説明

輪郭形成されたプラットフォームと軸方向ダブテール部とを備えたシュラウド付きタービンブレード

【課題】渦の影響を最小限に抑え、尚且つ、単純な組立てが可能なシュラウド付きタービンブレードを提供する。
【解決手段】タービンブレード26は、付根部38、翼端部40、凹状正圧面側46、及び横方向に対向する凸状負圧面側48を有するエアフォイル34であって、正圧面側及び負圧面側が、対向し合う前縁56及び後縁58間で翼弦方向に延在するエアフォイルと、エアフォイルの翼端部に配置された外側プラットフォーム36であって、各々に噛合要素を形成する離間配置された横方向縁部60を有する外側プラットフォームと、エアフォイルの付根部に配置された2つの離間した湾曲状横方向縁部を備えた内側プラットフォーム32であって、非軸対称形状に輪郭形成され、エアフォイルに面する高温側部を有する内側プラットフォームと、内側プラットフォームの反対側から半径方向内方に延在する、軸方向に直線状のダブテール部28と、を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概してガスタービンエンジンに関し、特にガスタービンエンジンのタービンに関する。陸軍省から授与された契約番号第W911W6−07−2−0002号に従って、米国政府は本発明において一定の権利を有する。
【背景技術】
【0002】
ガスタービンエンジンにおいて、空気が圧縮機内で加圧された後、燃料と混合され、燃焼器内で燃焼し、燃焼ガスが生成される。燃焼器の下流の1つ以上のタービンは、燃焼ガスからエネルギーを取り出して、圧縮機、更にはファン、軸、プロペラ、又はその他の機械的負荷も駆動させる。各タービンは、タービンブレード又はバケットの列を担持するディスクを各々が含む、1つ以上のロータを含む。環状バンドの形態をとる半径方向外側及び内側のエンドウォールを有するステータベーンの列を含む静止ノズルが、各ロータの上流に配置され、燃焼ガスの流れをロータへと最適に導く役割を果たす。各ノズルと下流のロータとは、合わせてタービンの「段」とよばれる。
【0003】
ベーン及びブレードのエアフォイルの複雑な三次元(3D)構成は、運転の効率を最大限に高めるように調整され、エアフォイルに沿って半径方向に、更には、前縁と後縁の間のエアフォイルの翼弦に沿って軸方向に、翼幅が変動する。これにより、エアフォイル表面上の燃焼ガスの速度分布及び圧力分布が変動し、流路内の燃焼ガスの速度分布及び圧力分布も変動する。
【0004】
そのため、燃焼ガス流路における望ましくない圧力損失は、全体的なタービン効率の望ましくない低下に繋がる。例えば、燃焼ガスは、対応する列のベーン及びブレード間の流路に流入すると、必然的に、エアフォイルの各々の前縁で分流する。
【0005】
流入する燃焼ガスの淀み点の軌跡は、各エアフォイルの前縁に沿って延在する。対応する境界層は、各エアフォイルの正圧面側及び負圧面側沿いと、各流路の4つの側部の境界を一緒になって画定する各半径方向外側及び内側のエンドウォール沿いとに形成される。境界層において、燃焼ガスの局所流速は、エンドウォール及びエアフォイル表面沿いのゼロから、境界層が終端する位置における、燃焼ガスの無制限の流速まで変動する。
【0006】
タービンの圧力損失のよくある原因の1つは、燃焼ガスの移動がエアフォイル前縁の周りで分流される時の、馬蹄渦及び流路渦の形成である。全圧勾配は、エアフォイルの前縁とエンドウォールとの接合部の境界層流で生じる。エアフォイル前縁のこの圧力勾配により、エンドウォール付近で各エアフォイルの両側を下流方向に移動する、一対の逆回転馬蹄渦が形成される。馬蹄渦の回転により縦渦が生じるので、流路渦も発達する。
【0007】
これらの渦は、各エアフォイルの対向し合う正圧面側及び負圧面側に沿って後方に移動し、渦に沿って圧力及び速度の分布が異なることから、異なる挙動を示す。例えば、コンピュータ解析によると、負圧面側の渦は、エンドウォールから離れる方向にエアフォイル後縁に向かって移動した後、エアフォイル後縁を辿ってエアフォイル後縁へと後方に向かって流れる正圧面側の渦と相互に作用する。
【0008】
