折率が異なるため、光軸21bに沿って照射されたスポット光21aは、流路上面6aにおいてその一部が反射される。スポット光21aの流路上面6aで反射した光である第1の反射光は、蛍光フィルター12を透過し、結像素子アレイ11によりラインセンサー13に導かれる。図6に示すように、レーザー光源21からの出射光によるスポット光21aの流路上面6aでの反射像21cは、ラインセンサー13の受光部13aの画素配列方向に対して垂直な方向に、その一部がラインセンサー13にかかる程度に偏心している。
【0035】
レーザー光源22から出射された照射された他方のスポット光22aも同様に、図5に示す光軸22bに沿って進み、光軸1bに対して光軸21bとは反対側に偏心した位置に投影される。このスポット光22aは、光軸21bに沿って進むスポット光21aと同様に流路上面6aによって一部が反射されるが、残りの光はマイクロ流路6内を透過し、さらに流路下面6bに達する。基板4の材質と流路6中の流体との屈折率が異なるため、流路下面6bでもその一部の光が反射される。スポット光22aの流路下面6bで反射した光である第2の反射光は、蛍光フィルター10を透過し、結像素子アレイ11によりラインセンサー13に投影される。このスポット光22aの流路下面6bによる反射像22cは、図6に示すように受光部13aに対して反射像21cとは反対側に偏心した位置に導かれる。このとき、反射像22cは、その一部がラインセンサー13の受光部13aに掛かる程度に偏心して投影される。また、反射像22cは、ラインセンサー13のライン方向に対して、レーザー光源21からのスポット光21aによる反射像21c及びレーザー光源1からの励起光による反射像1cと重ならない程度に偏心して投影される。
【0036】
なお、光軸21bに沿って進むスポット光21aの流路下面6bでの反射像及び光軸22bに沿って進むスポット光22aの流路上面6aでの反射像は、それぞれラインセンサー13の受光部13aから反射像21c,22cよりもさらに離れた位置に投影される。そのため、それらの反射像がラインセンサー13によって信号として認識されることはない。
【0037】
図7は、各反射像1c,21c,22cを図6に示すようにラインセンサー13の受光部13aで受光した場合の、ラインセンサーの画素からの出力Pを示すグラフである。図中において、符号1d,21d,22dはそれぞれ反射像1c,21c,22cの出力Pを示している。上述したように、励起光の投影光軸1bと撮像光軸13bとが流路内で交わる場合には、反射像21c,22cの結像位置におけるラインセンサー13の受光部13aの画素からの出力Pは、図7の符号21d,22dに示すように略等しい。
【0038】
図8は、基板4およびその内部に形成されているマイクロ流路6が、図5に示した位置よりも距離4dだけスポット光投影部101及び撮像部102に近づいた状態を示している。
【0039】
スポット光投影部101及び撮像部102(図1参照)に対してマイクロ流路6が図8に示す位置関係にあるとき、レーザー光源21から出射されて光軸21bに沿って進む光線は、流路上面6aの撮像光軸13bに近い位置701で反射される。また、レーザー光源22から出射されて光軸22bに沿って進む光線は、流路下面6bの撮影光軸13bから離れた位置702で反射される。これにより、これらの光軸21b,22bに沿って進む光線による反射像21c,22cの、ラインセンサー13の受光部13aに対する位置関係は、図9に示すようになる。すなわち、レーザー光源21からの光線による反射像21cはラインセンサー13の受光部13aの付近に結像するが、レーザー光源22からの光線による反射像22cは受光部13aから離れた位置に結像する。このようにマイクロ流路6がスポット光投影部及び撮像部に近づいている場合には、反射像21cの結像位置におけるラインセンサー13の受光部13aの画素からの出力21dは、反射像22cの結像位置における出力22dよりも強い(図10参照)。
【0040】
図11は、基板4およびその内部に形成されているマイクロ流路6が、図5に示した位置よりも距離4eだけスポット光投影部101及び撮像部102から遠ざかった状態を示している。
【0041】
