説明

超音波流量計の補正方法、及び超音波流量計

【課題】測定用流体の種類や濃度が変化した場合でも流量補正を的確に行うことができる超音波流量計を提供すること。
【解決手段】超音波流量計1は、2つの直管部2,3を有する配管と、第1の直管部2に設けられる第1の超音波送受信器5a,5bと、第2の直管部3に設けられる第2の超音波送受信器6a,6bと、各超音波送受信器5a,5b,6a,6bと接続される制御装置7とを備える。制御装置7は、各超音波送受信器5a,5b,6a,6bを用いて超音波Soの送受信を行うことにより、各直管部2,3での流量を計測し、それら計測値の差に基づいて流量補正を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波の伝搬時間差により流体の流量を測定する超音波流量計の補正方法、及び超音波流量計に関するものである。
【背景技術】
【0002】
従来の超音波流量計では、測定用流体が流れる配管の上流側及び下流側に超音波送受信器を設け、超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて測定用流体の流量を求めている。この種の超音波流量計において、測定用流体の温度や濃度が変化すると、その変化に伴って流体の動粘度が変化するため、流量の測定誤差が生じてしまう。この対策として、温度変化に対応した動粘度に基づいて流量の補正を行う技術が提案されている(例えば、特許文献1参照)。
【0003】
特許文献1に開示されている補正方法では、超音波流量計により流速及び音速を計測し、音速をパラメータとした温度テーブルを使用して流体の温度を求める。そして、温度をパラメータとした動粘度テーブルを使用して動粘度を求め、その動粘度に応じた比率で流量を補正している。
【特許文献1】特開2007−51913号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところが、上述した特許文献1の補正方法では、予め決められた測定用流体とは異なる種類の流体や濃度が変化した測定用流体を測定する場合、使用されるテーブルデータがその測定用流体に対応していないため、誤った補正を行ってしまい測定誤差が大きくなってしまう。また、流体の種類によっては、音速と温度との関係に極大点P1を持つ場合がある(図7参照)。この場合には、測定した音速から温度が一意に求まらないため、測定可能な温度範囲が制限されるといった問題も生じてしまう。
【0005】
本発明は上記の課題に鑑みてなされたものであり、その目的は、測定用流体の種類や濃度が変化した場合でも流量補正を的確に行うことができる超音波流量計の補正方法、及び超音波流量計を提供することにある。
【課題を解決するための手段】
【0006】
上記課題を解決するために、手段1に記載の発明は、測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて、前記測定用流体の流量を求める超音波流量計の補正方法であって、前記配管において前記測定用流体の流れの特性が異なる測定部位に設けられた複数の超音波送受信器を用いて超音波の送受信を行うことにより、前記測定用流体の流速または流量を前記複数の超音波送受信器でそれぞれ計測する計測ステップと、前記複数の超音波送受信器による計測値の差に基づいて前記測定用流体の流量を補正する補正ステップとを含むことを特徴とする超音波流量計の補正方法をその要旨とする。
【0007】
従って、手段1に記載の発明によると、測定用流体が流れる配管において測定用流体の流れの特性が異なる測定部位に複数の超音波送受信器が設けられており、計測ステップでは、それら超音波送受信器により、超音波の伝搬時間差が求められ、その伝搬時間差に応じた測定用流体の流速または流量が計測される。そして、補正ステップでは、各音波送受信器による計測値の差に基づいて測定用流体の流量が補正される。このようにすれば、測定用流体の種類や濃度が変化した場合であっても、温度計や粘度計などの他のセンサを用いることなく、流量補正を的確に行うことができる。
【0008】
手段2に記載の発明は、手段1において、前記配管において流路断面積が異なる測定部位に設けられた前記複数の超音波送受信器を用いて流速または流量を計測することをその要旨とする。
【0009】