正圧面側及び負圧面側の渦の相互作用が、エアフォイルの翼幅中間領域付近で生じることで、全圧力損失が生じ、これに対応してタービン効率が低下する。また、これらの渦により、乱流が生じ、エンドウォールの望ましくない加熱が増大する。
【0009】
馬蹄渦及び流路渦が、タービンロータブレードとその一体的な付根部プラットフォームとの接合部、並びに、ノズルステータベーンとその外側及び内側バンドとの接合部で形成されると、これに対応して、タービン効率の損失が生じると共に、エンドウォール部品が更に加熱される。
【0010】
非軸対称エンドウォール輪郭形成(EWC)をタービンエアフォイルに用いて渦の影響を軽減することにより、性能を大幅に改善することができる。周知の設計の1つに、前縁の「隆起」、負圧面側の「谷部」、及び後縁の「畝状部」が含まれる。大抵、ブレードダブテール部とプラットフォームの縁部は、直線状である。この直線状のダブテール部/プラットフォームの設計を用いると、後縁の畝状部は、1つのプラットフォームから、隣接するプラットフォームまで跨ってしまう。製造公差及び組立公差により、後縁の畝状部が中断し、性能に悪影響を及ぼす前方向の段差ができることがある。後縁畝状部の中断による不利益を被ることなくEWCの利点を維持し得る、改良型のプラットフォーム設計を有することが望ましい。後縁畝状部を、隣接するプラットフォームまで跨ることなく単一のプラットフォーム内に配置するために、円弧状プラットフォームを用いることができる。しかし、これは、翼端シュラウドを有しておらず、個別にロータディスクに組み付けられるブレードの場合にのみ可能である。シュラウド付きタービンブレードの場合は、互いに噛合する翼端シュラウド、湾曲したプラットフォーム、従来式の湾曲したダブテール部が、ロータの組み立てを阻む。
【発明の概要】
【発明が解決しようとする課題】
【0011】
したがって、シュラウド付きタービンブレードにおける渦の影響を最小限に抑え、尚且つ、単純な組立てが可能なことが望ましい。
【課題を解決するための手段】
【0012】
上記の要求は、3D輪郭形成された内側バンド面と、軸方向に直線状のダブテール部とを有する、シュラウド付きタービンブレードを提供する本発明によって満たされる。
【0013】
本発明の一態様によると、タービンブレードは、付根部、翼端部、凹状正圧面側、横方向に対向する凸状負圧面側を有するエアフォイルであって、正圧面及び負圧面側は、対向し合う前縁及び後縁間で翼弦方向に延在するエアフォイルと、エアフォイルの翼端部に配置された外側プラットフォームであって、各々が噛合要素を形成する離間した横方向縁部を有する外側プラットフォームと、エアフォイルの付根部に配置された2つの離間した湾曲横方向縁部を有する内側プラットフォームであって、非軸対称形状に輪郭形成された、エアフォイルに面する高温側部を有する内側プラットフォームと、内側プラットフォームの反対側から半径方向内方に延在する、軸方向に直線状のダブテール部とを含む。
【0014】
本発明の別の態様によると、タービンブレードアセンブリは、付根部、翼端部、凹状正圧面側、横方向に対向する凸状負圧面側を有するエアフォイルであって、正圧面側及び負圧面側は、対向し合う前縁及び後縁間で翼弦方向に延在するエアフォイルと、エアフォイルの翼端部に配置された外側プラットフォームであって、噛合要素を備えて構成される離間した横方向縁部を有する外側プラットフォームと、エアフォイルの付根部に配置される2つの離間した湾曲横方向縁部を備えた内側プラットフォームであって、非軸対称形状に輪郭形成された、エアフォイルに面する高温側部を有する内側プラットフォームと、を各々が有する複数のブレードを含む。これらのブレードは、2つの内側プラットフォーム、2つの外側プラットフォーム、並びに、隣接し合う第1及び第2のエアフォイルの間に各々の流路が画定される、複数の流路を形成するように環状に並列配列される。隣接する外側プラットフォームの噛合要素は互いに係合する。各々の流路内の内側プラットフォームの高温側部は、第1のエアフォイルの前縁に隣接して第1のエアフォイルの正圧面側に近接する、半径方向高さが相対的に高い山部を含む非軸対称形状に輪郭形成され、半径方向高さが相対的に低い谷部が、第2のエアフォイルの前縁の後方において、第2のエアフォイルの負圧面側に平行且つ第2のエアフォイルの負圧面側から離間して配置されており、山部と谷部は一緒に、第1及び第2のエアフォイル間において、内側プラットフォームに沿って軸方向に延在する弓形溝を形成する。