スポット光投影部101及び撮像部102(図1参照)に対してマイクロ流路6が図11に示す位置関係にあるとき、レーザー光源21から出射されて光軸21bに沿って進む光線は、流路上面6aの撮像光軸13bから離れた位置1001で反射される。また、レーザー光源22から出射されて光軸22bに沿って進む光線は、流路下面6bの撮影光軸13bに近い位置1002で反射される。これにより、これらの光軸21b,22bに沿って進む光線による反射像21c,22cの、ラインセンサー13の受光部13aに対する位置関係は、図12に示すようになる。すなわち、レーザー光源21からの光線による反射像21cはラインセンサー13の受光部13aから離れた位置に結像するが、レーザー光源22からの光線による反射像22cは受光部13aの付近に結像する。このようにマイクロ流路6がスポット光投影部及び撮像部から遠ざかっている場合は、反射像21cの結像位置におけるラインセンサー13の受光部13aの画素からの出力21dは、反射像22cの結像位置における出力22dよりも弱い(図13参照)。
【0042】
上記から、スポット光投影部101及び撮像部102(図1参照)とマイクロ流路5〜7との距離が、ラインセンサー13の受光部13aで検出される2つの反射像21c,22cの強度が略等しくなるように保たれていることが好ましいことがわかる。すなわち、上記距離がそのように保たれているときには、レーザー光源1からの励起光の投影光軸1bと撮影光軸13bとの交点が流路5〜7内に位置するため、ラインセンサー13は流路5〜7内の蛍光標識から発せられる蛍光を常に捉えることができる。
【0043】
[ラインセンサー制御]
図14は、図1等に示したラインセンサーの構成を示す概略構成図である。図14に示すように、ラインセンサー13の受光部13aは、それぞれフォトダイオード等の光電変換素子から成る複数の画素c1,c2,c3,…で構成され、光電変換された電荷を蓄積する機能を有している。ラインセンサー13は、受光部13aに蓄積された電荷を電荷読出し指示信号に対応して受け取るCCD13bと、CCD転送指示信号に対応して、CCD13bの画素順に電荷蓄積量に応じた電圧値に変換するアンプ13cと、をさらに有している。CCD13bは、受光部13aに蓄積された電荷を電荷読出し指示信号に対応して受け取る。その後、CCD13bに蓄積された電荷は、CCD転送指示信号に対応して、CCD13bの画素順に蓄積量に応じた電圧値に変換するアンプ13cを経由して、電圧信号としてラインセンサー13の外部に次々と出力される。
【0044】
図13は、ラインセンサー13の受光部13aを構成する画素c1,c2,c3,…の上に反射像1c、21c,22cが仮想的に投影された様子も示している。これらの反射像1c、21c,22cは、走査部2によるスキャン動作にしたがって、これらの画素の配列方向に移動する。
【0045】
次に、ラインセンサー13からの信号読出しについて説明する。反射像1c、21c,22cを受光部13a上にスキャンしている間、制御回路16(図1参照)は、ラインセンサー13の画素13aの蓄積と読出しとを繰り返す。たとえば、10往復/secでスキャンする場合には、1ラインの走査にかかる時間は50msecである。長さ20mmの流路の画像を10μmピッチでサンプリングするためには、
サンプリング周波数=1/5msec/10μm*20mm=40kHz
の周波数でラインセンサー13から信号を読み出す。このとき、蓄積時間は25μsecである。
【0046】
図15は、マイクロ流路6に投影された各スポット光の配置を示している。流路6内には、複数の検体601,603,605,607が、それらの間にバッファー液602,604,606を挟んで配置されている。時刻がT1からT2、さらにT3へと進むと、上記で説明した走査部2の動作により、3つのスポット光は流路6に沿って図示右方向に移動する。
【0047】
そのときラインセンサー13から読み出した信号の波形を図16に示す。図16において、横軸はラインセンサー13の画素配列方向の位置を示し、縦軸は各画素からの信号強度を示している。時刻T1における信号波形では、3つの山1501,1502,1503が現れている。そのうちの左右の2つ山1501,1503はフォーカス検知用の反射像21c,22cの強度を示し、中央の山1502は励起光による流路6内からの反射像1cの蛍光強度を示している。時刻T1においては、励起スポット光1aが検体601を照射しているため、強い蛍光強度が得られる。時刻T2では、励起スポット光1aはちょうど検体601とバッファー液602との中間に照射されているため、検出される蛍光強度は時刻T1のときよりも弱くなる。したがって、時刻T2における中央の山1505は時刻T1のときの中央の山1502よりも低くなっている。ただし、時刻T2における左右の山1504,1506は、流路上面及び流路下面からの反射光によるものであるため、強度に大きな変化はない。時刻T3では励起スポット光1aはバッファー液602を照射しているため、時刻T3における蛍光強度(中央の山1508の高さ)はさらに低くなっている。