従って、手段2に記載の発明によると、配管において流路断面積が異なる測定部位に複数の超音波送受信器が設けられている。この場合、測定用流体の流れの状態を表すレイノルズ数はそれぞれの測定部位で異なるため、測定用流体の動粘度が変化すると各超音波送受信器を用いて計測される流量は異なる計測値となる。従って、各計測値の差を利用して補正することにより、測定用流体の温度や濃度が変化した場合でもその測定用流体の流量を正確に求めることができる。
【0010】
手段3に記載の発明は、手段1において、前記配管において内面の表面粗さが異なる測定部位に設けられた前記複数の超音波送受信器を用いて流速または流量を計測することをその要旨とする。
【0011】
従って、手段3に記載の発明によると、配管において内面の表面粗さが異なる測定部位に複数の超音波送受信器が設けられている。この場合、測定用流体の流れの状態を表すレイノルズ数はそれぞれの測定部位で異なるため、測定用流体の動粘度が変化すると各超音波送受信器を用いて計測される流量は異なる計測値となる。従って、各計測値の差を利用して補正することにより、測定用流体の温度や濃度が変化した場合でもその測定用流体の流量を正確に求めることができる。
【0012】
手段4に記載の発明は、手段1乃至3のいずれかにおいて、前記複数の超音波送受信器による計測値の差に基づいて、前記測定用流体の動粘度を算出する動粘度算出ステップをさらに含み、前記補正ステップにおいて、前記動粘度により前記流量を補正することをその要旨とする。
【0013】
前記複数の超音波送受信器で計測される補正前の各流量の比率は、測定用流体の動粘度に依存して変化する。従って、手段4に記載の発明のように、動粘度算出ステップにおいて、複数の超音波送受信器による計測値の差に基づいて、測定用流体の動粘度が算出される。そして、補正ステップでは、その動粘度により流量が補正される。このようにすれば、測定用流体の温度や濃度が変化した場合でもその測定用流体の流量を正確に求めることができる。
【0014】
手段5に記載の発明は、手段1乃至4のいずれかにおいて、前記複数の超音波送受信器が設けられる複数の測定部位は、直列的に繋がる流路上に位置していることをその要旨とする。
【0015】
従って、手段5に記載の発明によると、複数の超音波送受信器が設けられる複数の測定部位は、直列的に繋がる流路上に位置しているので、各流路を流れる実際の流量は等しくなる。従って、その流量の関係を利用して、各超音波送受信器で計測された計測値を補正することにより、正確な流量を求めることができる。
【0016】
手段6に記載の発明は、手段1乃至4のいずれかにおいて、前記複数の超音波送受信器が設けられる複数の測定部位は、並列的に繋がる流路上に位置していることをその要旨とする。
【0017】
従って、手段6に記載の発明によると、複数の超音波送受信器が設けられる複数の測定部位は、並列的に繋がる流路上に位置しているので、各流路を流れる実際の流速は等しくなる。従って、その流速の関係を利用して、各超音波送受信器で計測された計測値を補正することにより、正確な流量を求めることができる。
【0018】
手段7に記載の発明は、測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を備え、前記超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて、前記測定用流体の流量を求める超音波流量計であって、前記配管において前記測定用流体の流れの特性が異なる測定部位に設けられた複数の超音波送受信器を用いて超音波の送受信を行うことにより、前記測定用流体の流速または流量を前記複数の超音波送受信器でそれぞれ計測し、各計測値の差に基づいて前記測定用流体の流量を補正する演算手段を備えたことを特徴とする超音波流量計をその要旨とする。
【0019】
従って、手段7に記載の発明によると、測定用流体が流れる配管において、測定用流体の流れの特性が異なる測定部位に複数の超音波送受信器が設けられている。そして、演算手段により、それら超音波送受信器を用いて超音波の伝搬時間差が求められ、その伝搬時間差に応じた測定用流体の流速または流量が計測される。その後、演算手段により、各音波送受信器による計測値の差に基づいて測定用流体の流量が補正される。このようにすれば、測定用流体の種類や濃度が変化した場合でも、流量補正を的確に行うことができる。
【発明の効果】
【0020】
以上詳述したように、請求項1〜7に記載の発明によると、測定用流体の種類や濃度が変化した場合でも流量補正を的確に行うことができる。
【発明を実施するための最良の形態】
【0021】
[第1の実施の形態]
【0022】