【0015】
添付図面に関連して以下の説明を参照することにより、本発明を最もよく理解できよう。
【図面の簡単な説明】
【0016】
【図1】本発明の態様に従って構成されたタービンノズルを組み込んだガスタービンエンジンの概略図である。
【図2】図1に示すエンジンのタービンブレードの左側斜視図である。
【図3】図2に示すタービンブレードの部分拡大図である。
【図4】並列に組み付けられた幾つかのタービンブレードの断面図である。
【図5】図4の線5−5に沿った概略図である。
【図6】図4の線6−6に沿った図である。
【図7】タービンディスクの一部分と、幾つかのタービンブレードとを一緒に示した分解斜視図である。
【発明を実施するための形態】
【0017】
様々な図面を通して同じ要素を同一の参照符号で示す図面を参照すると、図1は、いずれも縦方向中心軸「A」に沿って、流れが軸方向に直列の関係に配置されたファン12、高圧圧縮機14、燃焼器16、高圧タービン(「HPT」)18、低圧タービン20を有する、典型的なガスタービンエンジン10の要素を示す概略図である。高圧圧縮機14、燃焼器16、高圧タービン18は、合わせて「コア部」とよばれる。高圧圧縮機14は、燃焼器12内へと送られる圧縮空気を供給し、この燃焼器には、燃料が導入され、燃焼して高温燃焼ガスが生成される。高温燃焼ガスは、高圧タービン18へと排出され、このとき、高温燃焼ガスを膨張させてエネルギーを取り出す。高圧タービン18は、外側シャフト22を介して圧縮機10を駆動させる。高圧タービン18から流出する加圧空気は、低圧タービン(「LPT」)20へと排出され、このとき、加圧空気を更に膨張させてエネルギーを取り出す。低圧タービン20は、内側シャフト24を介してファン12を駆動させる。ファン12は、加圧空気流を生成し、この加圧空気流の一部分は、高圧圧縮機14の吸気口に過給され、加圧空気の大部分は、「コア部」をバイパスして、エンジン10が発するスラストの大部分をもたらす。
【0018】
図示のエンジン10は、高バイパスのターボファンエンジンであるが、本明細書に記載の原理は、ターボプロップエンジン、ターボジェットエンジン、ターボシャフトエンジン、並びに、その他の車両及び定置用途に用いられるタービンエンジンにも同等に適用可能である。本明細書に記載の原理は、空気以外の作動流体を用いる蒸気タービン等のタービンにも適用可能である。また、LPTブレードを一例として用いているが、本発明の原理は、HPT及び中圧タービン(IPT)を含むがこれらに制限されない、内側又は外側シュラウド、又はプラットフォームを有するあらゆるタービンブレードに適用可能であることを理解されたい。
【0019】
従来式では、LPT20は、エアフォイル型の静翼の列と、タービンブレードの列を担持する下流の回転ディスクとを含む、各段にノズルを有する一連の段を含む。図2及び3に、符号26を付したタービンブレードの構成をより詳細に示す。ブレード26は、ダブテール部28、シャンク部30、内側プラットフォーム32、エアフォイル34、外側プラットフォーム36を含む一体部品である。エアフォイルは、付根部38、翼端部40、前縁42、後縁44、凸状負圧面側48の反対側の凹状正圧面側46を含む。内側及び外側プラットフォーム32及び36はそれぞれ、エアフォイル34を通過するガス流の内側及び外側の半径方向の境界を画定する。
【0020】
ダブテール部28は、従来式に構成されたランド部と溝部を有する断面形状を有する。ダブテール部28は、エンジン中心線に対して軸方向に整合し、その形状は「軸方向に直線状」である。換言すれば、ダブテール部の形状は、ダブテールの輪郭をエンジンの縦方向中心軸に対して平行な線「L」に沿って並進させることにより形成される形状と同等であり、湾曲又は反りを有さない。
【0021】