【0048】
図17は、ラインセンサー13の画素配列方向の位置(横軸)と、各画素からの信号強度(縦軸)との関係を示すグラフである。図17中の黒丸は、信号強度を示す実際の波形から得られた値を示している。この黒丸の位置は、蛍光強度を表す山1502,1505,1508(図16)の位置に対応している。図16では山の波形を曲線で示したが、実際には図18に示すようにラインセンサーの個々の画素からの出力により構成される。したがって、この山の位置の計算方法は、例えば、蛍光強度のピークの20%程度を閾値とし、その波形の重心や面積中心を山の位置とすることができる。また、黒丸の高さは、山の波形1502を構成する各画素の出力を足し合わせた値である。このようにして求めた黒丸の座標をプロットすると、図17のT1,T2,T3で示すようになる。その他の黒丸も同様に波形より求めたものである。このようにして、上述したとおり、4MHzの速さでラインセンサー13の全画素の読み出しが行われる。すなわち、図16に示した波形を示すデータが、1回の主走査の間に2000通り得られることになる。
【0049】
上記においても述べたように、走査部2によるスキャン速度を一定に保つことは困難である。したがって、スポット光の単位時間あたりの移動距離は、このスキャン速度により異なる。図17は、このスキャンスピードが徐々に速くなる場合を示し、スポット光の進行とともに黒丸の横方向の間隔が徐々に広くなっている。画像を生成する場合には一定の距離間隔の情報が必要であるため、演算により、図17において白丸に示したような一定間隔の強度データを求める。すなわち、黒丸のデータの座標をXとし、そのXにおける強度をYとする近似多項式Y=F(X)を求め、この関数のXに一定間隔の座標を代入すれば、その座標における強度を求めることができる。このように求めた強度データを用いて画像を構成することにより、スキャン速度誤差に影響を受けず、歪みのない、位置の信頼性の高い画像を得ることができる。しかも、これらの強度データは、全て蓄積時間が一定であるため、強度情報の信頼性も高い。
【0050】
フォーカス検知用のスポット光の2つの山の強度をリアルタイムに比較することで、ピントずれの方向(投影部及び撮像部が流路に近づいているか、あるいは流路から遠ざかっているか)を検知することができる。なお、フォーカス検知用の2つのスポット光の信号については、励行光のスポット光の蛍光強度に関係なく一定の強度が得られる。そのため、励行光のスポット光による中央の山の強度が弱い場合等には、これらの信号を用いて中央の山の位置を求めることが可能である。中央の山の位置はフォーカス検知用の2つのスポット光の中間に位置するため、中央の山の位置はそれらの2つのスポット光の位置から求めることができる。このように、フォーカス検知用の2つのスポット光による強度信号から、励行光のスポット光による信号強度の山の位置を精度よく求めることができるため、正確な画像を撮像することが可能である。
【0051】
以上説明してきた方法では、スポット光をスキャンしている間、一定時間間隔で、ラインセンサー13の全ての画素から信号を読出してメモリに記録している。そのため、A/D変換部19(図1参照)等に処理速度が高速な部品を使うことが要求され、また大容量のメモリ17(図1参照)が必要とされる。しかしながら、A/D変換部の処理速度を高速化させず、かつ少ない容量のメモリでスキャンを行うために、スポット光のおおよその位置を予めメモリに記憶しておき、その周辺の画素の信号のみを取り出すようにしてもよい。この場合でも、上記と同様に画像情報を得ることができる。
【0052】
また、スポット光の位置は走査部2(図1等参照)の角度により決まるため、走査部2の角度を検知し、スポット光の位置に対応した画素の情報のみを読み出すことにより、信号読出しの速度を低下してデータ量を減らすこともできる。
【0053】