以下、本発明を具体化した第1の実施の形態を図面に基づき詳細に説明する。図1は本実施の形態の超音波流量計1を示す概略構成図である。超音波流量計1は、超音波伝搬時間差方式で測定用流体W1(具体的には、例えば半導体洗浄用の薬液)の流量を測定する測定器であって、測定用流体W1を供給するための供給配管の途中に設けられている。
【0023】
超音波流量計1は、2つの直管部2,3を有する配管4と、第1の直管部2の上流側及び下流側に設けられる第1の超音波送受信器5a,5bと、第2の直管部3の上流側及び下流側に設けられる第2の超音波送受信器6a,6bと、各超音波送受信器5a,5b,6a,6bと接続される制御装置7(演算手段)とを備える。
【0024】
配管4において、第1の直管部2と第2の直管部3とでは管径が異なり、それら直管部2,3内に形成される流路10,11の断面積が異なっている。具体的には、第1の直管部2内の流路10は、第2の直管部3の流路11の断面積よりも大きくなるよう形成されている。また、第1の直管部2と第2直管部3とは、流路方向が平行であり、各直管部2,3と垂直に交わる連結部12を介して連結されている。つまり、超音波流量計1の配管4において、第1の直管部2の流路10と第2直管部3の流路11とは直列的に繋がっている。そして、測定用流体W1は、流路断面積が大きな第1の直管部2の流路10から流路断面積の小さな第2の直管部3の流路11の順に流れるようになっている。
【0025】
第1の超音波送受信器5a,5bは、第1の直管部2における上流側及び下流側の端部にそれぞれ設けられており、超音波を送受信するためのセンサ面が第1の直管部2内の流路10を介して対向するよう配置されている。これら第1の超音波送受信器5a,5bは、相互に超音波を送信するとともに、流路10中の測定用流体W1を伝搬した超音波を受信する。また、第2の超音波送受信器6a,6bは、第2の直管部3における上流側及び下流側の端部にそれぞれ設けられており、超音波を送受信するためのセンサ面が第2の直管部3内の流路11を介して対向するよう配置されている。これら第2の超音波送受信器6a,6bは、相互に超音波を発信するとともに、流路11中の測定用流体W1を伝搬した超音波を受信する。
【0026】
制御装置7は、CPU20、信号処理回路21,22、メモリ23、表示装置24等を備える。信号処理回路21,22は、各超音波送受信器5a,5b,6a,6bを駆動するための駆動信号を出力したり、超音波の伝搬時間を検出したりする回路である。CPU20は、メモリ23を利用して制御プログラムを実行し、装置全体を統括的に制御する。制御プログラムとしては、測定用流体W1の流量を算出するためのプログラムや流量の測定値を表示装置24に表示するためのプログラムなどを含む。なお、CPU20が実行するプログラムとしては、メモリカードなどの記憶媒体に記憶されたプログラムや、通信媒体を介してダウンロードしたプログラムでもよく、その実行時には、メモリ23に読み込んで使用する。
【0027】
本実施の形態の超音波流量計1では、流路断面積が異なる2つの測定部位(第1の直管部2及び第2の直管部3内の流路10,11)において、各超音波送受信器5a,5b,6a,6bを用いて超音波の送受信を行い、超音波の伝搬時間差に基づいてそれぞれ流量を同時に計測する。
【0028】
ここで、第1の直管部2で計測される流量と第2の直管部3で計測される流量とは、所定の動粘度を有する校正用流体を流した状態で実際の流量とのズレがないように、予め校正を実施しておく。この場合、測定用流体W1の動粘度が校正用流体と同じ動粘度であるときには、第1の直管部2で計測される流量と第2の直管部3で計測される流量とは一致することとなる。ところが、測定用流体W1の動粘度が校正用流体と異なるときには、第1の直管部2で計測される流量と第2の直管部3で計測される流量とは、計測差が生じる。この理由は、次式(1)で規定されるレイノルズ数Reが流路の内径に依存して異なるためである。
【数1】

【0029】
ここで、Vは流速、dは流路の内径、vは動粘度である。
【0030】
また、流量Qは、次式(2)のように示される。
【数2】

【0031】
ここで、πは円周率である。そして、上式(2)を用いて上式(1)を変更すると、レイノルズ数Reは次式(3)のように示される。
【数3】

【0032】