外側プラットフォーム36は、高温ガス流路に面する「高温側部」50と、高温ガス流路から反対方向を向いている「低温側部」52とを有する。1つ以上の環状シール歯部54が、外側プラットフォームの低温側部52から半径方向外方に延在する。外側プラットフォーム36は、対向する前縁及び後縁56及び58、並びに、前縁56及び後縁58間に延在する横方向縁部60及び62により、画定される。外側プラットフォーム36の横方向縁部60及び62は、非線形の形状を有する。各横方向縁部60及び62は噛合要素を含み、これによって、2つの外側プラットフォーム36が互いに組み付けられる時に、軸方向の噛合作用が得られる。図示の例において、横方向縁部60及び62は平面図では同じ形状を有しているが、その結果、右側の横方向縁部62(後方から前方向に見た時に)は、効果的に横方向に延在するタブ64を形成し、左側の横方向縁部60は、相補的な凹部66を形成する。
【0022】
内側プラットフォームも、高温ガス流路に面する「高温側部」68と、高温ガス流路とは反対方向を向いている「低温側部」70を有する。内側プラットフォーム32は、対向し合う前縁72及び後縁74、並びに、前縁72及び後縁74間に延在する横方向縁部76及び78により、画定される。内側プラットフォーム32の横方向縁部76及び78は、湾曲している(弧は、個別の用途に応じて、円弧状又はその他任意の形状であってよい)。図示の例において、横方向縁部76及び78は、平面図において同じ形状を有する。結果、内側プラットフォーム32の一方の横方向側部は、平面図において凸状をなし、他方の横方向側部は、平面図において凹状をなす。これらの曲率は、エアフォイル34が反りを有する方向に対応する。以下により詳細に説明するが、弓形の横方向縁部76及び78により、隣接するタービンブレード26の内側プラットフォーム32へと越境させることを必要とせず、内側プラットフォーム32の3D輪郭形成機構を実現できる。
【0023】
運転時、エアフォイル前縁におけるガス圧力勾配により、内側プラットフォーム32付近において、各エアフォイル34の両側を下流方向に移動する一対の逆回転馬蹄渦が生じる。図2の概略図に、正圧面側及び負圧面側の渦の移動方向を、それぞれ参照符号PS及びSSで示す。馬蹄渦の旋回により、縦渦が生じると、流路渦が発達し、エンドウォール層の低運動量流体が、横方向の圧力勾配により付勢されて、エアフォイル34どうしの間の流路を正圧面側から負圧面側へと横断する。
【0024】
図3〜6に示すように、内側プラットフォーム32の高温側部68は、流路渦及び馬蹄渦による悪影響を軽減するべく、好ましくは従来の軸対称形状又は円周形状よりも起伏を有して輪郭形成される。特に、内側プラットフォームの輪郭は、軸対称ではなく、各ブレード26の正圧面側46に隣接する幅広の山部80から窪んだ幅狭の谷部82まで半径方向に起伏を有して輪郭形成される。この輪郭形成は、概して「3D輪郭形成」とよばれる。組立後のロータの2つの隣接するエアフォイル34どうしの間の、流路の空気力学的「エンドウォール」を形成する全体の形状は、エアフォイル34の並列配置された内側プラットフォーム32の部分どうしが合わさって形成されることが、理解できよう。
【0025】
典型的な先行技術の内側バンドは、概して、縦断面図で見るとエアフォイルの上面と同様の形状に凸状に湾曲した表面形状を有する(図5参照)。この形状は、エンジン10の縦軸のまわりにおける対称な回転面である。この形状を基線基準とみなし、「B」で示した破線で示す。3D輪郭形成された表面形状を実線で示す。図面では、同じ高さ又は半径方向寸法を有する点が、等高線で相互に結ばれている。図4に示すように、各々のエアフォイル34は、自身の前縁42から自身の後縁44までを測定した翼弦長「C」を有し、この寸法に対して平行な方向が「翼弦」方向となる。図4において「T」と表示した矢印で示すように、内側プラットフォーム32の前縁72又は後縁74に対して平行な方向を接線方向とよぶ。本明細書で用いる場合、「正の隆起」、「山部」、及び同様の用語は、半径方向外方に位置する表面特性、又は局所基線Bよりも縦軸Aから測定した場合の方が、半径が大きい表面特性を指し、「谷部」、「負の隆起」、及び同様の用語は、半径方向内方に位置する表面特性、又は局所基線Bよりも縦軸Aから測定した場合の方が、半径が小さい表面特性を指す。
【0026】