図19は、ラインセンサーの各画素における電荷の蓄積状態と、各画素からの電荷読出し動作とを示す図である。図19において、縦方向は順番に配列されたラインセンサーの各画素c1,c2,…c20…を示し、横方向は時間tの進行を示している。本実施形態のラインセンサー13は、各画素の蓄積読出しのタイミングを外部から制御可能なCMOSセンサーであり、走査部2の主走査角度を検知して、その検知した角度に同期して、蓄積画素を変えながら順次電荷の読出しを行う。より詳しく説明すると、図19にCHで示すように、まず、スポット光の位置に対応する画素c1,c5,c9に電荷蓄積を行う。そして、それらの画素から読み出した電荷をA/D変換部19で変換してメモリ17に記憶するとともに、次の画素c2,c6,c10において電荷蓄積を開始する。そして、蓄積した電荷を読出し、A/D変換部19で変換してメモリ17に記憶する。このようにして、上述したように焦点検知用のスポット光21c,22cの強度を検知する。CPU18は、メモリ17からデータを逐次読出し、2つのスポット光21c,22cの強度を比較することにより、ピントのずれ方向を検知して必要な補正を行う。この場合には電荷の蓄積時間が変化するため、蓄積時間を検知してスポット光1cの蛍光強度を補正するとさらに良い。
【0054】
制御回路16は、上述したように、第1及び第2の反射光(反射像21c,22c)の強度を比較して、マイクロ流路の深さ方向における各スポット光1a,21a,22の焦点位置の偏差方向及び偏差量を求める。そして、後述するように、それらの偏差方向及び偏差量に応じて焦点位置調節手段を動作させて、各スポット光1a,21a,22の焦点位置を調節する。
【0055】
[焦点補正]
基板4中のマイクロ流路5〜7に対する、スポット光投影部101から照射される各スポット光の焦点位置の調節は、以下のような焦点位置調節手段を用いて行うことができる。
【0056】
1つめの手段として、図1に示した筐体14内に設置されたスポット光投影手段101及び撮像手段102を基板4に対して垂直な方向(マイクロ流路の深さ方向)に移動させる上下駆動機構(不図示)を設けてもよい。これにより、前述したフォーカス検知用の2つの反射像21c,22cの強度が等しくなるようにスポット光投影手段101及び撮像手段102を上下に移動させることで、焦点補正を行うことができる。ただし、スポット光投影手段101及び撮像手段102は重量が大きいため、これらを素早く移動させるためには上下駆動機構には大型のものを用いる必要がある。
【0057】
また、スポット光投影手段101のみを、上下駆動機構(不図示)や駆動部15によって、基板4に対して垂直方向または水平方向に移動させることによっても焦点補正を行うことが可能である。この場合は、移動させるのがスポット光投影手段101のみであるため駆動機構の負担を軽減できるので、焦点補正を高速に行うことが可能となる。
【0058】
2つめの手段として、基板4の流路5〜7の長さ方向に沿った方向である主走査方向へのスポット光の走査を行うとともに、基板4の厚さ方向へのスポット光を偏向させる手段を用いることができる。このような手段を用いた場合には、上記のような大型の上下駆動機構を用いることなく、迅速な焦点補正を行うことができる。
【0059】
図20は、流路に沿った方向である主走査方向(第1の方向)へのスポット光の偏向と、流路の上面及び下面と平行な平面において第1の方向に対して直交する第2の方向へのスポット光の偏向とを行うことが可能な走査部を示す斜視図である。図20に示す走査部2は、第1の軸1502,1503によって枠体1504に回転自在に支持されたミラー部1501を有している。さらに、枠体1504は、第1の軸1502,1503に対して直交する第2の軸1505,1506によって他の枠体(図20では不図示)に回転自在に支持されている。ミラー部1501は既知の駆動手段によって第1の軸1502,1503を中心として回転方向に揺動するように駆動制御され、これによってスポット光の主走査が行われる。また、ミラー部1501を支持している枠体1504は既知の駆動手段によって第2の軸1505,1506を中心として回転するように駆動制御され、これによって基板4の厚さ方向へのスポット光の偏向が行われる。
【0060】