従って、直列に配置された流路上で同じ流量を測定する場合、レイノルズ数Reは、流路の内径dに反比例することになる。このレイノルズ数Reは、流れの状態を表す指数であり、流路の内径dが異なる測定部位(第1の直管部2及び第2の直管部3)で計測すると、それら測定部位での流れの状態に応じて計測差が生じる。そして、各直管部2,3で計測した流量の比率は、測定用流体W1の動粘度vに依存して変わることとなる。
【0033】
本実施の形態の超音波流量計1では、配管4内を流れる流体の流量や動粘度によって、各直管部2,3で計測される流量の測定差がどのような関係になるか予め調べ、その関係に応じて作成された補正式や補正テーブルのデータをメモリ23に記憶している。そして、各直管部2,3で計測される流量やメモリ23のデータを使用して測定用流体W1の動粘度を求め、動粘度に応じて流量の補正を行っている。
【0034】
次に、本実施の形態の超音波流量計1にて実施される処理例を図2のブロック図を用いて説明する。なお、図2における各手段20a〜20fは、CPU20が有する演算処理機能を用いて実現される。
【0035】
詳述すると、先ず、第1の直管部2に配置されている第1の超音波送受信器5a,5bにより超音波Soの送受信が行われるとともに、第2の直管部3に配置されている第2の超音波送受信器6a,6bにより超音波Soの送受信が行われる。このとき、第1の信号処理回路21により、第1の直管部2の上流側から下流側に伝搬する超音波Soの伝搬時間と第1の直管部2の下流側から上流側に伝搬する超音波Soの伝搬時間とが検出され、それら超音波Soの伝搬時間差が求められる。また、第2の信号処理回路22により、第2の直管部3の上流側から下流側に伝搬する超音波Soの伝搬時間と第2の直管部3の下流側から上流側に伝搬する超音波Soの伝搬時間とが検出され、それら超音波Soの伝搬時間差が求められる。
【0036】
第1の流量算出手段20aは、第1の直管部2における超音波Soの伝搬時間差を第1の信号処理回路21から取得し、その伝搬時間差に基づいて測定用流体W1の流速を求める。そして、測定用流体W1の流速と第1の直管部2における流路断面積とに基づいて測定用流体W1の流量を求める(計測ステップ)。この第1の流量算出手段20aで求められる流量は、測定用流体W1の動粘度に応じた測定誤差を含んだ補正前流量である。
【0037】
第2の流量算出手段20bは、第2の直管部3における超音波Soの伝搬時間差を第2の信号処理回路22から取得し、その伝搬時間差に基づいて測定用流体W1の流速を求める。そして、測定用流体W1の流速と第2の直管部3における流路断面積とに基づいて測定用流体W1の流量を求める(計測ステップ)。この第2の流量算出手段20bで求められる流量は、測定用流体W1の動粘度に応じた測定誤差を含んだ補正前流量である。
【0038】
流量比算出手段20cは、第1の流量算出手段20aで求めた第1の直管部2における補正前流量と第2の流量算出手段20bで求めた第2の直管部3における補正前流量とに基づいて、それら補正前流量の流量比を求める。
【0039】
動粘度算出手段20dは、流量比算出手段20cで求めた流量比とメモリ23に記憶されている動粘度算出用のテーブルデータ23aとに基づいて、補間演算や直線近似等の演算を行うことにより、その流量比に応じた動粘度を求める(動粘度算出ステップ)。
【0040】
流量補正手段20eは、動粘度算出手段20dで求めた動粘度に基づいて、第2の流量算出手段20bで求めた補正前流量の補正を行う(補正ステップ)。ここで、流量補正手段20eは、動粘度毎の補正式のデータ23bをメモリ23から読み出し、その補正式のデータと第2の流量算出手段20bで求めた補正前流量とを用いて演算する。この演算において、動粘度と補正前流量とに応じた補正率を求め、その補正率によって補正前流量を補正することで補正後の流量を求める。その後、流量出力手段20fは、補正後の流量のデータを表示装置24に転送し、補正後の流量を表示装置24に表示させる。
【0041】
従って、本実施の形態によれば以下の効果を得ることができる。
【0042】
(1)本実施の形態の超音波流量計1では、測定用流体W1の温度変化や濃度変化に伴って動粘度が変化した場合、第1の直管部2及び第2の直管部3で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムで求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
【0043】
(2)本実施の形態の超音波流量計1では、配管4内に突起物などの複雑な構造がなく、配管4内における圧力損失を抑えることができるため、測定用流体W1の流量をより正確に測定することができる。