図4及び5を参照すると、谷部82は、エアフォイル34の対どうしの間の、内側プラットフォーム32の高温側部68にあって、エアフォイル34のほぼ前縁42から後縁44まで延在する。谷部82の最深部分は、図4に示す線6−6と一致する、エアフォイル34の負圧面側48に対して実質的に平行な線に沿って延在する。図示の具体例において、谷部82の最深部分は、高温側部68の最低位置及び最高位置間の、半径方向高さの全体差の約20%、即ち高さの全体差が約8.5単位量である場合に、基線形状Bよりも約2単位量だけ低い。接線方向において、エアフォイル34の負圧面側48から測定すると、谷部82の最深部分を表す線は、隣接するエアフォイル34の正圧面側46までの距離の約10%の位置にある。翼弦方向において、谷部82の最深部分は、エアフォイル34のほぼ最大断面厚さの位置(一般に「ハイC(high−C)」位置とよぶ)にくる。
【0027】
図4及び5に示すように、山部80は、隣接するエアフォイル34の正圧面側46に対して実質的に平行な線に沿って延在する。畝状部81は、山部80の最高部分から延在し、隣接するエアフォイル34の正圧面側46から離れるように略接線方向に延在する。山部80の半径方向高さは、この畝状部81から離れる方向に、エアフォイル34の前縁42と後縁42との両方に向かって傾斜する。山部80は、前縁42の後方において、基線高さBから最大高さへと、前縁42から翼弦長の3分の1にわたって大きな勾配で高さを増すが、山部80は、後縁44から翼弦長の残りの3分の2にわたって、実質的に小さめの勾配又は傾斜で、後縁44から均等に高さを増す。
【0028】
図示の具体例において、山部80の最高部分は、高温側部68の最低位置及び最高位置間における半径方向高さの全体差の約80%、即ち全体差が約8.5単位量である場合に、約7単位量だけ基線形状Bよりも高い。翼弦方向において、山部80の最高部分は、翼弦中間位置と、隣接するエアフォイル34の前縁42との間に位置する。
【0029】
後縁畝状部84は、エアフォイル34の後方の、内側プラットフォーム32の高温側部68にある(図3及び4参照)。この後縁畝状部は、エアフォイル34の後縁44から後方に、実質的にエアフォイル34の翼弦線の延長線である線に沿って延在する。後縁畝状部84の半径方向高さは、この線から離れる方向に、エアフォイル34の前縁42と後縁44との両方に向かって傾斜する。図示の具体例において、高温側部68の最低位置及び最高位置間の、半径方向高さの全体差の約60%、即ち全体差が8.5単位である場合に、後縁畝状部84の最高部分は、基線形状Bよりも約5単位だけ高い。後縁畝状部84の最高部分は、エアフォイル34の後縁44に直接隣接し、その付根部38に位置する。
【0030】
なお、上記の特定の数値はあくまでも例であり、個別の用途に最適な性能を得るために変更可能である。例えば、上記の半径方向高さの±20%を容易に変更可能であり、接線位置の±15%を変更可能である。
【0031】
山部80は、その最大高さ付近で局所的に異なる部分があるものの、谷部82は実質的にその縦方向又は軸方向の全長にわたってほぼ均一な浅さを有する。隆起した山部80、窪んだ谷部82、後縁畝状部84が一緒になって、1つのエアフォイル34の凹状の正圧面側46と、隣接するエアフォイル34の凸状の負圧面側48との間で、流路の弓形状に従った空気力学的にスムーズなシュート溝又は湾曲溝が構成され、これによって、燃焼ガスがスムーズに導かれる。特に、山部80及び谷部82が一緒に、燃焼ガスの流入角に従って燃焼ガスをスムーズに屈曲又は方向転換させることにより、馬蹄渦及び流路渦による悪影響が軽減する。円弧状の内側プラットフォーム32により、隣接する内側プラットフォーム32へと後縁畝状部84が跨ることなく、1つの内側プラットフォーム32内に配置できる。そのため、後縁畝状部84に沿ったエンドウォール境界層流が、半径方向の断絶部又は「段差」に「遭遇する」ことはない。特に、前方の段差がなくなる。この特徴は、3D輪郭形成の空力性能の向上維持の一助となる。
【0032】