すなわち、上述したようにフォーカス検知信号(反射像21c,22c)によって流路の上下方向(深さ)における焦点ずれが検知された場合には、図21に示すように走査部2を主走査方向とは90°異なる方向に角度制御しながら回転させて焦点補正を行う。たとえば図11に示したように流路6距離4eだけ光学系から離れている場合には、光軸21b,22bに沿って進むスポット光の反射像のうち、図12に示すように反射像21cは受光部13aから離れ、反射像22cは受光部13aに接近する。この場合、図21に示すように、走査部2を主走査方向に対して垂直な方向に回転調整することにより、光源21,22から発せられた光線は符号21e,22eで示すように図示下方に偏向される。これにより、光線21e,22eの2つの反射像をラインセンサー13の受光部13aに対して等距離の位置に形成することができる。この状態では、励起光の光源1から発した光線により形成される光軸1eに沿って進む光線は、流路上面6aと流路下面6bとの中間位置で撮像光軸13bと交わるため、ラインセンサー13は流路6内からの蛍光画像を効率良く捉えることができる。
【0061】
このような焦点補正制御をレーザースポット光を走査しながらリアルタイムに行うことにより、流路5〜7が変形または製造誤差等によって撮像深度により形成される撮像面からずれている場合でも、流路内の蛍光標識の蛍光画像を効率良く撮像することができる。
【0062】
以上に説明した例では、励起光の投影位置のみを変化させて焦点補正を行っているため、蛍光検出面が結像素子アレイ11の焦点面からずれてしまい、反射像がラインセンサー13上に結像しないことが懸念される。しかし,一般にこのような結像素子アレイの焦点深度は200〜300μmであり、数十μm程度のずれによって反射像の測定値が影響を受けることはない。
【0063】
[温度測定]
次に、上述した走査型撮像装置を用いて、蛍光画像の撮像と同時に流路内の液温を測定する方法について説明する。
【0064】
前述の通り、流路内の検体を加熱及び冷却させ、その際の蛍光強度の変化の情報をもとに検査を行う手法は広く行われている。その際、撮像領域全体に亘って検体の温度を把握することは重要である。基板の表面の温度を測定して流路内の温度を推定する方法も考えられるが、外部環境の影響を受けやすく正確な測定はできない。したがって、時々刻々変化する流路内の温度を蛍光検出とともに計測することにより、蛍光強度の検出の精度をさらに向上することができる。
【0065】
流路の上面及び下面での反射率は、基板の材質の屈折率、および流路の内部を流れる流体の屈折率により決定される。そして、流路の内部を流れる液体の屈折率は、図22に示すように温度に依存するため、流路の上下面で反射した光の強度から、流路内の液体の温度を求めることができる。
【0066】
図22に示すように、40℃における屈折率は水が1.332、石英が1.4609であり、50℃においては水が1.3317、石英が1.4610であり、60℃においては水が1.3312、石英が1.4611である。したがって、流路への入射角を30°とすると、それぞれの温度での反射率は、40℃では0.403%、50℃では0.407%、60℃では0.411%となる。すなわち、温度変化に対する反射光強度の変化率は、40℃から50℃に変化する場合には0.407/0.403=1.01であり、50℃から60℃に変化する場合には0.411/0.407=1.01である。このことから、温度が10℃変化すると反射光の強度が約1%変化することがわかる。制御回路16のメモリ17には、上述したような、基板4及びその流路に流される液体の温度と、その温度における流路と液体との界面(流路上面6a及び流路下面b)における光の反射率との相関関係が記憶されている。
【0067】
図23は、横軸に時間T、縦軸に1回の主走査中の反射像21c,22cの強度Pを示すグラフである。符号21f,22fはそれぞれフォーカス検知用のレーザー光源21,22から発せられたレーザー光が流路の上下面で反射して形成された反射像の強度を示し、破線1801はその平均値を示している。強度21f,22fは、焦点のずれにより個々には変動があるものの、特にその2つが等しい強度のときは、温度が一定であれば反射像21c,22cの位置が変化しても常に等しい。しかし、前記のとおり、流路中の液体の温度が変化し、屈折率の変化により反射率が変化した場合には、この平均強度1801が変化する。図中の符号1802で示した領域では、それらの平均強度が強くなっている。これは、この付近では、反射率が増加している、つまり基板と液体との屈折率差が大きくなっていることを示している。これにより、図22から、液体の屈折率が低下していること、すなわち、液体の温度が上昇していることがわかる。この平均強度1801は、2つの強度22f,21fが等しくなった点、例えば符号1802,1803,1804等で示す点を滑らかに結ぶことで得ることもできる。
【0068】