【0044】
(3)本実施の形態の超音波流量計1では、各直管部2,3での流量の算出処理や流量の補正処理を1つのCPU20で行うようにしているので、それぞれの処理を別々のCPUで行う場合と比較して、構成を簡素化することができる。また、CPU間のデータの授受にかかる時間を削減することができるため、流量補正をより迅速に行うことができる。
[第2の実施の形態]
【0045】
次に、本発明を具体化した第2の実施の形態を図3に基づき説明する。本実施の形態の超音波流量計1Aは、配管30の構成及び各超音波送受信器5a,5b,6a,6bの配置が上記第1の実施の形態と異なり、他の構成(制御装置7の構成)は第1の実施の形態と同じである。
【0046】
図3に示されるように、配管30は、管径が大きな大径部31とその大径部31よりも管径が小さな小径部32とを有し、それら大径部31と小径部32とが同軸線上に設けられている。この配管30において、測定用流体W1は、流路33の断面積が大きな大径部31から流路34の断面積の小さな小径部32の順に流れるようになっている。
【0047】
また、第1の超音波送受信器5a,5bが配管30の大径部31側に設けられ、第2の超音波送受信器6a,6bが配管30の小径部32側に設けられている。これら超音波送受信器5a,5b,6a,6bは、一方の超音波送受信器5a,6aが他方の超音波送受信器5b,6bよりも上流側に装着されており、測定用流体W1の流れ方向に対して所定の角度(例えば、45°の角度)で超音波Soが伝搬するようになっている。
【0048】
この超音波流量計1Aでは、流路断面積が異なる2つの測定部位(大径部31及び小径部32内の流路33,34)において、各超音波送受信器5a,5b,6a,6bを用いて超音波Soの送受信を行い、超音波Soの伝搬時間差に基づいてそれぞれ流量を計測する。そして、上記第1の実施の形態と同様に、計測した補正前流量の流量比に基づいて、測定用流体W1の動粘度を求め、さらに、その動粘度に基づいて測定用流体W1の流量を補正する。
【0049】
本実施の形態の超音波流量計1Aにおいても、第1の実施の形態と同様に、流路断面積が異なる2つの測定部位で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
[第3の実施の形態]
【0050】
次に、本発明を具体化した第3の実施の形態を図4に基づき説明する。本実施の形態の超音波流量計1Bは、配管40の構成が上記第1の実施の形態と異なり、他の構成は第1の実施の形態と同じである。
【0051】
図4に示されるように、配管40は、管径が大きな第1の直管部41と管径が小さな第2の直管部42とを有し、各直管部41,42が連結部43を介して連結されることでクランク状に形成されている。この配管40においても、測定用流体W1は、流路44の断面積が大きな第1の直管部41から流路45の断面積の小さな第2の直管部42の順に流れるようになっている。
【0052】
第1の直管部41の上流側及び下流側の端部において、その第1の直管部41内の流路44を介して対向するよう第1の超音波送受信器5a,5bが配置されている。また、第2の直管部42の上流側及び下流側の端部において、その第2の直管部42内の流路45を介して対向するよう第2の超音波送受信器6a,6bが配置されている。
【0053】
この超音波流量計1Bでも、上記第1の実施の形態と同様に、流路断面積が異なる2つの測定部位(第1の直管部41及び第2の直管部42内の流路44,45)において、各超音波送受信器5a,5b,6a,6bを用いて超音波の送受信を行い、超音波の伝搬時間差に基づいてそれぞれ流量を計測する。そして、計測した補正前流量の流量比に基づいて、測定用流体W1の動粘度を求め、さらに、その動粘度に基づいて測定用流体W1の流量を補正する。
【0054】
本実施の形態の超音波流量計1Bにおいても、流路断面積が異なる2つの測定部位で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
[第4の実施の形態]
【0055】
次に、本発明を具体化した第4の実施の形態を図5に基づき説明する。本実施の形態の超音波流量計1Cは、配管50の構成が上記第1の実施の形態と異なり、他の構成は第1の実施の形態と同じである。
【0056】