本明細書に示す例では、エアフォイル34の後縁44と後縁畝状部84との間に、内側プラットフォーム32の高温側部68上に大きなフィレット又はその他の同様の構造はない。換言すれば、エアフォイル34の後縁44の付根部38と後縁畝状部84との間には、明瞭に画定された交点が存在する。機械的強度のためには、この位置に任意の種類のフィレットを含めることが必要かもしれない。空気力学的な理由から、いかなるフィレットの設置も最小限に抑えられるべきである。
【0033】
上記のエアフォイル及び内側プラットフォーム構成のコンピュータ解析によると、エンジン運転時の内側プラットフォーム高温側部68付近の空気力学的圧力損失が大幅に減少すると予想される。圧力分布の改善が、高温側部68からエアフォイル34の翼幅下部の実質的な部分全体に及ぶので、渦の強さが低減されると共に、馬蹄渦をエアフォイル負圧面側48の方へと付勢する流路間の圧力勾配が大幅に低減される。3D輪郭形成された高温側部68は、更に、エアフォイル34の翼幅中央部へと向かう渦の移動を減少させながら、全圧力損失を低減させる。これらの利点により、LPT20及びエンジン10の性能及び効率が高まる。
【0034】
図7を参照すると、ブレード26は、下記のようにタービンディスク86に取り付けられる。最初に1組のブレード86を組み立てて完全な360度の配列体にする。保持固定具又はジグ(図示せず)を用いて、ブレード26を正位置に固定する。このように組み立てると、内側プラットフォーム32の横方向縁部76及び78が接触又は密接し、外側プラットフォーム36の横方向縁部60及び62が接触又は密接する。各外側プラットフォーム36のタブ64は、隣接する外側プラットフォーム36の凹部66に受け入れられる。これにより、外側プラットフォーム36が効果的に相互に噛合するので、外側プラットフォーム36の軸方向移動が阻止される。次に、ブレード26の配列体を、ディスク86(図7には一部分のみ示す)のダブテールスロット88内に挿入する。その後、ボルト止め保持器、ディスク板、又は環状シール(図示せず)等の周知の部品を用いて、ブレード26をディスク86に軸方向に保持する。組立後、流路「P」がブレード26どうしの間の間隙に形成される。各流路Pは、2つの隣接する内側プラットフォーム32、2つの隣接する外側プラットフォーム36、2つの隣接するエアフォイル34によって、画定される。
【0035】
以上、3D輪郭形成された内側バンドを有する、シュラウド付きのタービンブレードについて説明した。本発明の特定の実施例を説明したが、当業者には明らかなように、本発明の概念及び範囲から逸脱することなく、これらを様々に改変することができる。したがって、本発明は、請求項によってのみ定義されるものであり、上記の本発明の好適な実施例及び本発明を実施するための最適な態様は、限定目的ではなく、あくまでも説明目的において供されている。

【特許請求の範囲】
【請求項1】
付根部、翼端部、凹状正圧面側、及び横方向に対向する凸状負圧面側を有するエアフォイルであって、前記正圧面及び負圧面側は、対向し合う前縁及び後縁間で翼弦方向に延在するエアフォイルと、
前記エアフォイルの前記翼端部に配置された外側プラットフォームであって、各々が噛合要素を形成する離間配置された横方向縁部を有する外側プラットフォームと、
前記エアフォイルの前記付根部に配置された、2つの離間配置された湾曲状横方向縁部を備えた内側プラットフォームであって、非軸対称形状に輪郭形成される、前記エアフォイルに面する高温側部を有する内側プラットフォームと、
前記内側プラットフォームの反対側から半径方向内方に延在する、軸方向に直線状のダブテール部と、を含むタービンブレード。
【請求項2】
前記外側プラットフォームの一方の前記横方向縁部は、突出するタブを形成し、他方の横方向縁部は、前記タブと相補的な形状を有する凹部を形成する、請求項1に記載のタービンブレード。
【請求項3】
前記内側プラットフォームの前記高温側部は、
前記エアフォイルの前縁に隣接し、前記エアフォイルの前記正圧面側に近接する、半径方向高さが相対的に高い山部と、
前記エアフォイルの負圧面側に平行に、前記エアフォイルの負圧面側から離間して、前記エアフォイルの前縁の後方に配置された、半径方向高さが相対的に低い谷部と、
を含む非軸対称形状に輪郭形成される、請求項1に記載のタービンブレード。
【請求項4】