制御回路16のCPU18は、フォーカス検知用のレーザー光源21,22から発せられたレーザー光(第2のスポット光)の強度に対する、この平均強度1801の比率から、流路上面及び流路下面での光の反射率を求める。なお、レーザー光源21,22から発せられるレーザー光の強度に関する情報は制御回路16に入力されるようになっている。そして、求められた反射率に基づいて、制御回路16のCPU18によって、メモリ17に記憶されている反射率と液体の温度との相関関係から流路内の液体の温度を求めることができる。さらに、焦点ずれによる2つの反射光強度の平均値のずれ方を予めメモリ17に記憶しておき、その値に基づいてCPU18によって液体の温度を演算することもできる。
【0069】
以上の方法によれば、流路内の検体の蛍光スキャンをする際に同時に流路内の液体の温度を検知することができる。そのため、流路内の液体の温度を検知するための特別な構成を装置に備える必要がなく、装置を大型化することなく、検体を精度良く検査することが可能になる。
【0070】
[その他]
上記では光検出手段としてセンサアレイの中でも特にラインセンサーを用いた例を用いて説明したが、撮像素子が二次元上に配列されたエリアセンサーを用いて光検出(撮像)を行ってもよい。エリアセンサーはラインセンサーが複数配列されたものであり、エリアセンサーの中の特定のラインを用いて光を検出することによって、上述したようなラインセンサーと同様に光検出を行うことが可能である。
【0071】
また上記では、メモリ17、CPU18及びA/D変換部19を含む制御回路16を制御手段として走査型撮像装置が有し、その制御回路16が走査型撮像装置に接続されている例を示した。この制御回路16に代えて、メモリ17、CPU18及びA/D変換部19が行う上述の動作を実行する外部コンピュータ(不図示)を用意し、その外部コンピュータを走査型撮像装置に接続してもよい。この場合には、その外部コンピュータが制御手段として機能する。
【0072】
さらに上記では、被検体に発光標識として蛍光標識を加え、その蛍光標識から発せられる蛍光を検出する例について説明したが、発光標識として用いることができる標識はこれに限られない。例えば、燐光を発光する標識を発光標識として被検体に加え、その発光標識から発せられる光として燐光を検出する構成であってもよい。
【図面の簡単な説明】
【0073】
【図1】本発明の一実施形態に係る走査型撮像装置を示す概略構成図である。
【図2】図1に示したスポット光投影部、撮像部及び基板等の構成を図1のA矢視方向から見た概略透視図である。
【図3】マイクロ流路に対するスポット光の主走査方向を示す図である。
【図4】マイクロ流路における、各レーザー光源から出射されたスポット光の位置関係を示す図である。
【図5】各レーザー光源から出射されたレーザー光がマイクロ流路の上面及び下面で反射する様子を示す図である。
【図6】ラインセンサーの受光部に対する各反射像の位置を示す図である。
【図7】各反射像を図6に示すようにラインセンサーの受光部で受光した場合の、ラインセンサーの画素からの出力を示すグラフである。
【図8】基板およびその内部に形成されているマイクロ流路が、図5に示した位置よりも距離4dだけスポット光投影部及び撮像部に近づいた状態を示す図である。
【図9】図8に示す状態における、ラインセンサーの受光部に対する各反射像の位置を示す図である。
【図10】各反射像を図9に示すようにラインセンサーの受光部で受光した場合の、ラインセンサーの画素からの出力を示すグラフである。
【図11】基板およびその内部に形成されているマイクロ流路が、図5に示した位置よりも距離4eだけスポット光投影部及び撮像部から遠ざかった状態を示す図である。
【図12】図11に示す状態における、ラインセンサーの受光部に対する各反射像の位置を示す図である。
【図13】各反射像を図12に示すようにラインセンサーの受光部で受光した場合の、ラインセンサーの画素からの出力を示すグラフである。
【図14】図1等に示したラインセンサーの構成を示す概略構成図である。
【図15】マイクロ流路に投影された各スポット光の配置を示す図である。
【図16】図15に示すようにマイクロ流路に各スポット光を投影したときにラインセンサーから読み出した信号の波形を示す図である。
【図17】ラインセンサーの画素配列方向の位置(横軸)と、各画素からの信号強度(縦軸)との関係を示すグラフである。
【図18】ラインセンサーの個々の画素からの出力を示す図である。