図5に示されるように、本実施の形態の配管50内には、流路断面積が異なる第1の流路51と第2の流路52とが並列的に設けられている。そして、第1の超音波送受信器5a,5bが第1の流路51を介して対向するように設けられるとともに、第2の超音波送受信器6a,6bが第2の流路52を介して対向するように設けられている。
【0057】
この超音波流量計1Cでは、流路断面積が異なる2つの測定部位(第1の流路51及び第2の流路52)において、各超音波送受信器5a,5b,6a,6bを用いて超音波の送受信を行い、超音波の伝搬時間差に基づいてそれぞれ流速を計測する。ここで、各流路51,52を並列に接続した場合、各超音波送受信器5a,5b,6a,6bを用いて計測される測定用流体W1の流速はほぼ等しくなる。このように、並列に接続した流路51,52で同じ流速を計測する場合、上式(1)の関係により、レイノルズ数Reは流路の内径dに比例するので、動粘度が変わると計測される各流速に計測差が生じることとなる。
【0058】
従って、本実施の形態の超音波流量計1Cでは、各超音波送受信器5a,5b,6a,6bで計測される流速と動粘度によって、流速の測定差がどのような関係になるか予め調べ、その関係に応じて作成された補正式や補正テーブルのデータをメモリ23に記憶している。そして、計測される流速やメモリ23のデータを使用して測定用流体W1の動粘度を求め、動粘度に応じて流量の補正を行う。
【0059】
本実施の形態の超音波流量計1Cにおいて、各流路51,52で計測される流速の差に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
[第5の実施の形態]
【0060】
次に、本発明を具体化した第5の実施の形態を図6に基づき説明する。本実施の形態の超音波流量計1Dは、配管60の構成が上記第1の実施の形態と異なり、他の構成は第1の実施の形態と同じである。
【0061】
図6に示されるように、本実施の形態の配管60は、第1の直管部61と第2の直管部62とを有している。第1の直管部61と第2の直管部62とは、管径及び流路断面積が等しくなるよう形成されている。また、第1の直管部61と第2の直管部62とが異なる樹脂材料を用いて形成されており、それら直管部61,62内に設けられる各流路63,64は、内面の表面粗さが異なるようになっている。そして、第1の直管部61の上流側及び下流側の端部において、その第1の直管部61内の流路63を介して対向するよう第1の超音波送受信器5a,5bが配置されている。また、第2の直管部62の上流側及び下流側の端部において、その第2の直管部62内の流路64を介して対向するよう第2の超音波送受信器6a,6bが配置されている。
【0062】
この超音波流量計1Dでは、配管60において内面の表面粗さが異なる測定部位(第1の直管部61及び第2の直管部62の流路63,64)において、各超音波送受信器5a,5b,6a,6bを用いて超音波の送受信を行い、超音波の伝搬時間差に基づいてそれぞれ流量を計測する。本実施の形態のように、各流路63,64の内壁面の表面粗さが異なる場合、各流路63,64における測定用流体W1の流れの特性が異なるので、測定用流体W1の動粘度に応じて流量の測定差を生じることとなる。従って、上記第1の実施の形態と同様に、計測した補正前流量の流量比に基づいて、測定用流体W1の動粘度を求め、さらに、その動粘度に基づいて測定用流体W1の流量を補正する。
【0063】
本実施の形態の超音波流量計1Dにおいても、第1の直管部61及び第2の直管部62で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
【0064】
なお、本発明の実施の形態は以下のように変更してもよい。
【0065】
・上記各実施の形態の超音波流量計1,1A〜1Cにおいて、流路断面積が異なる測定部位(流路10,11,33,34,44,45,51,52)で流量計測を行うものであったが、断面形状が異なる複数の測定部位で流量計測を行うようにしてもよい。この場合、流路断面積が同じであっても断面形状を変更することにより、測定用流体W1の流れの特性を異ならせることができるため、上記実施の形態と同様の手法で流量補正を行うことができる。
【0066】
・上記第5の実施の形態の超音波流量計1Dでは、異なる樹脂材料を用いて第1の直管部61と第2の直管部62とを形成することにより、各直管部61,62内に形成される流路63,64の内壁の表面粗さを異ならせるものであったが、これに限定されるものではない。例えば、第1の直管部61と第2の直管部62とを同じ材料で形成し、各直管部61,62の一方の流路の内壁面を所定のコーティング材で被覆することにより、各流路63,64の内壁の表面粗さを異ならせてもよい。また、例えば、第1の直管部61と第2の直管部62とを同じ材料で形成し、各直管部61,62の一方の流路の内壁面に凹凸をつけることにより、各流路63,64の内壁の表面粗さを異ならせてもよい。