前記内側プラットフォームの前記高温側部は、前記エアフォイルの前記後縁の後方に延在する、半径方向高さが相対的に高い後縁畝状部を含む、請求項1に記載のタービンブレード。
【請求項5】
前記山部は、前記エアフォイルの前記正圧面側において、前記前縁と翼弦中間位置の間に中心を有し、該中心から前方向、後方向、横方向に高さが減少し、
前記谷部は、前記エアフォイルの前記負圧面側において、前記エアフォイルの最大厚さ付近に中心を有し、該中心から前方向、後方向、横方向に深さが減少する、請求項1に記載のタービンブレード。
【請求項6】
前記内側プラットフォームの一方の前記横方向縁部は凸状であり、他方の前記横方向縁部は凹状である、請求項1に記載のタービンブレード。
【請求項7】
付根部、翼端部、凹状正圧面側、及び横方向に対向する凸状負圧面側を有するエアフォイルであって、前記正圧面側及び負圧面側は、対向し合う前縁及び後縁間で翼弦方向に延在するエアフォイルと、
前記エアフォイルの前記翼端部に配置される外側プラットフォームであって、噛合要素を備えて構成される、離間配置された横方向縁部を有する外側プラットフォームと、
前記エアフォイルの前記付根部に配置された、2つの離間した湾曲状横方向縁部を有する内側プラットフォームであって、非軸対称形状に輪郭形成される、前記エアフォイルに面する高温側部を有する内側プラットフォームと、
を各々が含む複数のブレードを有し、
前記複数のブレードは、2つの前記内側プラットフォーム、2つの前記外側プラットフォーム、及び隣接し合う第1及び第2のエアフォイルの間に各々が画定される複数の流路を形成するように、環状に並列配列されており、
隣接し合う外側プラットフォームの前記噛合要素どうしは、互いに係合し、
各々の前記流路内の前記内側プラットフォームの前記高温側部は、前記第1のエアフォイルの前縁に隣接し前記第1のエアフォイルの前記正圧面側に近接する、半径方向高さが相対的に高い山部を含む非軸対称形状に輪郭形成され、半径方向高さが相対的に低い谷部が、前記第2のエアフォイルに平行に、前記第2のエアフォイルの前縁の後方に第2のエアフォイルの前記負圧面側から離間して配置され、
前記山部と谷部とが一緒に、前記第1及び第2のエアフォイル間で、前記内側プラットフォームに沿って軸方向に延在する弓形溝を形成する、タービンブレードアセンブリ。
【請求項8】
前記山部は、前記第1のエアフォイルの各々の前記前縁の周りで高さを減少させながら、前記第2のエアフォイルの前記負圧面側に沿って前記谷部と繋がり、
前記谷部は、前記第2のエアフォイルの後縁まで前記第2のエアフォイルの前記負圧面側に沿って延在する、請求項7に記載のタービンブレードアセンブリ。
【請求項9】
前記谷部の最深部分を画定する線は、前記第2のエアフォイルの前記負圧面側から前記第1のエアフォイルの前記正圧面側までの接線方向距離の約10%の位置にある、請求項7に記載のタービンブレードアセンブリ。
【請求項10】
各々の前記内側プラットフォームの前記高温側部は、前記エアフォイルの前記後縁の後方に延在する、半径方向高さが相対的に高い後縁畝状部を含む、請求項7に記載のタービンブレードアセンブリ。
【請求項11】
前記山部は、各エアフォイルの前記正圧面側で、前記前縁部と翼弦中間位置の間に中心を有し、該中心から前方向、後方向、及び横方向に向かって高さが減少し、
前記谷部は、前記負圧面側の前記エアフォイルの最大厚さ付近に中心を有し、該中心から前方向、後方向、横方向に向かって深さが減少する、請求項7に記載のタービンブレードアセンブリ。
【請求項12】
各々の前記内側プラットフォームの、一方の前記横方向縁部は凸状であり、他方の前記横方向縁部は凹状である、請求項7に記載のタービンブレードアセンブリ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−52526(P2012−52526A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2011−143795(P2011−143795)
【出願日】平成23年6月29日(2011.6.29)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【Fターム(参考)】