【図19】ラインセンサーの各画素における電荷の蓄積状態と、各画素からの電荷読出し動作とを示す図である。
【図20】主走査方向へのスポット光の偏向と、基板の厚さ方向へのスポット光の偏向とを行うことが可能な走査部を示す斜視図である。
【図21】図20に示した走査部を用いて、基板の流路に対するスポット光の焦点調節を行う動作を説明する図である。
【図22】基板の材質の屈折率および流路の内部を流れる流体の屈折率と温度との関係を示すグラフである。
【図23】横軸に時間T、縦軸に1回の主走査中の2つの反射像の強度Pを示すグラフである。
【符号の説明】
【0074】
4 基板
5,6,7 マイクロ流路
16 制御回路
101 スポット光投影部
102 撮像部

【特許請求の範囲】
【請求項1】
基板内に形成された流路に配置された被検体に照射される励起用の第1のスポット光と、前記流路に照射される焦点検知用の2つの第2のスポット光とを前記基板の上の互いに異なる位置に照射し、かつ前記第1及び第2のスポット光を少なくとも前記流路に沿って走査するスポット光投影手段と、
前記第1のスポット光によって励起されて前記被検体から発せられた光と、一方の前記第2のスポット光が前記流路の上面で反射して生じた第1の反射光と、他方の前記第2のスポット光が前記流路の下面で反射して生じた第2の反射光とを撮像する撮像手段と、
前記流路の深さ方向に対する前記第1及び第2のスポット光の焦点位置を調節する焦点位置調節手段と、を有し、
前記焦点位置調節手段は、前記第1及び第2の反射光の強度を比較して求められる、前記流路の深さ方向における前記第1及び第2のスポット光の焦点位置の偏差方向及び偏差量に応じて動作するように構成されている走査型撮像装置。
【請求項2】
前記スポット光投影手段は、前記第1及び第2のスポット光を、前記流路に沿った第1の方向と、前記流路の上面及び下面と平行な平面において前記第1の方向に対して直交する方向である第2の方向との2つの方向に偏向させる走査手段を備えており、
前記走査手段による前記第2の方向への前記第1及び第2のスポット光の偏向によって前記焦点位置の調節が行われる、請求項1に記載の走査型撮像装置。
【請求項3】
前記焦点位置調節手段は、前記スポット光投影手段及び前記撮像手段のうちの少なくとも前記スポット光投影手段を前記流路の深さ方向に移動させる駆動機構で構成されている、請求項1に記載の走査型撮像装置。
【請求項4】
前記撮像手段は、前記流路に沿った方向に対して平行に複数の画素が配列されたラインセンサーを有している、請求項1から3のいずれか1項に記載の走査型撮像装置。
【請求項5】
前記第1のスポット光は第1の波長を有し、前記第2のスポット光は前記第1の波長とは異なる第2の波長を有しており、
前記撮像手段は、前記第1の波長の光は遮断し、前記第1の波長とは異なる波長を有する前記被検体から発せられた光及び前記第2の波長の光は透過するフィルターを備えている、請求項1から4のいずれか1項に記載の走査型撮像装置。
【請求項6】
前記第1及び第2の反射光の強度を比較して、前記流路の深さ方向における前記第1及び第2のスポット光の焦点位置の偏差方向及び偏差量を求め、該偏差方向及び偏差量に応じて前記焦点位置調節手段を動作させて前記焦点位置を調節する制御手段に接続される、請求項1から5のいずれか1項に記載の走査型撮像装置。
【請求項7】
前記制御手段は、前記流路内に入れられた液体の温度を、前記第1及び第2の反射光の強度に基づいて求めるように構成されている、請求項6に記載の走査型撮像装置。
【請求項8】
前記制御手段には、前記液体の温度と、前記流路の上面及び下面における光の反射率との相関関係が記憶されており、
前記制御手段は、前記スポット光投影手段から照射された前記第2のスポット光の強度に対する、前記撮像手段で撮像された前記第1及び第2の反射光の平均の強度の比率から前記反射率を求め、さらに前記相関関係に基づいて前記液体の温度を求めるように構成されている、請求項7に記載の走査型撮像装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2009−250671(P2009−250671A)
【公開日】平成21年10月29日(2009.10.29)
【国際特許分類】
【出願番号】特願2008−96145(P2008−96145)
【出願日】平成20年4月2日(2008.4.2)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】