【0067】
・上記各実施の形態では、測定用流体W1の流れの特性が異なる2箇所の測定部位でそれぞれ流量を検出する構成としたが、3箇所以上の測定部位で流量を測定して、その測定結果に基づいて流量補正を行ってもよい。このように測定部位を3箇所以上に増やす場合、補正前流量の流量差に応じた動粘度を近似曲線によって正確に求めることができる。
【0068】
・上記各本実施の形態の超音波流量計1,1A〜1Dにおいて、流量算出手段20a,20bで求めた流量が所定範囲内であるときに、流量比算出手段20c、動粘度算出手段20d、及び流量補正手段20eによる各演算処理を実行するように構成してもよい。ここで、複数の測定部位で計測された流量の差が小さい場合、動粘度との関係性が弱いため、流量の補正精度が悪くなることがある。これに対して、流量算出手段20a,20bで求めた流量が所定範囲内であるときにのみ、流量比算出手段20c、動粘度算出手段20d、及び流量補正手段20eの各演算処理を行うことにより、流量補正の信頼性を高めることが可能となる。
【0069】
さらに、超音波流量計1,1A〜1Dの外部から入力される補正許可信号に基づいて、流量比算出手段20c、動粘度算出手段20d、及び流量補正手段20eによる各演算処理を実行するよう構成してもよい。このようにすると、超音波流量計1,1A〜1Dを有する制御システムにおいて、流量補正を実行するタイミングを把握、管理することができるため、実用上好ましいものとなる。
【0070】
・上記各実施の形態では、1つの超音波流量計1,1A〜1Dを用いて流量補正を行うものであったが、これに限定されるものではない。複数の超音波流量計と補正装置とを備える超音波流量補正システムに本発明を具体化してもよい。具体的には、例えば、図1における配管4の第1の直管部2と第1の超音波送受信器5a,5bと図示しない第1の演算装置とで第1の超音波流量計を構成し、第2の直管部3と第2の超音波送受信器6a,6bと図示しない第2の演算装置とで第2の超音波流量計を構成する。そして、各超音波流量計で計測した各流量の計測データを補正装置に取り込み、その補正装置により、各計測データの差に基づいて測定用流体の流量を補正する。このように、超音波流量補正システムを構成した場合でも、第1の超音波流量計及び第2の超音波流量計で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて補正装置が流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
【0071】
次に、特許請求の範囲に記載された技術的思想のほかに、前述した各実施の形態によって把握される技術的思想を以下に列挙する。
【0072】
(1)上記手段2において、前記複数の超音波送受信器が、前記配管において流路断面積のみが異なる一方、内面の表面粗さが等しい測定部位に設けられていることを特徴とする超音波流量計の補正方法。
【0073】
(2)上記手段3において、前記複数の超音波送受信器が、内面の表面粗さのみが異なる一方、流路断面積が等しい測定部位に設けられていることを特徴とする超音波流量計の補正方法。
【0074】
(3)上記手段1乃至6のいずれかにおいて、前記計測ステップで計測した計測値が予め設定された所定範囲内であるときに、前記補正ステップを実行することを特徴とする超音波流量計の補正方法。
【0075】
(4)上記手段1乃至6のいずれかにおいて、前記超音波流量計の外部から入力される補正許可信号に基づいて、前記補正ステップを実行することを特徴とする超音波流量計の補正方法。
【0076】
(5)上記手段7において、前記測定用流体の動粘度を算出するためのテーブルデータと、前記流量の補正率を求めるための補正データとを記憶する記憶手段をさらに備え、前記演算手段は、前記記憶手段に記憶されたデータを使用して、前記各計測値の差に応じた前記動粘度を求めるとともに、前記動粘度と前記測定用流体の流量とに応じた前記流量の補正率を求め、その補正率により前記測定用流体の流量を補正することを特徴とする超音波流量計。
【0077】
(6)上記手段7において、前記演算手段が補正した前記流量を表示する表示手段をさらに備えたことを特徴とする超音波流量計。
【0078】
(7)上記手段7において、前記演算手段が補正した前記流量のデータを外部装置に出力する出力手段をさらに備えたことを特徴とする超音波流量計。
【0079】
(8)測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて前記測定用流体の流量を求める超音波流量計を2つ以上備えたシステムであって、前記配管において前記測定用流体の流れの特性が異なる測定部位に設けられた2つ以上の超音波流量計から前記流量の計測データを取得し、各計測データの差に基づいて前記測定用流体の流量を補正する補正装置を備えたことを特徴とする超音波流量補正システム。
【図面の簡単な説明】
【0080】
【図1】第1の実施の形態の超音波流量計を示す概略構成図。
【図2】第1の実施の形態の超音波流量計の概略構成を示すブロック図。
【図3】第2の実施の超音波流量計を示す概略構成図。
【図4】第3の実施の超音波流量計を示す概略構成図。
【図5】第4の実施の超音波流量計を示す概略構成図。
【図6】第5の実施の超音波流量計を示す概略構成図。
【図7】音速と温度との関係を示すグラフ。
【符号の説明】
【0081】
1,1A〜1D…超音波流量計
4,30,40,50,60…配管
5a,5b,6a,6b…超音波送受信器
7…演算手段としての制御装置
10,11,33,34,44,45,51,52,63,64…流路
So…超音波
W1…測定用流体

【特許請求の範囲】
【請求項1】
測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて、前記測定用流体の流量を求める超音波流量計の補正方法であって、
前記配管において前記測定用流体の流れの特性が異なる測定部位に設けられた複数の超音波送受信器を用いて超音波の送受信を行うことにより、前記測定用流体の流速または流量を前記複数の超音波送受信器でそれぞれ計測する計測ステップと、
前記複数の超音波送受信器による計測値の差に基づいて前記測定用流体の流量を補正する補正ステップと
を含むことを特徴とする超音波流量計の補正方法。
【請求項2】
前記配管において流路断面積が異なる測定部位に設けられた前記複数の超音波送受信器を用いて流速または流量を計測することを特徴とする請求項1に記載の超音波流量計の補正方法。
【請求項3】
前記配管において内面の表面粗さが異なる測定部位に設けられた前記複数の超音波送受信器を用いて流速または流量を計測することを特徴とする請求項1に記載の超音波流量計の補正方法。
【請求項4】
前記複数の超音波送受信器による計測値の差に基づいて、前記測定用流体の動粘度を算出する動粘度算出ステップをさらに含み、前記補正ステップにおいて、前記動粘度により前記流量を補正することを特徴とする請求項1乃至3のいずれか1項に記載の超音波流量計の補正方法。
【請求項5】
前記複数の超音波送受信器が設けられる複数の測定部位は、直列的に繋がる流路上に位置していることを特徴とする請求項1乃至4のいずれか1項に記載の超音波流量計の補正方法。
【請求項6】
前記複数の超音波送受信器が設けられる複数の測定部位は、並列的に繋がる流路上に位置していることを特徴とする請求項1乃至4のいずれか1項に記載の超音波流量計の補正方法。
【請求項7】
測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を備え、前記超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて、前記測定用流体の流量を求める超音波流量計であって、
前記配管において前記測定用流体の流れの特性が異なる測定部位に設けられた複数の超音波送受信器を用いて超音波の送受信を行うことにより、前記測定用流体の流速または流量を前記複数の超音波送受信器でそれぞれ計測し、各計測値の差に基づいて前記測定用流体の流量を補正する演算手段を備えたことを特徴とする超音波流量計。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−139291(P2010−139291A)
【公開日】平成22年6月24日(2010.6.24)
【国際特許分類】
【出願番号】特願2008−313952(P2008−313952)
【出願日】平成20年12月10日(2008.12.10)
【出願人】(000243364)本多電子株式会社 (255)
【Fターム(参考)】